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Abstract

Uncertainty rises sharply during economic downturns at both the micro and macro level.
Leveraging a new solution method, I study the interaction between micro and macro
uncertainty in a globally solved Heterogeneous Agent New Keynesian (HANK) model
with aggregate risk, counter-cyclical unemployment risk, and a zero lower bound (ZLB)
constraint on monetary policy. The interaction with micro uncertainty emerges as the
dominant transmission channel of macro uncertainty. The overall effect of uncertainty on
economic activity is substantially amplified. My model also generates endogenous spikes
in uncertainty during bad times as the economy is pushed towards the ZLB. In general
equilibrium, a feedback loop emerges that gives rise to an “Uncertainty Multiplier”: A
contraction in economic activity spurs endogenous uncertainty about the future, which
depresses aggregate demand further. The model matches the skewness and kurtosis
exhibited by macro uncertainty in the data even in the absence of exogenous second-
moment shocks. The interplay between micro and macro uncertainty has ramifications
for the nature of zero lower bound spells, the welfare cost of business cycles, and the
effectiveness of stabilization policy.
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Uncertainty at both the micro and macro level rises sharply during economic downturns. At
the micro level, households face elevated unemployment risk during crises (e.g. Storesletten
et al. (2004), Shimer (2005) and Guvenen et al. (2014)), and firms experience more volatile sales,
cash-flow and productivity growth (e.g. Kehrig (2015) and Bloom et al. (2018)). At the macro
level, recessions are associated with higher stock market volatility and increased variability
in GDP growth (e.g. Bloom (2014)). Much previous work has studied the implications of
uncertainty at either the micro or the macro level. A framework that allows for the joint
determination of micro and macro uncertainty has thus far remained elusive, in part because
it poses considerable methodological challenges. Modeling uncertainty at the micro level
requires cross-sectional heterogeneity, while uncertainty at the macro level presupposes
aggregate risk.1

In this paper, I make two main contributions. First, I show that accounting for the
interaction between micro and macro uncertainty is crucial to characterize the role uncertainty
plays in business cycle fluctuations. The dominant transmission channel of macro uncertainty
is its interaction with micro uncertainty. Indeed, in general equilibrium (GE) a strong feedback
loop emerges between micro and macro uncertainty. As a result, recessions are associated with
large endogenous spikes in uncertainty. My second contribution is methodological. I develop
a new global solution method for heterogeneous-agent macro models. Leveraging its power, I
globally solve a Heterogeneous Agent New Keynesian (“HANK”) model with aggregate risk,
counter-cyclical unemployment risk, and a zero lower bound (ZLB) constraint on monetary
policy. While a rapidly growing body of work has developed first-order perturbation methods
to solve heterogeneous-agent macro models with aggregate risk (see Reiter (2009), Winberry
(2020), Ahn et al. (2017), Boppart et al. (2018), and Auclert et al. (2019)), progress on global
solution methods has been slower.2

I start my discussion in Section 1 by studying the transmission mechanism of macro
uncertainty in an illustrative two-period model. Households solve a consumption-savings
problem, facing both aggregate wage risk and idiosyncratic unemployment risk. At the heart
of my analysis is the empirically motivated assumption that a household’s employment
transition probabilities vary with aggregate economic activity. Indeed, the job separation
(finding) rate in the data is strongly counter-cyclical (pro-cyclical): Recessions are times of
heightened micro uncertainty over households’ job prospects (e.g. Storesletten et al. (2004)
and Shimer (2012)). The transmission of macro uncertainty in this setting is governed by
a set of direct (partial equilibrium) and indirect (general equilibrium) channels, borrowing
the language from Kaplan et al. (2018). The direct effects of uncertainty are those that arise
from a change in households’ beliefs about future shock realizations holding prices constant.
Indirect effects arise in general equilibrium as prices respond to the change in household
behavior induced by direct effects.

1Bloom et al. (2018) develop a model with cross-sectional firm heterogeneity and study exogenous variation
in the micro and macro uncertainty that firms face. My focus, on the other hand, is on the endogenous interaction
between uncertainty at the micro and macro level, which is not modeled in their paper.

2Variants of the original Krusell and Smith (1998) algorithm largely remain the method of choice. Notable
exceptions include Fernández-Villaverde et al. (2019) and Pröhl (2019).
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When there is no interaction with micro uncertainty, the only direct effect of macro uncer-
tainty on household behavior to second order is the standard Kimball (1990) precautionary
savings motive. A mean-zero spread in next period’s aggregate wage rate exposes employed
households to symmetric risk in labor income. Since this effect is marginal, its relevance to
households is captured by differentiating marginal utility and, in particular, is proportional
to u′′′(·). Unlike aggregate wage risk, unemployment risk at the micro level takes the form
of discrete and asymmetric jumps. Its relevance is not captured by a derivative of marginal
utility but, rather, by the jump scaling factor u′(cE)− u′(cU), where u′(cE) and u′(cU) are
marginal utility conditional on employment and unemployment, respectively. It is in this
sense that the prospect of job loss is akin to an idiosyncratic rare disaster from the perspective
of households.

When we account for its interaction with unemployment risk, macro uncertainty operates
through a set of novel channels. Direct interaction effects emerge because a mean-zero spread
in the aggregate shock now also implies increased dispersion in employment outcomes. In
general equilibrium, an indirect interaction effect emerges as well: The direct effects of micro
and macro uncertainty on household behavior lead to an initial fall in consumer spending
and aggregate demand. As a result, the demand for labor falls, which consequently raises
(lowers) the job separation (finding) rate. For an employed household, an increase in the
job separation rate both lowers expected earnings and increases their variance. The former
elicits a consumption-smoothing response and the latter a precautionary savings motive.
These novel interaction effects tend to increase households’ desired savings in response to an
increase in macro uncertainty.

I show that these direct and indirect interaction effects are proportional to the jump scal-
ing factor u′(cE)− u′(cU) that is characteristic of uncertainty at the micro level. Households
in this setting respond to uncertainty at the macro level not so much because it implies a
mean-zero spread in aggregate wages but rather because it translates into disaster risk at the
micro level. These results suggest qualitatively that accounting for an interaction with micro
uncertainty can substantially alter the transmission mechanism of macro uncertainty.

To evaluate these implications quantitatively, I build a business cycle model in which
households face uninsurable unemployment risk in the tradition of Huggett (1993), Aiyagari
(1994), McKay et al. (2016) and Kaplan et al. (2018). I build on the benchmark HANK model
of Kaplan et al. (2018) along three dimensions. First, I model a zero lower bound (ZLB)
constraint on monetary policy, thus explicitly introducing a source of non-linearity at the
macro level. Second, I allow for aggregate risk in the form of discount rate shocks.3 Third,
and most importantly, I account for the cyclicality in the job finding and separation rates so
that the unemployment risk faced by households varies over the business cycle. I estimate
the sensitivity of employment transition rates to changes in economic activity in Current

3Discount rate shocks are a popular proxy for aggregate demand shocks (e.g. Basu and Bundick (2017)
and Auclert et al. (2020)). I have also solved variants of this model with alternative demand and supply (TFP)
shocks. In the presence of nominal rigidities, TFP shocks tend to generate counter-cyclical price inflation (e.g.
Gali (2015)). Since the source of macro non-linearity in this model is the ZLB constraint on monetary policy, it is
important that inflation is pro-cyclical, which is the case in the presence of aggregate discount rate shocks.
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Population Survey (CPS) micro data. This approach follows a long tradition of constructing
gross flow data for employment transitions from micro data.4 By using the resulting estimates
directly in the model, I take as given the link between employment transitions and economic
activity.5 The sense in which my model generates an endogenous link between micro and
macro uncertainty is through economic activity: heightened macro uncertainty depresses
aggregate demand which in turn raises unemployment risk. At the micro level, therefore,
households face uncertainty over future job prospects. At the macro level, households are
exposed to uncertainty over asset prices, interest rates and the aggregate determinants of
disposable income, such as the wage rate, transfers, and unemployment insurance (UI)
payments. The crucial feature of my model is that uncertainty at the micro level is high
precisely at the same time as uncertainty at the macro level.

My first main result is that the transmission mechanism of macro uncertainty in the
quantitative model differs starkly from that in a Representative Agent New Keynesian
(“RANK”) benchmark.6 In the RANK model, the direct precautionary savings response
to heightened aggregate uncertainty contributes the largest share to the overall effect on
consumption. Using a conservative relative risk aversion coefficient of γ = 2 in my calibration,
this direct precautionary effect is unsurprisingly small. Therefore, the overall effect of macro
uncertainty on economic activity in the RANK baseline is quite modest.7

In the quantitative model, this direct effect of macro uncertainty is relatively muted.
Instead, the interaction with micro uncertainty emerges as the dominant driver of transmis-
sion. The quantitative analysis therefore corroborates the importance of the interaction effects
identified in the two-period model. Household behavior is more responsive to uncertainty
at the macro level precisely because it translates into unemployment risk. Similarly, and in
the spirit of Kaplan et al. (2018), other indirect channels working through portfolio returns
and the aggregate determinants of disposable income become important relative to the direct
precautionary channel. Therefore, the overall effect of macro uncertainty on economic activity
is large in my model precisely because it works through micro uncertainty and other indirect
channels. I show that the peak response of output to an increase in macro uncertainty is 5 to
8 times larger than in the associated RANK benchmark. The interaction between micro and

4See for example Marston et al. (1976), Abowd and Zellner (1985), Darby et al. (1985), Darby et al. (1986),
Poterba and Summers (1986), Blanchard et al. (1990), Shimer (2005), Fujita and Ramey (2009), Elsby et al. (2009),
and Shimer (2012).

5These empirical estimates based on U.S. micro data are intended as a reduced-form summary of the state
dependence in employment transition rates that would result from a search-and-matching micro-foundation.
Explicitly implementing a search-and-matching block is beyond the scope of this paper and left for future work.

6The focus of my paper is on macroeconomic uncertainty that arises endogenously. However, isolating and
decomposing the effects of endogenous uncertainty is challenging in a setting with aggregate risk. To be able to
study the transmission mechanism of macro uncertainty, I consider an exogenous shock to fundamental risk
(similar to Bloom (2009), Basu and Bundick (2017), Bloom et al. (2018) and Bayer et al. (2019)). The assumption
implicit in this strategy is that the transmission mechanism of an exogenous increase in the volatility of discount
rate shocks is sufficiently similar to that of an endogenous increase in the volatility of economic activity.

7This is consistent with the results in Basu and Bundick (2017). They show that a fundamental risk shock
induces co-movement in output, consumption, investment and hours, but they impart households with Epstein-
Zin preferences and a relative risk aversion coefficient of 80 to generate quantitatively meaningful responses.
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macro uncertainty is the main source of this amplification.
An overarching theme of my analysis is that the behavior of uncertainty changes drasti-

cally during economic crises. I show that the peak decline in output in response to a given
increase in macro uncertainty is 50% larger when the economy is already at the cusp of
the ZLB than during normal times. Close to the ZLB, the relationship between economic
activity and aggregate risk exhibits a degree of negative skewness. As a result, a mean-zero
spread in aggregate risk leads to a contraction of economic activity in expectation. The
implications of such skewness at the macro level are not unlike the skewness households
face at the micro level. Indeed, I show that non-linearity at the macro level strongly interacts
with non-linearity at the micro level: The relative importance of its interaction with micro
uncertainty in the transmission of macro uncertainty further rises during economic crises.
Identifying the importance of the ZLB crisis region for the behavior of uncertainty in my
model is only possible because I use a global solution method.8

My second main result is that the interaction between micro and macro uncertainty
has implications not only for the transmission mechanism of macro uncertainty but also
for its endogenous responsiveness to changes in economic activity. I show that macro
uncertainty in my model rises endogenously during economic downturns. That is, recessions
are accompanied by endogenous spikes in uncertainty even in the absence of exogenous
second-moment shocks. Crucially, the sensitivity of macro uncertainty to economic activity is
dampened substantially when I shut off its interaction with micro uncertainty. Concretely,
I show that endogenous macro uncertainty is 4 times more responsive to a negative, first-
moment discount rate shock when I account for the interaction with micro uncertainty.
Indeed, when I hold unemployment risk constant, macro uncertainty hardly responds at all
to discount rate shocks during normal times.

Macroeconomic uncertainty responds endogenously to changes in economic activity
through two main channels in my model. The first channel centers around the zero lower
bound constraint. When the economy is at the ZLB, monetary policy can no longer accommo-
date negative demand shocks, whose effects on economic activity are consequently amplified.
Even when the nominal interest rate is still positive, expansionary monetary policy moves
the economy closer to the ZLB, thus raising the likelihood that policy will be constrained in
the future. A given increase in macro uncertainty resulting from proximity to the ZLB has a
larger effect on aggregate demand when its transmission works through micro uncertainty,
thus pushing the economy even closer to the ZLB. To capture this economic force, it is crucial
to employ a global solution method.

8Overall, these results highlight that uncertainty can have large effects on consumption even in a setting
where household behavior is not perfectly forward-looking. It is well known that the effective planning horizon
of households in an incomplete markets setting is shortened in the presence of borrowing constraints (e.g.
McKay et al. (2016) and Kaplan et al. (2018)). Households directly at the borrowing constraint consume their
disposable income “hand-to-mouth”. But even those households that are close to but not at the constraint only
try to smooth consumption until they expect to reach the constraint. Unlike the representative household in
the RANK benchmark, most households in my model are close to or at their borrowing constraint and have
relatively short planning horizons.
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The second channel results from the counter-cyclicality in households’ average marginal
propensity to consume (MPC). As economic activity contracts, households become unem-
ployed and draw down their liquid cash buffers, thus moving closer to their borrowing
constraints at the micro level. The prevalence of “hand-to-mouth” behavior grows, which
implies an increase in the average household’s MPC. Consumer spending, and by implication
aggregate activity, thus become more sensitive to further demand shocks, which represents
an increase in macro uncertainty. By contrast, the counter-cyclicality of the average MPC
is considerably dampened when employment transition rates are held constant over the
business cycle. The standard Krusell and Smith (1998) algorithm struggles to account for
these shifts in the household distribution. The global solution method developed in this
paper therefore plays a key role in my ability to study endogenous uncertainty spikes in this
model.

In general equilibrium, therefore, a strong feedback loop emerges between uncertainty
and economic activity: When activity contracts, uncertainty about the future rises, which itself
depresses aggregate demand further. This feedback loop can be instructively characterized as
an “Uncertainty Multiplier”, which measures how much endogenous amplification there is in
macro uncertainty. I show that this Uncertainty Multiplier is high precisely when we account
for the cyclicality of unemployment risk, and when the economy is already in a recession.
Indeed, this feedback loop between uncertainty and activity allows my model to match the
time series moments of various macro uncertainty proxies in the data without requiring ex-
ogenous second-moment shocks: Macro uncertainty in the model is strongly counter-cyclical,
highly persistent and exhibits large positive skewness and kurtosis. Overall, uncertainty
emerges as both a driver and a byproduct of business cycle fluctuations. Accounting for the
interaction between micro and macro uncertainty is thus crucial to understand the broader
role that uncertainty plays in macroeconomic fluctuations.

The interaction between micro and macro uncertainty has far-reaching implications for
central questions in business cycle analysis, several of which I discuss in Sections 6 and
7, and in the appendix. First, ZLB spells become more frequent and more persistent. I
also show that the interaction between the ZLB and a paradox of thrift dynamic, by which
households increase savings in anticipation of reaching the ZLB, is amplified. Second, an
interplay between uncertainty at the micro and macro level provides a new perspective on
the welfare cost of business cycles. I show that the implied share of consumption households
are willing to forego to instead “live” in a representative-agent economy is 3.9%, or about
two orders of magnitude larger than the original estimates in Lucas (1987) and Lucas (2003).
In the appendix, I study a series of policy experiments and show that stabilization policy in
my setting operates through a novel set of micro and macro uncertainty channels.

Methodological Contribution. The methodological contribution of my paper is a new global
solution method for heterogeneous-agent macro models with aggregate risk. I show that
this new method is key to solve the quantitative model with time-varying unemployment
risk and occasionally-binding ZLB constraint, and in turn study the interaction between
micro and macro uncertainty. The main challenge in numerically solving my model is that
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the entire cross-sectional distribution of agents, an infinite-dimensional object, becomes part
of the aggregate state space. Let xt denote the vector of idiosyncratic state variables and
gt(x) the cross-sectional distribution of agents. In this paper, I work with finite-dimensional
distribution approximations of the form

F(αt)(x) ≈ gt(x).

For illustration, it is easiest to think of F as a set of basis functions that are parameterized by
the time-varying αt ∈ RN . While representations of the form F(αt)(x) ≈ gt(x) are commonly
used in the context of local perturbation methods, they have proven intractable in the context
of global methods due to the curse of dimensionality.9 I make three contributions that help
overcome this challenge:10

1. Most global methods currently in use, such as the seminal Krusell and Smith (1998)
algorithm, work with a finite set of moments to approximate the distribution of agents.
The costliest step of these algorithms is finding an internally consistent law of motion
for these moments. I show in Section 3.3 that, for a large class of models, the coefficients
αt follow a diffusion process with drift µα,t and volatility σα,t, and I derive analytical
formulas for these objects that can be easily computed. In this sense, and in sharp
contrast to the Krusell and Smith (1998) algorithm, finding the consistant law of motion
incurs almost no increase in numerical complexity.11

2. While F(·) can be chosen from a parametric family, I develop a non-parametric al-
gorithm in Section 3.4 that delivers substantial efficiency gains especially when the
idiosyncratic state space of agents is high-dimensional.

3. For most economic applications of interest, accurate approximations of the distribu-
tion will require high-dimensional F(αt)(x). Global methods will therefore quickly
encounter the curse of dimensionality. In Schaab and Zhang (2020), we develop an
adaptive sparse grid library for solving partial differential equations that can overcome
the curse of dimensionality in high dimensions. Using this library and leveraging the
results developed in this paper, I can solve the benchmark Krusell and Smith (1998)
model with a F(αt)(x) representation in over 20 dimensions, that is αt ∈ R20.

Literature Review. This paper is most directly related to a long literature studying the role
of uncertainty in business cycle fluctuations. One prominent strand of this literature, of

9My paper builds on the important contribution of Winberry (2020) who uses a distribution representation
of this form in the context of a local perturbation method.

10I provide additional details for and discuss the algorithmic and computational aspects of my methodological
contribution in a separate Numerical Appendix that can be found here.

11I build on the closely related contribution of Ahn et al. (2017) and generalize this state space reduction
technique to settings where the cross-sectional distribution of agents itself is stochastic. Asset pricing models
with portfolio choice problems are typically of this kind. See Appendix E for an example.
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which Bernanke (1983) is an early example, follows the seminal contribution of Bloom (2009)
and asks whether uncertainty can drive business cycles. This group of papers considers
the implications of an exogenous increase in micro or macro uncertainty, prompting a pre-
cautionary savings response among households (Leduc and Liu (2016), Basu and Bundick
(2017), Bayer et al. (2019)), a wait-and-see response by firms (Bloom (2009), Bloom et al. (2018))
or a tightening of financial constraints (Gilchrist et al. (2014), Arellano et al. (2019)).12 An
alternative approach to study the effects of uncertainty on economic activity uses vector
autoregression (VAR) estimates (see for example Bloom (2009), Ludvigson et al. (2015) or
Basu and Bundick (2017)). Relative to this literature, I show that accounting for the interaction
between micro and macro uncertainty qualitatively changes the transmission mechanism of
an uncertainty shock, substantially amplifying its effect on activity.13

A largely distinct strand of literature argues that uncertainty arises endogenously as
a byproduct of economic crises.14 Several channels have been proposed through which
a contraction in economic activity may spur uncertainty: When economic activity falls,
economic agents interact less frequently, stifling the spread of information (Van Nieuwerburgh
and Veldkamp (2006), Fajgelbaum et al. (2017), Straub and Ulbricht (2017)); policymakers
may resort to adopting untested policies, raising uncertainty (Pástor and Veronesi (2013));
firms may take riskier and more experimental actions during bad times (Bachmann et al.
(2011)). The endogenous responsiveness of uncertainty to economic activity in my model
works largely through two channels: the ZLB, and counter-cyclical MPCs. Plante et al. (2018)
similarly make the argument that, during bad times as the economy approaches the ZLB,
policy becomes further incapacitated, which raises uncertainty.15

My focus on time-varying micro uncertainty in the form of counter-cyclical unemploy-
ment risk is shared by a large body of work that documents the cyclicality of earnings risk
and employment transitions in the data (e.g. Storesletten et al. (2004), Shimer (2005) and
Guvenen et al. (2014)), and studies its implications analytically and quantitatively (e.g. Ravn
and Sterk (2016), Schmidt (2016), McKay (2017), Acharya and Dogra (2020)). In this paper,
I study the interaction between unemployment risk and macro uncertainty: Households
respond to an increase in macro uncertainty in large part because it translates into micro
uncertainty. Patterson (2019) documents systematic heterogeneity in household exposure to
cyclical earnings risk. Taking into account heterogeneous incidence is left for future work.

My paper also adds to the burgeoning heterogeneous-agent New Keynesian (HANK)
literature.16 This is the first paper of this class that studies macroeconomic uncertainty and

12See Fernández-Villaverde et al. (2015) for a quantitative analysis of a policy uncertainty shock.
13There is also a large literature that tries to measure uncertainty in the data. See Bloom (2014) for an

overview.
14A smaller body of work seeks to determine whether the counter-cyclicality of uncertainty is a result of

exogenous shocks or rather an endogenous response. See for example Ludvigson et al. (2015) and Berger and
Vavra (2019).

15While they make this point in a representative-agent New Keynesian model, I show that accounting for
cross-sectional heterogeneity and, in particular, the interaction between micro and macro uncertainty is crucial.

16See Oh and Reis (2012), Guerrieri and Lorenzoni (2017), McKay and Reis (2016), McKay et al. (2016),
Werning (2015), Challe et al. (2017), Kaplan et al. (2018), Auclert et al. (2019), Auclert et al. (2018), Auclert et al.
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features an occasionally binding macro constraint; both of these features require a higher-
order or indeed global solution method.17 My main contribution to this literature is to show
that the transmission mechanism of uncertainty changes qualitatively when we account for
cross-sectional household heterogeneity: the effect through micro uncertainty becomes the
new dominant transmission channel of a macro uncertainty shock.

Finally, I build on an extensive body of work that has developed global solution methods
for heterogeneous-agent macro models.18 My paper also builds on the important contri-
butions of Winberry (2020) and Ahn et al. (2017) who propose a similar finite-dimensional
distribution representation as I do in the context of local perturbation methods.

1 Illustrative Two-Period Example

The goal of this section is to develop intuition for the economic mechanism driving my results:
the interaction between micro and macro uncertainty and its implications for household
behavior. I characterize the effect of uncertainty on household consumption in a stylized
two-period model of consumption and savings decisions. Households in this setting face
unemployment risk at the micro level and uncertainty over wage growth at the macro level.
The critical assumption I make is that households’ employment transition probabilities are a
function of aggregate economic activity.

Setting. There are two periods, t = 0, 1. Aggregate risk is represented by the normal random
variable σε ∼ σN (0, 1), which is realized at the beginning of period 1. While I leave the
macro block of the model largely unspecified, I assume and work with a notion of aggregate
economic activity which I denote by Yt. The only structure I have to impose is that economic
activity in period 1 responds to the realization of aggregate risk, that is Y1 = Y1(σε).19

Households. A continuum of households i make consumption and savings decisions, facing

(2020), Bayer et al. (2019), Ottonello and Winberry (2017), Acharya and Dogra (2020), and Bilbiie (2020). This list
is non-exhaustive.

17There is a large literature that studies the zero lower bound constraint quantitatively in representative-agent
settings. See for example Christiano et al. (2011), Fernández-Villaverde et al. (2015), Nakata (2017) and Plante
et al. (2018).

18For example, see Den Haan (1996), Den Haan and Others (1997), Krusell and Smith (1998), Reiter (2010),
Algan et al. (2008), Algan et al. (2014), Brunnermeier and Sannikov (2014), Brumm and Scheidegger (2017),
Duarte (2018), Pröhl (2019), and Fernández-Villaverde et al. (2019).

19More formally, the discussion in this section is valid as long as the general equilibrium block satisfies the
following restriction. Let Xt denote the vector of all macroeconomic aggregates in period t. Then there are
sets of equations, which I dub the macro block,H0(X0, E0(X1)) = 0 andH1(X0, X1, σε) = 0. In particular, the
assumption that only the first moment of future aggregate states of the economy affects the allocation in period
0 guarantees that macro uncertainty has no effect on household behavior to first order. In this setting, we have
Y1 = Y1(X0, σε). In response to an increase in σ, there is a direct (partial equilibrium) effect on Y1 through its
second argument and an indirect (general equilibrium) effect through its first argument.
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uncertainty at both the micro and macro level. Household i’s budget constraints are given by

ci,0 + ai,1 = ai,0 + yi,0zi,0

ci,1 = Rai,1 + yi,1zi,1.

In period 0, households consume, ci,0, and save, ai,1, out of initial wealth, ai,0, and total labor
income given by yi,0zi,0. In period 1, household consumption is equal to the gross return on
savings and labor income. Labor supply is inelastic.

The key object in this stylized setting is household labor income, which comprises a
component that loads on the aggregate state, yi,t, and a purely idiosyncratic term, zi,t. The
idiosyncratic component corresponds to the household’s employment status, with zi,t ∈ {0, 1}.
Conditional on employment, zi,t = 1, yi,t can be thought of as a wage. In particular, I assume
that a household’s wage is directly proportional to economic activity, yi,t = γiYt, as in
Werning (2015).

The main assumption I make, which introduces a meaningful interaction between micro
and macro uncertainty, is that the unemployment risk faced by households is counter-cyclical.
In particular, I assume that the probability that household i becomes or remains employed in
period 1 directly depends on economic activity, with

P(zi,1 = 1 | zi,0, ε) = pi(Y1),

where pi corresponds to the job finding rate when zi,0 = 0 and one minus the job seperation
rate when zi,0 = 1.

Household preferences are defined over consumption, given by

E0

1

∑
t=0

βtU(ci,t).

The household’s consumption and savings decision is then characterized by a standard Euler
equation. Namely,

U′(ci,0) = βRE0

[
U′(cu

i,1)
(

1− pi(Y1)
)]

+ βRE0

[
U′(ce

i,1)pi(Y1)
]

where I have used the law of total probability to split expected marginal utility in period 1 into
an unemployment and an employment term. U′(cu

i,1) is the marginal utility of consumption
conditional on unemployment, and it is multiplied by the probability of unemployment given
economic activity Y1. Similarly, U′(ce

i,1) is the marginal utility of consumption conditional on
employment, and it is multiplied by the probability of employment.

To think about the effects of uncertainty on household behavior, I consider a compariative
static in σ, which is analogous to a macro uncertainty shock in this illustrative model. The
following result characterizes how household consumption depends on σ locally around
σ ≈ 0. That is, I perform a Taylor expansion around an economy that features micro
uncertainty in the form of employment transitions but no aggregate risk.
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Proposition 1. To second order,

ci,0(σ) ≈ ci,0(0) +
1
2

d2ci,0

dσ2 (0) σ2,

where

d2ci,0

dσ2 =

{ 1 Pure macro (wage)
uncertainty︷ ︸︸ ︷

U′′′(ce
i,1)γ

2
i

U′′(ci,0)
pi E0

[(
∂Y1

∂σ

)2]
+

Micro uncertainty︷ ︸︸ ︷
U′(ce

i,1)−U′(cu
i,1)

U′′(ci,0)

( 2 Direct (PE)
effect︷ ︸︸ ︷

p′′i E0

[(
∂Y1

∂σ

)2]
+

3 Indirect (GE)
effect︷ ︸︸ ︷

p′i E0

[(
d2Y1

dσ2

)])

+

4

2
U′′(ce

i,1)γi

U′′(ci,0)
p′i E0

[(
∂Y1

∂σ

)2]
︸ ︷︷ ︸

Cov micro × macro risk

}
× βR MPSi,0 + ∆i︸︷︷︸

“Standard” effects
(no interaction with uncertainty)

All objects are evaluated in the limit as σ → 0, and MPSi,0 is household i’s marginal propensity to
save in period 0.

Macro uncertainty affects household consumption in this model through four channels:

1. As in any representative-agent model, aggregate risk elicits the standard precautionary
savings motive that is proportional to U′′′ > 0 (Kimball (1990)), channel 1 . Only
employed households are exposed to wage risk, so this term is scaled by the probability
of employment, pi. Their exposure is proportional to the sensitivity of wages to the
aggregate shock ε, which, to second order, is given by (γiY′1)

2.

The remaining three channels characterize the effect of macro uncertainty on household
consumption through its interaction with micro uncertainty.

Aggregate wage risk exposes households to marginal changes in consumption, whose
relevance is captured by differentiating marginal utility. Micro uncertainty in the form
of employment transitions, on the other hand, represents an idiosyncratic rare disaster for
households: it leads to discrete jumps in consumption and, therefore, marginal utility. Its
relevance is not captured by a derivative of marginal utility but, rather, by a jump scaling
factor. The effect on marginal utility of a transition from unemployment to employment
is thus given by U′(ce

i,1)−U′(cu
i,1). It is in precisely this sense that the prospect of job loss

is akin to a rare disaster, and consequently much more prominent, from the perspective of
households.

2. Both channels 2 and 3 represent the effect of macro uncertainty on micro uncertainty,
and are thus scaled by U′(ce

i,1) −U′(cu
i,1) < 0. Channel 2 corresponds to the direct

or partial equilibrium effect.20 This channel is operative only when p′′i 6= 0, so that

20I use “direct” and “indirect” in the sense of Kaplan et al. (2018).
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there is a non-linearity at the micro level in the response of employment transition
rates to economic activity. I present some empirical evidence for such non-linearities in
Section 4.2. Consider the case of an employed household. Intuitively, if the job separation
rate is strictly convex as a function of economic activity, p′′i < 0, then a mean-zero
spread in aggregate risk leads to an increase in the household’s expected probability of
unemployment. Through this interaction with unemployment risk, macro uncertainty
has a first-moment effect on expected earnings and induces desired savings.

3. Macro uncertainty has an effect on micro uncertainty to second order, even if the job
finding and separation rates are only linear, p′i 6= 0. Channel 3 represents this indirect
or general equilibrium effect. An increase in uncertainty will, to second order, elicit
precautionary savings (e.g. channel 1 ) and thus lead to a contraction in aggregate
economic activity. If this contraction in activity is persistent and propagates into period
1, then households expect an associated GE effect on employment transition rates.21

Simply put, if a macro uncertainty shock leads to a persistent recession, then households
expect elevated unemployment risk going forward.22 The indirect GE effect of channel

3 is the dominant transmission channel of macro uncertainty in the quantitative model:
households respond to an increase in macro uncertainty precisely because it translates
into micro uncertainty.

4. Finally, there is a covariance between risks at the micro and macro level. Formally, chan-
nel 4 represents the effect of σ, to second order, on the covariance between marginal
utility and employment transition rates. When the probability of transitioning into
employment state j is high for precisely those realizations of ε that also imply a high
marginal utility of employment state j, then this channel represents another source of
risk for households and induces precautionary savings. If the covariance structure is
reversed, then this represents a hedging term.

The behavioral response in consumption is also subject to other effects, specifically a set of

21In the continuous-time quantitative model of Section 2, this GE effect will be contemporaneous. Therefore,
an indepth discussion of the sources of persistence and propagation is unnecessary at this point.

22When the economy’s general equilibrium block takes the form discussed in the previous footnote, then this
GE effect can formally be further decomposed into two components. When Y1 = Y1(X0, σε), we have

E0

[
d2Y1

dσ2

]
= E0

[
∂Y1

∂X0

]
d2X0

dσ2︸ ︷︷ ︸
Endogenous GE effect

+ E0

[
∂2Y1

∂σ2

]
︸ ︷︷ ︸

Macro non-linearity

.

The first term highlights that, to second order, a macro uncertainty shock adversely affects aggregates in period
0, d2X0/dσ2. This can lead to a persistent recession in period 1, E0[∂Y1/∂X0], and raise the expected probability
of job loss. The second term emphasizes that, even holding the other macro aggregates X0 fixed, there will be
a similar effect if there is skewness at the aggregate level. When the economy is close to or in a crisis region,
then a mean-zero spread in aggregate risk will have a first-moment impact on activity because, due to negative
skewness, a negative shock is amplified more than a similarly sized positive shock. The large negative skewness
exhibited by U.S. business cycles speaks to the relevance of this economic force.
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interest rate and earnings effects, that I suppress here. These effects are “standard” in the
sense that they would also emerge in a representative-agent setting and do not interact with
uncertainty in meaningful ways.

2 A HANK Model with Micro and Macro Uncertainty

The quantitative model takes as its starting point the heterogeneous-household model pro-
posed by Kaplan et al. (2018). Households face uninsurable earnings risk but can trade
liquid and illiquid assets under incomplete markets. I depart from this benchmark in three
important ways. First, I model aggregate uncertainty in the form of discount rate shocks.
Second as in the illustrative model in Section 1, I assume that unemployment risk varies
over the business cycle. Third, I introduce a zero lower bound (ZLB) constraint on monetary
policy.

2.1 Households

The economy is populated by a continuum of households. Facing both idiosyncratic un-
employment risk and aggregate uncertainty, households make consumption, savings and
portfolio allocation decisions across time. The idiosyncratic state of a household consists of
its portfolio position, made up of liquid assets at and illiquid assets kt, and its employment
status zt.

Household preferences are defined over consumption and labor, given by

max E0

∫ ∞

0
e−
∫ t

0 (ρs+ζ) dsu(ct, ht)dt, (1)

where ct is the rate of consumption and ht denotes the rate at which work hours are supplied.
As in the canonical New Keynesian model, ct is a consumption basket which is itself com-
prised of intermediate goods. This final good basket is priced at the consumer price index
(CPI) Pt. Households die at rate ζ. At the same time, an equal mass of new households is
formed with zero liquid and illiquid assets.

Discount rate shocks. The household’s effective discount rate is given by ρt + ζ. All house-
holds share a time-varying discount rate, ρt, which is the source of aggregate demand shocks
in my model.23 It follows a continuous-time AR(1) process, given by

dρt = θρ(ρ̄− ρt)dt + σρdBt,

where Bt is a standard Brownian motion.24 Discount rate shocks are a popular proxy for
aggregate demand shocks.

23Basu and Bundick (2017), an important reference point for my quantitative results, also build a model with
aggregate discount rate shocks. Using the same underlying shock process makes a direct comparison of results
easier. Auclert et al. (2020) also use a discount rate shock as one of their demand shocks.

24I have solved versions of the model with alternative demand and supply shocks. In Appendix F, I present
a variant of the model with supply (TFP) shocks and financial constraints.
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Budget constraint. Households trade in two asset markets, one for bonds (liquid assets)
and one for capital (illiquid assets).I denote the household’s liquid asset position by at and
its illiquid asset position by kt. Households are endowed with an investment technology
that transforms Qtιt + Ptψ(ιt, kt) units of the numeraire into ιt units of capital, where Qt

is the price of capital investment and Pt is the CPI. I denote the real price of capital by
qt = Qt/Pt. ψt represents an investment adjustment cost and is the source of capital’s
illiquidity. Households are thus the direct owners of capital in this model, which they rent to
firms in an economy-wide, competitive rental market.

Following Blanchard (1985), I introduce perfect annuity markets, in which households
can trade claims on their remaining wealth at time of death. They pledge this wealth to a
risk-neutral insurance company that, in turn, compensates households with a flow annuity
payment at a rate ζ times their current asset positions. This is exactly the payment rate
that makes the insurance company break even in expectation. See Appendix A.6 for details.
Introducing household death rates is a commonly used technique to ensure stationarity in
the wealth distribution.

A household’s liquid asset position evolves according to

ȧt = (rt + ζ)at + kt
dRt

dt
+ et − qtιt − ψ(ιt, kt)− ct. (2)

This budget constraint is derived from its nominal analog (see Appendix A.1.1 for details).
The real rate of return on the liquid asset consists of the real riskfree rate rt and the rate of
annuity payments ζ. Capital earns a real rate of return dRt, which I will further specify in
Section 2.6 after presenting the rest of the model. Wage payments and rebates are collected in
the earnings variable et, given by

et = (1− τlab)ztwtht + τ
lump
t + τUI(zt),

where wt = Wt/Pt is the real wage, τ
lump
t is a set of lump-sum rebates and τUI(zt) denotes

unemployment insurance payments that explicitly depend on the household’s employment
status. Finally, households consume and buy illiquid assets at relative price qt, subject to the
adjustment cost ψ.

The household’s illiquid asset position evolves as

k̇t = (ζ − δ)kt + ιt, (3)

where δ denotes capital depreciation and ζ the rate of annuity payments. Since households
are the direct owners of capital, they also incur depreciation. For convenience, I will later use
the shorthand notation st and mt to refer to the drift in the household’s liquid and illiquid
asset positions, respectively.

Finally, households’ portfolio allocation is subject to a borrowing constraint on liquid
assets, at ≥ a with 0 > a, and a short-sale constraint on capital, kt ≥ 0.

The household’s dynamic problem is therefore to maximize (1) subject to budget con-
straints (2) and (3), as well as the borrowing and short-sale constraints. Households take
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as given the laws of motion for their employment status and macroeconomic aggregates. I
denote the resulting policy functions in terms of the household’s idiosyncratic state variables
as ct(a, k, z), ht(a, k, z) and ιt(a, k, z).

Appendix A provides additional details on the household problem. I derive a recursive
representation and the associated consumption Euler equation in Appendix A.1 and A.2.
In Appendix A.4, I discuss the implications of inflation risk for the household’s portfolio
equations. In Appendix A.5, I discuss alternative assumptions for transfers and rebates.

Investment adjustment cost. I adopt the functional form for the household’s investment
adjustment cost that is used by Kaplan et al. (2018). In particular,

ψ(ιt, kt) = ψ0|ιt|+ ψ1

(
|ιt|
kt

)2

kt.

Unemployment risk. Households face uninsurable earnings risk that is encoded in the
state variable zt, which follows a two-state Markov process. These two states are given by
zt ∈ {zE, zU} and are thus meant to represent employment and unemployment. In practice, I
set zE = 1 and zU = 0 as in the two-period model.

Formally, let Nt be a standard Poisson process and let j ∈ {E, U} index the household’s
current earnings state. Then the evolution of the earnings state follows

dzj
t = (z−j − zj) dNt

(
λ

j
t

)
,

where λ
j
t is the Poisson arrival rate. These transition rates are the continuous-time analog

of the transition probabilities pi in the two-period model. For now, I specify λE and λU as
arbitrary functions on the aggregate state space, which the household takes as given. In
Section 4.2, I estimate the sensitivity of employment transition rates to changes in economic
activity in Current Population Survey (CPS) micro data. By using the resulting estimates
directly in the model, I take as given the link between employment transitions and economic
activity.25 The sense in which my model generates an endogenous link between micro and
macro uncertainty is through changes in economic activity: heightened macro uncertainty
depresses aggregate demand which in turn raises unemployment risk.

2.2 Firms

The structure of the goods producing sector is as in the standard New Keynesian model.
Monopolistic intermediate producers, which I will simply refer to as firms, sell differentiated
varieties to a retailer that aggregates these into a composite final consumption good.

25These empirical estimates are intended as a reduced-form proxy for the state dependence in employment
transition rates that would result, for example, from a search-and-matching micro-foundation. Explicitly
implementing a search-and-matching block is beyond the scope of this paper and left for future work.
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Retailer. The aggregation technology of the retailer is given by

Yt =

( ∫ 1

0
Yt(j)

ε f−1
ε f dj

) ε f

ε f−1
,

where Yt(j) is the output produced by intermediate firm j and ε f denotes the elasticity of
substitution across intermediate varieties. The retailer’s cost minimization problem gives
rise to the standard demand function for intermediate inputs, Yt(j) = (Pt(j)/Pt)−ε f

Yt, where
Pt(j) is the price of firm j.

Firms. Intermediate goods producers operate a technology that combines capital and labor.
Firm j’s production function is given by

Yt(j) = Kt(j)1−βLt(j)β, (4)

where β denotes the labor share.
Firm j demands work hours at rate Lt(j), for which it pays the nominal wage rate

Wt. There is an economy-wide rental market for capital in which firms rent capital from
households at nominal rental rate ik

t . All firms face the same prices and take them as given.
Firm j’s nominal profits are thus given by Πt(j) = Pt(j)Yt(j)−WtLt(j)− ik

t Kt(j). Standard
cost minimization implies a composite nominal marginal cost of

MCt =
1

ββ(1− β)1−β

(
ik
t

)1−β(
Wt

)β
,

and I define the real marginal cost as mct = MCt/Pt, so that the real rental rate of capital is
analagously given by rk

t = ik
t /Pt.

Dynamic price setting. While the choice of factor inputs is a static one, firms are monopolis-
tically competitive and face a dynamic pricing problem subject to price adjustment costs. I
adopt the quadratic specification of Rotemberg (1982).

Define πt(j) to be the instantaneous rate of inflation chosen by firm j. This rate is chosen
to maximize an appropriately discounted sum of all future expected profits subject to an
adjustment cost which I specify in terms of firm utility. This dynamic problem is given by

max
{πt(j)}

E0

∫ ∞

0
e−
∫ t

0 ik
s ds
[
(1−mct)Pt(j)Yt(j)−Λ(πt(j))

]
dt, (5)

where the effective discount rate is in terms of the cost of capital ik
t . See Appendix A for

additional details on the firm pricing problem.

2.3 Capital producer

For expositional clarity, I explicitly specify a capital producing sector.26 The capital producer is
owned by households. It is endowed with a technology that transforms the final consumption

26Capital production could be subsumed in the household problem, as in Brunnermeier and Sannikov (2014)
for example, as long as one is careful to distinguish between the idiosyncratic and aggregate adjustment costs.
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good into capital. Concretely, it requires It + Φ(It/Kt)Kt units of the final good to produce It

units of capital. The capital producer sells all new capital to households at the nominal price
Qt = Ptqt.

The real rate of profit earned by the capital producer, and paid out to households, is thus
given by

ΠQ
t = qt It − It −Φ

(
It

Kt

)
Kt, (6)

where It should be interpreted as the rate at which new capital, i.e. the latest vintage, is
generated. The associated optimality condition for static profit maximization is then given by

qt = 1 + Φ′
(

It

Kt

)
. (7)

Finally, accounting for the depreciation of capital incurred by households, the evolution of
the economy’s aggregate capital stock is given by

K̇t = It − δKt. (8)

2.4 Nominal wage stickiness

I follow a long tradition in the wage rigidity literature and model household labor supply
ht as determined by union labor demand (see Erceg et al. (2000), Schmitt-Grohé and Uribe
(2005), and Auclert et al. (2020)). There is a continuum of labor unions indexed by k ∈ [0, 1].
Households supply labor to each of these unions, which in turn bundle labor and pass on a
differentiated labor variety to an aggregate labor packer. This structure is meant to mimic
the analogous structure in the standard price stickiness setup where intermediate producers
sell differentiated varieties to a final retailer. The final labor packer aggregates all labor in
the economy into a composite labor factor, which is then used by firms in the production of
intermediate goods.

Since each household supplies labor to each of the k unions, we have ht =
∫

hk,tdk.
Union k’s aggregation technology combines all households’ effective work hours, zthk,t, into
a union-specific labor variety Lk,t. An aggregate, competitive labor packer combines these
intermediate inputs into an aggregate labor supply basket according to

Lt =

( ∫
L

εw−1
εw

k,t dk
) εw

εw−1

.

It sells this composite good at the nominal wage rate Wt to intermediate goods producers. The
demand function of the labor packer for union k’s input is given by Lk,t = (Wk,t/Wt)−εw

Lt.
I assume that a union faces a quadratic utility cost when adjusting its nominal wage

Wk,t. This cost is given by χw

2 (πw
k,t)

2Lt, where πw
k,t = Ẇk,t/Wk,t is the rate of nominal wage k

inflation. Labor unions act according to an equal-weighted sum of household preferences.
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Unions are small and take as given households’ policy functions. Their dynamic wage setting
problem is thus given by

max
πw

k,t

E0

∫ ∞

0
e−
∫ t

0 (ρs+ζ) ds
[ ∫

u(ct, ht)gtd(a, k, z)− χw

2
(πw

k,t)
2Lt

]
dt. (9)

Importantly, union k directly controls the evolution of its wage path, so that there are no
stochastic innovations and nominal wages, Wk,t, are locally deterministic. Furthermore,
unions are small and take as given the consumption policy function of the household, the
demand function of the labor packer, as well as the distribution of households and its
evolution. In the zero-inflation steady state, the real wage and marginal cost will be pinned
down by (1− τlab)w

∫
u′(c)g = εw

εw−1 v′(H). See Appendix A for additional details on the
union problem.

2.5 Government policy and ZLB

In the baseline model, the scope of fiscal policy is limited. The government budget constraint
is simply given by

rtBG + τ
lump
t +

∫
τUI(z)gt(a, k, z)d(a, k, z) + Gt = Πt + τlabwtLt. (10)

Fiscal expenditures include lump-sum rebates and unemployment insurance payments
to households. The government is assumed to be a net debtor, with a constant level of
riskfree debt outstanding given by BG, on which it pays the real interest rate rt. Finally, the
government purchases the final consumption good at rate Gt. The government finances these
expenditures with a labor income tax and with the corporate profits collected from the goods
producing sector, Πt.

Monetary policy in this model follows a simple Taylor rule and is subject to the zero
lower bound (ZLB) constraint on nominal interest rates, so that

it = max
{

r∗ + π̄ + λππt + λYyt, 0
}

, (11)

where r∗ is the steady state riskfree rate, and yt = log(Yt/Y∗) denotes the output gap.

2.6 Aggregation and market clearing

I denote by gt(a, k, z) the cross-sectional household distribution at time t over liquid assets,
a, illiquid assets, k, and employment status, z. Aggregation in this economy, for example of
consumer expenditures, then takes the form

Ct =
∫

ct(a, k, z)gt(a, k, z)d(a, k, z).

The aggregate stocks of liquid and illiquid assets held by households are defined, respectively,
as At =

∫
agt(a, k, z)d(a, k, z) and Kt =

∫
kgt(a, k, z)d(a, k, z).
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Market clearing. Formally, there are five markets in this economy that must clear at all times.
The clearance of two of these markets, however, the rental market for capital and the labor
market, is already implicit in the notation I have adopted: The aggregate stock of capital used
in production must equal the aggregate stock of the illiquid asset held by households, and
aggregate hours must equal the aggregate labor supply bundled by unions and the labor
packer.

This leaves the bond market, which clears when the stock of liquid assets held by
households equals the total riskfree debt issued by the government,

At = BG.

In particular, as long as government debt is constant the stock of liquid assets is also constant.
Second, the market for the final consumption good clears when

Yt = Ct + It + Φt + Ψt + Gt,

where Ct is aggregate consumption, It + Φt denotes gross investment expenditures including
adjustment costs, and Ψt =

∫
ψ(ιt, k)gt(a, k, z)d(a, k, z) is the aggregate adjustment cost paid

by households to trade in the illiquid asset.
This leaves, finally, the market for new capital, where households trade with the capital

producing firm. All new capital produced must be purchased by households, and the price
of capital Qt adjusts to clear this market,

It =
∫

ιt(a, k, z)gt(a, k, z)d(a, k, z).

In Appendix A.7, I provide an illustrative derivation of Walras’ law.

Profits and the return on capital. What remains to be specified is the dissemination of profits
and the composition of the rate of return on capital, dRt. In the baseline model, I assume that
pure profits earned by the goods producing sector are paid out uniformly to all households,
via the government’s lump-sum rebate τ

lump
t . Pure profits earned by the capital producing

sector, on the other hand, are disseminated in proportion to a household’s illiquid asset
holdings. That is, they constitute part of the return on capital.

Therefore, the real rate of return on capital is given by

dRt =

(
rk

t +
ΠQ

t
Kt

)
dt (12)

where rk
t is the real rental rate paid by firms and ΠQ

t /Kt is the profit from capital production
per unit of aggregate capital. The rate of return on the stock of capital features no capital
gains term. If the household’s portfolio equations are rewritten in terms of net worth, as is
more common in the context of asset pricing, a capital gains term emerges that loads on the
aggregate risk factor (see Appendix A.1.2 for details).
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3 A Global Solution Method

Why are models like the one presented in Section 2 difficult to solve numerically? In any
rational expectations equilibrium, agents must base their actions today on forecasts of future
prices that are consistent with the economy’s true law of motion. And in any heterogeneous-
agent model, future prices will, through market clearing, depend on the future cross-sectional
distribution of agents. Therefore, agents must consistently forecast the evolution of this
distribution, which becomes part of the aggregate state space. The state space of the economy
presented in Section 2 is therefore infinite-dimensional. Before moving on to my solution
method, I will develop this argument formally and present the definition of a recursive
equilibrium for my economy. The discussion in Section 3 is focused exclusively on the
paper’s methodological contribution. Readers who wish to proceed directly to the economic
results may skip to Section 4 without loss.

The aggregate state space of my model is given by Γt = (ρt, gt), where ρt is the exogenous
discount rate shock and gt is the cross-sectional household distribution. The stationary value
function of a household can be written as Vt(a, k, z) = V(a, k, z, Γt), with slight abuse of
notation. The household value function thus takes an infinite-dimensional, or measure-
valued, input. While a, k and Γ are continuous state variables, z is discrete. I will therefore
denote by V j(a, k, Γ) = V(a, k, zj, Γ) the value function of a household with employment
status j and by gj(a, k, ρ) = g(a, k, zj, ρ) the mass of households of employment type j with
portfolio (a, k) in aggregate state Γ. Since the household distribution g is an argument of the
value function, I will first characterize its evolution over time. For convenience, I introduce
the shorthand notation sj(a, k, Γ) and mj(a, k, Γ) for the drift in liquid and illiquid portfolio
positions, respectively.

The household distribution gt(a, k, z) evolves through time according to a Kolmogorov
forward equation given by

dgj(a, k, ρ)

dt
=− ∂a

[
sj(a, k, Γ)gj(a, k, ρ)

]
− ∂k

[
mj(a, k, Γ)gj(a, k, ρ)

]
(13)

− λj(Γ)gj(a, k, ρ) + λ−j(Γ)g−j(a, k, ρ),

where ∂x denotes the partial derivative operator with respect to state variable x, and −j
denotes the employment type that is not j. See Appendices B.1 and B.2 for details. For
compacter notation, equation (13) can also be written (A∗gj)(a, k, ρ) ≡ d

dt gj(a, k, ρ).27

27A∗ is a functional operator that I will discuss further below.
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Formally, V j solves a system of Hamilton-Jacobi-Bellman (HJB) equations given by

(ρ + ζ)V j(a, k, Γ) = max
cj,hj,ιj

{
u(cj, hj) + sj∂aV j(a, k, Γ) + mj∂kV j(a, k, Γ)

}
(14)

+ λj(Γ)
[
V−j(a, k, Γ)−V j(a, k, Γ)

]
+ θρ(ρ̄− ρ)∂ρV j(a, k, Γ)

+
σ2

ρ

2
∂ρρV j(a, k, Γ) + ∑

l

∫
δV l

δg
(A∗gl)(a, k, ρ)d(a, k)︸ ︷︷ ︸

Effect of changes in cross-sectional distribution
on household value function

subject to the household budget, borrowing and short-sale constraints. Recall that sj and
mj are only used as shorthand notation for the drift in the household’s liquid and illiquid
asset positions, respectively. See Appendix A.2 for a formal derivation. Equation (14) is a
characterization of the stationary household value function and therefore internalizes the
effects of changes in the aggregate state of the economy. The last term in the third row
captures the effect changes in the household cross-sectional distribution have on this value
function. In particular, since g is infinite-dimensional, a functional Gateaux derivative δ is
used.28 This is precisely the term that cannot directly be implemented in any numerical
scheme to solve this value function and must therefore be approximated.29

We are now ready to define a recursive equilibrium of this economy. The definition of
recursive equilibrium formally expresses the intuitive account with which I started this sec-
tion: Since households must consistently forecast future aggregates, the infinite-dimensional

28Formally, the value function V(a, k, z, ρ, g) is defined on the product space comprised by the finite-
dimensional state space for (a, k, z, ρ) and the space of measures for g. The partial differential equation (14) that
characterizes V on this product space is also known as the “master equation” (see for example Cardaliaguet
et al. (2015) and, originally, Lasry and Lions (2007) and Lions (2011)). The solution method I propose in this
paper can therefore be viewed as a numerical implementation of the master equation. To my knowledge, this
paper presents one of the first global numerical algorithms to solve the master equation of a mean field game
with common noise.

29To build intuition, imagine that the cross-sectional distribution was a vector g = (g1, . . . , gN) ∈ RN rather
than an infinite-dimensional function. This illustration is similar to one presented in Ahn et al. (2017). The HJB
equation then becomes

(ρ + ζ)V j(a, k, g, ρ) = max
cj ,hj ,ιj

{
u(cj, hj) + sj∂aV j(a, k, g, ρ) + mj∂kV j(a, k, g, ρ)

}
+ λj(g, ρ)

[
V−j(a, k, g, ρ)−V j(a, k, g, ρ)

]
+ θρ(ρ̄− ρ)∂ρV j(a, k, g, ρ)

+
σ2

ρ

2
∂ρρV j(a, k, g, ρ) +

N

∑
i=1

∑
l

∂V l(a, k, g, ρ)

∂gl
i

ġl
i .

The problematic term becomes a sum of partial derivatives, which can in principle be implemented numerically
since everything is now finite-dimensional. One contribution of my solution method is to generalize this
approach to any arbitrary finite-dimensional approximation of g.
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cross-sectional distribution becomes part of their state space.30

Definition. (Recursive Equilibrium) A recursive competitive equilibrium of this economy is
defined as the sets of functions {V j, gj, cj, hj, ιj}(a, k, Γ) for j ∈ {E, U} and {r, rk, q, τlump, H,
w, Y, K, C, I, L, π, πw}(Γ) such that:

(i) (Household optimization) {V j, cj, hj, ιj} solve the HJB (14) given all aggregates.

(ii) (Firm and union optimization) Given aggregates, π(Γ) solves the firm problem (5) and
πw(Γ) solves the union problem (9) in each aggregate state Γ.

(iii) (Aggregation) For each aggregate state Γ, the description of the aggregate household
sector, i.e. C(Γ), I(Γ) and H(Γ), is consistent with aggregation from the micro level,
using the cross-sectional distribution gj(a, k, Γ).

(iv) (General equilibrium) All markets clear, and the remaining macroeconomic aggregates
solve the model’s general equilibrium conditions.

(v) (Distribution and rational expectations) The cross-sectional household distribution
evolves according to (13) and household behavior is based on forecasts that are consis-
tent with the true law of motion of the aggregate state of the economy.

3.1 Finite-dimensional distribution representations

Any numerical solution of a heterogeneous-agent model with aggregate risk must approxi-
mate the aggregate state space in a finite-dimensional subspace. In other words, any numeri-
cal solution method will implement an approximate value function that takes as an input a
finite-dimensional approximation of the distribution gt. In this paper, I focus on the class of
finite-dimensional representations given by

F(αt)(x) ≈ gt(x), (15)

where ĝt(x) = F(αt)(x) is then interpreted as the approximate cross-sectional distribution
parameterized by αt. For compacter notation, I use xt = (at, kt, zt) to denote the vector
of idiosyncratic state variables. While the representation (15) is quite general, it is most
illustrative to think of F as a set of basis functions defined over x that are parameterized by
αt. Before proceeding, I present an example for illustration.31

30One could also define a sequence equilibrium for this economy. For example, Brunnermeier and Sannikov
(2014) define a sequence equilibrium for an economy that is structurally similar to a variant of mine in which
the distribution is a degenerate two-point delta function.

31In the context of a local solution, Winberry (2020) uses an approximate distribution representation that also
takes the form (15). In this sense, my paper can be viewed as taking an approach similar to Winberry (2020)
but in the context of a global solution method. I present several analytical and numerical tools below that help
overcome the curse of dimensionality that oftentimes becomes a hurdle for global solution methods.
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Example 2. Denote by Tn(x) the nth Chebyshev polynomial over x. We can stack these
basis functions in a row-vector denoted T(x). Letting αt ∈ RN denote the column-vector of
coefficients, equation (15) becomes

F(αt)(x) = T(x)αt =
N

∑
n=1

αn
t Tn(x) ≈ gt(x).

While the set of selected basis functions F remains constant over time, time variation in
the parameters αt allows to capture approximately the evolution of the true cross-sectional
distribution gt over time. In the context of the above example: The researcher picks the N
Chebyshev polynomials Tn(x) ex ante and they don’t change over the course of a simulation.
The basis function coefficients αn

t , on the other hand, are time-varying. In particular, we will
want to specify the time variation in αn

t so as to match the time variation in gt(x) as closely as
possible.

Approximate economy. How does the approximation (15) make the model of Section 2
tractable? I will refer to the model solved under the finite-dimensional representation (15)
as an approximate economy. That is, an approximate economy uses ĝt(x) = F(αt)(x) as its
cross-sectional distribution.

Recall the source of intractability in the household’s value function equation (14): As
part of the aggregate state space, the infinite-dimensional distribution gt enters V as an
argument. The aggregate state space of the approximate economy no longer features the
true cross-sectional distribution but rather its finite-dimensional approximation, ĝt(x). That
is, the approximate aggregate state space becomes Γ̂t = (Xt, ĝt). Under the representation
ĝt(x) = F(αt)(x), we can further simplify the aggregate state space: All information we
require to track the evolution of ĝt(x) over time is equivalently encoded in αt. Therefore, the
approximate aggregate state space becomes Γ̂t = (Xt, αt).32

Reducing the aggregate state space from Γt to Γ̂t makes the household problem (14)
tractable. The value function that characterizes household behavior in the approximate
economy is now given by

V(x, ρ, g) ≈ V(x, ρ, ĝ)

= V̂(x, ρ, α).

32My method also builds on previous work that makes use of distribution selection functions (e.g. Algan et al.
(2008) and Reiter (2010)). Like the original Krusell-Smith algorithm, these papers use moments to characterize
the distribution. In the spirit of my approach, however, they postulate a mapping like (15) that is consistent with
their moments. This distribution selection function associates a cross-sectional distribution with each possible
realization of moments. These algorithms share several important features with the method I propose here, and
I show in the Numerical Appendix that several of my results below can also be useful for those algorithms. For
example, I show how to modify the Algan et al. (2008) algorithm so that it can directly make use of Proposition
3.
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In particular, the household value function now only takes finite-dimensional arguments. In
the approximate economy households only have to forecast the approximate distribution
ĝt(x) or, equivalently, the new state variables αt. I show below that, under quite general
conditions, equilibrium in the approximate economy is characterized by the law of motion

dα = µα(Γ̂)dt + σα(Γ̂)dB.

That is, αt follows an Ito diffusion process, and µα and σα are equilibrium objects that we
must solve for. In an approximate economy based on (15), therefore, household behavior is
now characterized by

(ρ + ζ)V̂ j(a, k, Γ̂) = max
ĉj,ĥj,ι̂j

{
u(ĉj, ĥj) + ŝj∂aV̂ j(a, k, Γ̂) + m̂j∂kV̂ j(a, k, Γ̂)

}
(16)

+ λ̂j(Γ̂)
[
V̂−j(a, k, Γ̂)− V̂ j(a, k, Γ̂)

]
+ θρ(ρ̄− ρ)∂ρV̂ j(a, k, Γ̂)

+
σ2

ρ

2
∂ρρV̂ j(a, k, Γ̂) + µα(Γ̂)∂αV̂ j(a, k, Γ̂) +

1
2

σα(Γ̂)T∂ααV̂ j(a, k, Γ̂)σα(Γ̂)︸ ︷︷ ︸
Effect of cross-sectional distribution on household

value function in approximate economy

.

The new terms in the third row are now readily computable given the functions µα(Γ̂) and
σα(Γ̂).

Working with a finite-dimensional distribution representation of the form (15) offers
numerous advantages.33 While this approach is commonly used in the context of local
perturbation methods, it has proven intractable in the context of global methods due to
the curse of dimensionality. That is, accurate approximations ĝt(x) = F(αt)(x) oftentimes
require high-dimensional αt. In the remainder of this section, I discuss several analytical and
numerical tools that help overcome this challenge. In the interest of brevity and accessibility,
I only sketch technical arguments in the main text. Details are provided in Appendix B and a
separate Numerical Appendix.34

33A key advantage of being able to work with an approximate distribution object ĝt(x) on the grid is that it
allows us to evaluate market clearing conditions. If we instead approximates the cross-sectional distribution
with moments, this is generally not possible. For example, to evaluate the goods market clearing condition
in Section 2 requires first evaluating aggregate household consumption, Ĉ(Γ) =

∫
ĉ(x, Γ)ĝ(x, Γ)d(x), which is

only possible given ĝ. With a distribution object “on the grid”, we are able to solve for prices and other general
equilibrium objects directly on the grid. By contrast, algorithms like Krusell and Smith (1998) must resort to a
costly “simulate-estimate” approach, which I describe below, to solve for these general equilibrium objects.

34An important question is under what conditions the scheme in (15) is a consistent approximation to the
system of coupled PDEs, given by the HJB and KF equations, that characterizes the true model. In other words,
under what conditions does a sequence of approximating economies characterized by {Fn(αn

t )}n converge to
the true economy as n→ ∞. I am currently working on proving such a convergence result for particular classes
of basis functions F.
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3.2 How to overcome the curse of dimensionality?

For most economic applications of interest, accurate approximations of the distribution will
require high-dimensional F(αt)(x). Global methods will therefore quickly encounter the
curse of dimensionality. In Schaab and Zhang (2020), we have developed an adaptive sparse
grid library for solving partial differential equations in continuous time. Sparse grid methods
aim to combat the curse of dimensionality when representing functions on high-dimensional
grids. Regular sparse grids reduce the complexity of a grid in d dimensions from O(nd),
where n denotes the number of grid points per dimension, toO(n log(n)d−1) (see for example
Bungartz and Griebel (2004)). They have found occasional use in economics (see for example
Krueger and Kubler (2004) and Judd et al. (2014)). Truly adaptive sparse grids were first
introduced to economics by Brumm and Scheidegger (2017) but had previously enjoyed more
popularity in physics and applied math.

Grid adaptation leverages the insight that not all grid points are “equally valuable" when
representing a function on a grid. A rule of thumb is that an accurate function representation
requires more grid points in areas where the function is particularly concave. A linear
function in one dimension, for example, can be represented perfectly using only two grid
points and linear interpolation elsewhere. Adaptive sparse grid algorithms automatically
add and drop grid points to maximize the efficiency of grid point placement for a given
application.

The main contribution of Schaab and Zhang (2020) relative to Brumm and Scheidegger
(2017) is to develop a robust adaptive sparse grid infrastructure for solving (partial) differen-
tial equations in continuous time. While a self-contained description of our library is beyond
the scope of this paper, I will illustrate the power of adaptive sparse grids in the context
of the model of Section 2. For simplicity, I focus on the model’s deterministic steady state,
formally defined as V j,0(·) = limσρ→0 V j( · ; σρ). Figure 1 displays fully converged solutions
of VU,j(a, k), an unemployed household’s value function in the deterministic steady state,
across four increasingly adapted grids.35 A dense grid consists of a full set of equidistantly
spaced grid points. The key insight of sparse grid methods is that not all of these grid points
are equally valuable in the representation of V. In Panel (b), the value function is solved
on a so-called regular sparse grid, which starts from a dense grid and removes grid points
according to a prespecified pattern. Panels (c) and (d), finally, adapt the grid and place grid
points efficiently to conform to the concavity in V. Panel (d) illustrates clearly that grid points
are placed in the region where a and k are low and household behavior at the micro level
exhibits non-linearities. While Figure 1 demonstrates that sparse grid methods are already
useful for two-dimensional grids, they become especially powerful in higher dimensions.

35For illustration, Figure 1 uses more grid points in the idiosyncratic household dimensions than I use to
solve the quantitative model in higher dimensions when σρ > 0.

24



Figure 1: Household value function on increasingly adapted sparse grids

Notes. Each panel displays the value function of an unemployed household in the deterministic steady state, i.e.

VU,0(a, k) = limσρ→0 VU(a, k ; σρ). Panel (a) solves V on a dense grid consisting of a full set of equidistantly

spaced grid points. Panel (b) solves V on a regular sparse grid which removes grid points from the dense grid

according to a prespecified pattern. Panels (c) and (d) display the converged value function on increasingly

adapted sparse grids.

3.3 How to find a consistent law of motion for αt?

To solve the household problem in the approximate economy, we must solve for the equilib-
rium law of motion of αt. This is highlighted by equation (16) which depends directly on µα

and σα.
The traditional approach to solving for the law of motion of αt is as follows: (i) Start

with a guess for µα(Γ̂) and σα(Γ̂). (ii) Given this guess, solve equation (16) and the rest of the
model on the aggregate state space. (iii) Simulate the model. (iv) Update the original guess
for µα(Γ̂) and σα(Γ̂) using estimates from the simulated data, and start again at step (i). These
steps are repeated until convergence. This strategy was popularized by Krusell and Smith
(1998) and remains an integral part of most global solution methods currently in use.

While this “simulate-estimate” approach is, of course, valid and oftentimes useful in
algorithms based on (15), it is also very costly.36 In practice, it typically requires hundreds of

36In practice, I use a combination of the “simulate-estimate” approach and Proposition 3 to solve the
quantitative model of Section 2. In the Numerical Appendix, I show that exclusively using Proposition 3
can lead to significant performance gains in simpler models such as the Krusell and Smith (1998) model or a
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(outer) iterations in the fixed point algorithm sketched above to consistently estimate the law
of motion of αt. In each step, the entire model must be solved, including the high-dimensional
household value function, and simulated.

An advantage of an algorithm based on (15) is that it offers a more efficient alternative to
find this law of motion. Indeed, Proposition 3 below provides analytical formulas for µα(Γ̂)
and σα(Γ̂) that can be easily computed. In this sense, and in sharp contrast to the Krusell and
Smith (1998) algorithm, finding the consistant law of motion incurs almost no increase in
numerical complexity.

To develop intuition for this result, I present a heuristic but hopefully illustrative deriva-
tion for the special case where σα(Γ̂) = 0. This turns out to be true for the model of Section
2. Proposition 3 below provides more general formulas for µα(Γ̂) and σα(Γ̂), which are
developed formally in Appendices B.1 through B.4.

According to equation (13), the true law of motion of the distribution can be written
as dgt(x) = −∂a(sg)− ∂k(mg)− ∂z(µzg) ≡ (A∗gt)(x)dt. Under the approximation ĝt(x) ≈
gt(x), we have dĝt ≈ dgt. The law of motion of the approximate cross-sectional distribution
can therefore also be written as

dĝt(x) = (A∗ ĝt)(x)dt (17)

where, abusing notation slightly, A∗ is now evaluated in the approximate economy. Con-
jecturing that dαt = µα(Γ̂)dt and differentiating ĝt(x) = F(αt)(x) with respect to time, we
have

dĝt(x) = Fα(αt)(x)µα(Γ̂)dt

where Fα is the gradient of F with respect to α. Using equation (17) and matching coefficients,
we arrive at a functional equation that characterizes µα(Γ̂) via

Fα(αt)(x)µα(Γ̂) = (A∗F(αt))(x)

To “invert” this equation and solve for µα(Γ̂) we must assume a specific (estimation) norm
that we want to minimize. Under the L2(x) norm, we arrive at µα = (FT

α Fα)−1FT
α (A∗F).

Proposition 3 is presented for the choice of norm L2(x), and under the additional
assumption that xt follows a diffusion process.37

Proposition 3. Let Γ̂t = {ρt, αt} denote the aggregate state of an approximate economy under a
distribution representation (15). Then:

1. The law of motion of αt is given by

dα = µα(Γ̂)dt + σα(Γ̂)dB (18)

one-asset HANK model.
37A more general version of Proposition 3 where, for example, xt is allowed to follow a jump-diffusion

process, is derived in Appendices B.3 and B.4.

26



2. The choice of µα and σα that minimizes forecast errors in the L2-norm is given by

µα = (FT
α Fα)

−1FT
α

[
A∗F− 1

2
σT

α Fαασα

]
(19)

and
σα = (FT

α Fα)
−1FT

α B∗F, (20)

where Fα and Fαα are the Jacobian and Hessian of F, respectively, A∗ is the adjoint of the
infinitesimal operator defined by the HJB equation, and B∗ is the diffusion coefficient in the
stochastic Kolmogorov forward equation for gt.

Proposition 3 promises a shortcut in the design of algorithms to solve heterogeneous-agent
models with aggregate risk: Equations (19) and (20) provide formulas to compute the in-
ternally consistent law of motion of αt directly.38 The most surprising and useful aspect of
Proposition 3 is that each term that features in equations (19) and (20) is readily computable
inside the household’s value function iteration step. For illustration, consider applying
Proposition 3 to the model of Section 2, which yields σα(Γ̂) = 0 (as conjectured above) and

µα = −(FT
α Fα)

−1FT
α

[
∂a

(
ŝF
)
+ ∂k

(
m̂F
)
+ ∂z

(
µzF

)]
. (21)

For a given choice of F(·) and with α on the grid as an aggregate state variable, the terms
F(α), Fα and Fαα can be computed using standard numerical derivatives even before the value
function iteration step. In many relevant cases, Fα and Fαα will, in fact, be available as closed
form analytical expressions. All remaining terms in equation (21) are comprised either of
household policy functions, ŝ and m̂, or the employment transition rates, µz or equivalently
λj.39

Algorithm structure. In light of these observations, I propose to compute µα(Γ̂) and σα(Γ̂)
directly as part of the household value function iteration (VFI) step. My algorithm therefore
adds an additional step to an otherwise standard VFI procedure. The kth iteration follows
these four steps:

1. Start with this iteration’s guess V̂k.

2. Compute policy functions ŝk and m̂k using V̂k and the household’s FOCs.

3. Use ŝk and m̂k to compute µk
α(Γ̂) and σk

α(Γ̂) according to equations (19) and (20).

38Ahn et al. (2017) make a similar argument. Relative to their paper, Proposition 3 applies to settings where
the cross-sectional distribution of agents itself is stochastic, in which case B∗ 6= 0 and σα(Γ̂) 6= 0. Formally, I
nest models in which the distribution’s law of motion is given by a stochastic rather than an ordinary partial
differential equation. Asset pricing models with portfolio choice problems are typically of this kind. See
Appendix E for an example.

39In Appendices B.3 and B.4, I show that A∗ and B∗ are, more generally, comprised of household policy
functions and transition rates.
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4. Use (16) to find V̂k+1, and repeat from step (1.) until convergence.

Notice that, in iteration k of this modified VFI algorithm, µk
α(Γ̂) and σk

α(Γ̂) are only required
to evaluate (16) in step (4.) and update the value function V̂k+1. In other words, equations
(19) and (20) are computed after the household policy functions and can therefore be readily
evaluated. Taking general equilibrium prices as given, this modified VFI algorithm solves for
both V̂ and an internally consistent law of motion for αt at the same time.40 By contrast, the
traditional approach that follows Krusell and Smith (1998) constructs an outer fixed point to
solve for µα and σα.

3.4 How to Choose Efficient Representations F(·)?
The next natural question is how F should be chosen in practice. One straightforward
approach is to choose F directly from a parametric family.41 When the functional form F(α)
is chosen ex ante in this way, no simulation step is required at any point in the algorithm,
which is one of its most compelling features.42

The approximation mapping (15) can also be implemented non-parametrically. The
non-parametric approach can deliver large performance gains, especially when xt is high-
dimensional, but comes at the cost of an outer simulation step. For illustration, I will discuss
the special case where F(·) is affine in αt ∈ RN, that is F(αt)(x) = C(x) + T(x)αt for some
functions C and T. In practice, I simply set C(x) equal to the distribution associated with
the deterministic steady state, that is C(x) = g0(x) ≡ limσρ→0 g(x; σρ). As in Example 2,
T(·) should be interpreted as a row-vector of basis functions and αt as the column-vector of
coefficients.

Algorithm structure. The non-parametric approach constructs an outer fixed point whose
nth iteration follows three steps:

1. Given this iteration’s distribution representation,

Fn(αt)(x) = g0(x) +
n

∑
k=1

Tk(x)αk
t , αt ∈ Rn

40What is particularly nice about applying Proposition 3 in practice is that it prescribes a method for
computing µα(Γ̂) and σα(Γ̂) that is independent from the researcher’s choice of F. In practice, therefore, the
researcher can switch out different candidates for F with ease to determine which representation works best. In
other currently popular global solution methods, the algorithm step to find the law of motion of αt (or other
moments) is oftentimes highly dependent on the particulars of the distribution approximation. It has therefore
been difficult in practice to switch between and compare different solution methods (e.g. candidates for F)
seamlessly.

41See Appendix B.5 for details. Parametric families that are commonly used include hat functions (nodal
basis), Chebyshev polynomials, radial basis functions, generalized beta density functions and splines.

42The complexity of solving a model like the seminal Krusell and Smith (1998) benchmark is therefore
reduced to a single value function iteration step that jointly computes V̂ and the law of motion of αt (see
previous subsection). When the model requires an additional general equilibrium fixed point to solve for prices,
the solution complexity is reduced to a single iteration of this fixed point.
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solve the nth approximate economy that uses ĝn
t (x) = Fn(αt)(x) as distribution.43

2. Given a solution of approximate economy n, simulate the model to obtain simulated
data for the distribution, gn, sim

t . Compute the forecast error Fn(αt)(x)− gn, sim
t (x).

3. Find the basis function Tn+1(x) that minimizes forecast errors under a prespecified
norm, subject to equation (18) for αt. Update Fn+1 and iterate until a desired accuracy is
reached.

Intuitively, step (3.) looks for a kind of functional principal component with explanatory
power for the forecast residual. At the cost of having to simulate the model, this non-
parametric approach delivers substantial efficiency gains especially when the idiosyncratic
state space of agents is high-dimensional.44 To achieve a given level of accuracy, the number
of basis functions n required in this non-parametric approach is often far smaller than in the
parametric approach. In Appendix B.6, I provide additional details, including on the choice
of forecast error norms and the resulting estimation optimality conditions.

4 Taking the Model to the Data

In this section, I calibrate the model and confront its main predictions with data. The model
is calibrated on a quarterly frequency, based on U.S. data.

4.1 Calibration strategy

Table 1 provides a summary of all model parameters except for the employment transition
rates that are discussed in Section 4.2. Households have CRRA preferences in consumption
and leisure, with a relative risk aversion coefficient of γ = 2, and an inverse Frisch labor
supply elasticity of η = 2. I calibrate ρ̄, households’ quarterly discount rate in the risky steady
state, to match a natural rate of interest of roughly 2% (2.14% in the model) in the risky steady
state. The deathrate ζ is calibrated to imply an average life span of 45 years, corresponding
roughly to the average working life.

Households’ portfolio choice is primarily affected by the adjustment cost on illiquid
investments and the borrowing constraint on liquid assets. I set the latter to a = −1, implying
that households have access to roughly one quarter of average income in unsecured borrowing
as in Kaplan et al. (2018). I calibrate the two parameters of the adjustment cost function to
match the top 10% wealth share in liquid wealth (86% in both data and model), as well as the
share of households with non-positive liquid net worth but a positive illiquid asset position

43This step requires solving the household problem (16), the union problem and the firm problem, as well as
finding the general equilibrium prices that clear all markets. As discussed in the previous subsection, finding an
internally consistent law of motion for αt is subsumed in the modified VFI step.

44In the context of algorithms that work with a set of moments to approximate the distribution gt(x), the
fixed point I describe is akin to the idea of successively adding moments to improve forecast accuracy. In my
setting, this approach is complicated by the flexibility of being able to choose any F(·).
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Table 1: List of Calibrated Parameters

Parameters Value Target / Source

Preferences
ρ̄ Discount rate (p.q.) 2.2 % Riskfree rate
γ Relative risk aversion 2 Standard
η Inverse Frisch elasticity 2 Standard
ζ Deathrate 0.556 % Average life span 45 years

Household portfolio choice
a Borrowing constraint -1 1.244 q average income
δ Capital depreciation (p.q.) 1.25 %
ψ0 Linear adjustment cost 0.044 Top 10% (liquid) wealth share
ψ1 Convex adjustment cost 0.956 % households with a ≤ 0 and k > 0

Firms
α Capital share 0.38
κ Aggregate capital adjustment cost 40 ∆I/∆Y after ∆σρ

Nominal rigidities
ε f

ε f−1
Elasticity of substitution 1.10 CEE (2005)

χ f Price adjustment cost 350 ACEL (2011)
εw

εw−1 Elasticity of substitution 1.05 CEE (2005)
χw Avg. duration of wage contracts 0 Flexible-wage limit

Government
BG Government debt outstanding 0.06 Average aggregate MPC
G Government spending 0
λπ Taylor rule weight on inflation 1.5 Standard
λY Taylor rule weight on output 0.5 Standard
τlab Income tax rate 0.2
τUI Unemployment insurance 0.20 Chodorow-Reich and Karabarbounis (2016)

Aggregate uncertainty
σρ Volatility: discount rate shock 0.003 Volatility of GDP growth
θρ Persistence: discount rate shock 0.22 Autocorrelation of GDP growth

(30% in the data, 27% in the model’s risky steady state). In calibrating these parameters, I
stay as close as possible to Kaplan et al. (2018) since the wealth distribution is not the primary
focus of my contribution.

I set depreciation to 1.25% per quarter and the capital income share α to 0.38. I calibrate
the aggregate capital adjustment cost parameter, κ, to match the business cycle sensitivity
of investment, relative to output. In particular, the peak decline of aggregate investment
following a fundamental risk shock is currently three times as large as that of output while
aggregate consumption is less responseive.

The parameters governing nominal price rigidity are set equal to literature benchmarks.
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In particular, I set the elasticity of substitution so that ε f

ε f−1
= 1.1 as in Christiano et al. (2005),

and I set χ f to imply an average price duration of roughly 7 quarters. Altig et al. (2011)
estimate an average price duration of 9.36 quarters. I solve the baseline model in the limit as
wages are fully flexible, χw → 0.45

The baseline model does not feature government spending, and the stock of government
debt outstanding is constant. One weakness of the model with only two earnings types is
that it is difficult to jointly match high MPCs and a high stock of liquid assets. In particular,
matching an aggregate household MPC of roughly 15% requires setting the stock of outstand-
ing government debt close to zero (BG = 0.06). I set the income tax rate to 20%, and the
effective unemployment insurance replacement rate to 20%. This is consistent with recent
estimates accounting for take-up in Chodorow-Reich and Karabarbounis (2016). The central
bank follows a Taylor rule with the standard literature weights on inflation and output of,
respectively, 1.5 and 0.5.

Finally, I calibrate the volatility and persistence of the discount rate shock process to
match the business cycle moments of GDP growth, with a quarterly auto-correlation of 0.85
and a standard deviation of 0.017.

4.2 The ins and outs of unemployment

The employment transition rates faced by households play a central role in the quantitative
results of this paper. I use microdata on employment transitions from the Current Population
Survey (CPS) to estimate the sensitivity of the job finding and separation rates over the
business cycle.46 I use the resulting reduced-form estimates for λj(·) directly in the model.
For additional details, see Appendix C.1.

Exploiting the rotating panel nature of the CPS, I match household observations across
subsequent months to construct monthly gross flows into and out of employment in a sample
from 1996 to 2019. I employ a broad notion of non-employment including unemployed
and marginally attached households, as well as those in involuntary part-time employment
for economic reasons. This definition corresponds to the U6 unemployment rate. I show
that these groups also exhibit sizable transition rates into and out of employment, which,
following the logic of my model, motivates their inclusion.

Having constructed matched gross flow data at a monthly frequency, I use a continuous-
time conversion formula to compute exact data counterparts to the Poisson arrival rates λE

t
and λU

t in the model. In the spirit of Shimer (2012), this conversion also addresses a time
aggregation bias in discrete-time flow data. Panels (c) and (d) of Figure 2 display the data
time series for these job finding and separation rates.

45The cost of assuming flexible wages is, of course, the standard problem that the profits of goods producing
firms are counter-cyclical. In the next iteration of the paper, I plan to allow for both price and wage rigidity.

46There is a long tradition of constructing gross employment flows from matched CPS micro data. See for
example Marston et al. (1976), Abowd and Zellner (1985), Darby et al. (1985), Darby et al. (1986), Poterba and
Summers (1986), Blanchard et al. (1990), Shimer (2005), Fujita and Ramey (2009), Elsby et al. (2009), and Shimer
(2012). In particular, I closely follow Shimer (2012) in the construction of monthly gross flow data.
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Figure 2: Employment Transition Rates over the Business Cycle
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Notes. The raw CPS micro data for job finding and separation rates from 1996 to 2019 are displayed in Panels (c)

and (d). The data are expressed as instantaneous, quarterly transition rates after a conversion from monthly

gross flow data to continuous time. The underlying definition of unemployment used is broader than U3

headline unemployment and corresponds closely to U6. Panels (a) and (b) scatter the raw data against output

gap estimates. The solid red lines correspond to a quadratic fit.

Since these data objects correspond exactly to the instantaneous transition rates (at
quarterly frequency) faced by households in the model, I use an external calibration approach
to specify how λE

t and λU
t move over the business cycle. In the baseline calibration, I use

the shortcut specification that the job finding and separation rates are only functions of the
output gap, so that λ

j
t = λj(yt). I implement this specification in the data using a Taylor
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expansion

Job finding rate : λU
t = 1.39

(114.96)
+ 0.115

(13.66)
yt + 0.0026

(1.08)
y2

t + . . . (22)

Job separation rate : λE
t = 0.89

(88.67)
− 0.0053

(−6.85)
yt + 0.0006

(3.62)
y2

t + . . . (23)

and report the associated T-statistics after a Newey-West correction. Panels (a) and (b) of
Figure 2 display the associated scatter plots. There is strong evidence of systematic time
variation in employment transition rates over the business cycle. The job finding (separation)
rate falls (increases) in bad times. Similarly, equation (23) shows that at least the job separation
rate exhibits a non-linearity that is statistically significant.

In my baseline calibration, I use equations (22) and (23) directly to specify λj as a function
of the economy’s aggregate state.47 In Appendix D, I confirm that the main quantitative
results of Section 5 are robust to alternative functional form assumptions for λE

t and λU
t .

4.3 Business cycle fluctuations

The model matches the asymmetry of business cycles in U.S. postwar history: recessions have
been deeper and more pronounced in the data than economic booms.

My calibration only targets the volatility of GDP growth (0.017 in the data and 0.014 in
the model) and the auto-correlation of GDP growth (0.85 in the data and 0.88 in the model).
The model also matches other untargeted business cycle moments at least qualitatively. In
Section 5.1, I show that demand shocks generate co-movement in output, consumption,
investment and hours in the model. In particular, aggregate investment is more volatility and
responsive than output, while aggregate consumption is less responsive.

Qualitatively, the model also matches higher moments of key business cycle aggregates.
Figure 3 compares the distribution of GDP growth realizations in model simulations (yellow
bars) against U.S. postwar data (blue bars). The distribution of GDP growth in U.S. data
since 1953 has fatter tails than in my model simulations. Nonetheless, output, consumption,
investment and hours in model simulations exhibit significant negative skewness and positive
kurtosis. While the skewness and kurtosis generated by the model are larger than their
respective data counterparts, this is not unexpected in a meaningful sense. While the ZLB
has only become a binding constraint for U.S. monetary policy quite recently, most recessions
in my model simulations drive the economy to the ZLB. The model is therefore intended to
represent this more recent episode in U.S. economic history, characterized by a structurally
much lower natural rate of interest. Indeed, if I recompute the U.S. business cycle moments

47The empirical transition rate series I have constructed do not exactly aggregate back up to the aggregate
unemployment rate (U6) observed in the data. To ensure that the model matches the average unemployment
rate, I adjust the constant term in equation (22). That is, my model matches the average job separation rate and
the average U6 unemployment rate, as well as the cyclicality exhibited by the job finding and separation rates in
the sample from 1996 to 2019.
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Figure 3: Distribution of GDP growth in U.S. postwar data and model simulations

Notes. Relative frequency histogram of distribution of year-over-year GDP growth in U.S. postwar data since

1953 (blue bars) and model simulations (yellow bars). Data is detrended using a Kalman filter.

over a sample of the Great Moderation, starting in 1980, the implied skewness of output is
almost as high as that exhibited by my model. Of course, the high negative skewness in that
sample is driven almost entirely by the Great Recession.

Simulations of the model imply a zero lower bound (ZLB) incidence between 20 and
30%. Between 1981 and 2018, the U.S. spent 7 out of 48 years, or 14.5% of the time, at the ZLB.
ZLB incidence is likely dependent on the natural rate of interest, since a lower equilibrium
rate implies a closer proximity to the constraint. Laubach and Williams (2003) and Laubach
and Williams (2016) have estimated the natural real rate to have declined from between 3 and
4% in the 1980s to below 1% since the Great Recession. If this decline proves persistent, the
incidence of the ZLB will likely be much higher in the future.

5 Micro and Macro Uncertainty

This section develops the paper’s main results on micro and macro uncertainty. Macroe-
conomic uncertainty is an endogenous equilibrium object in this model. Let Zt denote the
vector of all aggregate variables, such as the wage rate, the capital price, inflation etc., and
Zt ∈ Zt. The notion of uncertainty I adopt in this paper is one of conditional forecast errors,
as is typical in most of the uncertainty literature. Specifically, I define

Ut(Zt+s) =

√
1
s

Et

[(
Zt+s −Et(Zt+s)

)2
]

(24)

34



as uncertainty over future realizations in the aggregate process {Zt}. While the macroeco-
nomic uncertainty faced by households extends to the broader set of all components of the
stochastic process {Zt}, I will oftentimes use uncertainty over economic activity, in short
GDP {Yt}, as a proxy for macroeconomic uncertainty. And since output follows the process
dYt = µY(Γt)dt + σY(Γt)dBt in equilibrium, I concretely refer to

Ut(Yt+dt) = σY(Γt)︸ ︷︷ ︸
“Macroeconomic uncertainty”

as macro uncertainty at time t.

Isolating the effects of macro uncertainty. The first goal of this section is to quantitatively
assess the novel transmission channels identified in Section 1. This requires a procedure to
isolate and decompose the effects of variation in macro uncertainty. While this is possible for
equilibrium objects that explicitly appear in the equilibrium conditions of the model, I am
not aware of such a procedure for endogenous uncertainty, which is instead a property of the
model’s probability distribution.48

To study the transmission mechanism of macro uncertainty in the quantitative model, I
instead propose to consider an exogenous fundamental risk shock, ∆σρ. This requires adding
σρ explicitly to the model’s aggregate state space (see Appendix D for details). The assumption
implicit in this strategy is that the transmission mechanism of an exogenous increase in the
volatility of discount rate shocks, σρ, is sufficiently similar to that of an endogenous increase in
the volatility of economic activity, σY. Indeed, I show formally in Section 5.3 that endogenous
macroeconomic uncertainty is proportional to exogenous fundamental risk, which justifies
this approach. Overall, the following analysis of an exogenous fundamental risk shock should
be understood primarily as a means to better understand the transmission mechanism of
endogenous variation in macroeconomic uncertainty.

Comparison benchmarks. To illustrate my main results, I compare three distinct model
benchmarks. The first, which I refer to as the “HANK (full)” benchmark, is the full quan-
titative model presented in Section 2. The second benchmark, which I refer to as “HANK
(constant λj)”, holds employment transition rates constant and therefore shuts off the interac-
tion between micro and macro uncertainty. Importantly, these two model benchmarks are
identical in all other regards. Therefore, a comparison between these two models allows
us to approximately isolate the implications of the interaction between micro and macro
uncertainty. Finally, I also relate my results to a “RANK” baseline, which is the representative-
household New Keynesian model most closely associated with the full HANK model of
Section 2.

48Kaplan et al. (2018) propose a procedure to decompose the partial effects of equlibrium objects that
explicitly appear in the household problem, such as the interest rate rt. Their method applies to the sequence
representation of a model without aggregate risk. I generalize their approach to state space representations
of models with aggregate risk. However, neither approach allows for a decomposition of the partial effect of
endogenous uncertainty. This is because, unlike the aggregate price rt, uncertainty over its future realizations,
σr, does not explicitly appear in the household problem and can therefore not “be held fixed”.
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5.1 Transmission mechanism of macro uncertainty

As discussed above, I study the transmission mechanism of an exogenous perturbation in
fundamental risk, ∆σρ, in order to proxy for and better understand the effects of macroe-
conomic uncertainty in this model.49 Higher uncertainty elicits an increase in households’
desired precautionary savings. This direct effect of uncertainty, borrowing the language of
Kaplan et al. (2018), leads to an initial contraction in aggregate demand. In the two-period
model of Section 1, this effect comprises both the direct macro uncertainty channel 1 and
the direct interaction channels 2 and 4 . As household consumption falls, firms’ demand
for labor decreases in general equilibrium. Consequently, the job finding rate, λU

t , falls while
the separation rate, λE

t , rises. Households are now confronted with an endogenous increase
in micro uncertainty: The employed are more likely to be laid off and the unemployed are
less likely to find a new job. This GE effect that follows the contraction in aggregate demand
corresponds to channel 3 in the two-period model.

Figure 4 plots both the first- and second-moment response of employment transition
rates after an increase in fundamental risk. In expectation, the fundamental risk shock makes
it more likely for households to be laid off (λE ↑) and less likely to find jobs (λU ↓). At the
same time, the conditional variance over future realizations of the job finding and separation
rates increases substantially. In short, a fundamental risk shock at the macro level translates
into uncertainty over job prospects at the micro level.

From the household’s perspective, the prospect of job loss is akin to an idiosyncratic rare
disaster as I discussed in Section 1: It looms large when compared to relatively small and
transitory changes in the aggregate wage rate, for example. Endogenous variation in the
transition rates into and out of employment has both a first- and second-moment implication
for households’ future earnings. Consider an employed household. An increase in the
job separation rate lowers the expected value of future income because the probability of
unemployment rises. At the same time, the variance of earnings increases as well.

The overall effect of a fundamental risk shock is summarized in Figure 5. It com-
pares the impulse responses of output, consumption, investment and hours across the three
model benchmarks. As in Basu and Bundick (2017), a fundamental risk shock generates
co-movement across the desired aggregates. The main result of this exercise is that the effect
of macro uncertainty on aggregate demand is substantially amplified and indeed driven by
its interaction with micro uncertainty. The on-impact decline in output in the full model is
up to 8 times larger than in the comparison benchmark that holds employment transition

49While my interest in studying the exogenous perturbation ∆σρ is as a proxy for variation in endogenous
macro uncertainty, this approach of course builds on a long tradition of studying exogenous second-moment
shocks. Following the Great Recession, much work has studied uncertainty as a potential driver of business
cycle fluctuations (e.g. Bloom (2009) and Bloom et al. (2018) in the context of firms, Bayer et al. (2019) focuses on
micro uncertainty shocks). Basu and Bundick (2017) is a natural reference point for my paper. They show that,
in a representative-agent New Keynesian (RANK) model, a fundamental risk shock generates co-movement
in output, consumption, investment and hours worked. In a setting where households have Epstein-Zin
preferences with a relative risk aversion coefficient of 80, they find that a 90% increase in the volatility of
discount rate shocks generates a 0.2% fall in output due to an increase in desired precautionary savings.
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Figure 4: Impulse responses of micro uncertainty to fundamental risk shock, ∆σρ
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Notes. Comparison of impulse responses of employment transition rates to fundamental risk shock. The shock

has a half-life of 1 quarter and is initialized at half the size of the Basu and Bundick (2017) shock to facilitate

comparison. λE and λU correspond to the job separation and finding rates, respectively. The bottom row panels

plot the response of conditional forecast errors, Vart(λ
j
t+dt).

rates constant and thereby shuts off any interaction between micro and macro uncertainty.
Similarly, the on-impact decline in output in the full model is rougly 5 times larger than in
the associated RANK benchmark.50

Result 1. The effects of an exogenous increase in fundamental risk, ∆σρ, on economic activity are
substantially amplified – by a factor of up to 8 – when accounting for the interaction between micro
and macro uncertainty.

Table 2 provides a decomposition of the transmission mechanism of a fundamental risk shock.
I decompose the shock’s effect on aggregate consumption into a direct uncertainty channel

50Basu and Bundick (2017) is an instructive reference point for these quantitative results. They study a
fundamental risk shock that is about twice as large as the one I consider here and show that, when households
have Epstein-Zin preferences with a relative risk aversion coefficient of 80, the on-impact decline in output
is about 0.2%. Their model is, of course, different from and in many aspects richer than the RANK baseline I
consider here. Nonetheless, it is noteworthy that I reproduce quantitatively similar magnitudes in a setting
where households have CRRA preferences with a relative risk aversion coefficient of 2: For a given level of risk
aversion, households in my setting are more responsive to a change in macro uncertainty precisely because it
translates into micro uncertainty.
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Figure 5: Impulse responses of business cycle aggregates to fundamental risk shock, ∆σρ
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the model that shuts off the interaction between micro and macro uncertainty, and the associated RANK model.

and a set of indirect (GE) channels. This classification extends Kaplan et al. (2018) to a setting
with aggregate uncertainty. When considering the direct effect of uncertainty, I hold fixed
all aggregate variables that would respond in general equilibrium. Households still realize,
however, that volatility going forward is heightened. When computing the contribution
of indirect channels, I turn back on, one by one, the GE response of the macroeconomic
aggregates households care about.

The two rows of Table 2 that are most relevant to this discussion are the first (the direct
uncertainty effect) and the second (the indirect effect through micro uncertainty). These
conceptually correspond, respectively, to the sum of channels 1 , 2 and 4 (direct) and
channel 3 (indirect) in the two-period model of Section 1. Table 2 demonstrates that the
transmission mechanism of macro uncertainty changes completely relative to a representative-
agent benchmark. In the RANK model, the direct macro uncertainty effect (channel 1 ) is the
dominant transmission channel.

The transmission mechanism of macro uncertainty in the full HANK model differs in
three key regards. First, the direct uncertainty effect on household behavior (the first row of
Table 2) is larger in absolute terms but muted relative to other transmission channels. This is
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Table 2: Decomposition of the effect of fundamental risk shock ∆σρ on aggregate consumption

HANK RANK

Contribution to % change in C0 Normal times Crisis region Normal times

Direct effect: uncertainty (micro and macro) −0.19 −0.22 −0.05

Indirect effect: micro uncertainty −0.47 −0.51 0.00

Indirect effect: disposable income 0.58 0.66 0.02

Indirect effect: portfolio returns 0.04 −0.12 −0.03

Other effects −0.16 −0.12 0.01

Total effect (% change in C0) −0.2 −0.31 −0.05

Notes. Numbers correspond to on-impact responses, and partial effects add up to the total effect in the last row.

The first two columns correspond to the full model; the last column corresponds to the associated RANK model.

Columns 1 and 2 compare the partial and total effects when the economy is initialized in the risky steady state

(normal times) and on the cusp of the ZLB (crisis region), respectively. The disposable income channel

comprises the effects through wt, τt and Ht, and the portfolio returns channel those through rt, rk
t and Qt.

consistent with the observation from the two-period model that, while 1 is the only direct
channel operative in the RANK model, the direct interaction effects 2 and 4 emerge in the
HANK model. Second, the indirect interaction effect through micro uncertainty (channel 3
in the two-period model, and the second row of Table 2) emerges as a dominant transmission
channel, especially during times of crisis. Finally, and in the spirit of Kaplan et al. (2018),
other indirect channels become relatively more important than in the RANK baseline.51

Result 2. Accounting for the interaction between uncertainty at the micro and macro level substan-
tially changes the transmission mechanism of the fundamental risk shock ∆σρ. Its indirect effect
through micro uncertainty becomes a dominant channel in the transmission of macro uncertainty to
aggregate consumption spending.

Studying a fundamental risk shock offers a first glimpse at another major theme of this paper.
The behavior of uncertainty changes substantially during times of crisis. The effects of macro
uncertainty on economic activity are significantly larger when the economy is close to the
ZLB. The dashed lines in Figure 5 trace the impulse responses to the same fundamental risk
shock as above in an economy that is initialized on the cusp of the ZLB. The shock’s on-impact
effect on output is 50% larger than during normal times. Similarly, Table 2 highlights that
the transmission mechanism of macro uncertainty works even more strongly through micro

51The strong positive response through disposable income is largely driven by profit rebates. In the next
iteration of this paper, I plan to address this well-known issue by solving the model with both price and wage
stickiness.
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uncertainty when the economy is in a crisis. This finding speaks to substantive interactions
between non-linearities at the micro and macro level.52

When the economy is in a crisis state, the relationship between macroeconomic aggre-
gates exhibits a degree of skewness.53 In a crisis, a given negative demand shock realization
generates a larger contraction in output than the expansion that would follow a similarly
sized positive shock realization. In other words, a zero-mean spread in the distribution of
future discount rate shocks, which is how households perceive the fundamental risk shock,
no longer simply leads to a second-moment but also to a first-moment direct effect. In par-
ticular, due to negative skewness, this mean-zero spread leads to a fall in economic activity
in expectation. The effect of macroeconomic uncertainty on aggregate demand is therefore
much larger when the economy is in a crisis state, as showcased in Figure 5.

The implications of such skewness at the macro level are not unlike the implications of
skewness at the micro level, which I discussed earlier. Indeed, when the economy is in a crisis,
this non-linearity at the macro level starts to interact with non-linearity at the micro level.
Uncertainty over job prospects at the micro level increases more strongly when the initial
fundamental risk shock has a direct first-moment effect at the aggregate level. As a result, the
relative importance of the interaction between micro and macro uncertainty becomes even
larger in the transmission of fundamental risk shocks.

Result 3. The behavior of uncertainty changes drastically during economic crises. The effect of a
fundamental risk shock on economic activity is 50% larger when the economy is already on the cusp of
the ZLB. The interaction with micro uncertainty becomes a relatively even more important channel in
the transmission of macro uncertainty.

The model exhibits a non-linearity at the aggregate level during times of crisis that is nearly
impossible to capture in a HANK model without aggregate risk or one that is solved using
(lower-order) perturbation methods. Indeed, even higher-order perturbation methods may
fail because they still take the economy’s normal state as the point of approximation. The
macro non-linearity that gives rise to my third result does not manifest while the economy is
far away from the crisis region, thus requiring a global solution method.

Of the main results in this paper the ones presented in this subsection are most closely
framed with reference to previous work on uncertainty shocks. I will thus conclude by briefly
situating my contribution. In the household context, this paper is the first to jointly consider
variation in micro and macro uncertainty. Relative to Basu and Bundick (2017), for example,
I show that its interaction with unemployment risk emerges as the dominant transmission

52Much previous work has studied the implications of the ZLB constraint on monetary policy in the context
of representative-agent New Keynesian (RANK) models (e.g. Christiano et al. (2011), Fernández-Villaverde et al.
(2015) or Plante et al. (2018)). My focus here is primarily on the interaction between non-linearities at the micro
and macro level. Indeed, I show first in Section 5.2 and later in Section 6 that the amplification that derives from
the ZLB constraint is itself more pronounced when we account for the interaction between micro and macro
uncertainty.

53As is true in U.S. business cycle data, my model generates significant negative skewness and positive
kurtosis in output, investment, consumption and hours. See Section 4.3.
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Figure 6: Impulse responses of business cycle aggregates to ∆σρ shock during normal times and crises
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channel of a macro uncertainty shock. And since micro uncertainty is much more prominent
from the household’s perspective, my paper matches the magnitude of their quantitative
results with a much lower relative risk aversion coefficient. Bayer et al. (2019) study micro
uncertainty shocks but abstract from time variation in fundamental risk at the aggregate level.
They also linearize the macro block of their model and therefore do not capture endogenous
variation in macro uncertainty. In the firm context, Bloom et al. (2018) model exogenous
variation in both the micro and macro uncertainty that firms face. My main insight is that
the interaction with endogenous micro risk becomes an important transmission channel of
macro uncertainty, an interaction that is not modeled in their paper. Lastly, this subsection
has demonstrated that the behavior of uncertainty changes in the crisis region of the model,
which motivates my emphasis on a global solution method.

5.2 Endogenous uncertainty spikes during crises

In this subsection, I show that endogenous variation in uncertainty becomes substantially
more pronounced when we account for the interaction between micro and macro uncertainty.
In particular, the model generates large endogenous uncertainty spikes in the crisis region.
Therefore, a two-way feedback loop emerges between macro uncertainty on the one hand,
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and micro uncertainty and aggregate demand on the other: Recessions are times when a
contraction in economic activity spurs endogenous spikes in uncertainty about the future,
which in turn depresses aggregate demand further.

The model features at least two channels through which macroeconomic uncertainty
becomes endogenous to economic activity. The first channel centers around the zero lower
bound constraint. When the economy is at the ZLB, monetary policy can no longer accommo-
date negative demand shocks, whose effects on economic activity are consequently amplified.
Even when the nominal interest rate is still positive, expansionary monetary policy moves the
economy closer to the ZLB, thus raising the likelihood that policy will be constrained in the
future. This channel is particularly strong in my baseline model because I do not explicitly
take into account the endogeneity of fiscal policy stepping in as a substitute for monetary
policy during deep recessions.54

The second channel results from the counter-cyclicality in households’ average marginal
propensity to consume (MPC). As economic activity contracts, households become unem-
ployed and draw down their liquid cash buffers, thus moving closer to their borrowing
constraints at the micro level. The prevalence of “hand-to-mouth” behavior grows, which
implies an increase in the average household’s MPC. Consumer spending, and by implication
aggregate activity, thus become more sensitive to further demand shocks. The economy’s sen-
sitivity to fundamental risk is precisely the definition of macro uncertainty in my framework,
which therefore rises.

This second channel interacts strongly with the fact that the length and severity of a
recession are uncertain themselves. Therefore, unlike in settings with no aggregate risk, it
becomes difficult for households to properly time the exhaustion of their liquid insurance
funds. The closer households get to running out of their cash buffers, the more risk averse
they become in the face of a potentially prolonged crisis.

What factors determine how sensitive macroeconomic uncertainty is to a given contrac-
tion in economic activity? The main novel insight my paper establishes in this context is that
first-moment demand shocks have a much larger effect on endogenous macro uncertainty
when we account for its interaction with micro uncertainty. Figure 7 shows the impulse
response of macro uncertainty, σY(Γt), to a negative discount rate shock ∆σρ. The left panel
shows that the response of endogenous macro uncertainty to a negative demand shock is
substantially dampened when we shut off the interaction between micro and macro uncer-
tainty. Indeed in the comparison baseline that holds employment transition rates constant,
uncertainty hardly responds at all to the demand shock during normal times. This stark
difference further highlights why accounting for the interaction between uncertainty at the
micro and macro level is crucial in order to understand its role in business cycle fluctuations.

Proximity to the crisis region emerges as another key determinant of the sensitivity of
macro uncertainty to economic activity. The right panel traces out the impulse response of
macro uncertainty to the same underlying demand shock when the economy starts on the

54Plante et al. (2018) show that the ZLB becomes a source of endogenous uncertainty in the context of a
representative-agent New Keynesian model.
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Figure 7: Impulse response of endogenous macro uncertainty to first-moment discount rate shock

0 2 4 6 8 10

Time (quarters)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normal times

0 2 4 6 8 10

Time (quarters)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Crisis region

Notes. Comparison of impulse responses of endogenous macro uncertainty, σY,t, to first-moment discount rate

shock across different models and state space regions. The shock has a half-life of 1.4 quarters and is initialized

at 0.2(min(ρt)− ρ̄). The blue and yellow lines correspond, respectively, to the baseline model and the model

that shuts off the interaction between micro and macro uncertainty. The left and right panels initialize the

economy, respectively, in the risky steady state (normal times) and on the cusp of the ZLB (crisis region).

cusp of the crisis region rather than in the risky steady state. The spike in macro uncertainty
after a contraction in economic activity during a crisis is over 3 times as large as during
normal times. Figure 7 also highlights a quantitatively meaningful interaction between non-
linearities at the micro and macro level: proximity to the crisis region makes macro uncertainty
especially sensitive to economic activity precisely when we account for its interaction with
micro uncertainty.

Result 4. Uncertainty is not only a driver but also an endogenous byproduct of business cycle
fluctuations in the full model. The endogenous response in macro uncertainty to a first-moment
demand shock is largely driven by the interaction with micro uncertainty. Indeed, uncertainty hardly
responds at all to a demand shock during normal times when we shut off the interaction between micro
and macro uncertainty.

In conclusion, macro uncertainty is most sensitive to aggregate demand and therefore most
likely to exhibit endogenous spikes when we account for its interaction with micro uncertainty
and when the economy is already in the crisis region.
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Figure 8: General equilibrium interaction between micro, macro uncertainty and aggregate demand
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5.3 Uncertainty Multiplier

The discussion thus far highlights that a two-way interaction or feedback loop can emerge
in general equilibrium between uncertainty and economic activity. Consistent with the dis-
cussion thus far, I illustrate the full feedback loop diagrammatically in Figure 8. Uncertainty
thus emerges as both a driver and a byproduct of business cycle fluctuations.

I now define an Uncertainty Multiplier, which is a useful tool to characterize the general
equilibrium interaction between micro and macro uncertainty. This multiplier measures how
much endogenous amplification there is in macroeconomic uncertainty. In particular, it asks
how much macroeconomic uncertainty is generated endogenously for a given change in
exogenous fundamental risk. The Uncertainty Multiplier is therefore another lens through
which we can study the features and implications of uncertainty. It is given by

σY(Γt)︸ ︷︷ ︸
Macro

uncertainty

= GY(Γt)︸ ︷︷ ︸
GE Uncertainty

Multiplier

· σρ︸︷︷︸
Exogenous

fundamental risk

(25)

In particular, this decomposition highlights that macro uncertainty is proportional to ex-
ogenous fundamental risk. This justifies my approach in Section 5.1 where I studied the
fundamental risk shock ∆σρ as a proxy for variation in endogenous macro uncertainty.

In Figure 9, I plot the impulse response of endogenous macro uncertainty to an exogenous
fundamental risk shock. Consistent with previous discussion, the Uncertainty Multiplier is
large when (a) we account for the interaction between micro and macro uncertainty (compare
the two models) and (b) when the economy is in the crisis region (for each model, compare
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Figure 9: Impulse response of endogenous macro uncertainty to ∆σρ shock (Uncertainty Multiplier)
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respectively, in the risky steady state (normal times) and on the cusp of the ZLB (crisis region).

the solid to the dashed line). As before, these two forces, non-linearities at the micro and at
the macro level, interact.

Figure 10 offers another perspective on the Uncertainty Multiplier. Instead of plotting
IRFs, I offer a state space representation of GY(Γt) (y-axis) against different values of the
discount rate shock ρt (x-axis). In both models, macroeconomic uncertainty increases endoge-
nously as the economy approaches the crisis region (lower ρt). However, Figure 10 highlights
starkly that the sensitivity of uncertainty to the demand shock is much stronger when we
account for the interaction between micro and macro uncertainty in the full model: as we
move left in the Figure, the two lines growth increasingly farther apart.

The Uncertainty Multiplier thus offers yet another perspective on the main insight of this
paper: there is a two-way feedback loop between macro uncertainty on the one hand, and
micro uncertainty and aggregate demand on the other. The model thus generates a natural
covariance between uncertainty and economic activity.

5.4 Macro uncertainty in the data

This paper proposes a framework in which both micro and macro uncertainty are an endoge-
nous byproduct of recessions but also have strong aggregate demand effects themselves. In
general equilibrium, economic crises are thus associated with large, endogenous uncertainty
spikes, especially when taking into account the interplay between uncertainty at the micro
and macro level. This conclusion then naturally begs the question whether the uncertainty
generated endogenously in my model is consistent with the data. I tackle this question by
comparing the time series moments of macro uncertainty in my model simulations to those
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Figure 10: State space representation of Uncertainty Multiplier for different values of discount rate ρ
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of empirical macro uncertainty proxies.
In Table 3, I confront the predictions of my model for the cyclicality, persistence, skewness

and kurtosis of macro uncertainty with data. These moments are untargeted in my calibration.
Furthermore, these simulations only feature first-moment discount rate shocks, and no
exogenous second-moment shocks. Empirical work on uncertainty has proposed a range
of indices and proxies to measure macro uncertainty in the data. The first row of Table 3
corresponds to simulated data from my model and subsequent rows correspond to empirical
macro uncertainty indices. Along the columns, I compare four moments of uncertainty in my
model to the data: its cyclicality (correlation with GDP growth), persistence, skewness and
kurtosis.

The model matches the moments of macro uncertainty in the data surprisingly well:
Uncertainty is strongly counter-cyclical, highly persistent, and has high skewness and kurtosis.
It is especially noteworthy that I match the high skewness and kurtosis in the data, which
bespeaks a degree of non-linearity at the macro level and justifies my emphasis on global
solution methods.

Result 5. Recessions are associated with large, endogenous spikes in uncertainty in the model. Indeed,
the time series moments of macroeconomic uncertainty in simulations of the model closely match
those in the data: macro uncertainty is strongly counter-cyclical, highly persistent, and features large
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Table 3: Time series moments of macro uncertainty: model simulation v. data

Macro uncertainty proxies Corr w GDP growth Persistence Skewness Kurtosis

Model simulation -0.64 0.75 1.27 4.04

MacroH1 -0.62 0.92 1.84 7.08
MacroH3 -0.6 0.94 1.85 6.97
MacroH12 -0.6 0.96 1.67 6.49
RealH1 -0.46 0.81 1.21 4.77
FinancialH1 -0.42 0.89 0.88 4.02
VIX -0.45 0.74 1.94 9.51
Policy Uncertainty -0.62 0.8 3.13 21.07
World Uncertainty Index -0.11 0.4 1.58 6.04

Notes. The top row computes time series moments of σY using simulated model data. Subsequent rows report

the same time series moments for different empirical macro uncertainty proxies. The indices MacroH*, RealH*

and FinancialH* are from Jurado et al. (2015). The underlying data can be retrieved from Sydney Ludvigson’s

website. The VIX corresponds to the Chicago Board Options Exchange’s Volatility Index. The Policy

Uncertainty index is taken from Baker et al. (2016) and the World Uncertainty Index is from Ahir et al. (2018).

positive skewness and kurtosis.

6 ZLB Spells and the Paradox of Thrift

Due to the interplay between micro and macro uncertainty, life at the ZLB in my model is
even worse than we thought.

6.1 ZLB spells with micro and macro uncertainty

The interplay between micro and macro uncertainty makes falling into the ZLB more likely
and life at the ZLB more persistent.

In a HANK model with micro and macro uncertainty, at least three channels lead to
a higher incidence of ZLB episodes. First, as illustrated in Section 5, negative demand
shocks are substantially amplified as the economy approaches the ZLB. Second, uncertainty
endogenously spikes at both the micro and macro level during economic crises, and an
increase in uncertainty has itself a contractionary effect on economic activity. Finally, even
during normal times, households anticipate that crisis episodes featuring significant micro
and macro risk are more likely. As a result, households perceive the world to be riskier
overall, inducing an increase in desired savings and a fall in the natural rate of interest in the
risky steady state. The economy is therefore closer to the ZLB constraint even during normal
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times and monetary policy has less room for counter-cyclical stabilization policy.

6.2 Paradox of thrift revisited

“[T]he reactions of the amount of [an individual’s] consumption on the incomes of
others makes it impossible for all individuals simultaneously to save any given sums.
Every such attempt to save more by reducing consumption will so affect incomes that the
attempt necessarily defeats itself. . . [I]t makes [no sense] to neglect [this effect] when we
come to aggregate demand.” Keynes (1936), p. 84-85.

The paradox of thrift has long been a central force in macroeconomic theories of business
cycle fluctuations. It states that a prudent increase in desired savings at the household level
can lead to a contraction of aggregate income in general equilibrium that actually lowers total
savings. While the paradox of thrift is an important subject in its own right, its interaction
with the ZLB will be the central focus of this subsection.55

What makes the ZLB so destabilizing in many models is that it induces a strong attraction
of “self-fulfilling nature” as the economy approaches it. The paradox of thrift is at the heart
of this dynamic. Consider the baseline representative-agent New Keynesian model. As the
nominal interest rate falls towards zero, agents anticipate that, in future, monetary policy will
no longer be able to offset negative shocks with interest rate cuts. Since the ZLB is asymmetric,
however, monetary policy will continue to offset large positive shocks with interest rate hikes.
As a result, households’ conditional expectation of future real interest rates rises, inducing
an increase in desired savings. Since it is not possible for all households to save at the same
time, as posited by the paradox of thrift, aggregate income instead falls to offset the rise in
aggregate savings demand. This contraction in activity pushes the economy even closer to
the ZLB. In any RANK model, this dynamic relies on a strong motive for inter-temporal
substitution among households.

The main result of this subsection is to show that, in a HANK economy with micro and
macro uncertainty, the general equilibrium attraction exerted by the ZLB is amplified even
though the partial equilibrium savings motives across households are dampened. In other
words, a different set of channels gives rise to a strong GE interaction between the ZLB and
the paradox of thrift, with the main channel operative in a RANK economy substantially
dampened.

Figure 11 illustrates the amplification generated as the economy approaches the ZLB.
The two panels plot output and the nominal interest rate in a state space representation for
varying levels of the discount rate shock. As we move left along the x-axis, lowering the
discount rate, aggregate demand and thus output fall. As does the nominal interest rate. By
definition, the economy reaches the ZLB when the nominal interest rate falls to 0. In the left
panel, I indicate this point, the “cusp of the ZLB”, in the state space with a vertical dashed

55Much previous work has studied the interaction between the paradox of thrift and the ZLB in the context
of representative-agent or two-agent models. See for example Eggertsson and Woodford (2003), Werning (2011)
and Eggertsson and Krugman (2012).
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Figure 11: Anticipation effects give rise to “paradox of prudence” near cusp of ZLB
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line. Notice that the nominal interest rate falls linearly with the discount rate. At a certain
point, however, when the economy has come sufficiently close to the ZLB, the “self-fulfilling”
amplification effects due to the paradox of thrift kick in as discussed above. In particular,
these amplification effects are much weaker when we shut off the interaction betwen micro
and macro uncertainty (yellow). In the full model (blue), output also falls linearly with the
discount rate initially but becomes increasingly non-linear as the economy first approaches
and then falls deeper into the ZLB region.

In the language of Kaplan et al. (2018), the set of direct and indirect channels that governs
the GE attraction of the ZLB is very different in a HANK model with micro and macro
uncertainty. My model not only features a large share of constrained households in normal
times; the share of hand-to-mouth households is also strongly counter-cyclical, rising as the
economy approaches the ZLB. Liquidity constraints therefore act to dampen the direct effect
on desired savings at the micro level because, in the language of Keynes, not all individuals
simultaneously try to save.

On the other hand, those households that are on their Euler equations exhibit a stronger
rise in desired savings when micro and macro uncertainty interact. Not only do these
households anticipate asymmetry in future aggregate states due to the ZLB, as they would in
a RANK model, they also internalize the likely spike in unemployment risk. The interplay
between micro and macro uncertainty therefore elicits a stronger precautionary motive among
unconstrained households.

Finally, as is well known by now, households’ consumption and savings decisions in a
HANK economy are relatively more influenced by indirect channels in general equilibrium.

Taken together, these factors imply that the interaction between the ZLB and the paradox
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of thrift is amplified even though not all households increase their desired savings. The
overall contraction in aggregate demand posited by the paradox of thrift can be thought of as
the product of two effects: a partial equilibrium increase in households’ desired savings at the
micro level, and a general equilibrium multiplier which maps a given increase in households’
precautionary motives into aggregate demand. In a HANK economy with micro and macro
uncertainty, the partial equilibrium effect is significantly dampened as many households do
not engage in forward-looking consumption smoothing, but the general equilibrium effect is
amplified.

7 Cost of Business Cycles

The interplay between micro and macro uncertainty has ramifications for the welfare cost
of business cycles. In a seminal contribution, Lucas (1987) made the case that the potential
gains from stabilization policy are miniscule as he found the welfare cost of business cycle
fluctuations, as perceived by a representative household, to be negligible. An active literature
has since spawned in response.

The model developed in this paper offers two novel perspectives on this enduring debate.
This paper is the first to emphasize that uncertainty spikes endogenously during crises at
both the micro and the macro level. Previous work has focused on one or the other.

Second, business cycles are asymmetric. To my knowledge, this is the first paper to
compute the cost of business cycles in a globally solved model with a zero lower bound
constraint that endogenously generates negative skewness and positive kurtosis in aggregate
output, consumption and investment. Beaudry and Pages (2001) and Krebs (2007) compute
cost of recession metrics by assuming that, in the context of a model with two aggregate
states, stabilization policy can maintain the economy in the good state indefinitely. This paper
generates the asymmetry in business cycles that motivates such reasoning endogenously.

To characterize the welfare cost of business cycle fluctuations in my setting, I implement
the following thought hypothetical. Consider households that live in the quantitative model
of Section 2. These households would give up 3.9% of their average consumption to live in
the RANK model instead (without ZLB).

8 Conclusion

This paper has developed a business cycle model in which micro and macro uncertainty
interact. Macro uncertainty shocks are substantially amplified in such a setting, with the
indirect effect through micro uncertainty emerging as the dominant transmission channel. But
macro uncertainty is also endogenous to economic activity, especially during times of crisis.
My paper therefore develops a perspective of uncertainty as both a driver and a byproduct of
business cycles. I show that accounting for the interaction between uncertainty at the micro
and macro level is crucial to understand its broader role in business cycle fluctuations.

50



References

Abowd, J. M. and A. Zellner (1985). Estimating gross labor-force flows. Journal of Business &
Economic Statistics 3(3), 254–283.

Acharya, S. and K. Dogra (2020). Understanding HANK: Insights from a PRANK. Economet-
rica 88(3), 1113–1158.

Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2015). Heterogeneous agent models
in continuous time.

Ahir, H., N. Bloom, and D. Furceri (2018). The world uncertainty index. Available at SSRN
3275033.

Ahn, S., G. Kaplan, B. Moll, T. Winberry, and C. Wolf (2017). Micro Heterogeneity and
Aggregate Consumption Dynamics. NBER Macroeconomics Annual, forthcoming.

Aiyagari, S. R. (1994). Uninsured idiosyncratic risk and aggregate saving. The Quarterly
Journal of Economics 109(3), 659–684.

Algan, Y., O. Allais, and W. J. Den Haan (2008). Solving heterogeneous-agent models with
parameterized cross-sectional distributions. Journal of Economic Dynamics and Control 32(3),
875–908.

Algan, Y., O. Allais, W. J. Den Haan, and P. Rendahl (2014). Solving and simulating mod-
els with heterogeneous agents and aggregate uncertainty. In Handbook of computational
economics, Volume 3, pp. 277–324. Elsevier.

Altig, D., L. J. Christiano, M. Eichenbaum, and J. Linde (2011). Firm-specific capital, nominal
rigidities and the business cycle. Review of Economic dynamics 14(2), 225–247.

Arellano, C., Y. Bai, and P. J. Kehoe (2019). Financial frictions and fluctuations in volatility.
Journal of Political Economy 127(5), 2049–2103.

Auclert, A., B. Bardóczy, M. Rognlie, and L. Straub (2019). Using the sequence-space Jacobian
to solve and estimate heterogeneous-agent models. Technical report, National Bureau of
Economic Research.

Auclert, A., M. Rognlie, and L. Straub (2018). The intertemporal keynesian cross. Technical
report, National Bureau of Economic Research.

Auclert, A., M. Rognlie, and L. Straub (2020). Micro jumps, macro humps: Monetary policy
and business cycles in an estimated HANK model. Technical report, National Bureau of
Economic Research.

Bachmann, R., G. Moscarini, and Others (2011). Business cycles and endogenous uncertainty.
Citeseer.

51



Baker, S. R., N. Bloom, and S. J. Davis (2016). Measuring economic policy uncertainty. The
quarterly journal of economics 131(4), 1593–1636.

Basu, S. and B. Bundick (2017). Uncertainty shocks in a model of effective demand. Economet-
rica 85(3), 937–958.

Bayer, C., R. Lütticke, L. Pham-Dao, and V. Tjaden (2019). Precautionary savings, illiquid as-
sets, and the aggregate consequences of shocks to household income risk. Econometrica 87(1),
255–290.

Beaudry, P. and C. Pages (2001). The cost of business cycles and the stabilization value of
unemployment insurance. European Economic Review 45(8), 1545–1572.

Berger, D. and J. Vavra (2019). Shocks versus Responsiveness: What Drives Time-Varying
Dispersion? Journal of Political Economy 127(5), 2104–2142.

Bernanke, B. S. (1983). Irreversibility, uncertainty, and cyclical investment. The quarterly
journal of economics 98(1), 85–106.

Bilbiie, F. O. (2020). The new Keynesian cross. Journal of Monetary Economics 114, 90–108.

Blanchard, O. J. (1985). Debt, deficits, and finite horizons. Journal of political economy 93(2),
223–247.

Blanchard, O. J., P. Diamond, R. E. Hall, and K. Murphy (1990). The cyclical behavior of the
gross flows of US workers. Brookings Papers on Economic Activity 1990(2), 85–155.

Bloom, N. (2009). The impact of uncertainty shocks. econometrica 77(3), 623–685.

Bloom, N. (2014, may). Fluctuations in Uncertainty. Journal of Economic Perspectives 28(2),
153–176.

Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. J. Terry (2018). Really
uncertain business cycles. Econometrica 86(3), 1031–1065.

Boppart, T., P. Krusell, and K. Mitman (2018). Exploiting MIT shocks in heterogeneous-agent
economies: the impulse response as a numerical derivative. Journal of Economic Dynamics
and Control 89, 68–92.

Brumm, J. and S. Scheidegger (2017). Using adaptive sparse grids to solve high-dimensional
dynamic models. Econometrica 85(5), 1575–1612.

Brunnermeier, M. K. and Y. Sannikov (2014). A macroeconomic model with a financial sector.
The American Economic Review 104(2), 379–421.

Bungartz, H.-J. and M. Griebel (2004). Sparse grids. Acta numerica 13(1), 147–269.

52



Cardaliaguet, P., F. Delarue, J.-M. Lasry, and P.-L. Lions (2015). The master equation and the
convergence problem in mean field games. arXiv preprint arXiv:1509.02505.

Challe, E., J. Matheron, X. Ragot, and J. F. Rubio-Ramirez (2017). Precautionary saving and
aggregate demand. Quantitative Economics 8(2), 435–478.

Chodorow-Reich, G. and L. Karabarbounis (2016). The cyclicality of the opportunity cost of
employment. Journal of Political Economy 124(6), 1563–1618.

Christiano, L., M. Eichenbaum, and S. Rebelo (2011). When is the government spending
multiplier large? Journal of Political Economy 119(1), 78–121.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005). Nominal rigidities and the dynamic
effects of a shock to monetary policy. Journal of political Economy 113(1), 1–45.

Darby, M. R., J. C. Haltiwanger, and M. W. Plant (1985). Unemployment-rate dynamics and
persistent unemployment under rational expectations. Technical report, National Bureau
of Economic Research.

Darby, M. R., J. C. Haltiwanger, and M. W. Plant (1986). The ins and outs of unemployment:
The ins win. Technical report, National Bureau of Economic Research.

Den Haan, W. J. (1996). Heterogeneity, aggregate uncertainty, and the short-term interest rate.
Journal of Business & Economic Statistics 14(4), 399–411.

Den Haan, W. J. and Others (1997). Solving dynamic models with aggregate shocks and
heterogeneous agents. Macroeconomic dynamics 1, 355–386.

Dou, W., X. Fang, A. W. Lo, and H. Uhlig (2020). Macro-finance models with nonlinear
dynamics. University of Chicago, Becker Friedman Institute for Economics Working Paper, The
Rodney L. White Center Working Papers Series at the Wharton School.

Duarte, V. (2018). Machine Learning for Continuous-Time Economics. Available at SSRN
3012602.

Eggertsson, G. B. and P. Krugman (2012). Debt, deleveraging, and the liquidity trap: A
Fisher-Minsky-Koo approach. The Quarterly Journal of Economics 127(3), 1469–1513.

Eggertsson, G. B. and M. Woodford (2003). Optimal monetary policy in a liquidity trap.
Technical report, National Bureau of Economic Research.

Elsby, M. W. L., R. Michaels, and G. Solon (2009, jan). The Ins and Outs of Cyclical Unem-
ployment. American Economic Journal: Macroeconomics 1(1), 84–110.

Erceg, C. J., D. W. Henderson, and A. T. Levin (2000). Optimal monetary policy with staggered
wage and price contracts. Journal of monetary Economics 46(2), 281–313.

53



Fajgelbaum, P. D., E. Schaal, and M. Taschereau-Dumouchel (2017). Uncertainty traps. The
Quarterly Journal of Economics 132(4), 1641–1692.

Fernández-Villaverde, J., G. Gordon, P. Guerrón-Quintana, and J. F. Rubio-Ramirez (2015).
Nonlinear adventures at the zero lower bound. Journal of Economic Dynamics and Control 57,
182–204.

Fernández-Villaverde, J., P. Guerrón-Quintana, K. Kuester, and J. Rubio-Ramírez (2015, nov).
Fiscal Volatility Shocks and Economic Activity. American Economic Review 105(11), 3352–
3384.

Fernández-Villaverde, J., S. Hurtado, and G. Nuno (2019). Financial frictions and the wealth
distribution. Technical report, National Bureau of Economic Research.

Fujita, S. and G. Ramey (2009). The cyclicality of separation and job finding rates. International
Economic Review 50(2), 415–430.

Gali, J. (2015). Monetary policy, inflation, and the business cycle: an introduction to the new
Keynesian framework and its applications. Princeton University Press.

Gertler, M. and P. Karadi (2011). A model of unconventional monetary policy. Journal of
monetary Economics 58(1), 17–34.

Gertler, M. and N. Kiyotaki (2010). Financial intermediation and credit policy in business
cycle analysis. In Handbook of monetary economics, Volume 3, pp. 547–599. Elsevier.

Gilchrist, S., J. W. Sim, and E. Zakrajšek (2014). Uncertainty, financial frictions, and investment
dynamics. Technical report, National Bureau of Economic Research.

Guerrieri, V. and G. Lorenzoni (2017). Credit crises, precautionary savings, and the liquidity
trap. The Quarterly Journal of Economics 132(3), 1427–1467.

Guvenen, F., S. Ozkan, and J. Song (2014). The nature of countercyclical income risk. Journal
of Political Economy 122(3), 621–660.

He, Z. and A. Krishnamurthy (2013). Intermediary asset pricing. The American Economic
Review 103(2), 732–770.

Huggett, M. (1993). The risk-free rate in heterogeneous-agent incomplete-insurance
economies. Journal of economic Dynamics and Control 17(5), 953–969.

Judd, K. L., L. Maliar, S. Maliar, and R. Valero (2014). Smolyak method for solving dynamic
economic models: Lagrange interpolation, anisotropic grid and adaptive domain. Journal
of Economic Dynamics and Control 44, 92–123.

Jurado, K., S. C. Ludvigson, and S. Ng (2015). Measuring uncertainty. American Economic
Review 105(3), 1177–1216.

54



Kaplan, G., B. Moll, and G. L. Violante (2018). Monetary policy according to HANK. American
Economic Review 108(3), 697–743.

Kehrig, M. (2015). The cyclical nature of the productivity distribution. Earlier version: US
Census Bureau Center for Economic Studies Paper No. CES-WP-11-15.

Keynes, J. M. (1936). The general theory of employment, interest, and money. Springer.

Kimball, M. S. (1990). Precautionary Saving in the Small and in the Large. Econometrica 58(1),
53–73.

Krebs, T. (2007). Job displacement risk and the cost of business cycles. American Economic
Review 97(3), 664–686.

Krueger, D. and F. Kubler (2004). Computing equilibrium in OLG models with stochastic
production. Journal of Economic Dynamics and Control 28(7), 1411–1436.

Krusell, P. and A. A. J. Smith (1998). Income and Wealth Heterogeneity in the Macroeconomy.
Journal of Political Economy 106(5), 867–896.

Lasry, J.-M. and P.-L. Lions (2007). Mean field games. Japanese journal of mathematics 2(1),
229–260.

Laubach, T. and J. C. Williams (2003). Measuring the natural rate of interest. Review of
Economics and Statistics 85(4), 1063–1070.

Laubach, T. and J. C. Williams (2016). Measuring the natural rate of interest redux. Business
Economics 51(2), 57–67.

Leduc, S. and Z. Liu (2016). Uncertainty shocks are aggregate demand shocks. Journal of
Monetary Economics 82, 20–35.

Lions, P.-L. (2011). Mean field games and applications. In Cours au College de France. Springer.

Lucas, R. E. (1987). Models of business cycles, Volume 26. Basil Blackwell Oxford.

Lucas, R. E. (2003). Macroeconomic priorities. American economic review 93(1), 1–14.

Ludvigson, S. C., S. Ma, and S. Ng (2015). Uncertainty and business cycles: exogenous impulse
or endogenous response? Technical report, National Bureau of Economic Research.

Marston, S. T., M. Feldstein, and S. H. Hymans (1976). Employment instability and high
unemployment rates. Brookings Papers on Economic Activity 1976(1), 169–210.

McKay, A. (2017). Time-varying idiosyncratic risk and aggregate consumption dynamics.
Journal of Monetary Economics 88, 1–14.

McKay, A., E. Nakamura, and J. Steinsson (2016). The power of forward guidance revisited.
American Economic Review 106(10), 3133–3158.

55



McKay, A. and R. Reis (2016). The role of automatic stabilizers in the US business cycle.
Econometrica 84(1), 141–194.

Nakata, T. (2017). Uncertainty at the zero lower bound. American Economic Journal: Macroeco-
nomics 9(3), 186–221.

Oh, H. and R. Reis (2012). Targeted transfers and the fiscal response to the great recession.
Journal of Monetary Economics 59, S50—-S64.

Oksendal, B. (2013). Stochastic differential equations: an introduction with applications. Springer
Science & Business Media.

Ottonello, P. and T. Winberry (2017). Financial Heterogeneity and the Investment Channel of
Monetary Policy.

Pástor, L. and P. Veronesi (2013). Political uncertainty and risk premia. Journal of financial
Economics 110(3), 520–545.

Patterson, C. (2019). The matching multiplier and the amplification of recessions. In 2019
Meeting Papers, Volume 95. Society for Economic Dynamics.

Plante, M., A. W. Richter, and N. A. Throckmorton (2018). The zero lower bound and
endogenous uncertainty. The Economic Journal 128(611), 1730–1757.

Poterba, J. M. and L. H. Summers (1986). Reporting errors and labor market dynamics.
Econometrica: Journal of the Econometric Society, 1319–1338.

Pröhl, E. (2019). Approximating equilibria with ex-post heterogeneity and aggregate risk.
Swiss Finance Institute Research Paper (17-63).

Ravn, M. O. and V. Sterk (2016). Macroeconomic fluctuations with HANK & SAM: An
analytical approach. Journal of the European Economic Association.

Reiter, M. (2009). Solving heterogeneous-agent models by projection and perturbation. Journal
of Economic Dynamics and Control 33(3), 649–665.

Reiter, M. (2010). Solving the incomplete markets model with aggregate uncertainty by
backward induction. Journal of Economic Dynamics and Control 34(1), 28–35.

Rotemberg, J. J. (1982). Sticky prices in the United States. Journal of Political Economy 90(6),
1187–1211.

Schmidt, L. (2016). Climbing and falling off the ladder: Asset pricing implications of labor
market event risk. Available at SSRN 2471342.

Schmitt-Grohé, S. and M. Uribe (2005). Optimal fiscal and monetary policy in a medium-scale
macroeconomic model. NBER Macroeconomics Annual 20, 383–425.

56



Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. Ameri-
can economic review 95(1), 25–49.

Shimer, R. (2012). Reassessing the ins and outs of unemployment. Review of Economic
Dynamics 15(2), 127–148.

Storesletten, K., C. I. Telmer, and A. Yaron (2004). Cyclical dynamics in idiosyncratic labor
market risk. Journal of political Economy 112(3), 695–717.

Straub, L. and R. Ulbricht (2017). Endogenous uncertainty and credit crunches. Available at
SSRN 2668078.

Van Nieuwerburgh, S. and L. Veldkamp (2006). Learning asymmetries in real business cycles.
Journal of monetary Economics 53(4), 753–772.

Werning, I. (2011). Managing a liquidity trap: Monetary and fiscal policy. Technical report,
National Bureau of Economic Research.

Werning, I. (2015). Incomplete markets and aggregate demand. Technical report, National
Bureau of Economic Research.

Winberry, T. (2020). Lumpy Investment, Business Cycles, and Stimulus Policy.

Zariphopoulou, T. (1994). Consumption-investment models with constraints. SIAM Journal
on Control and Optimization 32(1), 59–85.

57



Appendix for:

Micro and Macro Uncertainty

Andreas Schaab

November, 2020

Job Market Paper

Abstract

This appendix contains the proofs, additional material and extensions for my job market
paper “Micro and Macro Uncertainty”. Appendix Sections A through D feature the proofs
and supplemental material for Sections 2 through 5, respectively, of the main text.

This appendix focuses exclusively on the analytical and empirical parts of my paper.
A separate Numerical Appendix that can be found here provides additional details on the
algorithmic and computational aspects of my paper’s methodological contribution.

58

https://andreasschaab.com/


A Appendix for Section 2: Quantitative Model

The material in this section takes as given that the model admits a finite-dimensional aggre-
gate state space representation. This will of course be true for each element in the sequence
of approximating economies specified by my solution method. For additional details, see
Section 3 in the main text or Appendix C.

I will formalize this assumption before I proceed. In particular, as in the main text, I
denote the aggregate state of the economy at time t by Γt ∈ RN for some N. In practice, for
the baseline model we will have Γt = (ρt, αt), where αt parameterizes the finite-dimensional
distribution representation of my solution method. However, for this section it will suffice to
postulate an arbitrary aggregate state vector Γt which follows a (Markov) diffusion so that

dΓt = µΓ(Γt)dt + σΓ(Γt)dB,

where Bt is a one-dimensional standard Brownian motion, representing the sole aggregate
risk factor of my model, and

µΓ : RN → RN , σΓ : RN → RN.

Formally, Γt is a time-homogeneous Ito diffusion and I assume that it satisfies the usual regularity
conditions (see e.g. Oksendal (2013)). In other words, the coefficients µΓ and σΓ depend
on time t only through Γt, and the process Γt therefore satisfies the Markov property for Ito
diffusions.

Before proceeding, I will introduce the notion of infinitesimal generator which is a com-
posite functional operator associated with a particular diffusion process. This object and its
properties are at the heart of Proposition 3 as I already anticipated in the main text.

Definition 4. The infinitesimal generator of a time-homogeneous Ito diffusion process Xt in
RN is defined as

AX f (x) = lim
t→0

Et
[

f (Xt)
]
− f (x)

t

where X0 = x ∈ Rn and f : RN → R

In particular, the generator of the diffusion process Γt is then given by

AΓ f (x) = µΓ(x)Dx f +
1
2

σT
Γ (x)Dxx f σΓ(x)

where the T superscript denotes a transpose. To arrive at this form, the assumption of some
regularity conditions on f are necessary. The notation of (partial) derivative operators is such
that Dx f denotes the Jacobian of f and Dxx f its Hessian matrix.
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A.1 Household Problem

In the quantitative model, households consume, save, work, and make portfolio allocation
decisions. The problem of a household is to maximize the objective function (1) in the main
text subject to the set of budget, borrowing and short-sale constraints, and taking as given (i)
all aggregate prices, (ii) the economy’s aggregate law of motion, dΓt, and (iii) the idiosyncratic
employment transition process.

It is easiest to work with a recursive representation of the household problem, which is
possible under the assumption of a (time-homogeneous) aggregate state space representation
(see above).56 The appropriate state space on which we can formulate such a recursive
representation is, of course, (a, k, z, Γ) where (a, k, z) describes the household’s idiosyncratic
state given by liquid and illiquid asset holdings, as well as employment status. As in the
main text, I use superscript j notation to refer to a household with employment status zj, for
j ∈ {U, E}. In sum, the household consumption policy function, which I will characterize
below, is then given by cj(a, k, Γ) for a household in employment state j, with asset holdings
(a, k), and in the aggregate state Γ.

A.1.1 Derivation of the household budget constraint

In the main text, I work directly with real household asset holdings. In this subsection, I start
from the nominal household budget constraint and derive its real analog, deflated by the
household consumer price index. Recall that, in the state space representation of the problem,
all aggregate prices are functions of the aggregate state of the economy, so that for example
the real interest rate is given by rt = r(Γt). I will notationally suppress this dependence on Γ
whenever there is no ambiguity. Similarly, I will suppress the dependence of functions on the
idiosyncratic state (a, k, z) for ease of exposition.

Nominal consumption outlays of the household (in employment state j) are given by
Pcj, where P denotes the price index of the consumption bundle (CPI). I define a as the stock
of “bond” holdings (liquid asset) and, similarly, k as the stock of “capital” holdings (illiquid
asset). As such, the household budget constraint is given by an equation for the evolution of
liquid wealth, Pa. We have

d(Pa) =
[
(i + ζ)Pa +

(
ik +

PΠQ

K

)
k + Pe−Qιj − Pψ(ι, k)− Pc

]
dt.

Several observations are in order. The portfolio returns are expressed in nominal terms here,
where i is the nominal interest rate, Pa is the nominal bond value on which the nominal
interest rate accrues (and on which annuity payments ζ are made). Similarly, ik is the nominal
rental rate per unit of capital k and PΠQ denotes the aggregate nominal profits of the capital
producing sector. Q is the price of capital goods, where ι denotes the rate at which households

56I will formally discuss the recursive representation of the household problem when Γt is infinite-dimensional
in Appendix C. The discussion here is understood to refer to an approximate economy under a finite-dimensional
distribution representation.
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purchase capital goods from the capital producer. I assume that the adjustment cost is paid in
units of the consumption good, which is why it is valued at P. Finally, Pe denotes nominal
household earnings.

CPI price inflation is defined as dP/P. The key question, then, is whether dP is stochastic,
in the sense that it loads directly on the aggregate risk factor dB. As I will discuss in more
detail in Appendix A.4, dP has no diffusion term as long as we assume price stickiness (under
Rotemberg adjustment costs). In this case, I can define CPI inflation as

dP
P

= πdt.

Returning to the nominal budget constraint and using the fact that dP has no diffusion
term, we have d(Pa) = Pda + adP and, dividing by P and rearranging, I arrive at

da
dt

= (i− π + ζ)a +
(

ik

P
+

ΠQ

K

)
k + e− qι− ψ(ι, k)− c,

where r = i− π is the real riskfree rate, rk = ik/P is the real rental rate, and q = Q/P is the
relative price of capital goods.

A.1.2 Household net worth

The definition of household net worth is conceptually complicated in this setting by the
presence of adjustment costs. Similarly, due to these adjustment costs, it will generically
not be possible to reduce the state space of the household from (a, k) to a single net worth
variable. In other words, household behavior generally depends not only on wealth but
rather on the portfolio split between liquid and illiquid assets.

Nonetheless, it is useful to consider how household net worth may be specified. I will
define net worth n as though there were no adjustment costs, so that n = a + qk. In Appendix
E, I study a version of the model where there are indeed no adjustment cost at the micro
level, so that the household portfolio choice problem can be expressed in terms of the single
state variable n, as well as a portfolio share θ of risky (but no longer illiquid) assets. Such
setting lends itself straightforwardly to a study of consumption-based asset pricing with
heterogeneous households. For further details, see Appendix E.

While such a state space reduction is not possible here, it is still useful to characterize
the law of motion of household net worth as defined above. To do so, I specify a diffusion
process for the relative price of capital given by

dq
q

= µQdt + σQdB,

where µQ and σQ are equilibrium objects. Also recall that the household’s illiquid asset
position evolves non-stochastically as in dk = [(ζ − δ)k + ι]dt.57 Net worth therefore evolves

57In the presence of capital quality shocks as in Brunnermeier and Sannikov (2014), for example, dk would
instead be a stochastic differential equation, and a covariance term (dk)(dq) would emerge.
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as dn = da + kdq + qdk, or

1
dt

dn = (r + ζ)a +
(

rk +
ΠQ

K

)
k + e− qι− ψ(ι, k)− c + kqµQ + kqσQ

dB
dt

+ q(ζ − δ)k + qι.

Simplifying and rearranging, we arrive at

dn =

[
(r + ζ)n + e− ψ(ι, k)− c

]
dt +

(
rk

q
+

ΠQ

qK

)
︸ ︷︷ ︸
Dividend yield

qkdt +
[ (

µQ − δ− r
)

dt + σQdB︸ ︷︷ ︸
Excess capital gains rate

]
qk

This derivation highlights that household net worth indeed loads on the aggregate risk
factor dB via a capital gains term, and thus follows a stochastic differential equation. On
the other hand, the stocks of liquid and illiquid assets held by the household, a and k, are
not stochastic in this sense. In other words, it is the value of these positions that evolves
stochastically but not their stocks, whose evolution is controlled by the household.

A.1.3 Household value function and FOCs

This subsection derives the optimality conditions for household behavior. Recognizing
that labor supply is set by unions, each household is left with two active choice variables,
consumption c and investment ι, i.e. the purchase of the illiquid asset.

The formal statement of this problem for a household that starts in state (a, k, zj, Γ) at
time t = 0 is

V j(a, k, z, Γ) = max
c,h,ι

E0

[ ∫ ∞

0
e−(ρ(Γ)+ζ)tu(c, h)dt

]
subject to

ȧ =

(
r(Γ) + ζ

)
a +

(
rk(Γ) +

ΠQ(Γ)
K(Γ)

)
k + ej(a, k, Γ)− q(Γ)ι− ψ(ι, k)− c

k̇ = (ζ − δ)k + ι

h = H(Γ)

dzj = (z−j − zj) dN
(

λj(a, k, Γ)
)

dΓ = µΓ(Γ)dt + σΓ(Γ)dB

a ≥ a and k ≥ 0,

taking as given all aggregate prices (as functions of the aggregate state Γ). The constraint
h = H(Γ) represents the assumption that all labor supply is set symmetrically by labor
unions, and households take their quota of work hours as given. Household earnings are
given by

ej(a, k, Γ) = ej(Γ) = (1− τlab)zjw(Γ)H(Γ) + τlump(Γ) + τUI(zj).
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Finally, as discussed in the main text, dN(·) represents a continuous-time Poisson process that
is uncorrelated across households, and which takes as its argument the associated transition
rate. In our case, this employment transition rate λj(a, k, Γ) is given as an arbitrary function
on the household state space.

Recursive representation. It is easiest to work with a recursive representation of the house-
hold problem. In Appendix A.2, I discuss formally how to derive such a recursive rep-
resentation. It is cast in terms of a partial differential equation (PDE) that represents the
continuous-time analog of the discrete-time Bellman equation, called the Hamilton-Jacobi-
Bellman (HJB) equation.

The HJB equation associated with the household problem (under the assumption that Γ
is finite-dimensional) is given by

(ρ + ζ)V j = max
cj,ιj

{
u(cj, H) + V j

k

[
(ζ − δ)k + ιj

]

+ V j
a

[
(r + ζ)a +

(
rk +

ΠQ

K

)
k + ej − qιj − ψ(ιj, k)− cj

]}

+ λj
[
V−j −V j

]
+ µΓVΓ +

1
2

σT
Γ VΓΓσΓ

where I again suppress the dependence of objects on state variables. I only explicitly account
for the dependence on employment status using j superscripts in order to highlight that,
really, this is a system of PDEs, one associated with each j. I use the shorthand notation
V j

x = DxV j to denote the partial derivative of V j with respect to x. Finally, notice that the
terms in the last row, associated with the laws of motion for the household’s employment
status and the aggregate state of the economy, are outside the max operator because they are
taken as given by the household.

This HJB equation holds everywhere in the interior of the household state space, i.e. for
all a > a and k > 0. To characterize household behavior along the boundary of the state
space, the HJB equation must be paired with a set of state constraint boundary conditions. For
details, see e.g. Achdou et al. (2015). Intuitively, these constraints never bind in the interior of
the state space. In continuous time, therefore, households that are at least an “ε” away from
the constraints will never hit them in the next, infinitesimally small time step.

The household’s optimization problem gives rise to the policy functions cj(a, k, Γ) and
ιj(a, k, Γ), which characterize household behavior at every possible point of the state space. I
will characterize these policy functions next. In the following, I will frequently make use of
the shorthand notation

sj = (r + ζ)a +
(

rk +
ΠQ

K

)
k + ej − qιj − ψ(ιj, k)− cj

mj = (ζ − δ)k + ιj,
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where sj and mj respectively correspond to the drift, or expected rate of change, in households’
liquid and illiquid asset positions.

For later reference, I want to note that the household HJB equation can equivalently be
written in terms of generators (see my discussion in the introduction to Appendix A). Denoting
Aj = A(a,k,zj), we have

(ρ + ζ)V j = max
cj,ιj

u(cj, H) +AjV +AΓV,

where

Aj f j(a, k, Γ) = sj f j
a + mj f j

k + λj( f−j − f j)

AΓ f j(a, k, Γ) = µΓ f j
Γ +

1
2

σT
Γ f j

ΓΓσΓ.

I will make use of this representation below.58

Optimality conditions. The optimality condition for consumption is simply given by

uc(cj, H(Γ)) = V j
a(a, k, Γ).

Given the value function, we can invert this equation to solve for the policy function cj =

cj(a, k, Γ). Intuitively, households equate the marginal value of consuming with the marginal
value of saving for the future, i.e. the marginal value of liquid wealth V j

a .
The optimality condition for the household’s investment decision is given by

V j
k (a, k, Γ) =

(
q + ψιj(ιj, k)

)
V j

a(a, k, Γ).

When the adjustment cost function ψ is non-differentiable, as is the case with a kinked
functional form for example, this FOC must be modified accordingly. Intuitively, households
equate the marginal values of liquid and illiquid assets, accounting for the marginal rate of
transformation.

A.1.4 Euler equation for diffusion processes

While the FOCs derived in the previous subsection fully characterize optimal household
behavior, it is instructive to derive a set of Euler equations. Doing so in continuous time is
less straightforward than in discrete time. For illustration, I will start with the case where
household earnings follow a standard diffusion process without jumps, given by

dz = µzdt + σzdW,

58Separating the generators as I do here is feasible because there is no interaction between the diffusion
coefficients of the idiosyncratic state variables and the aggregate state variables. Indeed, the idiosyncratic
state variables do not load on the aggregate risk factor at all in the baseline model. If there was an interaction,
the appropriate generator associated with the vector of household state variables, A(a,k,z,Γ), could not be
decomposed into an idiosyncratic and an aggregate component as I do here.
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where W is a standard Brownian motion that is uncorrelated across households. The drift and
diffusion coefficients, µz and σz, are arbitrary functions on the household state space. Finally,
when the earnings state variable z is continuous rather than discrete, the HJB equation that
characterizes the household problem is no longer a system of equations. Similarly, I will drop
j superscripts and denote the policy functions as c(a, k, z, Γ) and ι(a, k, z, Γ) since z is now
continuous.

Assumption. Crucially, I assume for now that E[dWdB] = 0 so that idiosyncratic risk and
aggregate risk are uncorrelated. I will relax this assumption in Appendix Section XX.

Plugging the policy functions back into the HJB equation (with max operator), we get a char-
acterization of households’ indirect value function (without max operator since optimization
already took place). This HJB equation for the diffusion-only case is given by

(ρ + ζ)V =u(c, H) + mVk + sVa + µzVz +
σ2

z
2

Vzz + µΓVΓ +
1
2

σT
Γ VΓΓσΓ.

We can now derive what is known as the HJB envelope condition by differentiating with respect
to a (and using the Envelope Theorem). This yields

(ρ− r)Va =mVka + sVaa + µzVza +
σ2

z
2

Vzza + µΓVΓa +
1
2

σT
Γ VΓΓaσΓ.

Next, notice that since the state variables, (a, k, z, Γ), follow time-homogeneous Ito diffusion
processes, so does any function that takes (a, k, z, Γ) as its only arguments. Thus, applying
Ito’s lemma to Va = Va(a, k, z, Γ) yields

dVa = sVaadt+mVakdt+µzVazdt+σzVazdW +
σ2

z
2

Vazzdt+µΓVaΓdt+σΓVaΓdB+
1
2

σT
Γ VaΓΓσΓdt.

Putting this equation together with the envelope condition yields

dVa = (ρ− r)Vadt + σzVazdW + σΓVaΓdB.

Using the household optimality condition for consumption, we have duc = dVa and, in
particular,

Vaz = ucccz

VaΓ = ucccΓ.

Thus, we arrive at the first of several characterizations of a continuous-time Euler equation
for household consumption.

Lemma 5. A continuous-time Euler equation for households’ marginal utility of consumption is
given by

duc

uc
= (ρ− r)dt + σz

ucc

uc
czdW + σΓ

ucc

uc
cΓdB.
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Without taking a stance on the functional form u(c, h), we cannot make much progress.
Assuming CRRA preferences, however, with relative risk aversion coefficient γ implies

ucc

uc
= −γ

c
.

Similarly, notice that c is simply a function of the stochastic process uc whose law of motion I

derived above. We have c = f (uc) = u
− 1

γ
c , and so

dc = − 1
γ

c1+γ

(
duc

)
+

1
2

(
1
γ

1 + γ

γ
c1+2γ

)
(duc)

2

= − 1
γ

c1+γ

(
(ρ− r)ucdt + uccczσzdW + ucccΓσΓdB

)
+

1
2

(
1
γ

1 + γ

γ
c1+2γ

)(
uccczσzdW + ucccΓσΓdB

)2

= − 1
γ

c1+γ

(
(ρ− r)ucdt + uccczσzdW + ucccΓσΓdB

)
+

1
2

(
1
γ

1 + γ

γ
c1+2γ

)
(−γc−γ−1)2

(
(czσz)

2 + (cΓσΓ)
2
)

= − 1
γ

c1+γ

(
(ρ− r)ucdt + uccczσzdW + ucccΓσΓdB

)
+

1
2

(
(1 + γ)c1+2γ

)
c−2γ−2

(
(czσz)

2 + (cΓσΓ)
2
)

=
r− ρ

γ
cdt +

1
γ

γczσzdW + cΓσΓdB +
1
2
(1 + γ)c−1

(
(czσz)

2 + (cΓσΓ)
2
)

.

I summarize in the next Lemma.

Lemma 6. Assuming CRRA preferences, a continuous-time Euler equation for household consump-
tion is given by

dc
c

=
r− ρ

γ
dt︸ ︷︷ ︸

Consumption Smoothing

+
1 + γ

2

(
czσz

c

)2

︸ ︷︷ ︸
Precautionary Motive:

Earnings Risk

dt +
1 + γ

2

(
cΓσΓ

c

)2

︸ ︷︷ ︸
Precautionary Motive:

Aggregate Risk

dt +
czσz

c
dW +

cΓσΓ

c
dB

This Lemma characterizes a consumption Euler equation in differential form. From here, it is
possible to derive an exact analog to the discrete-time Euler equation by integrating up over
a given time horizon.

Let Z = log(c) = f (c). Then,

dZ = f ′(c)dc +
1
2

f ′′(c)(dc)2 =
dc
c
− 1

2

(
dc
c

)2

=
r− ρ

γ
dt +

czσz

c
dW +

cΓσΓ

c
dB +

1 + γ

2

(
czσz

c

)2

dt +
1 + γ

2

(
cΓσΓ

c

)2

dt− 1
2

(
czσz

c

)2

dt− 1
2

(
cΓσΓ

c

)2

dt

=
r− ρ

γ
dt +

γ

2

(
czσz

c

)2

dt +
γ

2

(
cΓσΓ

c

)2

dt +
czσz

c
dW +

cΓσΓ

c
dB
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Then, writing out the stochastic differential equation in integral form, we have

Zt − Z0 =
∫ t

0

[
r− ρ

γ
+

γ

2

(
czσz

c

)2

+
γ

2

(
cΓσΓ

c

)2]
dt +

∫ t

0

czσz

c
dW +

∫ t

0

cΓσΓ

c
dB

log
(

ct

c0

)
=
∫ t

0

[
r− ρ

γ
+

γ

2

(
czσz

c

)2

+
γ

2

(
cΓσΓ

c

)2]
dt +

∫ t

0

czσz

c
dW +

∫ t

0

cΓσΓ

c
dB

ct = c0 exp

{ ∫ t

0

[
r− ρ

γ
+

γ

2

(
czσz

c

)2

+
γ

2

(
cΓσΓ

c

)2]
dt +

∫ t

0

czσz

c
dW +

∫ t

0

cΓσΓ

c
dB

}
.

Lemma 7. In the limit of small time steps, we have

E0

[
ct+dt

]
= exp

{
r− ρ

γ
dt +

1 + γ

2

(
czσz

c

)2

dt +
1 + γ

2

(
cΓσΓ

c

)2

dt
}

ct,

where each of the terms on the RHS is evaluated at time t.

A.2 Formal Derivation of HJB Equation

This subsection contains no economic content and can be skipped accordingly. I will proceed
in three steps: (1) I will start by presenting an informal derivation of the household’s recursive
problem to provide intuition. (2) I will then work through a formal derivation. (3) Finally,
I relate the continuous-time recursive problem to its discrete-time analog for the benefit of
those readers who are more familiar with discrete-time Bellman equations.

To derive a recursive representation of the household problem, I define the value of the
household problem at time 0 as

V(a, k, z, Γ) = max E0

[ ∫ ∞

0
u(ct, ht)dt

]
subject to the constraints listed above, where the maximum is taken over all household
control variables. As is standard, I assume that all controls are Markov.59

In progress, coming soon.

A.3 Nexus between the HJB and KF Equations

There is a deep link between the Hamilton-Jacobi-Bellman (HJB) equation that characterizes
household behavior and the Kolmogorov forward (KF) equation that describes the evolution

59Formally, the household problem is defined over a time horizon t ∈ [0, T]. As is standard in macroeco-
nomics, I define the infinite-horizon problem as the limit T → ∞, and I suppress reference to T wherever possible
to use notation that is familiar to economists.
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of the cross-sectional household distribution. (For previous discussions of this link see, for
example, Lasry and Lions (2007) or Achdou et al. (2015).)

As in the main text, I denote the cross-sectional household distribution by g(a, k, z, Γ).
The marginal distributions for employed and unemployed households are given by gj(a, k, Γ).
It is well known that the law of motion of the distribution g is characterized by a KF equation,
which is a particular kind of partial differential equation (PDE).

In this subsection, I discuss the nexus between the HJB and KF equations. It is intuitively
quite easy to see why there would be a deep link between these equations. The HJB equation
describes the behavior of households across the state space at time t. And it is through
their behavior at time t, of course, that households transition to new positions in the state
space at time t + dt. In other words, the household’s decision to save or dissave at time
t will determine its liquid asset position at time t + dt. In this sense, characterizing how
the cross-sectional distribution evolves is simply a matter of aggregating up households’
decisions and, thereby, the transition flows of households in the state space.

Mathematically, this relationship turns out to be characterized by transposition. The KF
equation is given by

dgj
t(a, k)
dt

= −∂a

[
sj(a, k, Γt)gj

t(a, k)
]
− ∂k

[
mj(a, k, Γt)gj

t(a, k)
]
− λjgj

t(a, k) + λ−jgj
t(a, k).

In the spirit of my earlier discussion of generators, I will define the composite operator that
represents this partial differential equation as

A∗j f j(a, k) = −∂a

[
sj(a, k, Γt) f j(a, k)

]
− ∂k

[
mj(a, k, Γt) f j(a, k)

]
− λj f j(a, k) + λ−j f j(a, k),

so that
dgj

t(a, k)
dt

= A∗j gj
t(a, k).

The following Lemma demonstrates the deep link between the KF and HJB equations.

Lemma 8. (HJB-KF Nexus) The operator A∗j which defines the KF equation of this economy is the
adjoint of the idiosyncratic generator Aj that defines the HJB equation.

An adjoint is to functional operators what the transpose is to matrices. Indeed, this result is
of immense practical value: After discretizing the state space (a, k, z) on a grid, functional
operators like ∂a can be represented numerically by matrices. Then, findingA∗j is as simple as
transposing the matrix Aj that must be constructed to solve for the household value function.

A.4 Inflation Risk

Consumer prices are locally deterministic in my model due to price stickiness in the form
of Rotemberg adjustment costs. Therefore, the baseline model features no inflation risk: CPI
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inflation at time t is t-adapted, in the sense that households have perfect foresight over the
realization Pt+dt at time t.

This simple model feature has far-reaching implications. In particular, the evolution of
the household’s liquid asset position follows a non-stochastic differential equation. Since the
illiquid asset position evolves similarly non-stochastically and employment status follows a
Poisson rather than a diffusion process, the model’s KF equation becomes a standard partial
differential equation rather than a stochastic PDE. Indeed, in a model with inflation risk, the
process at follows a stochastic differential equation and the associated KF equation becomes a
stochastic PDE. This would be the case, for example, if we assume wage stickiness but allow
for fully flexible consumer prices.

Recent work in the burgeoning HANK literature has become increasingly fond of assum-
ing sticky wages instead of sticky prices (see e.g. Auclert et al. (2018)). In the presence of
aggregate risk, such an assumption may considerably complicate the model of household
behavior and the associated law of motion of the cross-sectional household distribution.

Assume that consumer prices follow a diffusion process with

dP
P

= µπdt + σπdB,

where σπ 6= 0 represents inflation risk. (In the baseline model of this paper, σπ = 0 of course
and I denote π = µπ.) Following the steps presented in Appendix A.1.1, the associated
evolution equation for the household’s liquid asset position becomes

da =

[
(r + ζ)a +

(
rk +

ΠQ

K

)
k + e− qι− ψ(ι, k)− c

]
dt− aσπdB.

where I now define the real interest rate as r = i− µπ. The diffusion coefficient aσπ captures
the household’s exposure to inflation risk. It enters negatively since higher realized inflation
implies a depreciation of real liquid wealth.

In the presence of inflation risk, the Kolmogorov forward equation for the evolution of
the household cross-sectional distribution becomes a stochastic partial differential equation.

Lemma 9. (KF with inflation risk) In the presence of inflation risk, the cross-sectional household
distribution evolves according to

dgj
t(a, k)
dt

=− ∂a

[
sj(a, k, Γt)gj

t(a, k)
]
− ∂k

[
mj(a, k, Γt)gj

t(a, k)
]

− λjgj
t(a, k) + λ−jgj

t(a, k) + ∂a

[
aσπgj

t(a, k)
]
dB.

This equation is a special case of the general KF equation I derive in Appendix B. The proof
can also be found there.
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Inflation risk also has considerable implications for household behavior, of course. The
HJB equation for household behavior becomes

(ρ + ζ)V j = max
cj,ιj

{
u(cj, H) + V j

a

[
(r + ζ)a +

(
rk +

ΠQ

K

)
k + ej − qιj − ψ(ιj, k)− cj

]

+
1
2

V j
aa(aσπ)

2 + V j
aΓ(aσπσΓ) + V j

k

[
(ζ − δ)k + ιj

]}

+ λj
[
V−j −V j

]
+ µΓVΓ +

1
2

σT
Γ VΓΓσΓ.

Two new terms emerge as a consequence of inflation risk. The first, proportional to Vaa,
captures the uncertainty households now face over the evolution of real liquid wealth. The
second, proportional to VaΓ, emerges because inflation, and therefore the household’s liquid
wealth, covaries with the aggregate state of the economy, Γ, as both load on the aggregate
risk factor dB.

A.5 Transfers and Rebates

In progress and coming soon.

A.6 Death Process and Blanchard (1985) Annuity Markets

How do we aggregate in this economy with death rates? I follow Blanchard (1985). Recall
that the household budget constraints are given by

ȧ =

(
r + ζ

)
a +

(
rk +

ΠQ

K

)
k + e− qι− ψ(ι, k)− c ≡ s

k̇ = (ζ − δ)k + ι ≡ m,

where, as before, I suppress that the policy functions c, e, ι, s and m take (a, k, z, Γ) as their
arguments.

To aggregate in this economy, we aggregate over all household cohorts that are still alive.
A cohort born at time 0 has remaining size at time t given by ζe−ζt. This is by definition.
Similarly, the size of the population at time t is given by

e−ζt︸︷︷︸
Surviving t = 0 cohort

+
∫ t

0
ζe−ζ(t−s)ds︸ ︷︷ ︸

Surviving subsequent cohorts

= e−ζt +

[
eζ(s−t)

]t

0
= e−ζt + eζ(t−t) − e−ζt = 1.

It is important to realize here that the remaining size at time t of a cohort born at time 0 with
initial mass µ is given by µe−ζt.
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I can now address the important question of aggregation. Denote by c(s, t, a, k, z) the
consumption at time t of a household cohort born at time s. If all households of a given cohort
consumed the exact same amount, then we would have

Ct = c(0, t)e−ζt +
∫ t

0
c(s, t)ζeζ(s−t)ds

just like in the original Blanchard (1985) paper. But now we also have within-cohort hetero-
geneity. Therefore, the correct aggregation is given by

Ct =
∫

c(0, t, a, k, z)e−ζtg(0, t, a, k, z)d(a, k, z)+
∫ [ ∫ t

0
c(s, t, a, k, z)ζeζ(s−t)ds

]
g(s, t, a, k, z)d(a, k, z).

Now, of course, I want to rewrite everything exploiting the underlying stationarity. In
particular, we know that conditional on (a, k, z), households of different cohorts behave
identically. And while g(0, t) is very different from g(s, t), we don’t have to worry about this
difference because, again, households are identical conditional on the state variables. So for
consumption, it’s as simple as always with

Ct =
∫

ct(a, k, z)gt(a, k, z)d(a, k, z).

Now what about aggregate savings and aggregate capital accumulation? Define St to be
aggregate liquid savings in this economy. It must be that St = 0 at all t because of the bond
market clearing condition. Define At to be total liquid (bond) wealth at time t. We have

At ≡
∫

a
[

e−ζtg(0, t)
]

d(a, k, z) +
∫

a
[ ∫ t

0
ζeζ(s−t)g(s, t)ds

]
d(a, k, z)

=
∫

a
[

e−ζtg(0, t) +
∫ t

0
ζeζ(s−t)g(s, t)ds

]
d(a, k, z).

Differentiating with respect to t, we have

St ≡ Ȧt =
∫

a
[
− ζe−ζtg(0, t) + e−ζtdg(0, t) + ζg(t, t) +

∫ t

0
ζ

∂

∂t

(
eζ(s−t)g(s, t)

)
ds
]

d(a, k, z)

=
∫

a
[
− ζe−ζtg(0, t) + e−ζtdg(0, t) + θg(t, t) +

∫ t

0
ζ

(
− θeζ(s−t)g(s, t) + eζ(s−t) d

dt
g(s, t)

)
ds
]

d(a, k, z).

Splitting up these terms here, we have

St =ζ
∫

ag(t, t)− ζ
∫

a
[

e−ζtg(0, t) +
∫ t

0
ζeζ(s−t)g(s, t)ds

]
+
∫

a
[

e−ζt d
dt

g(0, t) +
∫ t

0
ζeζ(s−t) d

dt
g(s, t)ds

]
.

A couple of observations are in order. The first term is simply the definition of the liquid
wealth of newly born agents. By assumption, this is 0 since new household cohorts enter with
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zero wealth. But in principle it could be anything else (under a different birth assumption).
The second term simplifies exactly to −ζAt as is immediately obvious. So what do we do
with the third term? Let’s swap the integrals so that

e−ζt
[ ∫

a
d
dt

g(0, t)d(a, k, z)
]
+
∫ t

0
ζeζ(s−t)

[ ∫
a

d
dt

g(s, t)d(a, k, z)
]

ds.

The Kolmogorov forward equation still holds for every cohort-specific density function, so
that we have

e−ζt
[ ∫

a
(
A∗t g(0, t)

)
d(a, k, z)

]
+
∫ t

0
ζeζ(s−t)

[ ∫
a
(
A∗t g(s, t)

)
d(a, k, z)

]
ds.

Notice that the adjoint operator A∗t is t-adapted here because the prices that show up in this
operator are evaluated at time t (they don’t vary across cohorts). And finally, I use the adjoint
relationship to arrive at

e−ζt
[ ∫ (

Ata
)

g(0, t)d(a, k, z)
]
+
∫ t

0
ζeζ(s−t)

[ ∫ (
Ata

)
g(s, t)d(a, k, z)

]
ds,

where of course
Aa = s∂aa + m∂ka + . . . = s

where all terms except the first are 0. Therefore, putting it all together, we have

St = −ζAt + e−ζt
[ ∫

st(a, k, z)g(0, t)d(a, k, z)
]
+
∫ t

0
ζeζ(s−t)

[ ∫
st(a, k, z)g(s, t)d(a, k, z)

]
ds.

Finally, I now assume that we are in a stationary equilibrium. The assumption one makes
about the initialization of newly born household cohorts imply that there are differences
across cohort-specific densities. But, crucially, all cohorts face the same prices. Therefore,
household policy functions, conditional on (a, k, z), no longer depend on time. We have

S = −ζ A +
∫

s(a, k, z)
[

e−ζtg(0, t, a, k, z)
]

d(a, k, z) +
∫

s(a, k, z)
[ ∫ t

0
ζeζ(s−t)g(s, t, a, k, z)ds

]
d(a, k, z)

= −ζ A +
∫

s(a, k, z)
[

e−ζtg(0, t, a, k, z) +
∫ t

0
ζeζ(s−t)g(s, t, a, k, z)ds︸ ︷︷ ︸

Distribution of all surviving households

]
d(a, k, z)

And what is the distribution of all surviving households? It is precisely the stationary distribu-
tion because that is the distribution of all households alive when in the stationary equilibrium.
Therefore, finally, I have proven that

S = −ζA +
∫

s(a, k, z)g(a, k, z)d(a, k, z)

= −ζA +
∫ [(

r + ζ

)
a +

(
rk +

ΠQ

K

)
k + e− qι− ψ(ι, k)− c

]
g(a, k, z)d(a, k, z)

=
∫ [

ra +
(

rk +
ΠQ

K

)
k + e− qι− ψ(ι, k)− c

]
g(a, k, z)d(a, k, z)
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where g is the stationary distribution.
A parallel argument proves that the aggregate drift of the illiquid capital stock is given

by

M = −ζ
∫

kg(a, k, z)d(a, k, z) +
∫ [

(ζ − δ)k + ι

]
g(a, k, z)d(a, k, z)

= −ζK + (ζ − δ)K +
∫

ιg(a, k, z)d(a, k, z)

= I − δK,

where the last line uses the market clearing condition for capital production.
Overall, positive death rates have implications for the aggregation of flows in portfolio

positions but not their outstanding stocks. That is, we still have

A =
∫

ag(a, k, z)d(a, k, z)

K =
∫

kg(a, k, z)d(a, k, z).

A.7 Illustration of Walras’ Law

It is instructive and insightful to work through Walras’ law. In particular, I start with
households’ budget constraints and will derive the goods market clearing condition.

Aggregating households’ liquid asset evolution equation, I get

∑
j

∫
sjgj(a, k)d(a, k) =(r + ζ)∑

j

∫
agj(a, k)d(a, k) +

(
rk +

ΠQ

K

)
∑

j

∫
kgj(a, k)d(a, k)

+ ∑
j

∫
ejgj(a, k)d(a, k)− q ∑

j

∫
ιjgj(a, k)d(a, k)

−∑
j

∫
ψ(ιj, k)gj(a, k)d(a, k)−∑

j

∫
cjgj(a, k)d(a, k).

Notice that for any variable xj(a, k), it is notationally equivalent to write

∑
j

∫
xj(a, k)gj(a, k)d(a, k) =

∫
x(a, k, z)g(a, k, z)d(a, k, z).

Accounting for the death process as discussed in the previous subsection, aggregation yields

0 = −rBG +

(
rk +

ΠQ

K

)
K + (1− τlab)(1−U)wH + τlump + τUIU − qIH −Ψ− C

where U is the unemployment rate. Notice that L = (1−U)H. Using the government budget
constraint to solve out for τlump yields

0 =

(
rk +

ΠQ

K

)
K + wL + Π− qIH −Ψ− C− G.
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Since payoffs on the liquid asset, labor tax revenue and UI insurance represent direct transfers
between the government and household sectors, they cancel out in this step.

Next, I substitute in for the profits of the capital and goods producing sectors, ΠQ and
Π, respectively. This yields

0 = rkK +

(
qI − I −Φ

(
I
K

)
K
)
+ wL +

(
Y− wL− rkK

)
− qIH −Ψ− C− G

= −I −Φ
(

I
K

)
K + Y−Ψ− C− G

where the second line also uses the market clearing condition for new capital, I = IH. I
abuse notation slightly and denote the aggregate adjustment cost paid by the capital producer
simply by Φ. Rearranging yields

Y = C + I + Φ + Ψ + G.
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B Appendix for Section 3: Solution Method

This appendix provides additional details for as well as the proofs of the analytical results
discussed in Section 3 of the main text. The numerical implementation of the solution method
is discussed in a separate Numerical Appendix that can be found here.

B.1 Derivation of Stochastic KF Equation (Diffusion Processes)

The proof of Proposition 3 makes use of the Kolmogorov forward (KF) equation that charac-
terizes the evolution of the cross-sectional household distribution. In this subsection, I prove
the following auxiliary result. I adopt the notation introduced in Section 3.1 of the main text.

Lemma 10. Assume that xt follows a time-homogeneous Ito diffusion process given by

dx = µxdt + σW
x dW + σB

x dB

where µx, σW
x and σB

x are functions on the household state space, (x, Γ). Wt is a standard Brownian
motion that is uncorrelated across households (idiosyncratic risk), and Bt is a standard Brownian
motion that is perfectly correlated across households (aggregate risk). I assume that E[dWdB] = 0.
The law of motion of the cross-sectional household distribution gt(x) is given by the stochastic partial
differential (Kolmogorov forward) equation

dg(t, x) = (A∗g)dt + (B∗g)dB

where A∗ is the adjoint of the generator A associated with the HJB equation and given by

(A f )(x) = f T
x µx +

1
2
(σW

x )T fxx(σ
W
x ) +

1
2
(σB

x )
T fxx(σ

B
x ),

and

(B∗ f )(x) = −∑
i

∂xi

[
σB

xi
f
]

.

Proof. We may equivalently write

dx = µxdt + σx

(
dB
dW

)
,

where
σx =

(
σB

x σW
x
)

.

Consider any function φ(t, x). Then by Ito’s lemma,

dφ = φtdt + φT
x dx +

1
2
(dx)Tφxx(dx),
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where φx denotes the gradient of φ with respect to x, and φxx its Hessian. We may rewrite
this as

dφ = φtdt + φT
x µxdt + φT

x σxdZ +
1
2

Trace
[
σT

x φxxσx

]
,

where I denote

dZ =

(
dB
dW

)
.

I now use the assumption E[dWdB] = 0. This allows me to rewrite the above equation as

dφ = φtdt + φT
x µxdt + φT

x σW
x dW + φT

x σB
x dB +

1
2
(σW

x )Tφxx(σ
W
x )dt +

1
2
(σB

x )
Tφxx(σ

B
x )dt

To illustrate this step, imagine x was 2-dimensional. Then the term in question is

1
2

Trace
[
σT

x φxxσx

]
=

1
2

Trace

[ (
σx1 σx2

) (φ11 φ12

φ21 φ22

)(
σx1

σx2

)]

=
1
2

Trace

[ (
σx1φ11 + σx2φ21 σx1φ12 + σx2φ22

) (σx1

σx2

)]

=
1
2

Trace

[
σx1φ11σx1 + σx2φ21σx1 + σx1φ12σx2 + σx2φ22σx2

]
.

In integral representation, this becomes,

φ(T, xT) =φ(τ, xτ) +
∫ T

τ

[
φt + φT

x µx +
1
2
(σW

x )Tφxx(σ
W
x ) +

1
2
(σB

x )
Tφxx(σ

B
x )

]
dt

+
∫ T

τ
φT

x σB
x dBt +

∫ T

τ
φT

x σW
x dWt.

Consider the initial condition xτ = x̄. Since I picked φ(t, x) arbitrarily, it is without loss to
assume that φ(τ, x̄) = 0 and φ(t, x)→ 0 uniformly in x as t→ T. Then we have∫ [

φ(T, xT)− φ(τ, xτ)
]
gt(x)dx

=
∫ T

τ

∫ [
φt + φT

x µx +
1
2
(σW

x )Tφxx(σ
W
x ) +

1
2
(σB

x )
Tφxx(σ

B
x )

]
gt(x)dxdt

+
∫ T

τ

∫
φT

x σB
x gt(x)dxdBt +

∫ T

τ

∫
φT

x σW
x gt(x)dxdWt,

where, slightly abusing notation, the integral is taken over the state space of x. The key
realization now is that, because dWt is perfectly uncorrelated, we have∫ T

τ

∫
φT

x σW
x gt(x)dxdWt = Et

[
φT

x σW
x dW

]
= 0.
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This follows because a law of large numbers holds with respect to idiosyncratic risk (but not
with respect to aggregate risk).

I will now introduce an operator given by

(At f )(x) = f T
x µx +

1
2
(σW

x )T fxx(σ
W
x ) +

1
2
(σB

x )
T fxx(σ

B
x ).

Therefore,

0 =
∫ T

τ

∫ [
φt + (Atφ)(x)

]
gt(x)dxdt

∫ T

τ

∫
φT

x σB
x gt(x)dxdBt

I will now drop time subscript notation. Going forward, every subscript will denote a
partial derivative. And recall, the second integral is taken over the region of support for x.
Integrating by parts on the first term, I obtain

∫ T

τ

∫
φtg(t, x)dxdt =

∫ [
φg
]T

τ

dx−
∫ ∫ T

τ
φgtdtdx,

where now gt = ∂tg(t, x). Since I constructed φ so that φ(τ) = φ(T) = 0, the first term here
drops out. Integrating over A by parts, and restricting attention to the class of functions φ

with compact support, I obtain∫ T

τ

∫
(Atφ)(x)gt(x)dxdt

=−
∫ T

t

∫
φ

[
∑

i
∂xi

(
µxi g

)
− 1

2 ∑
i,j

∂xixj

(
σW

xi
gσW

xj
+ σB

xi
gσB

xj

)]
dxdt

=
∫ T

t

∫
φ(A∗g)dxdt,

where A∗ is the adjoint of A.
What remains, therefore, is the aggregate risk term. Here, we have∫ T

τ

[ ∫
φT

x σB
x gdx

]
dB =

∫ T

τ

[
φT

x σB
x g
∣∣∣∣
Boundary

−
∫

φ ∑
i

∂xi

(
σB

xi
g
)

dx
]

dB.

The first term on the RHS is again 0 due to our choice of φ. Therefore,∫ T

τ

[ ∫
φT

x σB
x gdx

]
dB = −

∫ T

τ

∫
φ ∑

i
∂xi

[
σB

xi
g
]
dxdB

In conclusion, I therefore obtain

0 =
∫ T

τ

∫
φ

[
gt − (A∗g)

]
dxdt +

∫ T

τ

∫
φ

[
∑

i
∂xi

[
σB

xi
g
]]

dxdB.
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Since this equation holds for arbitrary test functions φ(t, x), it must be that

0 =
∫ T

τ
φ

[
gt − (A∗g)

]
dt +

∫ T

τ
φ

[
∑

i
∂xi

[
σB

xi
g
]]

dB (26)

The analogous differential formulation is

dg(t, x) = (A∗g)dt−∑
i

∂xi

[
σB

xi
g
]

dB.

This concludes the proof.
�

B.2 Derivation of Stochastic KF Equation (Jump Processes)

In progress, coming soon.

B.3 Proof of Proposition 3 (Diffusion Processes)

Proposition 3 applies to finite-dimensional approximations of the cross-sectional distribution
that take the form

ĝt(x) ≡ F(αt)(x) ≈ gt(x),

for some F(·) and αt ∈ RN. I conjecture and verify that, as long as xt and Xt are time-
homogeneous Ito diffusion processes, αt is similarly an N-dimensional Ito diffusion process,
with

dαt = µαdt + σαdB,

where Bt is the standard, one-dimensional Brownian motion that represents the sole aggregate
risk factor of the model.

By Ito’s lemma,

dĝt(x) = FT
α dαt +

1
2

σT
α Fαασαdt

= FT
α

(
µαdt + σαdB

)
+

1
2

σT
α Fαασαdt,

where Fα and Fαα are the gradient and Hessian of F with respect to α, respectively, evaluated
at αt and x. Using the approximation dĝt(x) ≈ dgt(x) as well as the Kolmogorov forward
equation which I derived in Appendix B.1, we have

FT
α µαdt +

1
2

σT
α Fαασαdt + FT

α σαdB ≈ dgt(x)

= (A∗g)dt + (B∗g)dB.

78



Matching coefficients, we have

FT
α σα = (B∗g)

FT
α µα +

1
2

σT
α Fαασα = (A∗g).

We can again make use of the approximation F(αt)(x) ≈ gt(x) to finally arrive at

FT
α σα = (B∗F)

FT
α µα +

1
2

σT
α Fαασα = (A∗F)

where I suppress all function inputs for convenience.
To conclude the proof of Proposition 3, it remains to solve for the N × 1 vectors µα and

σα. In terms of the underlying economics, this step represents an estimation or forecasting
problem from the perspective of the economy’s optimizing agents. There are many equally
valid approaches to this estimation problem, each corresponding to a different choice of norm.
In the main text, I present Proposition 3 for a least squares norm. Here, I derive and discuss
several alternatives.

Least squares. We seek to minimize

E0

[
T

∑
t=0

( ∫ [
F(αt)(x)− gt(x)

]2

dx

) 1
2
]

.

The derivation is analogous to that of the standard least squares estimator. In particular, the
estimates that minimize the L2(x) norm are given by

σα = (FT
α Fα)

−1FT
α (B∗F)

µα = (FT
α Fα)

−1FT
α

[
(A∗F)− 1

2
σT

α Fαασα

]
.

Collocation. Let S denote a set of collocation nodes denoted s. If we want to pick F(αt) so
that F(αt)(s) = gt(s) with equality at all collocation nodes s, then we need as many αt as
there are collocation nodes. I denote this number by N to remain consistent with the previous
discussion, so that αt ∈ RN.

At these collocation nodes, we thus have(
FT

α µα +
1
2

σT
α Fαασα

)
dt + FT

α σαdB = (A∗g)dt + (B∗g)dB

with equality as well. Matching the diffusion coefficients leads to

FT
α (αt)(s)︸ ︷︷ ︸

N × N

σα,t︸︷︷︸
N × 1

= (B∗t gt)(s)︸ ︷︷ ︸
N × 1
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where I explicitly account for the function arguments to highlight that this is a system of N
equations at the N collocation nodes. And since F(αt)(s) = gt(s) exactly at the collocation
nodes, we can invert and simply rewrite this as

σα︸︷︷︸
N × 1

= (FT
α )
−1︸ ︷︷ ︸

N × N

(B∗F)︸ ︷︷ ︸
N × 1

and similarly

µα︸︷︷︸
N × 1

= (FT
α )
−1︸ ︷︷ ︸

N × N

(
(A∗F)− 1

2
σT

α Fαασα︸ ︷︷ ︸
N × 1

)
,

where the RHS of each equation is evaluated at the N collocation nodes s.

Example. It is easiest to illustrate the previous arguments by assuming F(αt)(x) takes the
form of a linear basis function expansion. That is, consider the approximation

T(x)α(t) ≡
N

∑
n=1

αn(t)Tn(x) ≈ g(t, x),

where N is the number of basis functions, and the αn are the basis function coefficients. Any
linear basis function can be chosen for Tn, such as Chebyshev polynomials, hat functions,
splines, etc.

For these basis functions, the second-order Ito’s term conveniently drops out. That is,
relating this example back to the general setting, we have

Fα =

T1(x)
...

TN(x)


and

Fαα = 0.

I start with the collocation approach first because it is particularly straightforward in this
setting. Denoting the N collocation nodes by s1, . . . , sN, we have the system of equations

N

∑
n=1

αn(t)Tn(s1) = g(t, s1)

...

N

∑
n=1

αn(t)Tn(sN) = g(t, sN)
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Taking the time differential yields

N

∑
n=1

dαn(t)Tn(s1) = dg(t, s1) = (A∗g)(s1)dt + (B∗g)(s1)dB

...

N

∑
n=1

dαn(t)Tn(sN) = dg(t, sN) = (A∗g)(s1)dt + (B∗g)(sN)dB

Inverting this system, we have

dα = T(s)−1
[
(A∗T)(s) α dt + (B∗T)(s) α dB

]
.

Matching coefficients then yields

µα = T(s)−1(A∗T)(s) α

σα = T(s)−1(B∗T)(s) α.

The second-order Ito term has dropped out as anticipated. In this form, it is particularly easy
to see that the formulas for µα and σα only depend on terms that are readily available during
the value function iteration step. In particular, there are three types of objects: First, the basis
function matrix T(x), which must be evaluated at s, is chosen ex ante. Therefore, both T(s)
and T(s)−1 can easily be computed before even starting the value function iteration. Second,
the vector α is part of the aggregate state of the approximate economy and, therefore, part of
the grid on which the value function is computed. Finally, we have the functional operators
A∗ and B∗. When the household’s state space is discretized on a grid, these operators become
matrices. And as I have repeatedly demonstrated throughout this paper, both matrices only
depend on the household’s policy functions.

B.4 Proof of Proposition 3 (Jump Processes)

In progress, coming soon.

B.5 Choosing F(·) from a parametric family

I will now present several parametric families that work well in practice. For simplicity,
I will present the functional forms when x = x is one-dimensional. In most cases, the
higher-dimensional generalizations are straightforward.

Example. (Nodal basis functions) The most basic class of basis functions that can be employed
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to great effect are nodal basis functions.60 Let

Fn(αt)(x) =
n

∑
i=1

αi,tTi(x),

where Ti(x) is the (possibly asymmetric) hat function which takes on the value 1 on the grid
point on which it is centered, and 0 on all other nodes. For off-node grid points, interpolation
is used.

Example. (Chebyshev polynomials) The representation with Chebyshev polynomials takes on
the same form as the nodal basis representation, except that Ti(x) is now the ith Chebyshev
polynomial.

Example. (Radial basis functions) Let αi,t = {γi,t, µi,t, σi,t}, then

Fn(αt)(x) =
n

∑
i=1

γi,t exp
(
− (x− µi,t)

2

2(σi,t)2

)
.

Example. (Generalized beta density functions) Let B(α, β) denote the beta function. Then the
standard beta distribution PDF can be used with αt ∈ R3,

F(αt)(x) = α1,t
xα2,t−1(1− x)α3,t−1

B(α2,t, α3,t)
.

Other functional forms from the five-parameter generalized beta family can be used as
well. The beta family can be particularly efficient when modeling the household income
distribution.

B.6 Non-parametric algorithm

I will present the main argument for the special case where F(αt)(x) is affine. Abusing
notation slightly, the approximation mapping can be rendered as gt(x) ≈ C(x) + αtF(x).
Assuming we have simulated functional data for gt at hand, the estimation problem may
then be set up as

min
F(x),C(x),αt

∣∣∣∣∣∣gt(x)− C(x)− αtF(x)
∣∣∣∣∣∣

L2(t×x)
.

Lemma 11. The efficient affine basis function can be implemented using C(x) = E0(gt(x)) and

F(x) =
(

∑
t

α′tαt

)−1

∑
t

α′t

[
gt(x)− C(x)

]
,

where α′t = (F(x)F(x)′)−1F(x)(g(x)− C(x))′.

60This is precisely the basis used in the class of linear perturbation methods recently popularized by Reiter
(2009).
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The goal of Lemma 11 is to estimate an efficient basis function representation

F(αt)(x) ≈ gt(x)

after simulating the model to obtain function data for gt(x). Lemma 3 tackles this problem by
restricting attention, for clearer illustration, to the affine class of basis functions given by

C(x) + T(x)αt.

The idea is to express the simulated data gt(x) as

gt(x) = C(x) + T(x)αt + εt(x),

where εt is the residual error in the approximate distribution representation. It is important
to note that εt(x) is itself a functional residual since we are considering an estimation problem
on functional data.

Consider the problem

min
T(x),C(x),αt

∣∣∣∣∣∣gt(x)− C(x)− T(x)αt

∣∣∣∣∣∣
L2(t×x)

where αt is again a N × 1 vector. The matrix of basis functions T can be thought of as a J × N
matrix in the context of a discretized grid of J nodes (i.e. J grid points for household state x).
Similarly, C(x) can be thought of as a J × 1 vector. The L2(t× x) norm under consideration
could correspondingly be recast as

min
Tnj,Cj,αtn

∑
t,j

(
gtj − Cj −∑

n
αtnTnj

)2

.

In terms of the residual simulation error mentioned in the previous paragraph, this loss
criterion is equivalent to ∑i ε2

ti = ∑i εt(xi)
2 = ε′t(x)εt(x) for a given t.

I will set the constant equal to the unconditional mean of the simulated distribution.

C = ET(gt)

Let ĝt = gt − C. Then we have

min ∑
t

(
ĝt − Tαt

)′(ĝt − Tαt
)
.

Factoring out,

min ∑
t

(
ĝ′t ĝt − ĝ′t(Tαt)− (Tαt)

′ ĝt + (Tαt)
′(Tαt)

)

∑
t

(
ĝ′t ĝt − 2(Tαt)

′ ĝt + (Tαt)
′(Tαt)

)
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Differentiating with respect to αt yields

0 = −2
∂

∂αt
(Tαt)

′ ĝt +
∂

∂αt
(Tαt)

′(Tαt)

= −2 T′ ĝt︸︷︷︸
N×1

+ (T′T + (T′T)′)αt︸ ︷︷ ︸
N×1

.

Rearranging, we have
(T′T + (T′T)′)αt = 2Tĝt

Finally, note that T′T = (T′T)′ so that we have

αt = (T′T)−1T′ ĝt.

This is, of course, precisely consistent with the estimation problem for the law of motion dαt,
which is the subject of Proposition 3.

Next, consider the optimality condition for T(x). Using

∂

∂X
b′X′DXc = D′Xbc′ + DXcb′.

we have

0 = ∑
t

∂

∂T

[
ĝt ĝ′t − 2(Tαt)

′ ĝt + (Tαt)
′(Tαt)

]
which becomes

0 = ∑
t

[
− 2ĝtα

′
t + 2T(αtα

′
t)

]
,

or simply

0 = ∑
t

[(
ĝt − Tαt

)
α′t

]
.

Rearranging, we can solve for T(x) as

T(x) =
(

∑
t

αtα
′
t

)−1

∑
t

ĝtα
′
t

This concludes the proof.
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C Appendix for Section 4: Data and Empirics

C.1 Employment Transitions in CPS Micro Data

In this subsection, I provide details and additional material for my estimation of employment
transition rates using Current Population Survey (CPS) data.

C.1.1 Raw CPS data

The Current Population Survey (CPS) is a household survey conducted by the Bureau of
Labor Statistics (BLS) at a monthly frequency since 1948. The survey features a rotating panel
of households. A household is typically in the survey for four consecutive months. It is
therefore possible to use a household identifier to match records across months and create a
panel of household employment transitions. There is a long tradition of constructing gross
employment flows from matched CPS micro data. See for example Poterba and Summers
(1986), Blanchard and Diamond (1990) and Shimer (2012).

I obtain the raw CPS data from the NBER.61 I restrict my sample to the period 1996
through 2019 throughout the analysis. A key question I use to construct employment cate-
gories was only introduced to the CPS in 1994. Furthermore, the years 1994 and 1995 saw
several changes in, for example, the definition of household identifiers. This is a well-known
issue that has made it impossible to match data across several months in 1994 and 1995. I
therefore start my sample in 1996. Similarly, I end the sample in December 2019, before the
onset of the Covid pandemic in the U.S.

C.1.2 Employment status definitions

The conventional definition of unemployment used by the BLS counts those above age 16
who are currently unemployed but actively seeking employment, as a percent of the civilian
labor force. This notion is also called headline unemployment or U3 unemployment.

U3 has long been a contentious definition of unemployment and is oftentimes criticized
as being too narrowly defined. Indeed, it is well known that groups such as the marginally
attached exhibit transition behavior that is significantly distinct from a more narrowly defined
not in the labor force (NILF) group and more similar to the behavior of the unemployed. Specif-
ically, the marginally attached (and some other groups) are much more likely to transition
into employment or unemployment than discouraged workers, the disabled or the retired, all
of whom are lumped together in the NILF category.

My model calls for a definition of employment and unemployment that captures as large
a share as possible of those households who exhibit positive employment transition rates.
Since the model speaks to questions about aggregate consumer behavior, it is only fitting to
include as large a share of the total (prime-age) population as is reasonable when calibrating
its parameters.

61See https://data.nber.org/data/cps-basic2/.
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On the other hand, there is also a strong argument to exclude households that are not
currently in the labor force and are sufficiently unlikely to transition back. To include such
households, for example the disabled or retired, it would be more consistent to define a
distinct employment state, in which households are not exposed to employment transitions at
all. As I want to restrict the model to two employment states, the most reasonable compromise
is to define a non-employment group that includes all those households that currently face a
sufficiently high probability of transitioning back into employment.

Concretely, I let employment state E correspond to the conventional definition of em-
ployment. On the other hand, I define the model’s unemployment state U as the union of
the conventionally unemployed, the marginally attached, and those employed part-time
involuntarily for economic reasons. I furthermore restrict the sample to prime-age workers.
Therefore, my overall definition of unemployment is more similar to the BLS’ U6 measure.

I define the marginally attached as those households currently not in the labor force that (i)
want a job, (ii) have looked for employment in the last 12 months, and (iii) would be able to
take a job next week if offered.62 Similarly, I categorize households as unemployed part-time
for economic reasons if they are currently working fewer than 35 hours per week but would
like to work more if given the chance.63

C.1.3 Creating monthly panel data

To match households across their months in the survey and create an associated panel, I follow
the steps in Shimer (2012).64 In particular, to match households I use the household identifier
variables provided in the CPS, variables for race, sex and age, as well as the household’s line
item number and months in the survey.65

C.1.4 From gross flows to continuous-time transition rates

After taking the steps discussed thus far, one can compute the monthly gross flows across
employment states. I now discuss how to map discrete-time flow data at a monthly frequency
to continuous-time transition rates at a quarterly frequency. The following derivations are
closely related to those in Shimer (2012) who argues that using continuous-time transition
rates can circumvent a time aggregation bias inherent in discrete-time data.

Let j and k denote employment states, j, k ∈ {U, E}. The time horizon is t ∈ [0, ∞) at a
quarterly frequency. Denote by N jk

t (τ) the number of households in employment state j at

62The corresponding CPS variables are PRWNTJOB, PEDWLKO and PEDWAVL.
63The corresponding CPS variable is PEHRRSN1.
64My code builds on the replication code files provided by Robert Shimer,

https://sites.google.com/site/robertshimer/research/flows. For additional details, please see Shimer
(2012).

65Households are in the CPS for four consecutive months, then leave the survey and subsequently come back
for a second rotation of four consecutive months. I use data from both rounds.
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time t and state k at time t + τ. Define

njk
t (τ) =

N jk
t (τ)

N jj
t (τ) + N jk

t (τ)

as the share of all those households in employment state j at time t that have transitioned into
state k at time t + τ. Naturally, njk

t (0) = N jk
t (0) = 0 for k 6= j, and njj

t (τ) = 1− njk
t (τ). Finally,

I denote by λ
j
t the continuous-time transition rate out of state j at time t. This is the same

transition rate that appears in the quantitative model. In particular, λE
t is the job separation

rate and λU
t the job finding rate.

Lemma 12. The relationship between flow shares and transition rates is given by

njk
t (τ) = λ

j
t
1− e−(λ

j
t+λk

t )τ

λ
j
t + λk

t

.

Lemma 13. Data on discrete-time gross flows at monthly frequency (from the CPS) can be mapped
into continuous-time Poisson transition rates at quarterly frequency using the formulas

λU = − nUE

nUE + nEU · 3 log
(

1− nEU − nUE
)

λE = − nEU

nUE + nEU · 3 log
(

1− nEU − nUE
)

.

C.1.5 Estimating the cyclicality of employment transition rates

Coming soon.

C.2 Business Cycle Moments

The quantitative model generates naturally asymmetric business cycles and closely matches
prominent features of the business cycles in U.S. postwar history. In this section, I discuss the
data I use to compute these business cycle moments.

C.2.1 Raw data

The primary series I consider are output, investment, consumption and hours worked. In-
vestment is defined as non-residential fixed investment and durable goods consumption.
Consumption is defined as expenditures on non-durable goods and services. Output, con-
sumption and investment are from the NIPA accounts. For hours, I use hours of all persons
in the nonfarm business sector from the BLS.
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These series are expressed in real terms after deflating by the CPI index. Similarly, all
variables are expressed per capita, dividing by the civilian non-institutionalized population
aged 16 and over, and in logs.

I consider a sample from the first quarter of 1953 until the fourth quarter of 2019. I
exclude the immediate postwar years as they featured a degree of volatility in, for example,
GDP growth that is uncharacteristic for the postwar period as a whole.

Finally, I detrend all series using an HP filter, as is standard. I use a smoothing parameter
of λ = 1600, which is appropriate for quarterly data.

C.3 Macroeconomic Uncertainty Indices

Since the seminal work by Bloom (2009), there has been a surge in interest in identifying
and measuring macro uncertainty in the data. Numerous proxies and indices have been
proposed. To confront my model’s predictions about uncertainty with data, I use a whole
range of empirical macro uncertainty proxies.

• Jurado et al. (2015) provide several direct econometric estimates of macro uncertainty.
They interpret uncertainty as conditional volatility in a series’ unforecastable component
and macro uncertainty in particular as the common variation in a host of aggregate time
series. Using close to 300 macroeconomic and financial time series, they estimate factor-
based forecasting models and compute a macroeconomic uncertainty index (as well as
financial and real uncertainty indices) at 1, 3 and 12-month horizons.66

• The Chicago Board Options Exchange (CBOE)’s Volatility Index (VIX) is a commonly
used proxy for expected volatility in financial markets. Using S&P 500 index options,
the index computes a one-month forward looking market expectation of volatility.

• The Economic Policy Uncertainty Index I use is from Baker et al. (2016).67 Based on
newspaper coverage, this index tallies the frequency of articles in leading U.S. newspa-
pers that “contain the following triple: ‘economic’ or ‘economy’; ‘uncertain’ or ‘uncertainty’;
and one or more of ‘congress’, ‘deficit’, ‘Federal Reserve’, ‘legislation’, ‘regulation’ or ‘White
House’.”

• Finally, the World Uncertainty Index for the United States is from Ahir et al. (2018).68

The index is based on the frequency with which the word “uncertainty” appears in the
Economist Intelligent Unit’s quarterly country reports.

66The raw time series can be found on Sydney Ludvigson’s website, https://www.sydneyludvigson.com/.
67I access the data using FRED.
68I also access this time series using FRED.
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D Appendix for Section 5: Details, Robustness and Sensitiv-
ity Analysis

In progress and coming soon.
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E Extension 1: A Model with Stocks

In this appendix section, I study a variant of the quantitative model with an alternative asset
market structure. I assume that households can trade bonds and stocks. Unlike capital in
the baseline model, stocks are liquid and risky. Households do not incur transaction costs
when trading stocks. This setting is therefore closer to the traditional consumption-based
asset pricing framework. I focus on studying the implications of household heterogeneity for
asset prices in this environment.

As in Section A, I maintain throughout that the economy admits a finite-dimensional state
space representation where, in particular, the aggregate state Γt follows a time-homogeneous
Ito diffusion process. This is precisely the representation that my solution method implies.
See the introduction to Section A for further details.

The supply side of this model variant is unchanged. In particular, I allow for nominal
rigidities in both intermediate goods prices (firm problem) and wages (union problem). The
main focus of this section is on the household problem, which I discuss next.

E.1 Household Problem

Household preferences are again given by

E0

∫ ∞

0
e−
∫ t

0 (ρs+ζ)s dsu(ct, ht)dt,

where labor supply ht = Ht is set symmetrically by labor unions.
Households consume and save, investing their wealth in bonds and stocks. As in the

baseline model, I denote by a the household’s outstanding stock of bonds or liquid assets.
To emphasize that households now trade a different second asset, I denote the household’s
stock of risky (and liquid) assets by s. In equilibrium, the aggregate stock of shares held by
the household sector will, of course, be equal to the outstanding stock of capital that is used
by firms in production.

The household’s liquid asset position evolves according to

ȧ =

(
r + ζ

)
a + Ds + e− c− ιs,

which is unchanged from the baseline model except that the cost of stock purchases is now
given by ιs, where ι is the investment rate. I also denote by D the dividend cash flow paid to
the risky asset. The household’s position in the risky asset evolves according to

ṡ =
(

Φ(ι) + ζ − δ

)
s.

In other words, households are endowed with a technology that transforms ιs units of the
consumption good into Φ(ι)s units of the risky asset. While concavity in Φ(·) still captures a
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kind of adjustment cost, I restrict my attention only to a particular kind of adjustment cost as
I discuss next.

As before, household earnings are given by

e = (1− τlab)zwH + τlump + τUI(z).

For expositional convenience, I assume that zt follows a diffusion rather than a Poisson
process. That is, I assume that

dz = µzdt + σzdW,

where Wt is a standard Brownian motion that is uncorrelated across households.

Recasting household problem in terms of net worth. I will now discuss this section’s main
departure from the baseline model of the main text. In particular, I assume that the adjustment
cost implicit in Φ(·) is of such a form that the state space of the household problem can be
reduced from (a, s, z, Γ) to (n, z, Γ) where n is the household’s net worth. This state space
reduction is a standard approach in many asset pricing settings.

I now derive a recursive representation of the household problem in terms of liquid net
worth, which is defined by the equations θn = Qs and (1− θ)n = a. That is, total liquid
net worth is n = Qs + a. By Ito’s lemma, we have dn = sdQ + Qds + (ds)(dQ) + da. Since
the evolution of the household’s risky asset position is non-stochastic, however, the term
(ds)(dQ) vanishes. That is, there is no capital quality risk. Plugging in and simplifying yields

dn = rndt + θn
[

D− ι

Q
+

dQ
Q

+ Φ(ι)− δ− r
]

dt +
(

e− c
)

dt

which is the key equation of this section. Two observations are in order. First, the choice of ι

is entirely static in this setting, yielding the optimality condition

Φ′(ι) =
1
Q

,

so that optimal household investment is only a function of the price of capital, ι = ι(Q). Sec-
ond, conditional on household net worth its evolution is independent from previous portfolio
allocation: Since households can directly trade the risky asset at price Q on the secondary
market without incurring transaction costs, households can instantaneously rebalance their
portfolio as desired. In other words, the risky asset share θ is a direct choice variable for the
household.

These two features of the household problem allow me to work with the following,
simplified representation. Define

dR =
D− ι(Q)

Q︸ ︷︷ ︸
Dividend yield

dt +
[
Φ(ι(Q))− δ

]
dt +

dQ
Q︸ ︷︷ ︸

Capital gains

≡ µRdt + σRdB
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to be the effective rate of return on the risky asset. I use

µR =
D− ι(Q)

Q
+ Φ(ι(Q))− δ + µQ

σR = σQ.

After internalizing the optimal internal rate of capital investment, ι = ι(Q), this return is
exogenous from the perspective of the household: it depends on macro conditions and prices,
but not on the particular portfolio composition of the household. I can therefore rewrite the
law of motion of the household’s liquid net worth as

dn = rndt + θn(dR− rdt) + (e− c)dt

or simply
dn = rndt + θn(µR − r)dt + (e− c)dt + θnσRdB,

where θnσR represents the household’s total exposure to aggregate risk via the risky asset and
potential capital gains.

The strategy will now be to write the household problem recursively using as state
variables (n, z, Γ). In the baseline model, I used the asset positions (a, k) as state variables
for the household problem. Since they evolve non-stochastically, the associated portfolio
equations in that setting do not load on the aggregate risk factor. An important implication
of this structure is, of course, that the KF equation describing the law of motion of the cross-
sectional household distribution is an ordinary rather than a stochastic partial differential
equation. Analogously, an application of Proposition 3 to the baseline model implied σα = 0.

Using household net worth n directly as state variable implies a direct exposure to the
aggregate risk factor. As a result, the associated HJB will feature a new set of terms related
to this aggregate risk exposure. Similarly, I will show that the KF equation in this setting
becomes a stochastic partial differential equation, with σα 6= 0 under the representation of
Proposition 3.

Borrowing constraint. I assume that households are subject to a borrowing constraint on net
worth

n ≥ n.

Recursive representation. The household problem can be written in terms of the household
state variables (n, z) as well as the aggregate state space Γ. After internalizing the optimal
choice of internal capital investment, ι(Q), we have

(ρ + ζ)V = max
c,θ

{
u(c, h) + Vn

[
rn + θn(µR − r) + e− c

]
+

1
2

Vnn(θnσR)
2

+ Vzµz +
1
2

Vzzσ2
z + VnΓθnσRσΓ + VΓµΓ +

1
2

σT
Γ VΓΓσΓ

}
,
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where I assume that E[dWdB] = 0. As I have anticipated, two new terms emerge in this setting
because the household’s net worth evolution equation loads directly on the aggregate risk
factor. First, there is the direct risk exposure, which is scaled by Vnn. Second, households are
now exposed both directly through net worth and indirectly through Γ, so that a covariance
term emerges that is scaled by VnΓ.

The first-order conditions for consumption and portfolio choice are given by

uc = Vn

θ = −
(

Vn

nVnn

µR − r
σ2

R
+

VnΓ

nVnn

σΓ

σR

)
.

The first-order condition for labor is

−uh = uc(1− τlab)wz.

The household HJB and the corresponding optimality condition hold everywhere in the
interior of the household state space.

Lemma 14. The household Euler equations for marginal utility and consumption are given by

duc

uc
= (ρ− r)dt− µR − r

σR
dB + σz

ucc

uc
czdW

and, assuming CRRA preferences,

dc
c

=
r− ρ

γ
dt +

1
2
(1 + γ)

[(
µR − r

γσR

)2

+

(
czσz

c

)2]
dt +

µR − r
γσR

dB +
czσz

c
dW.

It is instructive to compare these Euler equations to the analogous set of equations derived in
Appendix A.1. For convenience, I restate here the Euler equation for marginal utility

duc

uc
= (ρ− r)dt + σΓ

ucc

uc
cΓdB + σz

ucc

uc
czdW.

One can clearly see that the volatility-adjusted expected excess return on the risk asset,
(µR − r)/σR becomes a sufficient statistic of sorts for the household’s exposure to aggregate
risk. In the baseline model, this exposure is captured by the scaling factor

σΓ
ucc

uc
cΓ

instead.

Comparison to Brunnermeier and Sannikov (2014). The model presented in this section is
much like that in Brunnermeier and Sannikov (2014) except that it features a continuum of
heterogeneous households instead of a two-agent structure. In my setting,

dVn

Vn
=(ρ− r)− µR − r

σR
dB +

Vnz

Vn
σzdW.
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This equation can be directly mapped into Proposition II.2 of Brunnermeier and Sannikov
(2014), using the change in notation Vn = θ. For the sake of comparison, let Vn = θBS. Then,

dθBS

θBS = µθdt + σB
θ dB + σW

θ dW,

where

µθ = ρ− r

−σQσB
θ︸ ︷︷ ︸

Risk premium

=
D− ι(Q)

Q
+ Φ(ι(Q))− δ + µQ − r︸ ︷︷ ︸

Expected excess return on capital

σW
θ =

Vnz

Vn
σz.

Of course, Brunnermeier and Sannikov (2014) only have aggregate risk and do not have the
earnings risk term.

E.2 Aggregation, Government and Market Clearing

The household-level state space is given by (n, z) ∈ [n, ∞)× [z, z̄]. I will denote the joint
household income and wealth distribution by gt(n, z). Aggregate consumption, for example,
is then defined as

C(Γ) =
∫

c(n, z, Γ)g(n, z, Γ)d(n, z).

When convenient, I will drop the notational dependence on Γ. Aggregate net worth is defined
as

N =
∫

ng(n, z)d(n, z).

Finally, aggregate capital investment by households is defined as

I =
∫

ι(Q)kg(n, z)d(n, z) =
ι(Q)

Q

∫
θ(n, z)ng(n, z)d(n, z).

The evolution of the household income and wealth distribution is given by the following
Proposition, where I use a shorthand for household saving, s = rn + θn(µR − r) + e− c.

Lemma 15. The evolution of g(n, z) is characterized by the stochastic Kolmogorov forward equation

dg =− ∂n

[
sg
]
+

1
2

∂nn

[
(θnσR)

2g
]
− ∂z

[
µzg
]
+

σ2
z

2
∂zzg− ∂n

[
θnσRg

]
dB.

Proof. This is a special case of the stochastic KF equation derived in Appendix B. �

Government. The description of the government sector is unchanged from the baseline
model, with monetary policy following a Taylor rule.
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Market clearing. There are four markets in this economy that must clear: the markets for
goods, labor, stocks and bonds. The labor market clearing condition simply asserts that, as in
the baseline model, labor unions mandate symmetric supply of work hours.

Households’ aggregate bond holdings must be exactly equal to the government’s out-
standing debt position, so that

0 = BG +
∫
[1− θ(n, z)]ng(n, z)d(n, z).

Similarly, aggregate holdings of the risky asset by households must in equilibrium be equal
to the value (or market capitalization) of the outstanding stock of capital, so that

QK =
∫

θ(n, z)ng(n, z)d(n, z).

Rewriting the bond market clearing condition, we have

N =
∫

ng(n, z)d(n, z) =
∫

θ(n, z)ng(n, z)d(n, z)

Putting the two together yields
N = QK,

so that aggregate household net worth must be equal to the value of outstanding capital.
Finally, the goods market clearing condition is

Y = C + G + I

which can be readily verified by working through Walras’ law.
Finally, all this implies that the law of motion for aggregate net worth in this economy is

given by
dN
N

=
(

µQ + Φ(ι)− δ
)

dt + σQdB

and that for capital by

dK =
(

Φ(ι)− δ
)

Kdt.

Just for illustration and better intuition, the law of motion for aggregate net worth can then
be written as

dN = K
(

QµQdt + QσQdB
)
+ QK

dK
K

dt

= KdQ + QdK,

which of course follows directly from Ito’s lemma as well, noting that N = QK, and therefore
confirms the derivation.
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E.3 Summary of Equilibrium Conditions

The equations comprising the equilibrium of this economy can be collected into three blocks.

Macro block. The macro relationships are given by

Y = eZKαL1−α

Y = C + ιK

dK = Φ(ι)K− δK

mc =
1
eZ

Dαw1−α

αα(1− α)1−α

Π = (1−mc)Y

D =
α

1− α
w

L
K

i = r∗ + λπ

r = i− π

µR =
D− ι

Q
+ Φ(ι)− δ + µQ

σR = σQ

Φ′(ι) =
1
Q

N = QK

τ = Π + τlabwL

πt =Wt(πt)

together with the law of motion for aggregate productivity given by

dZ = −θZdt + σdB.

Aggregation block. The aggregation block was already described earlier.

Micro block. The micro block solves for the policy functions c(n, z, Γ), h(n, z, Γ) and θ(n, z, Γ)
for every aggregate state, given aggregates

{r, w, τ, D, Q, µR, σR}.
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F Extension 2: Financial Frictions and Intermediary-Based
Asset Pricing

Introduction:

• In the wake of the Great Recession, we saw a resurgence in emphasis on financial frictions.
See for example Gertler and Kiyotaki (2010), Brunnermeier and Sannikov (2014) and He
and Krishnamurthy (2013).

• Since this initial wave of interest, the study of cross-sectional heterogeneity among
households and firms has emerged as the new frontier of macroeconomic business cycle
analysis. The burgeoning heterogeneous-agent New Keynesian (HANK) literature is, at
present, entirely divorced from work on financial frictions. In large part, this is because
financial frictions represent a non-linearity at the macro level that requires the kind of
global solution method that has remained elusive in the context of heterogenoeus-agent
macro models. In this appendix section, I try to bridge this gap by solving a HANK
model with financial frictions at the macro level globally.

• While the baseline model presented in the main text focuses on demand (discount rate)
shocks in the context of a zero lower bound (ZLB) constraint, the empirical relevance of
the ZLB has only been a recent phenomenon. This section, on the other hand, focuses
on supply (TFP) shocks in the context of financial frictions. I demonstrate that my main
insights on the interaction between micro and macro uncertainty remain robust in this
setting.

• This section focuses on three main questions:

1. What is the transmission of uncertainty in the presence of financial frictions? Are
my results on the interaction between micro and macro uncertainty robust in a
setting with supply shocks and financial frictions?

2. What is the transmission mechanism of financial shocks in a heterogeneous-agent
New Keynesian model?

3. How does household debt relief compare against bank recapitalization as a stabi-
lization tool in this setting?

F.1 Model

The model I present in this section can be thought of as a continuous-time version of Gertler
and Karadi (2011) with a continuum of heterogeneous households. I start by discussing the
problem of financial intermediaries and the financial friction they face.
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F.1.1 Financial intermediary

Instead of setting up the classic structure used in Gertler and Karadi (2011) where households
consist of workers and bankers, I assume that bankers die and are born at rate ζ outright.
I also assume outright that bankers find it optimal not to pay out net worth to households
until they exit.

Balance sheet. The representative intermediary’s balance sheet is given by

Qtst︸︷︷︸
Assets

= nt + bt︸ ︷︷ ︸
Liabilities

,

where Qt is the prevailing market price of equity, st is the stock of equity shares held by the
intermediary, bt is the outstanding debt of the intermediary, and nt is its net worth (or equity
capital).

I can anticipate at this point that I will assume Modigliani-Miller and focus on the case
where firms are exclusively equity-financed. For now, however, the details of firms’ capital
structures are not relevant for the financial intermediary’s portfolio allocation problem. In
particular, the intermediary earns a return dRt (in units of numeraire) on its equity portfolio,
which it takes as given, and pays the riskfree rate rt on its debt. In the absence of payouts, the
intermediary’s net worth position then evolves according to

dnt = QtstdRt − rtbt

= rtnt + Qtst(dRt − rt).

It will be convenient to work with the portfolio share θ defined as θtnt = Qtst and (1− θt)nt =

−bt. This implies
dnt = rtnt + θtnt(dRt − rt).

Optimal portfolio allocation. I assume that bankers exit at rate ζ and find it optimal not to
pay out any funds to their shareholders until they exit, at which point they rebate their entire
net worth position. Denote by the random variable τ the stopping time of exiting. Then the
value of a small intermediary franchise at time 0 is given by

V0 = max
{st,bt}

E0

[
Λτ

Λ0
nτ

]
,

where Λt is the discount factor applied by the intermediary. I will further elaborate on this
SDF in later subsections.

The following Lemma provides a recursive representation of the intermediary’s problem.
I first present the intermediary problem in the absence of a financial constraint for illustration.
Afterwards, I introduce a net worth constraint and showcase how it affects the intermediary’s
recursive problem.

98



Lemma 16. When financial intermediaries are unconstrained, their continuous-time value function
solves the Hamilton-Jacobi-Bellman equation

(ρ + ζ)Vt = max ζΛtnt + Et

[
dVt

dt

]
.

Proof. We have

V0 = max E0

[
Λτ

Λ0
nτ

]
= max E0

∫ ∞

0
P(t = τ)

[
Λt

Λ0
nt

]
dt

= max
∫ ∞

0
ζe−ζtE0

[
Λt

Λ0
nt

]
dt

In discrete time, it would read as follows

V0 = max
∞

∑
t=1

P(t = τ)E0

[
Λt

Λ0
nt

]
Notice that the summation here starts at t = 1. Next, recalling that ζ is the rate at which
bankers exit,

V0 = max
∞

∑
t=1

θ(1− θ)t−1E0

[
Λt

Λ0
nt

]

= max E0

[
θ

Λ1

Λ0
n1 +

∞

∑
t=2

θ(1− θ)t−1
(

Λt

Λ0
nt

)]
We now want to use

Vt = max
∞

∑
s=1

θ(1− θ)s−1Et

[
Λt+s

Λt
nt+s

]

Vt+1 = max
∞

∑
s=1

θ(1− ζ)s−1Et+1

[
Λt+1+s

Λt+1
nt+1+s

]
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Thus,

V0 = max E0

[
θ

Λ1

Λ0
n1 +

Λ1

Λ0
(1− θ)

∞

∑
t=2

θ(1− θ)t−1 Λ0

Λ1

1
1− ζ

(
Λt

Λ0
nt

)]

= max E0

[
θ

Λ1

Λ0
n1 +

Λ1

Λ0
(1− θ)

∞

∑
t=2

θ(1− θ)t−2 Λt

Λ1
nt

]

= max E0

[
θ

Λ1

Λ0
n1 +

Λ1

Λ0
(1− θ)

∞

∑
t=1

θ(1− θ)t−1 Λt+1

Λ1
nt+1

]

= max E0

[
θ

Λ1

Λ0
n1 + (1− θ)

Λ1

Λ0
V1

]
.

Now let’s move this into continuous time. There are two objects we have to convert, the
death probability (into a death rate) and the discount factor. In discrete time with CRRA, we
have

Λt = βtc−γ
t ,

where ct is the level of consumption spending per period. Furthermore, θ is a death probability
per period. Intermediaries exit with probability θ and remain with probability (1− θ). We
therefore have

Vt = max Et

{
β(∆)

Λ̃t+∆

Λ̃t

[
θ(∆)nt+∆ + (1− θ(∆))Vt+∆

]}
We have

β(∆) = e−ρ∆ ≈ 1− ρ∆

1− θ(∆) = e−ζ∆ ≈ 1− ζ∆.

Recall that (1− θ) is the probability of remaining. Thus, we have

Vt = max Et

{
(1− ρ∆)

Λ̃t+∆

Λ̃t

[
ζ∆nt+∆ + (1− ζ∆)Vt+∆

]}
.

I will now renormalize the intermediary’s value function, which is a typical step in this class
of problems. Define the new effective value function as

Vnew
t = Λ̃tVold

t

and I will abuse notation and just continue using V notationally. So multiplying the previous
equation by Λ̃t I arrive at

Λ̃tVt = max Et

{
(1− ρ∆)Λ̃t+∆

[
ζ∆nt+∆ + (1− ζ∆)Vt+∆

]}
Vt = max Et

{
(1− ρ∆)

[
ζ∆Λ̃t+∆nt+∆ + (1− ζ∆)Vt+∆

]}
.
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Now we subtract (1− ρ∆)Vt from both sides to arrive at

Vt− (1− ρ∆)Vt = max Et

{
(1− ρ∆)ζ∆Λ̃t+∆nt+∆ +(1− ρ∆)Vt+∆− (1− ρ∆)ζ∆Vt+∆− (1− ρ∆)Vt

}
or simply

ρ∆Vt = max Et

{
(1− ρ∆)ζ∆Λ̃t+∆nt+∆ + (1− ρ∆)(Vt+∆ −Vt)− (1− ρ∆)ζ∆Vt+∆

}
.

Now dividing by ∆,

ρVt = max Et

{
(1− ρ∆)ζΛ̃t+∆nt+∆ + (1− ρ∆)

Vt+∆ −Vt

∆
− (1− ρ∆)ζVt+∆

}
.

And finally, taking the limit ∆→ 0, we arrive at

ρVt = max Et

{
ζΛ̃tnt + lim

∆→0

Vt+∆ −Vt

∆
− ζVt

}
= max ζΛ̃tnt − ζVt + Et

[
dVt

dt

]
.

�

The state variables of the intermediary problem are (n, Γ), where n is a single intermediary’s
net worth position and Γ is an as yet to be determined set of aggregate state variables. As in
previous sections, I will focus on the case where the aggregate state Γ is finite-dimensional
and follows a time-homogeneous Ito diffusion process, which will be consistent with my
solution method. In that case, the return process for the risky asset also evolves as a diffusion
process,

dR = µRdt + σRdB,

where µR and σR are equilibrium objects. Bt is a standard Brownian motion that represents
the sole aggregate risk factor of the model and will be specified below. I can thus rewrite the
intermediary’s HJB as

(ρ + ζ)V(n, Γ) = ζΛn + Vn

[
rn + θn(µR − r)

]
+

1
2

Vnn(θnσR)
2

+ VnΓθnσRσΓ + VΓµΓ +
1
2

σT
Γ VΓΓσΓ.

Importantly, the derivation thus far assumes that the portfolio allocation of financial inter-
mediary’s is unconstrained across the interior of their state space. I will next introduce the
financial constraint that plays a key role in this section.

Financial constraint. Following Gertler and Karadi (2011), I assume a balance sheet constraint
of the form

V(n, Γ) ≥ λ(Γ)Q(Γ)s(n, Γ),
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where λ(Γ) is a time-varying financial shock and s(n, Γ) is the intermediary’s policy function
for equity allocation.

Lemma 17. In the presence of the financial constraint on intermediary net worth, the continuous-time
value function of an intermediary solves the Hamilton-Jacobi-Bellman equation

(ρ + ζ)V(n, Γ) = ζΛn + VΓµΓ +
1
2

σT
Γ VΓΓσΓ

+ max
θ

{
Vn

[
rn + θn(µR − r)

]
+

1
2

Vnn(θnσR)
2 + VnΓθnσRσΓ + µ

[
V − λΛθn

]}
,

where µ is the multiplier on the net worth constraint.

Proof. For illustration, I start again with the discrete-time Bellman equation and introduce a
Kuhn-Tucker multiplier µt, yielding

ΛtVt = max Et

{
βΛt+1

[
θnt+1 + (1− θ)Vt+1

]}
+ µtΛt

[
Vt − λtQtst

]
.

Using the same steps as before, with the normalization ΛtVt 7→ Vt, I get

Vt = max Et

{
(1− ρ∆)

[
ζ∆Λt+∆nt+∆ + (1− ζ∆)Vt+∆

]}
+ µt

[
Vt − λtΛtQtst

]
.

Subtracting (1− ρ∆)Vt and dividing by ∆, we have

ρVt = max Et

{
(1− ρ∆)ζΛt+∆nt+∆ +(1− ρ∆)

Vt+∆ −Vt

∆
− (1− ρ∆)ζVt+∆

}
+

1
∆

µt

[
Vt−λtΛtQtst

]
,

with complementary slackness conditions

either µt = 0, or Vt − λtΛtQtst = 0.

We can now reinterpret the multiplier as a rate scaled by ∆. This derivation is informal, of
course.

More formally, I follow the approach in Zariphopoulou (1994) who proves the existence
and uniqueness of a viscosity solution for a similar but simpler problem. The analogous
formulation in my case, using the notion of admissible solutions, would be

(ρ + ζ)V(n, Γ) = ζΛn + max
θ∈A

{
Vn

[
rn + θn(µR − r)

]
+

1
2

Vnn(θnσR)
2 + VnΓθnσRσΓ

}
+ VΓµΓ +

1
2

σT
Γ VΓΓσΓ.

where

A =

{
θ : V ≥ λθn

}
.
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It is now of illustrative value to recast this problem in terms of the Kuhn-Tucker machinery
with complementary slackness conditions.

(ρ + ζ)V(n, Γ) = ζΛn + VΓµΓ +
1
2

σT
Γ VΓΓσΓ

+ max
θ

{
Vn

[
rn + θn(µR − r)

]
+

1
2

Vnn(θnσR)
2 + VnΓθnσRσΓ + µ

[
V − λΛθn

]}
.

It’s important to note here that Λ enters the constraint now because we have normalized
V. �

The first-order condition for θ is given by

0 = Vnn(µR − r) + Vnnθ(nσR)
2 + VnΓnσRσΓ − µλΛn,

or simply

θ = − Vn

nVnn

µR − r
σ2

R
− VnΓ

nVnn

σΓ

σR
+

µ

nVnn

λΛ
σ2

R
. (27)

The complementary slackness conditions, given by µ ≥ 0, V − λΛθn ≥ 0, and µ(V −
λΛθn) = 0 imply the following procedure for determining θ, V and µ: Start with a guess
for the value function. For a given state (n, Γ), solve for the implied θ and check whether
it satisfies the constraint. If so, this θ(n, Γ) is a possible solution, for which µ(n, Γ) = 0.
Now let’s consider the other case with µ 6= 0. Importantly, equation (27) is still one of the
Kuhn-Tucker conditions and therefore has to hold always. As such, we now obtain θ from
the complementary slackness condition with µ 6= 0, implying

θ =
V

λΛn

and we obtain µ from equation (27), so that

µ =
1

λΛ

(
Vn(µR − r) + Vnnθnσ2

R + VnΓσRσΓ

)
=

1
λΛ

(
Vn(µR − r) + Vnn

V
λΛ

σ2
R + VnΓσRσΓ

)
.

Aggregate intermediary net worth. Intermediaries exit at rate ζ, rebating their net worth
positions to households. At the same time, a new cohort enters, also at rate ζ, with startup
funds provided by households. Denote the startup funds per intermediary by η, so that the
rate at which households provide funds for new intermediaries is given by ηζ.

To maintain the assumption of a representative intermediary, we must set η = N,
where N is aggregate net worth. In this case, households never receive any net funds from
intermediaries: all net worth rebated from exiting bankers is used as startup money by new
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entrants. If this was not the case, the new cohort would no longer be symmetric to the
incumbents.

However, I will show in the results section that the intermediary problem is, in fact,
linear in n. Therefore, intermediary behavior can easily be aggregated and the potentially
non-degenerate net worth distribution of the intermediary sector does not become part of the
aggregate state space.

F.1.2 Firms

My model of the corporate sector follows closely that of Dou et al. (2020).69 There is a
representative firm that performs two productive functions. On the one hand, the firm uses
capital and labor in the production of the consumption good. On the other hand, the firm
invests in the production of new capital, which it can then trade on a secondary market at
price Qt. Firms issue equity shares to fund these operations.70 In equilibrium, the financial
intermediary sector will hold these shares. Since the marginal value of retained earnings
is always weakly larger in the financial sector, firms are assumed to pay out all net income
they generate as dividends to shareholders, rather than accumulate retained earnings. In the
absence of retained earnings, firms then issue new equity whenever they want to invest in
new capital. As in Gertler and Karadi (2010), for example, I assume that firms issue shares
equal to the units of capital they acquire, so that, by arbitrage, corporate equity shares and
capital trade at the same price, Qt.

The representative firm produces the final consumption good using the production
technology

Yt = eZt Kα
t L1−α

t ,

where Zt denotes aggregate TFP and follows a continuous-time AR(1) process. Time variation
in TFP is the source of aggregate risk in this model. In particular, I assume that

dZ = −θZZdt + σZdB.

Goods production is perfectly competitive. As a result, we have

wt = (1− α)
Yt

Lt

since firms statically set the marginal cost of labor equal to its marginal product.
The representative firm therefore generates net income at rate

net incomet = Yt − wtLt −Φ(It, Kt) + d(QtKt)

69Unlike in their paper, I set the price of investment goods to 1.
70Since the Modigliani-Miller conditions hold for the non-financial corporate sector in this setting, it is without

loss to assume equity financing. In other words, while there is a financial friction between intermediaries and
households, there is no friction in funding for non-financial firms.
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all of which is paid out to shareholders. I assume that capital adjustment costs are quadratic,
given by

Φ(It, Kt) = It +
κ

2

(
It

Kt

)2

Kt.

The firm’s investment decision is static, and we have

It = arg max
{

Qt It − It −
κ

2

(
It

Kt

)2

Kt

}
.

This gives rise to the classic Tobin’s-Q expression for the firm’s investment choice as a function
of the capital price

It =
Qt − 1

κ
Kt.

In summary, then, the return on corporate equity is given by

dRt =

[
Yt − wtLt

QtKt
+

1
Qt

(Qt − 1)2

2κ
− δ + µQ,t

]
dt + σQ,tdB

where I have conjectured that the price of capital follows a diffusion process in equilibrium

dQt

Qt
= µQ,tdt + σQ,tdB.

F.1.3 Households

The model of household behavior is simplified in this section. In particular, I reduce the
savings problem of households to just one asset, a. When a > 0, a household holds deposits
with the financial intermediary. When a < 0, the household has taken on a consumer loan.

Household preferences are given by

E0

∫ ∞

0
e−ρt

[
c1−γ

t
1− γ

− h1+η
t

1 + η

]
dt,

and the evolution of household savings is given by

ȧt = rtat + (1− τlab)wtztht + τdebt relief
t (a) + τ

lump
t − ct.

Except for the absence of the second asset and the new debt relief term, this budget constraint
is identical to the one in the baseline model. Depending on their indebtedness, I here allow
for a new transfer from the government, τdebt relief

t (a), that is meant to capture household
debt relief policies. Households again face an overall constraint on borrowing, so that at ≥ a.

The household problem can be rewritten recursively in the form of a Hamilton-Jacobi-
Bellman equation, given by

ρv(a, k, Γ) =max
c,h

{
c1−γ

1− γ
− h1+η

1 + η
+ va

[
rtat + (1− τlab)wzh + τdebt relief + τlump − c

]}

+ vzµz +
σ2

z
2

vzz + vΓµΓ +
1
2

σT
Γ vΓΓσΓ.
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The associated optimality condition for consumption is again given by

c−γ = va.

The household’s labor-leisure condition is given by

cγhη = (1− τlab)wz.

These conditions characterize the household policy functions c(a, z, Γ) and h(a, z, Γ).

F.1.4 Aggregation and Market Clearing

The cross-sectional household distribution is again denoted gt(a, z), so that aggregate con-
sumption and labor supply are given by

C(Γ) =
∫

c(a, z, Γ)g(a, z, Γ)d(a, z)

L(Γ) =
∫

zh(a, z, Γ)g(a, z, Γ)d(a, z),

where L is effective aggregate labor supply. As always, I will suppress the dependence of
macroeconomic aggregates on the aggregate state Γ.

Consider the aggregate net worth evolution equation, given by

dN = rN + θN(dR− r)

= rN + Y− wL +
(Q− 1)2

2κ
K− δQK + QK(µQdt + σQdB)− rθN

where θN = QS = QK. Simplifying this further,

dN = r(1− θ)N + αY + ΠQ − δQK + KdQ

KdQ + QdK− dB = −rB + αY + QI −Φ(I, K)− δQK + KdQ

KdQ + QdK− dB = −rB + αY−Φ(I, K) + QdK + KdQ

−dB = −rB + αY−Φ(I, K)

Finally, I can use the household budget constraint as well as the bond market clearing
condition

A = B

so that
dB− rB = dA− rA = w− C = −αY + Φ(I, K)

and using the fact that labor is paid its marginal product

w− C = −Y + wL + Φ(I, K)
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or

Y = C + Φ(I, K) = C + I +
κ

2

(
I
K

)2

K.

So to summarize, the market clearing conditions in this model are given by

Y = C + I +
κ

2

(
I
K

)2

K

A = B

S = K,

where the last equation simply states that the value of aggregate capital must be equal to the
aggregate market capitalization of the corporate sector.

F.1.5 Summary of Equilibrium Conditions

Let’s collect the main equations. Also, I will commit to the convention that b < 0 corresponds
to households making deposits at the bank and b > 0 to the bank holding bonds.

Financial intermediary. We have

n = Qs + b

θn = Qs

(1− θ)n = b

dn = rn + θn(µR − r) + θnσRdB

V = Ωn

The HJB of the financial intermediary in terms of the value function is given by

(ρ + ζ)V(n, Γ) = ζΛn + VΓµΓ +
1
2

σT
Γ VΓΓσΓ

+ max
θ

{
Vn

[
rn + θn(µR − r)

]
+

1
2

Vnn(θnσR)
2 + VnΓθnσRσΓ + µ

[
V − λΛθn

]}
.

Using V = Ωn, this becomes

(ρ− r + ζ)Ω = ζΛ + ΩΓµΓ +
1
2

σT
Γ ΩΓΓσΓ + Ωµ.

Unconstrained region. In this region, V > λΛθn. We have

µ = 0

0 = Ω
µR − r

σR
+ ΩΓσΓ.
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From the intermediary’s PE perspective, the portfolio share θ remains indeterminate. The the
above equation exactly holds, I believe the intermediary is indifferent about any θ. And when
this condition is even slightly off, the intermediary would assume infinitely large arbitrage
positions. So θ will have to be pinned down from the market clearing conditions in general
equilibrium.

Constrained region. In this region, V = λΛθn. We have

θ =
Ω

λΛ

µ =
σR

λΛ

[
Ω

µR − r
σR

+ ΩΓσΓ

]
.

Households. The micro block describing household behavior can be summarized by the
household policy functions c(a, z, Γ) and h(a, z, Γ). These policy functions are derived from
households’ Hamilton-Jacobi-Bellman equation. To obtain aggregate household behavior, the
cross-sectional distribution gt(a, z) is used.

Firms. We have

Y = eZKαL1−α

w = (1− α)
Y
L

dK = I − δK

I =
Q− 1

κ
K

ΠQ =
(Q− 1)2

2κ
K

and finally

µR =
Y− wL

QK
+

1
Q
(Q− 1)2

2κ
− δ + µQ

σR = σQ.

Market clearing. We have

A + B = 0

Y = C + I +
κ

2

(
I
K

)2

K

θN = QK,

where the last equation characterizes the aggregate market for equity shares.
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F.2 Analytical Results

PDE for Ω. Consider the Ansatz

V(n, Γ) = Ω(Γ)n.

Plugging into the HJB, we have

(ρ + ζ)Ωn = ζΛn + ΩΓnµΓ +
1
2

nσT
Γ ΩΓΓσΓ

+ Ω
[
rn + θn(µR − r)

]
+ ΩΓθnσRσΓ + µ

[
Ωn− λΛθn

]
.

The quadratic term in θ dropped out. That means the Kuhn-Tucker conditions for θ are now
given by

Ωn(µR − r) + ΩΓnσRσΓ − µλΛn = 0

µ ≥ 0

Ωn− λΛθn ≥ 0

µ(Ωn− λΛθn) = 0.

The first case, with µ = 0, implies

0 = Ω
µR − r

σR
+ ΩΓσΓ.

And otherwise, for µ 6= 0, we have

θ =
Ω

λΛ

µ =
1

λΛ

[
Ω(µR − r) + ΩΓσRσΓ

]
.

To verify the Ansatz, we can divide by n, yielding

(ρ + ζ)Ω = ζΛ + ΩΓµΓ +
1
2

σT
Γ ΩΓΓσΓ

+ Ω
[
r + θ(µR − r)

]
+ ΩΓθσRσΓ + µ

[
Ω− λΛθ

]
,

and this equation must hold for all states (n, Γ). The first observation here is that n drops out
everywhere, and so indeed we are left with a PDE over Γ only. So as long as there exists a
function Ω(Γ) satisfying the above equation across (n, Γ), then the Ansatz works.

Let’s consider the two regions of the state space. In the region of (n, Γ) where the
intermediary is unconstrained, with µ = 0, we have

(ρ + ζ)Ω = ζΛ + ΩΓµΓ +
1
2

σT
Γ ΩΓΓσΓ + Ω

[
r + θ(µR − r)

]
− θΩ(µR − r)

(ρ− r + ζ)Ω = ζΛ + ΩΓµΓ +
1
2

σT
Γ ΩΓΓσΓ.
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Over the constrained region, on the other hand, we have

(ρ− r + ζ)Ω = ζΛ + ΩΓµΓ +
1
2

σT
Γ ΩΓΓσΓ +

Ω
λΛ

[
Ω(µR − r) + ΩΓσRσΓ

]
= ζΛ + ΩΓµΓ +

1
2

σT
Γ ΩΓΓσΓ + Ωµ.

Together, these equations constitute a PDE for Ω.

F.3 Quantitative Results

In progress and coming soon.
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