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Abstract 
 
We document two new facts about the distributions of answers in famous statistical problems: they 
are i) multi-modal and ii) unstable with respect to irrelevant changes in the problem. We offer a model 
in which, when solving a problem, people represent each hypothesis by attending “bottom up” to its 
salient features while neglecting other, potentially more relevant, ones. Only the statistics associated 
with salient features are used, others are neglected. The model unifies biases in judgments about i.i.d. 
draws, such as the Gambler’s Fallacy and insensitivity to sample size, with biases in inference such 
as under- and overreaction and insensitivity to the weight of evidence. The model makes predictions 
about how changes in the salience of specific features should jointly shape the prevalence of these 
biases and measured attention to features, but also create entirely new biases. We test and confirm 
these predictions experimentally. Bottom-up attention to features emerges as a unifying framework 
for biases conventionally explained using a variety of stable heuristics or distortions of the Bayes rule. 
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1. Introduction 

Some of the most glaring judgment biases arise in statistical problems. When assessing flips 

of a fair coin, people tend to estimate a balanced sequence such as ℎ𝑡ℎ𝑡𝑡ℎ to be more likely than 

ℎℎℎℎℎℎ. This striking phenomenon, called the Gambler’s Fallacy, arises even though people know 

that each toss lands heads or tails with 50% probability, which implies that the two sequences are 

equally likely. People also make errors when updating beliefs based on a noisy signal. They 

underreact to the signal in some problems (Edwards 1968), but overreact in others (Kahneman and 

Tversky 1972). This is also striking: in these problems people are told numerical priors and 

likelihoods, and could compute the correct answer using the Bayes’ rule. 

Why do people make these systematic mistakes? And why are these mistakes unstable, 

changing from one problem to the next and across different versions of the same problem?  To date, 

there is no unifying answer to these questions. A large body of work formalizes specific biases such 

as the Gambler’s Fallacy (GF, Rabin 2002) and sample size neglect in i.i.d. draws (Benjamin, Rabin, 

Raymond 2016), and base rate neglect (Grether 1980) and underreaction in inference (Enke and 

Graeber 2023), but does not connect biases across problems or in different versions of a problem. 

We offer a new approach in which people pay attention to the salient features of a problem 

and neglect non-salient ones, even if relevant. Biases arise because, in this process, people represent 

hypotheses erroneously, exhibiting a form of question substitution (Kahneman and Frederick 2002). 

The model accounts for and reconciles well-known biases in judgments about i.i.d. draws and in 

inference. It also explains multimodality and instability of responses in both domains, making new 

predictions, which we test, on how changes in the salience of specific features shape the prevalence 

of different biases and measured attention.  Last, we predict and find previously undocumented errors. 

 To see the basic idea, consider the famous duck-rabbit illusion, in which a drawing can be 

interpreted as either a duck or a rabbit. Some people attend to the beak and see a duck, others attend 

to the mouth and see a rabbit. One feature is attended to, the other neglected, so different people see 

a different animal. Nobody sees both animals at once, and nobody says it is 50% chance a duck, and 

50% chance a rabbit. Attention selects one representation. When sentencing a confessed bank robber 

(Clancy et al. 1981), some judges focus on the defendant’s age, others on whether he was armed, still 

others on how much he took, leading to different sentences for the same crime under the same law. 

In bail decisions, some judges may even focus on irrelevant aspects, such as whether a defendant is 

well groomed (Ludwig and Mullainathan 2023). In these examples, decision makers attend to some 

but not all features of the problem they face, leading to different representations and judgments. 

We argue that the same logic is at play when people solve statistical problems, except here 

there is an objectively correct answer. These problems also have many features, which people can 
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selectively attend to. When judging two sequences of a fair coin such as ℎ𝑡ℎ𝑡𝑡ℎ vs. ℎℎℎℎℎℎ people 

may focus on the individual flips of each sequence, or on the sequences’ share of heads (0.5 vs. 1). 

When judging the probability that a green ball comes from urn 𝐴 (vs 𝐵), people may focus on the ex-

ante probability of selecting urn 𝐴, or on the draw of a green ball from it. Depending on which feature 

is attended to and which ones are neglected, the same hypotheses are represented differently.  

We model a decision maker (DM) who, conditional on her representation, correctly uses the 

statistics given in the problem. Mistakes only arise because her attention to features is shaped by 

salience. Psychologists have unveiled several drivers of salience. Following our prior work (Bordalo 

et al. 2022) we formalize two of them: contrast and prominence. In consumer choice, contrast means 

that the “price feature” is salient when it strikingly favors one good over another. Analogously, in a 

statistical problem a feature has high contrast if it strikingly favors one of two hypotheses. When 

comparing ℎ𝑡ℎ𝑡𝑡ℎ  to ℎℎℎℎℎℎ , the share of heads is salient: obtaining a balanced sequence 

(considered as a set) is much more likely than obtaining an unbalanced one. Contrast depends on 

objective probabilities, so the model’s predictions can be tested using controlled changes in the 

statistics of the problem. The second driver of attention, prominence, depends on what jumps out 

visually or is otherwise top of mind. In consumer choice, making price or taxes more noticeable 

(Chetty et al. 2009) or cueing the high price of beer paid at a resort (Thaler 1985, Bordalo et al. 2013) 

render the price feature salient. In a statistical problem, a feature is prominent due to the language 

used to describe the sampling process or the hypotheses, or due to the naturalistic context in which 

the problem is cast, which cues the relevance of certain features from past experiences. We do not 

measure prominence directly, but the model tightly disciplines the joint movement of responses and 

attention to specific features when these are made more prominent in the description. 

The model makes two broad predictions, which we test experimentally. First, salience causes 

neglect of relevant features, leading to bias. And because different features are salient to different 

DMs, due to either random variation or different experiences, this bias entails multi-modality in the 

distribution of answers to a problem. When assessing coin flip sequences ℎ𝑡ℎ𝑡𝑡ℎ vs. ℎℎℎℎℎℎ, some 

DMs attend to the share of heads, neglecting that each flip is 50:50. They replace the original question 

with the relative likelihood of obtaining a balanced vs an unbalanced sequence and overestimate 

ℎ𝑡ℎ𝑡𝑡ℎ. Other DMs attend to individual flips, and do not commit GF. In inference, some DMs attend 

to the prevalence of hypotheses and anchor to base rates (under-reaction), others attend to the signal 

and anchor to the likelihood (over-reaction). In either case, one piece of data is used, the other is 

neglected. DMs attending to both features combine the base rate and the likelihood, sometimes 

achieving the Bayesian answer. Consistent with this prediction, we document multi-modality, which 

in inference takes the form of large groups of subjects anchoring exactly at the base rate or at 
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likelihood (see also Dohmen et al. 2009). Critically, in both iid draws and inference measured 

attention to the features dictated by the model predicts which answers people give, consistent with 

our mechanism.  This occurs even when these features are not associated with a statistic given in the 

problem, as in the case of iid draws. 

Our second and key prediction is that changes in the salience of a feature cause joint shifts in 

attention and in the distribution of estimates. We test this prediction by manipulating the salience of 

some features. In i.i.d. draws we make individual flips prominent by describing the same hypothesis 

in terms of these flips, and show that this reduces both measured attention to the share of heads and 

the incidence of the GF.  In inference, we increase the contrast of the signal by raising the likelihood, 

and show that doing so jointly boosts attention and anchoring to the likelihood, also increasing the 

share of people who neglect the base rate. In inference, our model also predicts that describing the 

likelihood in terms of the similarity between the signal and different hypotheses should increase 

measured attention to such feature and anchoring to the likelihood. We show that this mechanism 

accounts almost fully for the dramatic shift in assessments from the balls and urns format (Edwards 

1968), in which many people anchor to the base rate, to the formally identical “taxicabs” format 

(Kahneman and Tversky 1972), in which many people anchor to the likelihood.  

The model also explains why the so called “frequency format” (Gigerenzer and Hoffrage 

1995) promotes Bayesian answers: it curbs neglect of either the base rate or the likelihood. We 

however show that the frequency format is not by itself the panacea against distortions caused by 

bottom up attention. To this end, we manipulate the salience of a hypothesis by not mentioning its 

alternative in the question. Consistent with the model, this treatment unveils a new bias: many 

subjects now estimate the prominent hypothesis as the product of its base rate and likelihood, fully 

neglecting the features of the other hypothesis. This result casts doubt on the notion that human 

intuition is generally ecologically optimal and sheds new light on the confirmation bias. 

Our model explains the coexistence of biases typically attributed to different heuristics such 

as availability, representativeness, or anchoring (Kahneman and Tversky 1972, Gigerenzer 1996), 

and why one bias or the correct answer becomes more prevalent when a specific feature becomes 

salient. Our findings challenge existing models of biases both in i.i.d. draws, which rely on a fixed 

mis-specified sampling model (e.g., Rabin 2002), and in inference, which rely on a stable distortion 

of the Bayes’ rule.  Such distortions may be due to fixed heuristics (Grether 1980), to perceptual 

noise/complexity (Enke and Graeber 2023, Khaw, Li, and Woodford 2021), or to a combination of 

the two (Ba, Bohren, Imas 2023).  These models are not consistent with the key patterns in the data: 

i) multimodality of answers to a problem, ii) instability, including across normatively equivalent 

problems, and iii) a systematic correlation between different biases and attention to different features.   
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We formalize the key concept of salience-driven, associative simplification of features using 

insights from psychology and machine learning (Tversky 1977, Kruschke 2008, Selfridge 1955, 

Guyon and Elisseeff 2003) to model our key findings of multimodality and instability of beliefs. 

Compared to models of goal-optimal attention (Sims 2003, Woodford 2003, 2020, Gabaix 2019), we 

explain why highly goal-relevant information can be neglected and why goal irrelevant changes 

dramatically shape attention and biases. Our paper relates to a growing body of work showing that 

biases can persist even in the presence of feedback and incentives due to selective attention, which 

can arise from incorrect models (Schwartzstein 2014, Gagnon-Bartsch, Rabin, and Schwartzstein 

2023, Esponda et al, 2022) or computational complexity (Simon 1957, Enke and Zimmermann 2019, 

Enke 2020, Graeber 2023). In our model, selective attention is driven by bottom-up salience of 

features, and bias arises even in computationally simple problems. In coin flips, it is trivial to avoid 

GF by recognizing that each flip is 50:50. Bias is caused by the salience of a feature, the share of 

heads, that is relevant for a different problem.  Moreover, shifts in bottom-up salience lead to 

instability of choices, whereas much of earlier work focuses on stickiness in biases.   

Statistical problems provide a great setting to study our mechanism because the given statistics 

offer anchors for detecting shifting attention to and the use of information, yielding sharp multi-

modality. Our mechanism is also relevant for belief formation and choice more broadly, including in 

domains with no clear anchors. In such domains we should not expect to see sharp multimodality, but 

selective attention to the features of events will still produce sharp disagreement and instability in the 

nature and magnitude of the average bias in the population. That bias may be under-reaction in some 

domains (e.g., climate change) and overreaction in others (e.g., financial bubbles), but may change 

rapidly when events change which features are salient for a significant group of people.   

The paper proceeds as follows. Section 2 presents new evidence that the distribution of 

answers in coin-flip and inference problems is concentrated at specific modes, whose incidence 

changes with normatively irrelevant modifications. This evidence motivates our new approach. 

Section 3 introduces our model. Sections 4 and 5 develop and evaluate empirical predictions for coin 

flips and inference. Section 6 derives and tests other implications. Section 7 concludes. 

 

2. Puzzles in famous statistical problems 

In April 2023, we recruited participants online through Prolific to answer one “iid draws” 

problem and one “Inference” problem, in a random order at the beginning of the survey. They earned 

an additional bonus for each question if their answers were within 5 percentage points of the correct 

ones. Appendix A describes the experimental protocol and pre-registration. 
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For iid draws, we told participants that we created a large number of sequences from tosses of 

a fair coin. In the first treatment, 100 of these sequences were either 𝐻& = 𝑡ℎ or 𝐻( = ℎℎ. In the 

second treatment, they were either 𝐻& = 𝑡ℎ𝑡ℎℎ𝑡 or 𝐻( = ℎℎℎℎℎℎ. We asked participants for their 

best guess of how many of these sequences were from 𝐻& or 𝐻(. Panels A and B of Figure 1 show 

the distribution of beliefs about the relative share of the balanced sequence for each treatment.  

 
Figure 1. Each panel reports the distribution of estimated Pr(𝐻(|𝐻& ∪ 𝐻() . Answers closer to 0  indicate higher 
probability of the balanced sequence 𝐻&. The blue bar marks the mean answer. 
 

As in previous studies (Benjamin 2019), the mean response is below 0.5, confirming the 

Gambler’s Fallacy, the belief that a specific balanced sequence is more likely than an unbalanced one. 

There are, however, two new findings. First, GF is much more severe when 𝑛 = 6: the average 

probability estimate of 𝐻& drops from 47.2% in Panel A to 35.4% in Panel B (𝑝 = 0.00). Second, 

this occurs in part because about 14%	of respondents shift from the 50% mode to answers around 

5% (54.8% in panel A vs. 40.7% in panel B, 𝑝 = 0.00). Instability in the share of people committing 

GF is inconsistent with a mechanical, possibly heterogeneous, tendency to use a mis-specified 

sampling model (Rabin 2002). It seems that when judging short sequences, many people attend to the 

fact that each flip has a 50: 50 chance of ℎ and 𝑡, but neglect this feature when the sequences are long. 

Why are different features neglected in the two experiments, where the correct answer is the same? 

Consider inference next. We presented a problem in two different yet normatively equivalent 

formats. In the “balls and urns” treatment (Edwards 1968), participants were told that an urn 𝐴 

contains 80% green and 20% blue balls, while urn 𝐵 contains 20% green and 80% blue balls. A 

computer selects urn 𝐴 or 𝐵 with probabilities 25% and 75%	respectively, and draws a ball from it. 

The ball is green. They are then asked the probability that it was drawn from 𝐴 vs. 𝐵. In the more 

naturalistic “cabs” treatment (Kahneman and Tversky 1972), participants were told there are two 

taxicab companies, the Blue and the Green, according to the color of the cabs they run.  25% of the 

cabs are Green, while 75% are Blue. A cab is involved in a hit and run accident, and a witness reports 
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the cab as Green.  A test reveals that the witness can correctly identify each color cab with probability 

80%. They are the asked the probability that the errant cab was indeed Green vs. Blue. We run the 

two formats with identical statistical parameters with two sets of participants, which to our knowledge 

has not been done before. Using Bayes’ rule, the correct answer is Pr(𝐴|𝑔) = Pr(𝐺𝑟𝑒𝑒𝑛|𝑔) = 0.57 

in both problems. The distribution of answers is reported in Figure 2. 

 
Figure 2. The left panel reports the distribution of Pr(𝐴|𝑔), the right panel of Pr(𝐺𝑟𝑒𝑒𝑛|𝑔). The 
solid line indicates the mean answer, while the dashed line indicates the Bayesian answer of 0.57. 
 

Consistent with previous work (Benjamin 2019), in balls and urns (Panel A) under-reaction 

to the data prevails on average: the mean answer (solid line) is 52%, lower than the correct answer 

(dashed line). There is however pronounced multi-modality: many answers cluster on the base rate 

25%, the likelihood 80%, and 50%. Where do these different modes come from?  

Crucially, there is also dramatic instability: in the taxicab frame (Panel B), many more people 

anchor at or around 80%, so on average they over-react. Instability is inconsistent with a mechanical 

tendency toward base rate neglect (Edwards 1968, Grether 1980), with a shrinkage of beliefs to the 

prior due to noise (Woodford 2020, Enke and Graeber 2023), or with any fixed heuristics. Even 

answers typically attributed to epistemic uncertainty (De Bruin et al 2000) are unstable: the 50:50 

mode essentially disappears when moving to taxicabs. The evidence is suggestive of selective 

attention. In balls and urns many people appear to neglect the color of the drawn ball, and answer 

with the base rate. In taxicabs, they instead neglect the baseline frequency of blue cabs, and answer 

with the likelihood. Why are different features neglected in different frames? 

Figures 1 and 2 point to two challenges. First, summarizing beliefs in an experiment by the 

mean or modal response can be highly misleading in the presence of multimodality.  In Figures 1 and 

2 there is hardly anyone near the mean. This is dramatic in inference, where many people anchor to 

either the base rate or the likelihood, and fail to combine them. In fact, experimental protocols that 
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encourage participants to combine the two will fail to elicit what people do naturally: grasp at straws 

in a complex situation. Answers to standard statistical problems look like duck-rabbit. 

Second, the sharp instability in the distributions of estimates across statistically equivalent 

problems shows that there are features of these problems other than statistical information that shape 

beliefs. The language of the question shapes the answer. This has key implications: under- and 

overreaction are not universal principles, but rather the result of whether in a particular setting 

relatively more people attend to features associated with the base rates (underreaction) or the 

likelihood (overreaction). To account for our findings, we need a new framework. 

 

3. The Model 

We present a model in which the patterns described in Section 2 arise from selective bottom 

up attention to the features of the events of hypotheses. We first define a statistical problem and a 

rational solution to it.  We next formalize the features of events and the role of bottom-up attention. 

Formally, a statistical problem has three components: i) the sampling process, ii) the statistics, 

e.g. the probabilities of specific events, and iii) the hypotheses 𝐻B, 𝐻DB. The sampling process defines 

the set of possible outcomes, or sampling space Ω. Statistics are assigned to two kinds of events. The 

first are unconditional events 𝑘& ⊆ Ω, of the kind “drawing 𝑘&”. Each such event is assigned a statistic 

𝜋IJ . The collection of such events, denoted by 𝐾&, is a partition of Ω, i.e. ∑ 𝜋IJIJ∈NJ = 1. Other 

events are conditional, they refine the partition of Ω. They are of the kind “drawing 𝑘( given 𝑘&”. A 

generic such event is denoted by 𝑘(|𝑘& ⊆ 𝑘&  and assigned a conditional statistic 𝜋IO|IJ . The 

collection 𝐾(|𝑘& of such events form a partition of its parent 𝑘&, with ∑ 𝜋IO|IJIO∈NO|IJ = 1 for all 𝑘&. 

There is a total of 𝑛 ≥ 1 steps of conditioning, with the statistic corresponding to a generic step 𝑗 

event (1 < 𝑗 ≤ 𝑛) denoted by 𝜋IT|ITUJ⋯	IJ. We focus on the case in which statistics are probabilities, 

but the model also covers the case in which they correspond to absolute frequencies (see Appendix 

B). Finally, hypotheses 𝐻B, 𝐻DB are events in Ω. We allow for 𝐻B ∪ 𝐻DB ⊂ Ω which captures, among 

other things, inference problems: data provision restricts hypotheses to a subset of Ω. The statistical 

problem is solvable because the elementary events 𝜔 ∈ Ω that constitute hypotheses are generated by 

a specific path of events 𝑘&, 𝑘(|𝑘& … , 𝑘Z|𝑘ZD& … , 𝑘& to which statistics are attached. 

Consider the problems of Section 2. For sequences of two coin flips (𝑛 = 2) the sample space 

is Ω = {(ℎ, 𝑡), (𝑡, ℎ), (ℎ, ℎ), (𝑡, 𝑡)}. The first flip defines two unconditional events ℎ& = “drawing ℎ 

in the first flip” and 𝑡& = “drawing 𝑡 in the first flip”, which are associated with statistics 𝜋]J = 𝜋^J =

0.5. The second flip defines the conditional events ℎ(|𝑘& = “drawing ℎ in the second flip given 𝑘 in 

the first” and 𝑡(|𝑘& =”drawing 𝑡 in the second flip given 𝑘 in the first”. These events are assigned 



9 
 

statistics 𝜋]O|IJ = 𝜋^O|IJ = 0.5  for 𝑘& = ℎ, 𝑡 . With i.i.d. draws, a step 𝑗  event can be written 

unconditionally as 𝑘_, with associated statistics 𝜋IT = 0.5 for 𝑘_ = ℎ, 𝑡.  For inference, which has also 

two steps (𝑛 = 2), the sample space is Ω = {(𝐴, 𝑔), (𝐴, 𝑏), (𝐵, 𝑔), (𝐵, 𝑏)}. The unconditional events 

consist of the “selection of urn” 𝑈 = 𝐴, 𝐵, denoted by 𝑘& = 𝑈, and the conditional events consist of 

“drawing a ball of color 𝑘( from 𝑈”, denoted 𝑘(|𝑈 for 𝑘( = 𝑏, 𝑔. Unconditional events are assigned 

base rates 𝜋b = 0.25 and 𝜋c = 0.75, and conditional events are assigned likelihoods 𝜋d|b = 0.8 and 

𝜋e|b = 0.2 for urn 𝐴 and 𝜋d|c = 0.2 and 𝜋e|c = 0.8 for urn 𝐵. Here the process is not i.i.d. 

A rational solution consists of: a) expressing each hypothesis as a partition of the events about 

which statistics are provided, b) computing the probability of each hypothesis using these statistics, 

and c) normalizing the estimate if the probabilities in b) do not add up to one, 𝐻B ∪ 𝐻DB ⊂ Ω . 

Sometimes different partitions of hypotheses exist, but they all lead to a correct answer.  

We describe a decision maker, the DM, who solves the problem by attending to salient features 

of the hypotheses.  In Section 3.1 we formalize the features of events. In Section 3.2, we formalize 

how selective attention shapes probability estimates. The DM reaches the correct answer if she attends 

to the relevant features, but commits errors if not. Section 3.3 formalizes two key drivers of DM’s 

bottom-up attention to features: contrast and prominence.  Section 3.4 describes how to apply the 

model and test its predictions in the lab and offers guidance on field applications. 

 

3.1 The Features of Events 

Each event 𝜔 ∈ Ω is described by 𝐹 > 𝑛 features, collected in vector 𝑓(𝜔) = (𝑓&, 𝑓(, … , 𝑓i). 

The first 𝑛 features 𝑓&, … , 𝑓Z identify the unconditional and conditional events 𝑘&, 𝑘(|𝑘&, … that must 

occur for 𝜔  to happen, from the coarsest 𝑘&  to the finest 𝑘Z|𝑘ZD& …𝑘& . We call features 𝑗 ≤ 𝑛 

“statistical”, because each of them is associated with a statistic Prj𝑓_k : the true probability of each 

such event. With two coin flips the statistical features are 𝑓& =“first flip is 𝑘&” and 𝑓( = “second flip 

is 𝑘(” with true probabilities Pr(𝑘&) = 𝜋IJ = 0.5 and Pr(𝑘() = 𝜋IO = 0.5.  In balls and urns, they 

are 𝑓& =”select urn 𝑘&” and 𝑓( = “draw a ball of color 𝑘( from 𝑘&”, whose true probabilities Pr(𝑘&) 

and Pr(𝑘(|𝑘&) are the base rate of urn 𝑘& and the likelihood of  𝑘( in 𝑘&, respectively.  

Features 𝑓Zl&, … , 𝑓i of 𝜔 are not directly tied to statistics, and we call them “ancillary”. Like 

statistical features, each ancillary feature captures a property of the event and hence an equivalence 

class to which it belongs. In coin flips, one such feature is a sequence’s “share of heads”, which we 

denote by 𝑠ℎ ∈ [0,1]. It identifies the class of sequences having the same share of heads as 𝜔. This 

is a notable feature because it determines the similarity of a sequence to its data generating process: 

(ℎ, 𝑡) is similar to the fair coin that produced it because its 0.5 share of heads is what a fair coin tends 
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to produce.2 In inference, there is also an ancillary feature that captures the similarity of realized data 

to the data generating process: whether the realized signal is the most likely outcome of the hypothesis 

or not. In the example in Section 2, urn 𝐴 is 80% green and urn 𝐵 is 80% blue. Thus, a green signal 

is similar to 𝐴, not to 𝐵, and vice-versa for blue. We call “match” the feature taking value 𝑚 = 1 if 

the color of the ball is similar to the urn, and 𝑚 = 0 otherwise. This feature defines two equivalence 

classes: events (𝐴, 𝑔) and (𝐵, 𝑏) form the class of signal realizations similar to the hypothesis, 𝑚 =

1, while events (𝐴, 𝑏) and (𝐵, 𝑔) form the class of dissimilar ones, 𝑚 = 0.  

By capturing similarity to the data generating process, the share of heads in coin flips and 

match in inference are connected to KT’s “representativeness” heuristic: an event is representative of 

a statistical process if it resembles salient features of that process. In our model, though, there are no 

stable heuristics. There are instead many features. Some, the statistical ones, are tied to sampling 

steps. Others, like the similarity of a sequence/signal to the statistical process, capture different 

properties. These features “compete” for the DM’s attention, shaping representations and biases.  

To simplify the analysis, we focus on the case with 𝐹 = 𝑛 + 1: each 𝜔 ∈ Ω is described by 

the 𝑛 statistical features set by the problem plus an ancillary one, 𝑠ℎ in coin flips and 𝑚 in inference. 

The restriction to one ancillary feature may reduce the model’s explanatory power, but buys us 

parsimony and does not affect our core predictions. In Section 3.4 we discuss the selection of features, 

in both experimental and field contexts, which are important to apply the model. 

3.2 Attention to Features, Representation and Solution 

The DM solves the problem by executing three tasks: 1) construct a simplified feature-based 

representation of the hypotheses based on selective attention, 2) compute the probability of these 

representations using the statistics, and 3) normalize the estimate. Denote by 𝛼_ ∈ {0,1} the DM’s 

attention to feature 𝑗 = 1,… , 𝑂 , where 𝛼_ = 1  if feature 𝑗  is attended to and 𝛼_ = 0  if not. The 

attention profile is 𝛼 = (𝛼&, . . , 𝛼Zl&). The DM can attend to at most 𝐾 features, ∑ 𝛼__ ≤ 𝐾, which 

captures the well-established fact that attention is limited. For simplicity, she attends either to 

statistical or ancillary features, not to the mixtures of the two (this restriction can be relaxed). Denote 

the set of feasible attention profile by 𝐴N. Selective attention the distorts representations as follows. 

Task 1 (Selective Attention).  At attention profile 𝛼 ∈ 𝐴N the DM simplifies the feature vector 𝑓(𝜔) 

of each event 𝜔 ∈ 𝐻B in the hypothesis as 𝑓tu(𝜔) = j𝑓tu,&, … , 𝑓tu,Zl&k, where: 

𝑓tu,_ = v
𝑓_					𝑖𝑓			𝛼_ = 1
𝜑					𝑖𝑓			𝛼_ = 0.																																																										(1) 

Hypothesis 𝐻B is then represented as 𝑅u(𝐻B) = ⋃ 𝑓tu(𝜔){∈|} . 

                                                
2 Longer sequences have more ancillary features, e.g. (ℎ, 𝑡, ℎ, 𝑡, ℎ, 𝑡) is “alternating”, and (𝑡, 𝑡, 𝑡, ℎ, ℎ, ℎ) is “sorted”. 
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The DM replaces the value of each unattended feature in 𝑓(𝜔) with “𝜑”, meaning that this 

feature is not used to describe events. Consider a coin flip problem in which the DM evaluates 𝐻& =

(ℎ, ℎ) vs 𝐻( = (ℎ, 𝑡).  If she attends to individual flips, neglecting the share of heads, she represents 

𝐻&  as “first head and then head”, 𝑅u(𝐻&) = (ℎ&, ℎ(, 𝜑) , and 𝐻(  as “first head and then tail”, 

𝑅u(𝐻() = (ℎ&, 𝑡(, 𝜑). If instead she attends to the share of heads, neglecting individual flips, she 

represents 𝐻&  as “share of heads is 1”, 𝑅u(𝐻&) = (𝜑, 𝜑, 1) , and 𝐻(  as “share of heads is 0.5”, 

𝑅u(𝐻() = (𝜑, 𝜑, 0.5). The DM describes the hypotheses differently when she attends to different 

features of events. Attention to features then shapes her use of statistics in Task 2. 

Task 2 (Simulation). For each 𝑓t(𝜔) ∈ 𝑅(𝐻B), let Prj𝑓t_k denote the true probability of event 𝑓t_ in 

𝑓t(𝜔), with the convention Pr(𝜑) = 1. The DM simulates 𝐻B as: 

Prj𝑅(𝐻B)k = ~ Prj𝑓t&k ∙ Prj𝑓t(k ∙∙∙ Prj𝑓tZl&k
�t({)∈�(|})

.																																				(2) 

The DM computes the joint probability of the features-events she attends to. If she attends to 

more than one statistical feature, for each vector 𝑓t(𝜔) ∈ 𝑅(𝐻B) she computes Prj𝑓t� ∩ …∩ 𝑓t�k	by 

multiplying their probabilities. She then sums the products across all vectors. A DM attending to 

individual flips simulates 𝐻& = (ℎ, ℎ) and 𝐻( = (ℎ, 𝑡) by multiplying the 0.5 statistic attached to 

these features, Prj𝑅u(𝐻&)k = 𝜋]J ∙ 𝜋]O = (0.5)( and Prj𝑅u(𝐻()k = 𝜋]J ∙ 𝜋^O = (0.5)(.  If instead 

the DM attends to the share of heads, she simulates the same hypotheses by simulating 𝑅u(𝐻&) =

(𝜑, 𝜑, 1), computing the probability of obtaining only heads Pr(𝑠ℎ = 1) = (0.5)(, and by simulating 

𝑅u(𝐻() = (𝜑, 𝜑, 0.5), computing the probability of obtaining a balanced sequence Pr(𝑠ℎ = 0.5) =

2 ∗ (0.5)(. Different representations focus the DM on different features of hypotheses, leading to 

different simulated probabilities. The final estimate is reached by normalizing simulated probabilities.   

Task 3. (Normalization). The DM computes the probability of 𝐻B as: 

Pr(𝐻B; 𝛼) =
Prj𝑅u(𝐻B)k

Prj𝑅u(𝐻B)k + Prj𝑅u(𝐻DB)k
.																																																(3) 

Normalization only matters if the simulated probabilities do not add to one, which is the case 

in our running example. A DM attending to individual flips estimates the relative probability of 𝐻& =

(ℎ, ℎ) vs 𝐻( = (ℎ, 𝑡) by normalizing the identical (0.5)( simulations of the two hypotheses, yielding 

Pr(𝐻&; 𝛼) = 0.5. This DM does not commit the GF.  A DM instead attending to the share of heads 

erroneously simulates 𝐻(  with the broad equivalence class of balanced sequences yielding, after 

normalization, Pr(𝐻&; 𝛼) = 1/3. This DM commits the GF.  This bias is due to the fact that she 

represents hypotheses using the wrong feature: the share of heads. 

In general, the DM is biased whenever she attends to the wrong features.      
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Proposition 1 (Rationality). Given a statistical problem, there exists a set of event-specific attention 

vectors 𝛼∗(𝜔) = (𝛼&∗, … , 𝛼Zl&∗ ),  𝜔 ∈ 𝐻B ∪ 𝐻DB, containing at least one zero such that a DM using 

attention 𝛼∗(𝜔) in Task 1 and then following Tasks 2 and 3, implements the Bayes’ rule.   

It is always possible for our DM to reach the correct solution.  To do so, she needs to simplify 

events by focusing on all features that are relevant to the problem while neglecting others. With the 

correct simplification strategy in Equation (1), Tasks 1, 2 and 3 guarantees a correct solution. As we 

show in the proof, the minimum number of relevant features of hypotheses can be found using a 

coarsest partition of them in terms of events whose probability can be computed. In our example, 

there is a unique partition of 𝐻&  and 𝐻( , constituted by the atoms (ℎ, ℎ) and (ℎ, 𝑡), respectively. 

These atoms are identified by their first and second flip. The share of heads is instead not relevant to 

this problem because the class of events having 𝑠ℎ = 0.5 includes both (ℎ, 𝑡) and (𝑡, ℎ), so it does 

not represent a partition of 𝐻(. This is why the DM correctly solves this problem when she attends to 

the first and second flip while she commits the Gambler’s Fallacy when she attends to the share of 

heads.3  But what shapes attention?  We address this question next. 

 

3.3 Bottom-up Attention to Features 

There is a consensus in psychology that selective attention is based on two mechanisms: top 

down and bottom-up. Top-down attention reflects motivational factors such as the relevance of a 

stimulus to the goals of the DM. Rational inattention models formalize this idea (Sims 2003; Gabaix 

2019, Woodford 2003, 2020; Khaw et al. 2021). Bottom-up attention reflects instead an involuntary 

focus on salient stimuli which causes neglect of non-salient ones, even if relevant (BGS 2012, 2013, 

2022, Li and Camerer 2022, Evers, Imas, and Kang 2023). Sometimes the attention-drawing stimulus 

is relevant to the task but still distorts the decision. While driving, a surprising police radar may cause 

us to neglect the car behind us, so we break too heavily. But a stimulus may draw attention even if it 

is entirely irrelevant, such as when a black stain on the wall distracts us from a conversation.  

Section 2 highlighted the role of bottom-up forces. Different people use different statistics 

despite having the same incentives for accuracy: they do not choose the “most accurate” statistics for 

a given attention limit 𝐾, as for instance is implied by models of sparsity (Gabaix 2014). More broadly, 

in standard models of bias people know Bayes’ rule but distort true probabilities, because they use a 

misspecified sampling process (Rabin 2002, Rabin and Vayanos 2010) or because they overweight 

the prior or the signal (Grether 1980), e.g. due to rational inattention or perceptual noise (Khaw, Li, 

and Woodford 2021, Enke and Graeber 2023). Hypotheses are properly represented, statistics are 

                                                
3 Another attention limit implicitly imposed in Task 1 compared to the rational benchmark in Proposition 1 is that the DM 
does not select an event-specific attention vector, 𝛼(𝜔) = 𝛼 for all 𝜔. This limit does not play a role in our analysis.  
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combined, at least to some extent, and biases are stable: the share of biased people and the type of 

bias they commit should not change as they do in Figures 1 and 2.  

In contrast, in our model salience driven shifts in attention can account for instability by 

changing the representation of hypotheses and the use of statistics.  The new predictions follow from 

regularities in bottom-up attention. While there is no complete theory, two factors are known to be 

important: contrast and prominence. Contrast means that a stimulus is more salient if it strongly 

differs from the background (e.g. the black stain is on a white wall). Prominence means that the 

stimulus is more salient if it is located in the center of the visual field or more top of mind (e.g. the 

stain is in front of us). Thus, salience depends on context. 

We formalize these forces using salience theory (BGS 2012, 2013, 2022), which models how 

the salient features of goods, e.g. quality or price, affect valuation and choice. In statistical problems, 

salience is a property of representations 𝑅u(𝐻B), 𝑅u(𝐻DB), which are shaped by the attention vector 

𝛼.  Consider first the contrast induced by 𝛼. In BGS, an attribute such as price is contrasting when it 

sharply favors one of the goods. In a statistical problem we likewise say that attending to a feature 

induces contrast if it sharply favors one hypothesis over the other. Formally, the contrast of 𝛼 is: 

𝐶(𝛼) =
�Prj𝑅u(𝐻B)k − Prj𝑅u(𝐻DB)k�
Prj𝑅u(𝐻B)k + Prj𝑅u(𝐻DB)k

.																																																(4) 

The numerator captures the extent to which the representation favors one hypothesis over the other, 

the denominator captures diminishing sensitivity, as in BGS (2012, 2013). To illustrate, when 

assessing (ℎ, ℎ)  vs (ℎ, 𝑡) , the contrast induced by the share of heads, 𝛼 = (0,0,1) , is given by 

|Pr(𝑠ℎ = 1) − Pr(𝑠ℎ = 0.5)|/(Pr(𝑠ℎ = 1) + Pr(𝑠ℎ = 0.5)) = 1/3 . The contrast induced by 

attention to individual flips, 𝛼 = (1,1,0) , is instead zero, |Pr(ℎ, ℎ) − Pr(ℎ, 𝑡)|/(Pr(ℎ, ℎ) +

Pr(ℎ, 𝑡)) = 0. Here contrast encourages attention to 𝑠ℎ. More generally, contrast is shaped by the 

objective parameters of the problem. In coin flips, it is shaped by the probability of a head and the 

sequence length 𝑛. In inference, it is shaped by the base rate and the likelihood. In our experiments, 

we manipulate contrast by changing statistics. 

Consider prominence next. In BGS (2022), as in Chetty et al (2009), an attribute, such as the 

price or sales tax, is more salient if it is more visible to the consumer. Analogously, in a statistical 

problem a feature is more prominent if the description of the problem brings it to the top of mind. 

There are two possible mechanisms for this.  First, some formal ingredients of the problem, such as 

the sampling process producing Ω and the hypotheses 𝐻& vs. 𝐻(, can be described in a way that makes 

a specific feature salient. In balls and urns, the composition of the urns could be described as “The 

color of a drawn ball matches 80% of the time the color of the urn (Green vs. Blue) it comes from”. 

This description of the sampling process is logically equivalent to that in Section 2, but it makes the 
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“match” feature more prominent. Similarly, describing the hypothesis as “Urn-A” vs “Urn-B” as in 

Section 2 makes the urn selection feature more prominent than describing them as: does the green 

ball “match” vs. “not” the color of the urn it comes from? Again, the two ways of describing 

hypotheses are logically identical, but the latter raises prominence of the match feature. 

A second source of prominence is the context in which the statistical problem is cast, which 

causes—due to past experiences—certain features to be more salient than others and hence top of 

mind. In consumer choice, the role of past experiences is well established. For instance, demand for 

insurance increases after floods because the recent experience brings this risk top of mind (Slovic, 

Kunreuther, and White 1974). In a statistical problem, describing the same inference problem in a 

courtroom context, as in taxicabs, can cause the witness statement to be salient due to many direct or 

fictional experiences a participant remembers with high relevance of witness reports in court.  

In our experiments we manipulate prominence by changing the description of the problem in 

ways that intuitively make certain features prominent, as we just discussed. We do not measure 

prominence externally, which may be possible to do using text analysis. To validate our prominence 

manipulations, we measure attention to features and correlate it with biases. Our model makes strong 

predictions for that correlation. To derive these predictions, we introduce prominence as a latent 

variable that affects attention 𝛼. The prominence of feature 𝑗 is a scalar 𝑃_, and the prominence of 

profile 𝛼, denoted 𝑃(𝛼), is formalized as the average prominence of its features: 

𝑃(𝛼) =
∑ 𝛼_𝑃__

∑ 𝛼__
.																																																																						(5) 

Equation (5) captures, in the simplest way, two important aspects of attention.  First, making 

a feature more prominent, increasing 𝑃_, increases the salience of all representations using this feature, 

also in conjunction with others, i.e. of all profiles having 𝛼_ = 1. Second, there is interference: if a 

DM attends to feature 𝑗′, increasing the prominence of feature 𝑗 is less impactful, because the DM’s 

attention is divided. Interference creates sparsity. We see the duck or the rabbit, but not both at once. 

The salience of attention profile 𝛼 increases in its contrast 𝐶(𝛼), prominence 𝑃(𝛼), and also 

in an individual specific extreme value term 𝜖u. This term captures stable individual differences in 

prominence due to different past experiences, as well as transient fluctuations in attention. To simplify, 

we formalize salience as additive in these terms.  

Salience and Attention. The DM uses attention profile 𝛼 ∈ 𝐴N that maximizes total salience: 

𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥u�∈b		𝐶(𝛼�) + 𝑃(𝛼�) + 𝜖u� .																																																(6) 

The term 𝜖u�  captures an individual level component of salience, yielding a multinomial distribution 

of attention and, using Tasks 1-3, a distribution of judgments. Within a treatment, attention and biases 

should be correlated at the individual level, due to variation of 𝜖u�  across people. Second, and critically, 
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attention and biases should be correlated across treatments: an increase in the salience of a feature 

should increase the share of people attending to it and making the associated judgment. In our 

experiments we test both predictions. For simplicity, in Sections 4 and 5 we assume that the attention 

limit is not binding: 𝐾 → ∞. We study the interaction of 𝐾 with salience in Section 6.2. 

 

3.4 Applying the Model 

To apply our model, the analyst must specify and measure two objects: features and attention. 

Some features are given by the statistics of the problem: the 50:50 outcomes of individual coin flips, 

the base rate of urn selection and likelihood of drawing a color in inference. Ancillary features need 

not be explicitly mentioned. They capture broader properties of events, in our case the similarity of 

an event to its data generating process, motivated by representativeness (Kahneman and Tversky 

1972). In more complex problems, many ancillary features may shape beliefs, just like many non-

hedonic yet salient features, such as advertising and broader context, shape consumer choice. These 

features can be empirically discovered by asking people for a rationale for their choices, by using text 

analysis or algorithms.4  Specifying/discovering features is the key first step.  

Once some explanatory features are identified, the model can be tested by studying how 

beliefs, captured by the estimate Pr(𝐻B; 𝛼), and measured attention 𝛼 jointly shift when one feature 

becomes more salient. There is no universally accepted best practice in measuring attention, but 

several approaches are available. Eye tracking (Reutskaja et al 2011) is often used to capture visual 

attention, but for our purposes we need to measure a more semantic kind of attention: the reliance on 

a feature when solving a problem. We offer three approaches to such measurement, each outlined in 

our pre-registration. First, after participants solve the statistical problem, we ask them, “Could you 

describe to us in your own words how you came up with your answer to the previous question?” We 

then use a language model to code these responses according to whether the participant appeared to 

be paying attention to specific features (see the Appendix for details). Second, after the free-response, 

a multiple-choice question asks participants to select from a list the features they attended to.  Third, 

we ask respondents to rate the similarity between events and infer attention from these ratings. The 

connection between similarity and attention to features is well established (e.g., Tversky and Gati 

                                                
4 Kleinberg, Liang, and Mullainathan (2017) use algorithms to detect predictable patterns people use when producing 
random looking sequences, which can help identify features of the data that people associate with randomness. In a field 
setting, Kleinberg et al (2018) find that judges underperform algorithms in identifying defendants who will commit crime 
on bail, and tend to be more lenient if the defendant is well groomed (Ludwig and Mullainathan 2023). This feature was 
discovered via machine learning, rather than specified by the analyst ex ante.  
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1982, Nosofsky 1988): people judge two objects to be more similar when they attend to features the 

two objects share.5 We then assess whether different measures yield comparable results. 

In sum, to apply our model to a general setting, one needs to specify a) the key features of the 

problem, and b) how partial attention to them maps to beliefs Pr(𝐻B; 𝛼). When this is done, the 

predictions of Equation (6) can be tested by examining the individual level correlation between 

attention and behaviour (multimodality), and the joint aggregate shifts in these measures (instability). 

In Sections 4 and 5, we showcase this method in the domains of coin flips and inference, respectively. 

 

4. Salience, Multimodality, and Instability in Gambler’s Fallacy  

We show that, applied to coin flips, our model yields the multimodality and instability in the 

distribution of estimates in Section 2 and new predictions, which we test, on how changes in the 

description of the problem affects measured attention to features and the GF. 

The Problem and its Features. Here Ω ≡ {ℎ, 𝑡}Z, where 𝑛 is the number of flips.  A sequence 

𝜔  has 𝑛  statistical features, each corresponding to individual flips 𝑓B = ℎB, 𝑡B  for 𝑖 ≤ 𝑛 , and the 

ancillary feature 𝑓Zl& = 𝑠ℎ, which is the share of heads in 𝜔. The DM assesses the relative likelihood 

of sequences 𝐻& vs. 𝐻(, where the former is unbalanced (𝑠ℎ = 1), and the latter is balanced (𝑠ℎ =

0.5). Each hypothesis-sequence 𝜔 has its feature vector  𝑓(𝜔) = (𝑓&, … , 𝑓Z, 𝑠ℎ). 

Attention and Representation. A DM attending to all statistical features, individual flips, while 

ignoring the share of heads, 𝛼Z = (1,1, . . ,0) , represents the generic hypothesis by 𝑅u�(𝐻B) =

(𝑓&, … , 𝑓Z, 𝜑). This DM behaves rationally: by Equation (2) she simulates Pr �𝑅u�(𝐻B)� = (0.5)Z, 

which is identical across hypotheses, yielding after normalization the correct estimate Pr(𝐻&|𝛼Z) =

0.5. The rational estimate is also reached by a DM only attending to 𝑟 < 𝑛 flips, who simulates both 

hypotheses as Pr �𝑅u�(𝐻B)� = (0.5)�. By contrast, a DM attending only to the share of heads, 𝛼�,Z =

(0,…0,1), represents hypotheses as 𝑅u�,�(𝐻B) = (𝜑,… , 𝜑, 𝑠ℎ). By (2) she simulates them by the 

probability of its share of heads, Pr(𝑠ℎ), which causes her to underestimate  𝐻& and commit the GF.    

Endogenous Attention and Estimates. To determine the distribution of attention and estimates 

in an experiment, we must describe the attention profile of different DMs. Denote by 𝑃 the scalar 

                                                
5 In a classic example, Tversky (1977) showed that Austria was deemed similar to Hungary when geography is salient 
and hence attended to, but similar to Sweden when political alignment is salient and hence attended to. Formally, under 
attention profile 𝛼 the similarity between two events 𝜔& and 𝜔( could be written as: 

𝑆(𝜔&, 𝜔(; 𝛼) = 1 −~ 𝑤_𝑑_
_

, 

where 𝑑_  takes value 1 if the two events differ along feature 𝑗 = 1,… , 𝐹  and zero otherwise, while 𝑤_ = 𝛼_/∑ 𝛼II  
captures the DM’s attention to feature 𝑗 relative to the other features she attends to.   
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prominence of each individual flip relative to 𝑠ℎ. Denote by 𝐶j𝛼�,Zk the contrast of 𝛼�,Z , which 

depends on length 𝑛. Proposition 2 characterizes multimodality, Corollary 3 instability.  

Proposition 2 A share 𝜇j𝛼�,Zk of DMs attends to the share of heads and for 𝑛 > 1 commits the 

Gambler’s Fallacy, estimating the relative probability of the unbalanced sequence as: 

Prj𝐻&; 𝛼�,Zk =
1

1 +	�
𝑛
𝑛/2�

< 0.5.																																																		(7) 

The remaining DMs attend to a subset of flips and answer 50: 50.  

There are two modes for beliefs: one at 50% and another in Equation (7) below 50%.6  The 

key new prediction is their connection to measured attention: a DM committing the GF should also 

be more likely to attend to the share of heads. The model also predicts that bias and attention should 

change when the salience of the same feature changes. 
 

Corollary 3 The share 𝜇j𝛼�,Zk of DMs who attend to the share of heads and commit the GF increases 

in sequence length 𝑛 and decreases in the prominence of individual flips 𝑃. 
 

As 𝑛  increases, more people commit the GF because the contrast-based salience of 𝑠ℎ , 

𝐶j𝛼�,Zk = ��
𝑛
𝑛/2� − 1  / ��

𝑛
𝑛/2� + 1 , rises with 𝑛. When comparing two long sequences such as 

ℎ𝑡ℎ𝑡𝑡ℎ and ℎℎℎℎℎℎ, the DM cannot avoid thinking how much harder it is, with a fair coin, to get a 

long streak of heads compared to a 50: 50 outcome. The share of heads sticks out as a salient 

representation, and for many DMs replaces the original question. Thus, our model explains the fall in 

the 50:50 mode when moving from Panel A to Panel B in Figure 1: it is caused by the higher contrast 

of the share of heads when 𝑛 = 6 compared to 𝑛 = 2.7  Corollary 3 also predicts a prominence effect: 

increasing the salience of individual flips in the problem’s description causes them to be top of mind, 

draws attention away from 𝑠ℎ, in turn reducing the incidence of the GF. 

These predictions distinguish our model from existing accounts of biases in i.i.d. draws. In 

these models, bias is due to the use of incorrect sampling models, such as draws without replacement 

(Rabin 2002, Rabin and Vayanos 2010). These models do not predict a link between bias and attention 

to an irrelevant feature of hypotheses: hypotheses are correctly represented and estimated according 

to a stable but incorrect model. A fortiori, these models do not predict the instability in the share of 

people who attend to an irrelevant feature and commit the GF. We next test these predictions. 

                                                
6 In Section 6 we show that the attention limit qualifies this result: when 𝐾 < ∞ and 𝑛 > 2 several modes of the kind in 
(7) arise, some of which exhibit a more severe form of the GF than others. 
7 In our model the severity of the GF increases with 𝑛 also because, conditional on attending to the share of heads, the 
faulty equivalence class of balanced sequences gets larger, so bias in (7) increases.  
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Coin Flip Experiments. Table 1 provides a summary of the treatments. In all treatments, 

individuals are asked to judge the relative likelihood of a given unbalanced and balanced sequence 

and also report what features of the data they attended to. In treatments 𝑇( and 𝑇¢, which we showed 

in Section 2, the two sequences are given by 𝐻& = ℎℎ  vs. 𝐻( = 𝑡ℎ  and 𝐻& = ℎℎℎℎℎℎ  vs. 𝐻( =

𝑡ℎ𝑡ℎℎ𝑡 respectively. We also introduce two new treatments to study the role of prominence. In 𝑇�£¤¤, 

subjects are asked to estimate 𝐻& = ℎℎℎℎℎℎ vs. 𝐻( = ℎℎℎℎℎ𝑡, where the hypotheses are described 

by full sequences, as in 𝑇( and 𝑇¢. In 𝑇¤¥�^, we instead tell subjects, “the first five flips were ℎℎℎℎℎ. 

What is the probability that the final flip was heads or tails?” 𝑇¤¥�^ is logically equivalent to 𝑇�£¤¤, but 

the description of hypotheses makes the last flip more prominent. 

After eliciting participants’ estimates, we independently measure free-response and direct-

elicitation proxies for attention to features. The features include: 1) the share of heads, 2) whether the 

final flip is heads or tails, and 3) anything else. For a subset of participants, later in the survey we also 

elicit perceived similarity between the two judged sequences. We allow “similarity” to be fully 

subjective, without encouraging participants to consider any particular feature. Similarity judgments 

should then reflect attention: if the DM attends to the share of heads rather than to individual flips, 

the same two sequences should be less similar because, while they have several flips in common they 

sharply differ along 𝑠ℎ.8 We thus interpret low similarity as a proxy for attention to the share of heads.  

 Across the four treatments, we test two sets of predictions. First, as predicted by Proposition 

2, there should be an individual level association between beliefs and attention within each treatment: 

a participant’s attention to the ancillary feature 𝑠ℎ should be positively correlated with her tendency 

to commit GF. Second, across treatments, there should be instability in biases driven by contrast and 

prominence, as predicted by Corollary 3. The share of participants committing GF and those attending 

to the share of heads should be greater for longer sequences (𝑇( vs 𝑇¢) and smaller when individual 

flips become more prominent (𝑇�£¤¤ vs 𝑇¤¥�^).  
  

Treatment N Summary Purpose 

𝑇( 434 Balanced vs unbalanced 2-flip sequences Compare to 𝑇¢ 

    

𝑇¢ 405 Balanced vs unbalanced 6-flip sequences 
Increase contrast of share 

compared to 𝑇( 

    

𝑇�£¤¤ 1038 
Ask about full 6-flip sequences  

𝐻& = ℎℎℎℎℎ𝑡 vs 𝐻( = ℎℎℎℎℎℎ 
Compare to 𝑇¤¥�^ 

                                                
8 Using the similarity function in footnote 5, if the DM attends to all individual flips the similarity between the balanced 
and the unbalanced sequence is 0.5, if she attends to the share of heads it is zero. 
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𝑇¤¥�^ 978 
Ask about final flip. in 6-flip sequences 

i.e.. P(ℎ	vs	𝑡	|	ℎℎℎℎℎ) 

Increase prominence of final flip 

compared to 𝑇�£¤¤ (and thereby 

reduce attention to share heads 

    

Table 1. Treatments manipulating salience in the gambler’s fallacy problem. 

 

Multimodality in Attention and Estimates. First, we document multimodality in attention and 

probability estimates within each treatment. Pooling across all treatments and adding treatment fixed 

effects, we run OLS regressions of a respondent-level indicator for whether she commits the GF (i.e., 

reports a belief of less than 50 out of 100 for the unbalanced sequence) on indicators for directly 

elicited and free-response attention to share of heads (Table 2, Column 1), on the perceived similarity 

between sequences (Column 2), and on all three attention proxies (Column 3). 

 

 
Dependent Variable: Commit 

Gambler’s Fallacy 

 (1) (2) (3) 

Directly Elicited Attention to Share 0.169***  0.180*** 

 (0.017)  (0.032) 

Free-Response Attention to Share 0.082***  0.091*** 

 (0.017)  (0.032) 

Similarity between Judged Sequences  -0.062*** -0.066*** 

  (0.021) (0.020) 

Treatment Fes Yes Yes Yes 

N 2855 846 846 

𝑅( 0.110 0.088 0.134 

Table 2. Correlating measures of attention with the Gambler’s Fallacy. Table shows OLS regressions where 
the dependent variable is an indicator whether the participant judged the unbalanced sequence to be less likely 
than the balanced sequence. Similarity measure is normalized (within sequence lengths) to have a mean of 0 
and standard deviation of 1. *** indicates statistical significance at the 1% level. 
 
 

Consistent with our model, a subject attending to the share of heads is more likely to commit 

GF (Column 1), and a subject perceiving the same two sequences as more similar, which indicates 

less attention to 𝑠ℎ, is less likely to commit GF (Column 2). Each measure of attention has predictive 

power conditional on the others (Column 3).  These findings support the notion that bias arises due 

to an erroneous representation of hypotheses caused by a salient yet irrelevant feature.   
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Instability in Beliefs and Attention. Consider instability next. In Figure 1, increasing sequence length 

from 𝑛 = 2 to 𝑛 = 6 increases the incidence of GF. Figure 3 compares beliefs for 𝑇¤¥�^ and 𝑇�£¤¤: we 

find that the mean estimate of 𝐻& is significantly higher (49.3 vs 44.4 out of 100, 𝑝	 < 	0.01) for 

𝑇¤¥�^ than 𝑇�£¤¤, driven also by an increase in the mode at 50: 50 (68% vs 54%	of participants, 𝑝 <

0.01). Consistent with Corollary 3, changing the description of hypotheses in a way that renders 

individual flips salient reduces the share of people committing the GF. This is consistent with the idea 

that instability in bias is generated by instability in the “bottom up” representation of hypotheses.  

 
Figure 3. Making the last flip more prominent reduces the Gambler’s Fallacy. This figure reports the distribution 
of estimated Pr(ℎℎℎℎℎℎ	|	ℎℎℎℎℎ𝑡	𝑜𝑟	ℎℎℎℎℎℎ). Answers closer to 0 indicate higher probability of the balanced sequence.  

 
 

 
Figure 4. Treatment effects in Gambler’s Fallacy and attention. The x-axis is the fraction of participants in 
each treatment that attend to share heads according to our direct-elicitation (Panel A) and free-response (Panel 
B) attention measures. The y-axis is the fraction of participants across treatments who judge the balanced 
sequence to be more likely than the unbalanced sequence. 
 

We next test whether treatment effects in beliefs correspond to changes in attention, which 

proxies for the changing salience of different features. Figure 4 plots the fraction of subjects in each 
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treatment who commit the GF along with that of attending to 𝑠ℎ according to the direct-elicitation 

(Panel A) and the free-response (Panel B) proxies. We find a positive correlation in both panels. The 

correlation is only significant for the free-response measure, since direct elicitation fails to detect 

greater attention to 𝑠ℎ in 𝑇¢ than in 𝑇( (but it correctly detects greater attention to 𝑠ℎ in 𝑇�£¤¤ than in 

𝑇¤¥�^ ). 9  Reassuringly, the free response measure, based on subjects’ reasoning, detects model-

consistent instability in attention across all treatments. As predicted by our model, instability the GF 

is closely associated with shifting bottom-up attention to an irrelevant feature, the share of heads. 

We conclude by exploring the connection between attention to the share of heads and 

similarity judgments. At the end of the survey, all participants answered two additional modules. In 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦Z, participants rated the unconditional probability of multiple randomly generated 𝑛-flip 

sequences. In 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦Z, they rated the similarity of pairs of 𝑛-flip sequences. The sequence length 

𝑛 was randomized across participants to be either 2, 4, or 6. For 𝑛 = 2 (𝑛 = 4), participants rated all 

four (sixteen) sequences and two (eight) non-overlapping pairs. For 𝑛 = 6, they rated 16 randomly 

selected sequences and non-overlapping pairs (we correct for the fact that some sequences were more 

likely to be selected). The similarity measure in Table 1 came from answers in 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦Z. 

Figure 5 plots the average stated frequency of a target sequence against its average judged 

similarity to other sequences, for 𝑛 = 2 (Panel A) and 𝑛 = 6 (Panel B) (see the appendix for the 

corresponding figure for 𝑛 = 4), with lighter dots indicating more balanced target sequences. In both 

panels, more balanced targets are perceived to be more similar to the average sequence than 

unbalanced ones. That is, a target with 0.5 share of heads is perceived as similar to the many other 

balanced sequences, despite the differences in individual flips. This pattern closely tracks the GF: 

there is a clear positive correlation between judged frequency of a sequence and its average similarity 

to other sequences (p < 0.05 for both panels). Our mechanism predicts this relationship: the hypothesis 

of a balanced sequence is misrepresented, it gets confused with many other balanced sequences to 

which is similar, boosting its estimated frequency. Furthermore, the share of heads appears to be the 

feature that drives this pattern: controlling for the share of heads removes any significant correlation 

between similarity and frequency (see Appendix B). 

                                                
9 In direct elicitation, attention to 𝑠ℎ is not significantly different across 𝑇( and 𝑇¢ (and in fact goes slightly in the wrong 
direction, 65.7% vs 62.0%, p = 0.27). One explanation is that when 𝑛 = 2 even a respondent focusing on individual flips 
has in mind that (ℎ, 𝑡) is balanced. In the free response measure attention to 𝑠ℎ is 46.4% in 𝑇¢ and 40.8% in 𝑇( (p=0.10). 
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Figure 5. Average judged similarity to other sequences predicts frequency judgments. Lighter dots indicate 
more balanced sequences, indicating that share heads drives both measures. Frequency judgments are expected 
number of sequences out of 100 (Panel A) or 1000 (Panel B). 
 

Attention-driven representations explain why similarity and probability go hand in hand.  In 

their analysis of human inference, Kahneman and Tversky (1972) famously showed that the perceived 

similarity between the description of a person called Tom and a librarian correlates with the judged 

probability that Tom works as a librarian, causing neglect of the low base rate of this occupation. Our 

model suggests that, when thinking about Tom, people attend to his described features – “a meek and 

tidy soul” – and simulate a librarian, neglecting many non-salient features that may cause Tom to 

land in a different job. Similarity and probability judgments are driven by partial attention to features. 

 

5. Salience, Multimodality and Instability in Inference 

We show that selective bottom-up attention to certain relevant or irrelevant features accounts 

for the coexistence of under and over-reaction in inference and for their instability documented in 

Figure 2, creating a systematic association between measured attention and beliefs. 

The Problem and its Features. In balls and urns, Ω ≡ {(𝐴, 𝑔), (𝐴, 𝑏), (𝐵, 𝑔), (𝐵, 𝑏)} , the 

statistical features are 𝑓& = “select urn 𝑈” (𝑈 = 𝐴, 𝐵) and 𝑓( = “draw color 𝑐 from urn 𝑈” (𝑐|𝑈, 𝑐 =

𝑔, 𝑏, 𝑈 = 𝐴, 𝐵). As discussed in Section 3, we also define the ancillary “match” feature 𝑚, which is 

1 for (𝐴, 𝑔) and (𝐵, 𝑏) and zero otherwise. The DM is asked to estimate the probability of urn 𝐴 vs 

𝐵 after a green signal. The urn-𝑈 hypothesis, 𝐻 = (𝑈, 𝑔), has feature vector (𝑈, 𝑐|𝑈,𝑚), where 𝑚 

is 1 for 𝐻b and zero for 𝐻c. As in Section 2, urn 𝐴 is less likely to be selected and mostly green (𝜋b <

𝜋c, 𝜋d|b = 𝜋e|c = 𝑞 > 0.5), and the Bayesian answer is 𝛽 > 0.5. 

Attention and Representation. We consider five attention profiles 𝛼 = j𝛼, 𝛼°|, 𝛼±k. First, 

a DM attending to both statistical features, 𝛼² = (1,1,0), represents the generic hypothesis 𝐻 as first 

selecting the urn and next drawing a green ball from it, 𝑅u³(𝐻) = (𝑈, 𝑔|𝑈, 𝜑).  This DM simulates 
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the hypothesis as 𝜋d|𝜋  and obtains, after normalization, the Bayesian answer, Prj𝐻b; 𝛼²k = 𝛽. 

Bayes’ rule is recovered with full attention to relevant features. 

Under the other four attention profiles, the DM is biased. A DM attending to urn selection and 

neglecting the drawing of a color, 𝛼c� = (1,0,0), represents the problem as “what is the probability 

that a ball is drawn from 𝐴  vs 𝐵 ?”, formally 𝑅u´µ(𝐻) = (𝑈, 𝜑, 𝜑) . This DM simulates each 

hypothesis using its base rate, which yields the answer Pr(𝐻b; 𝛼c�) = 𝜋b. 

A DM attending only to drawing a green ball from 𝑈, 𝛼° = (0,1,0), represents the problem 

as “what is the probability that a ball drawn from A is green compared to one drawn from 𝐵?”, 

formally 𝑅u¶(𝐻) = (𝜑, 𝑐|𝑈, 𝜑). This DM simulates 𝐻 using its likelihood 𝜋d|, yielding the final 

estimate Pr(𝐻b; 𝛼°) = 𝑞. A DM attending to the ancillary “match” feature, 𝛼± = (0,01), represents 

the problem as “what is the probability that a ball matches the urn’s color?”, 𝑅u·(𝐻) = (𝜑, 𝜑,𝑚). 

This DM simulates 𝐻b as Pr(𝑚 = 1) = 𝜋d|b𝜋b + 𝜋e|c𝜋c, which also yields Pr(𝐻b; 𝛼±) = 𝑞.  

In the last two cases, bias takes the form of the DM anchoring to only one statistic in the 

problem, the base rate or the likelihood. Finally, DMs who attend to none of the features 𝛼¸ = (0,0,0) 

represent the problem as “what is the probability that one hypothesis vs another is true?”.  These DMs 

think “a green ball could come from either urn” and report 50: 50.10 This bias does not reflect a 

sophisticated reaction to epistemic uncertainty, but rather the fact that no feature is salient to the DM. 

When a feature becomes salient, anchoring to 50:50 should drop, as we find in Figure 2. 

Endogenous Attention and Estimates. Proposition 4 collects the results above by allowing for 

individual level variation in attention in Equation (6). 

Proposition 4 A share 𝜇j𝛼²k	of DMs attends to both statistical features, 𝛼², and gives the correct 

answer, Prj𝐻b; 𝛼²k = 𝛽. A share 𝜇(𝛼c�)	of DMs attends only to urn selection,	𝛼c�, anchoring to 

the base rate Pr(𝐻b; 𝛼c�) = 𝜋b. Shares 𝜇(𝛼°) and 𝜇(𝛼±) of DMs attend to the color of the ball or 

to “match”,	𝛼°  and 𝛼±  respectively, and anchor to the likelihood Pr(𝐻b; 𝛼) = 𝑞. The remaining 

DMs neglect all features and answer Pr(𝐻b; 𝛼¸) = 0.5. 

Due to individual-level differences in attention, the model predicts, within an experimental 

treatment, a systematic relationship between measured attention to features and the probability 

estimate which accounts for the multi-modality observed in Figure 2. As in coin flips, the model then 

also predicts instability. Denote by 𝑃¤ the scalar prominence of feature 𝑙 = 𝑈, 𝑐|𝑈,𝑚. 
 

                                                
10 Here, no attention to features can also capture the possibility that the DM’s attention jumps between “urn selection” 
and “color of ball”, which favor different hypotheses, without settling on either. 
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Corollary 5 The ratio [𝜇(𝛼°) + 𝜇(𝛼±)]/𝜇(𝛼c�), which describes the share of DMs attending to 

signal or match vs. urn selection, as well as the share of answers at the likelihood vs. the base rate, 

increases with: 1) Contrast of color, i.e. the likelihood 𝑞, and 2) Prominence of color, 𝑃d|, or of 

match, 𝑃±. The relative share of Bayesian answers 𝜇j𝛼²k/𝜇(𝛼c�), is insensitive to 𝑃±.   
 

Due to contrast, making the signal more informative boosts attention it gets and the share of 

people anchoring to the likelihood (the opposite occurs if the base rate becomes more extreme). Due 

to prominence, purely contextual changes do the same, jointly increasing attention to a feature and 

anchoring to its associated statistic (the likelihood) at the expense of other features. 

Corollary 5 offers an explanation for the instability in Figure 2: features of the likelihood are 

more prominent in taxicabs than in balls and urns, relative to the base rate. Consider the description 

of the sampling process.  In balls and urns, the likelihoods are described separately as the composition 

of urns A and B, making the urns prominent. In taxicabs, the likelihood is described in terms of the 

probability the signal matches the hypothesis: “a test reveals that the witness can correctly identify 

each cab color with probability 80%”. This raises the prominence of the “match” feature. Hypotheses 

are also described differently: in balls-and-urns the hypotheses are framed as “A” vs “B”, making urn 

selection prominent, in taxicabs they are framed as whether “the errant cab is indeed Green vs Blue 

(as the witness claimed)”, raising the prominence of the match. Lastly, the courtroom context of 

taxicabs may also increase the prominence of the signal, due to personal or fictional past experiences 

of relevant witness reports in court.  All of these irrelevant changes may shape bottom-up attention 

and explain the instability of biases. Critically, our model specifies how these description changes 

should be reflected in changes in attention to specific features, which we test in our experiments.   

The connection between bias and attention in Proposition 4 and Corollary 5, leading to the 

instability of biases in statistically identical problems as in moving from balls and urns to taxicabs, 

does not arise in standard models of biased inference. In these models, people apply the Bayes’ rule 

in a distorted way but: i) they use both the base rate and the likelihood, and ii) distortions are due to 

stable weights (Grether 1980, Enke and Graeber 2023).11 Due to i), people should pay attention to 

both statistics, at least to some extent, but not to the irrelevant “match” feature capturing the similarity 

between the signal and its generator. Due to ii), attention and bias should not change when the 

problem is reframed. Consider instability in detail.  With respect to contrast, Corollary 5 predicts that 

making one relevant piece of information more extreme (the likelihood) interferes with attention to, 

                                                
11 In Enke and Graeber (2023) people perceive likelihoods imprecisely, which causes: i) a dispersion of estimates, and ii) 
a shrinkage of posteriors toward the prior which gives an average under-reaction bias. In our data, we see some estimates 
that are not anchored to the base rate or likelihood or to 50:50, but we do not see the concentration around the middle that 
is the hallmark of under-reaction in that model. 



25 
 

and hence the use of, another relevant piece of information (the base rate). In standard models, making 

one statistic more extreme does not inhibit the use of the other. With respect to prominence, Corollary 

5 predicts that normatively irrelevant changes in description should shape attention to specific 

features and judgments, which does not happen in standard models, which postulate that attention is 

focused on the (unchanged) relevant features. We now test Proposition 4 and Corollary 5. 

Inference Experiments. Table 3 provides a summary of the treatments. 𝑇c  and 𝑇¹  are our 

baseline balls-and-urns and cabs treatment, which we described in Section 2. To test the role of 

contrast and prominence in beliefs and attention, we add 4 new treatments. 𝑇º» and 𝑇¼» test the role 

of contrast: in the “less extreme” likelihood treatment, 𝑇º», the base rate is 0.15 and the likelihood is 

0.70, while in the “more extreme” treatment, 𝑇¼», the base rate is again 0.15 but the likelihood is 

increased to 0.90. The wording of 𝑇º» and 𝑇¼» are otherwise identical to that of 𝑇c.  

𝑇| and 𝑇 test the role of prominence, which we hypothesized to play a role in the instability 

across 𝑇c and 𝑇¹: while the underlying statistical problem remains the same as that of 𝑇c and 𝑇¹ , the 

treatments differ in how the hypotheses and sampling processes are described. In treatment 𝑇|, we 

modify 𝑇 to increase the prominence of match. We label the urns by their modal color, “Green-urn” 

vs. “Blue-urn,” and describe the likelihood (80%) as the probability a drawn ball “matches” the color 

of the urn.12 The rewording thus increases the prominence of the “match” and the “color of ball” 

features, which we also verify experimentally. In treatment 𝑇, we conversely change 𝑇¹  to make 

features of the underlying signal less prominent. We do so by modifying: i) the description of the 

witness to “the court found that the witness was very unreliable: he was able to identify each color 

correctly only about 80% of the time…”, and ii) the description of the base rate to “the large majority 

of cabs in the city—75% to be exact—are Blue, while the remaining 25% are Green.” These changes 

decrease the perceived relevance of the report and increase that of the base rate by relying on past 

experience (i.e., very unreliable witnesses are irrelevant in court), which affect attention and biases 

even though the statistical informativeness of the signal is unchanged. 

To measure attention, in each treatment we ask participants to justify their probability 

estimates in free form and then ask them to choose which features they attended to from a list that in 

balls and urns includes 1) the probability the computer would choose Jar A vs Jar B, 2) whether the 

drawn ball was green or blue, 3) whether the drawn ball matched many balls in the jar it came from, 

and 4) none of the above. For taxicabs, analogous options appeared about the cab companies and the 

                                                
12 The question includes the following text: “Imagine two jars filled with marbles, the “Blue Jar” and the “Green Jar”. 
Each jar contains some blue marbles and some green marbles. A computer randomly chooses a jar and draws a marble 
from it. With probability 25% it chooses the Green Jar, and with probability 75% it chooses the Blue Jar. The computer 
then records the color of the jar and of the marble. Finally, it puts the marble back and shakes the jar to shuffle its contents. 
After repeating this procedure many times, we observed the following. For each jar, the marble matched the color of the 
jar it came from about 80% of the time. About 20% of the time, it was the opposite color.” 
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witness report.13 The free response measure of attention is again based on asking chat GPT to choose 

which answer in 1)-4) the subject likely chose.  

Across the six treatments, we again test two sets of predictions. First, as predicted by 

Proposition 4, there should be correlated multimodality in beliefs and attention within each treatment: 

reported attention to urns, color, and match should align with which mode the DM anchors to. Second, 

comparing across treatments, there should be correlated instability in biases and attention driven by 

contrast and prominence, as predicted by Corollary 5. A rise the contrast of the likelihood (𝑇º» vs 

𝑇¼») or the prominence of match (𝑇| vs 𝑇c) should boost both attention to the signal and anchoring 

to the likelihood. Conversely, lowering the prominence of the signal (𝑇 vs 𝑇¹) should shift attention 

away from the signal and increase anchoring to base rates. Finally, we test whether when moving 

from balls and urns (𝑇c) to taxicabs (𝑇¹), there is greater attention to match and color.  
 

Treatment 
Base 

Rate 
Likelihood N Summary Purpose 

𝑇c 0.25 0.80 480 Balls and urns: baseline Compare to 𝑇| 

      

𝑇¹  0.25 0.80 199 Taxicabs: baseline Compare to 𝑇 

      

𝑇º» 0.15 0.70 497 
Balls and urns: less 

extreme likelihood 
Compare to 𝑇¼» 

      

𝑇¼» 0.15 0.90 487 
Balls and urns: more 

extreme likelihood 

Increase contrast of likelihood 

compared to 𝑇º» 

      

𝑇| 0.25 0.80 202 
Balls and urns: highlight 

match 

Increase prominence of match 

compared to 𝑇c 

      

𝑇 0.25 0.80 196 
Taxicabs: undermine 

witness’s report 

Decrease (increase) prominence 

of report/match (company) 

compared to 𝑇¹  

Table 3. Treatments manipulating salience in inference problems. 
 

                                                
13 When deriving the model’s predictions, we assume the DM either attends only to (a subset of) the statistical features or 
only to the ancillary features. Here we assume that statistical features take precedence when participants report paying 
attention to both statistical features and the ancillary feature. That is, we treat such participants as if they only paid 
attention to the statistical features they report attending to. In practice, this choice does not affect our main results, as by 
far the most common such attention profile (28% of participants) involves paying attention to both the signal and the 
match feature (recall that attending to either feature in our model would yield the same answer to the inference problem). 
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Multimodality in Attention and Estimates. We test Proposition 4 by connecting within each 

treatment multimodality in attention and judgments. The large majority of answers are anchored to 

one of the modes in Proposition 4 (ranging from 68.2% to 78.2% of answers depending on treatment). 

Pooling all inference treatments in Table 4, we run OLS regressions of an indicator for whether 

participants anchor at a given mode (base rate, likelihood, the Bayesian answer, and 50-50) on 

indicators for measures of attention to its associated feature profile as well as treatment fixed effects.  
 

 (1) (2) (3) (4) 

 Base Rate Likelihood Bayes 50% 

Directly Elicited Attention  

Only Urn 0.418***    

 (0.022)    

Only Color/Match  0.408***   

  (0.023)   

Only Urn and Color   0.128***  

   (0.026)  

Nothing    0.166*** 

    (0.041) 

Free-Response Attention 

Only Urn 0.169***    

 (0.022)    

Only Color/Match  0.121***   

  (0.027)   

Only Urn and Color   0.110***  

   (0.026)  

Nothing    0.054*** 

    (0.011) 

     

Treatment Fes Yes Yes Yes Yes 

N 2061 2061 2061 2061 

R^2 0.296 0.256 0.069 0.052 

Table 4. Multimodality in attention and in estimates. The dependent variable is whether participants’ answers 
were the base rate (column 1), the likelihood (column 2), within 5 percentage points of the Bayesian answer 
(column 3), or 50-50 in the inference problem (column 4). All regressions include treatment fixed effects. 
Robust standard errors in parentheses. *** indicates statistical significance at the 1% level. 
 

Table 4 shows that measured attention profiles strongly predict estimates in a way consistent 

with Proposition 4.  For example, participants who report attending to only the urn feature are 41.8 
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percentage points more likely to anchor to the base rate.  Free-response attention to urn further 

increases that probability by 16.9 percentage points. Similar results hold for other modes.  

Furthermore, many people report paying attention to only one feature, which is either a statistic or 

the irrelevant match feature, which is then reflected in which statistics they use or neglect.  

Participants who pay attention to both features are more likely to make a correct judgment.   

One potential concern is that the link between reported attention and estimates comes from 

participants mechanically reporting features associated with their estimates.   This, however, does not 

explain why attention to ancillary features that are not associated with statistics, such as the share of 

heads or match in balls and urns, also predicts beliefs. Furthermore, we also elicit attention using free 

responses, which provide a more semantic and less mechanical description of how respondents 

thought about the problem. Table 4 shows that free responses have additional explanatory power 

beyond directly-elicited attention, suggesting that the correlation between attention and choice 

genuinely reflects the heterogeneity of how participants represent and solve the problem.    

 

Attention and Instability in Estimates We next show the effect of controlled manipulations of contrast 

and prominence. We first look at estimates, and then document shifts in attention as predicted by 

Corollary 5. Consider contrast first. The left graphs of Figure 6 compare the 𝑇º» vs. 𝑇¼» likelihood 

treatments. In Panel A, consistent with the model, increasing the likelihood from 0.7 in 𝑇º» to 0.9 in 

𝑇¼», increases the share anchored to the likelihood (from 15.5% to 22.8%, 𝑝 = 0.00), and decreases 

the share anchored to the base rate (from 32.8% to 23.4%, 𝑝 = 0.00), with little effect on the mass 

near (i.e., within 5 percentage points of) the Bayesian answer (from 12.1% to 9.2%, 𝑝 = 0.15).14 

Consequently, in Panel B the relative share of answers at the likelihood or Bayes vs. the base rate 

increases, consistent with Corollary 5. 

                                                
14 Changing the likelihood also changes the correct answer. In the Appendix, we describe a sharper test in which the 
contrast of the ball’s color increases in a spurious way, keeping the correct answer the same. To do so, we describe urns 
using absolute rather than relative frequencies (i.e, the number of blue vs green balls in each), so that across treatments 
urns have the same share of green and blue balls but different absolute numbers. Consistent with the model’s prediction, 
when the absolute difference in the number green balls increases, overreaction becomes more common. 
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Figure 6. A shows the distribution of beliefs about Pr(𝐴	|	𝑔) across inference treatments. Panel B shows treatment 
effects on the fraction of participants who anchor to the likelihood or Bayesian mode divided by the fraction who anchor 
to the base rate. Whiskers show +/- one standard error.  
 

In a broad class of Bayesian or quasi-Bayesian models people integrate the prior and the 

likelihood, with a greater revision in beliefs if the likelihood is higher. This is inconsistent with the 

role of contrast, which shows that – rather than integrating the base rate and the likelihood – people 

select one piece of information out of many. Consistent with our model, a higher likelihood causes a 

sharply bimodal adjustment of beliefs: a fraction of people shifts to anchoring to the likelihood, 

increasing neglect of the base rate, while a fraction of people continues to neglect the signal.15  

We next show that prominence reconciles the balls and urns and taxicabs formats.  The middle 

graphs of Figure 6 compare balls and urns when the match feature is made salient, 𝑇|, versus 𝑇c 

when it is not. Panel A shows that by describing the problem in terms of the match feature, 𝑇| 

dramatically increases the share of participants who anchor to the likelihood compared to standard 

balls and urns 𝑇c, in absolute terms (22.8% vs 15.5%, p<0.01) and relative to the base rate (2.2 vs 

                                                
15 Augenblick, Lazarus, and Thaler (2021) find that average beliefs underreact more for higher likelihoods. Their format 
is different from ours in several respects, but their finding about average beliefs is consistent with our model: it arises 
when the fraction of people anchoring to the likelihood increases slowly with the likelihood itself. This condition holds 
in our data: in terms of odds ratio, mean beliefs for 𝐴 are twice as high for 𝑇¼» than for 𝑇º», compared to the Bayesian 
benchmark in which it should be three times higher.  
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0.8, p<0.01), in line with Corollary 5. There is also a modest reduction in the relative prevalence of 

the Bayesian answer. Similarly, the right graphs of Figure 6 show that the “undermining the witness” 

treatment 𝑇 , designed to reduce the salience of the signal relative to the base rate, increases 

anchoring to the base rate and decreases anchoring to the likelihood: one feature crowds out another, 

despite the fact that statistics are unchanged.  

If these changes in bias are due to the changing salience of specific features, attention to these 

features should change accordingly, as in Corollary 5. To see if this is the case, Figure 7 plots on the 

x axis the share of subjects paying attention to color, match, or both, relative to those attending to urn 

selection. It plots on the y axis the share of participants anchoring at the corresponding likelihood and 

Bayes modes relative to those at the base rate. Panel A reports the results using the direct elicitation 

measure, Panel B using the free response measure. Both measures of attention are consistent with 

Corollary 5. Increasing the likelihood from 𝑇º»  to 𝑇¼»  increases attention to color or match and 

anchoring to the likelihood. Highlighting the match feature in 𝑇| strongly boosts attention to the same 

feature and anchoring to the likelihood compared to baseline balls and urns 𝑇c. Finally, undermining 

the witness in 𝑇 increases relative attention to the base rate and anchoring to it. 

These results underscore the centrality of shifting bottom up attention for understanding bias. 

The evidence does not support a stable mapping between objective probabilities and judgments, nor 

the primacy of a specific statistic (the base rate in under-reaction models, the likelihood in base rate 

neglect ones).  The evidence supports a mapping between attention and estimates, so that changes in 

salience can reconcile various biases and their instability. While “balls and urns problems” are worded 

in a way that makes the individual urns A and B more prominent, the statistically equivalent base rate 

neglect problems, e.g. cabs, are worded to highlight how the signal is similar to the underlying 

hypothesis. To understand which biases are dominant in a given setting, one needs to go beyond 

objective probabilities and independently measure attention and feature salience.16 

                                                
16 A distinction has also been drawn between balls and urns and “forecasting”, in which overreaction also prevails (Fan 
Liang, and Peng 2021). One explanation is that forecasting tasks (in which people must guess a future signal rather than 
the urn the current signal comes from) also make signals more salient compared to inference, fostering overreaction. 
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Figure 7. Treatment effects on beliefs and attention. The x-axis is the fraction of participants in each treatment 
attending to color and/or match (left figure within each panel) and to urn + color (right with each panel) divided 
by the fraction attending only to urn according to our direct-elicitation (Panel A) and free-response (Panel B) 
measures. The y-axis is the fraction of participants who anchor to the likelihood (left within each panel) or 
close to the Bayesian answer (right within each panel) divided by the fraction who anchor at the base rate. 
 
 

Model Estimation. We provide a structured test of our model by estimating it via maximum 

likelihood (details are in Appendix C). This allows us to infer the latent cognitive primitives of 

contrast and prominence from observed probability estimates and assess whether the pattern of 

attention predicted by the model matches measured attention out-of-sample. We test two additional 

restrictions. First, the treatment-level prominence of the ancillary feature (“match”) should be 

associated only with increases in measured attention to “match” itself, not to Bayes. Second, the 

estimates tell us how much of the shift in measured attention is due to contrast across all treatments. 

Due to the model’s multinomial structure, the share of estimates at a given mode 𝑒 = Bayes, 

Likelihood, relative to that at the base rate in Corollary 5 is given by: 

ln
𝜇(𝛼¿)
𝜇(𝛼c�)

= (𝑃¿ − 𝑃) + 𝛽	[𝐶(𝛼¿) − 𝐶(𝛼c�)]																																									(8) 

where (𝑃¿ − 𝑃) is the prominence of attention profile 𝛼¿, while the second term is its contrast, all 

relative to urn selection. 𝐶(𝛼) is pinned down by the statistics of the problem, but here we test 

whether 𝛽 > 0. The constant in (8) captures the relative prominence of 𝑒. Figure 8 plots on the x axis 

model-implied salience and on the y axis measured attention to the same feature profile.  
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Figure 8.  Measured vs revealed attention to features. The x-axis is the estimated salience of each attention 
profile (where we sum together the color and match salience estimate) relative to the estimated salience of urn. 
The y-axis is the share of participants who attend to the corresponding profile, as measured by our direct 
elicitation (Panel A) or free-response measure (Panel B). 

 

First, measured attention is positively correlated with model-implied salience. When beliefs 

move in a way consistent with an increase in the salience of the signal, match, or the Bayes profile, 

measured attention on these profiles also increases. Second, contrast matters: the coefficient on 

contrast is estimated as 𝛽 = 1.2, with a 95% bootstrap confidence interval of [0.55, 1.80].  Third, 

consistent with our model, the prominence of the “match” feature, estimated from beliefs data, is 

strongly correlated at the treatment level with the independently measured attention to “match”, but 

not to the measured attention to the Bayes profile (participants that report attending to both the color 

and the urn). For example, comparing 𝑇c to 𝑇|, attention to (only) the match feature increases from 

7.1% to 17.8% (p < 0.01), while attention to the Bayesian profile (urn + color) decreases from 22.1% 

to 4.0% (p<0.01). Consistent with interference, the salience of match also reduces attention to “only 

color” (12.3% vs 6.9%, p=0.02).  

 

6. Additional Implications of Bottom-up Attention  

We now derive and test additional implications of our approach. Section 6.1 shows that 

salience may cause the DM to neglect certain hypotheses. Section 6.2 shows that in complex problems, 

where the attention limit 𝐾 is binding, partial attention generates the insensitivity of judgments to 

sample size (Kahneman Tversky 1972) and to the weight of evidence (Griffin and Tversky 1992). 

 

6.1 Non-Salient Hypotheses: Confirmation Bias and the Gigerenzer-Hoffrage Critique 

Nickerson (1998) argues that the confirmation bias, the tendency to interpret data as overly 

supporting a hypothesis, is often due to the neglect of the alternative hypothesis. A hypochondriac 
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may overreact to mild symptoms by failing to imagine that the latter could also arise with good health. 

Bottom-up attention accounts for this phenomenon: one hypothesis is salient in the DM’s mind, and 

so is more easily simulated than its alternative. In statistical problems, the salience of a hypothesis 

can be shaped by its prominence. In balls and urns we described hypotheses as “what is the probability 

that the ball is drawn from 𝐴 vs. 𝐵?” The same question could be phrased as: “what is the probability 

that ball is drawn from 𝐴?” The questions are identical but the second phrasing, leaving urn 𝐵 implicit, 

may allow the DM to neglect 𝐵. Thus, she simulates only A and fails to normalize (Task 3). 

To see how this works, denote by 𝛼c ∈ {0,1} the attention to hypothesis 𝐻c. The attention 

profile is 𝛼 = (𝛼&, . . , 𝛼À, 𝛼c).17  When 𝛼c = 1 both hypotheses are attended to, which is the case 

studied so far. When 𝛼c = 0, the DM fails to simulate 𝐻c and solves the problem as: 

Pr(𝐻b; 𝛼) = Prj𝑅u(𝐻b)k,																																																													(9) 

setting Pr(𝐻c; 𝛼) = 1 − Pr(𝐻b; 𝛼). Equation (9) yields Nickerson’s intuition: the DM who neglects 

𝐻c forms beliefs by imagining only the focal hypothesis 𝐻b. Bottom-up attention is still determined 

by Equation (6). The only modification is that 𝑃(𝛼) now depends also on the prominence 𝑃c of 𝐻c, 

and contrast 𝐶(𝛼) is computed using (9) whenever 𝐻c is not attended to.  The “standard” balls and 

urns format in which both hypotheses are mentioned has high 𝑃c, whereas the “focal 𝐻b” format in 

which hypothesis 𝐻c is implicit has low 𝑃c. We then obtain: 

Proposition 6 Moving from a “standard” to a “focal 𝐻b” balls and urns format reduces the Bayes 

mode and raises the mode at the probability of “𝐴 and green”, Prj𝐻b; 𝛼b∩dk = 𝜋b ∙ 𝑞. 

Neglect of 𝐻c  reduces the share of correct answers because the Bayes’ rule calls for full 

attention, including to hypotheses. It also increases the base rate and likelihood modes, which remain 

feasible because these statistics are already normalized, so they do not need Task 3. Interestingly, 

DMs who neglect 𝐻c and attend only to “drawing a green ball” exhibit a kind of confirmation bias. 

They think only about urn 𝐴, appreciate that it has 𝑞 green balls, and thus estimate its probability as 

𝑞. They seem to confirm their favoured hypothesis 𝐴 based on its high probability of generating the 

data, neglecting that green balls are also in 𝐵 . This logic causes anchoring to 𝐴’s likelihood 𝑞 

regardless of the color composition of 𝐵, which is not the case for the mechanism in Proposition 4.18 

Second, and crucially, the “focal 𝐻b” format creates an entirely “new mode”, 𝛼b∩d anchored 

at 𝜋b ∙ 𝑞.  At this mode, which sharply identifies neglect of 𝐻c, the DM attends to both statistical 

features (the selection of 𝐴 and the drawing of a green ball from it), and replaces the original question 

                                                
17 In a more cumbersome specification, each hypothesis can have its own attention profile.  Neglect of a non-focal 𝐻DB 
can then be formalized as 𝐻DB being represented by the feature of being the complement of 𝐻B. 
18 In asymmetric problems, in which Pr(𝑔|𝐴) ≠ Pr(𝑏|𝐵), neglect of 𝐻c  can be detected by DMs’ anchoring to the 
likelihood of 𝐴 rather than to a combination of the two likelihoods.  
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with “what is the probability that a ball is green and from 𝐴”?  These DMs simulate 𝐴 by computing 

the joint probability 𝜋b ∙ 𝑞 as in Equation (9). The deliberate simulation of a specific event further 

confirms that biases are due to erroneous representations. Remarkably, at this mode the DM sets the 

probability of 𝐴 below its base rate, despite receiving favorable information! The reason is that the 

DM fails to appreciate that green balls are even rarer in urn B. To our knowledge, we are the first to 

unveil this bias despite the fact that in many experiments its incidence is large, as we show next. 

We test Proposition 4 by running the “focal 𝐻b” version of the experiment in Section 2.  As 

predicted, making urn 𝐵 implicit and thus less prominent leads to a decrease in the Bayesian mode 

and a concurrent large increase in the new mode at 𝜋b𝑞 = (0.25) ∗ (0.8) = 0.2. 

 
Figure 9. The Figure shows the distribution of beliefs about Pr(𝐴	|	𝑔). 

 

 

Keeping the alternative implicit is by all accounts a modest change in description, yet it has a large 

effect. The share of subjects anchoring at 𝜋b𝑞 = 0.2 increases from 7.3% to 19.2% (𝑝 < 0.01). The 

incidence of this mode is widespread, even in treatments when 𝐻c is explicit. We did not directly 

elicit attention to hypotheses, but we can use our free-response attention measure. The share of 

participants coded as paying attention to the possibility that the drawn marble came from Jar B falls 

from 49.2% in the standard format to 39.6% in the Focal A one (p<0.01).  

The new mode is relevant for the debate on base rate neglect. Gigerenzer and Hoffrage (GH, 

1995) showed that more accurate inference can be promoted by describing unconditional frequencies: 

a share 0.2 of balls are green and in urn 𝐴, a share 0.05 are blue and in 𝐴, a share 0.15 are green and 

in 𝐵, and the remaining share 0.6 are blue balls in 𝐵. In this “frequency format” computing the correct 

answer is easier for it only calls for taking the ratio of 0.2 to 0.15. Our model captures this idea. In 

this format, in fact, there is a single statistical feature: “drawing a ball from 𝑈 and of color 𝑐”, denoted 
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by 𝑓& = 𝑈𝑐 where 𝑐 = 𝑔, 𝑏, 𝑈 = 𝐴, 𝐵. The scope for distortions is therefore much reduced: there is 

no longer anchoring to base rate and likelihoods (which are not mentioned).  

GH argue that the efficacy of this format supports the ecological validity of human intuition, 

since naturalistic contexts expose people to frequencies, not to base rates and likelihoods.19 This 

conclusion, however, does not follow from our model. Even in problems with one single statistical 

feature, distortions can arise if people focus on 𝐻b and neglect the alternative hypothesis 𝐻c, or if 

they focus on ancillary features, phenomena that can both occur in naturalistic settings.   

To test whether displaying frequencies is sufficient to promote Bayesian answers, we compare 

two versions of balls-and-urns where probabilities are described in frequency format. In the standard 

frequency format, both hypotheses 𝐴 and 𝐵 are prominently displayed. In the “focal 𝐻b” frequency 

format, 𝐻c is implicit. If exposing people to frequencies is enough to promote Bayesian answers, 

there should be no difference across these versions. If it is also necessary to draw bottom-up attention 

to the alternative hypothesis, the new mode 𝜋b ⋅ 𝑞 should appear in the “focal 𝐻b” frequency format, 

at the expense of the Bayesian answer. Figure 10 compares the distribution of answers in the standard 

frequency format (Panel A) and the “focal 𝐻b” format (Panel B).   

 
Figure 10. Balls and urns in baseline and frequency formats. Each panel shows the distribution of Pr(𝐴	|	𝑔). 
 

The results are strongly in line with our model. In Panel A, compared to canonical balls and 

urns, the frequency format sharply increases the mode around the Bayesian answer. This, however, 

is not due to the fact that the naturalistic frequency format implements Bayesian intuitions. Consider 

Panel B: as alternative 𝐵 is made less salient in the “focal 𝐻b” version, the new “𝐴 ∩ 𝑔” mode at 

                                                
19 The frequency format could also be described as: 25 out of 100 balls are in urn 𝐴. Out of those, 20 are blue and 5 are 
green. The remaining 75 are in urn A. Out of those, 15 are blue and 60 are green. A large body of work studies the effect 
of training and communication of statistics (Visschers et al 2009, Gigerenzer 2014, Operskalski and Barbey 2016). 



36 
 

20% is strikingly dominant. The benefit of the frequency format over the standard format is no longer 

clear: in the former many people estimate 𝐴 to be below its base rate despite the favorable signal.20 

As this example illustrates, it is too optimistic to expect naturalistic contexts to reduce biases. 

Bayes rule typically requires attention to many relevant features, which may be hard to attain. 

Psychological work on problem solving is consistent with this view: sometimes naturalistic settings 

and prior knowledge help, as in solving the Wason task; other times they impair problem solving 

because people fail to see unusual useful properties of an object, as in the famous candle problem 

(Galinsky Moskowitz 2000). Systematically engaging with bottom-up attention, shaped by contrast 

and prominence, may help design decision architectures conducive to improved judgments.21 

 

6.2 Attention limits and Insensitivity in complex problems 

In complex problems, in which the attention limit 𝐾 is binding, our model yields well known 

forms of insensitivity of probability estimates to the quantity of data. Intuitively, as the sample 

size/number of signals grows, so does the number of relevant features, bolstering the role of salience 

in selecting which ones to attend to, up to the maximum of 𝐾, and which ones to neglect. 

 

6.2.1 Insensitivity to Sample Size 

For iid processes, Kahneman and Tversky (1972) and Benjamin, Rabin, and Raymond (2016) 

document a strong “insensitivity to sample size”: estimated sampling distributions fail to converge to 

the population mean as the sample size grows. Specifically, suppose that the DM evaluates the relative 

likelihood of 𝐻& = “a sequence of length	𝑛 has the same number of heads and tails”, versus 𝐻( = “a 

sequence of length	𝑛 has only heads”. The true answer is Pr(𝐻&) / Pr(𝐻() = �
𝑛
𝑛/2�, which increases 

in 𝑛. In experiments, the estimated ratio increases too little, if at all, with 𝑛.  

Consider how this phenomenon arises in our model. The DM’s estimate is shaped by the 

number 𝑟 ≤ min(𝐾, 𝑛) of flips he attends to, captured by attention profile 𝛼�. The latter pins down 

the representation 𝑅u�(𝐻B), which is the union of attended subsequences of length 𝑟 of the hypothesis’ 

                                                
20 Notably, even in the frequency format a number of participants anchors to the base rate and the likelihood. Our model 
can produce this result if DMs attend to the now ancillary “color” and “urn” features. Esponda et al. (2022) show that 
even the power of experienced frequencies is rather weak. Their subjects solve standard “base rate neglect problems” 
(e.g., taxicabs), and then receive feedback on the joint distribution of signals and states. Despite the feedback, many 
subjects stay anchored to their initial answers. Stable representations can help explain this fact. 
21 We only considered prominence as a source of hypothesis neglect, but contrast may also play a role.  Ba, Bohren and 
Imas (2023) show that overreaction to data increases when a neutral urn 𝐶 with a 50-50 color compositions and a large 
prior probability is added to urns 𝐴 and 𝐵.  One explanation of this finding is that, upon observing a green ball, neglect 
of urn C maximizes contrast. As the DM edits out this urn and its high prior, she strongly reacts to data.  
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atoms, 𝜔 ∈ 𝐻B .22 The salience of 𝛼�  is additive in the average prominence of its flips 𝑃(𝛼) = 	𝑃, 

contrast 𝐶(𝛼�), and the shock 𝜖. As before, 𝜖 is common to all profiles 𝛼 in which flips are attended 

to, so it does not matter here. As we show in Appendix B, contrast increases in 𝑟: the more flips the 

DM attends to, the more she believes that balanced sequences are likelier than unbalanced ones. While 

contrast favours rich representations, the attention limit 𝐾 may bind.  We assume that 𝐾 is distributed 

according to a pdf 𝜋(𝐾)  in support [1, 𝐾Å] . Variations in 𝐾  across DMs may reflect individual 

differences in mental faculties, or in situational factors, such as distractions. 

Proposition 7 The average DM underestimates the probability of 𝐻& vs 𝐻(, the more so when smaller 

values of 𝐾 are more likely. As 𝑛 increases, average beliefs converge to 𝜋Æ(𝐾Å). 

Due to attention limits, the DM cannot think about all possible ways of producing balanced 

sequences for large 𝑛. Eventually, beliefs become fully insensitive to 𝑛, consistent with KT’s finding 

that people use a “universal distribution” based on a limited number of iid draws. Existing models 

have wrestled with reconciling the faulty reliance on the law of large numbers in the Gambler’s 

Fallacy with an insufficient reliance on it in large samples (Benjamin, Moore, and Rabin 2017).  These 

phenomena naturally arise in our model: the DM uses a similar representation for the two problems, 

the class of balanced sequences, whose estimated size grows insufficiently with 𝑛. 

As we show in the proof of Proposition 7, this mechanism yields new predictions on the 

Gambler’s Fallacy. First, conditional on committing it, its severity should be higher for DMs who 

have less severe attention limits, higher 𝐾. Heterogeneity in 𝐾 therefore yields the heterogeneity in 

the severity of GF observed in Figure 1. Second, the average estimated probability of a sequence of 

𝑛 flips and share of heads 𝑠ℎ should exhibit insensitivity to the true size of its “share of heads” 

equivalence class, � 𝑛
𝑛 ∗ 𝑠ℎ�. As the latter becomes larger, it is increasingly difficult – due to attention 

limits – to simulate its cardinality. Thus, a person focusing on the share of heads will estimate the 

probability of 𝑡ℎ𝑡ℎ to be higher than that of ℎℎℎℎ, but less than 6 times, which is the objective ratio 

of the prevalence of balanced sequences. We can test this prediction using our experiment in Section 

4: conditional on a subject committing the Gambler’s fallacy, we regress the log of the estimated 

probability of a sequence on the log of the size of its equivalence class (and on the log of the true 

probability when we pool different sequence lengths).  

Consistent with our prediction, the coefficient on the size of the equivalence class is positive 

but less than one, showing insensitivity, and is smaller for longer sequences 𝑛 = 4,6 compared to 

𝑛 = 2 . Thus, bottom-up attention generates three observed behaviors: i) the share of subjects 

                                                
22 The ancillary feature shares is relevant in this case but as discussed in Section 3 it does not simplify the estimation 
process. For simplicity we do not consider it here. Using it is equivalent to hitting the bound 𝑛u = min(𝐾, 𝑛). 
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committing the GF increases in sequence length 𝑛 (contrast); furthermore, conditional on committing 

the fallacy ii) its severity increases with the size of a sequence’s equivalence class based on 𝑠ℎ 

(question substitution) but iii) less than proportionally to the latter’s size (insensitivity). Property iii) 

follows from our model but to our knowledge has not been documented before. 
 

 (1) (2) (3) (4) 

 Length 2 Length 4 Length 6 Pooled 

Log( Size of Equivalence Class ) 0.67*** 0.48*** 0.43*** 0.47*** 

 (0.04) (0.02) (0.02) (0.05) 

     

Log (Truth)    0.39*** 

    (0.04) 

     

Constant -1.26*** -3.48*** -4.89*** -3.51*** 

 (0.03) (0.04) (0.07) (0.14) 

     

Observations 1128 8528 8016 17672 

Individuals 282 533 501 1316 

R^2 0.20 0.10 0.06 0.37 

Table 5. The dependent variable is the log of the judged probability of each coin-flip sequence of the length 
indicated in the column heading (pooling all lengths in column 4). Robust standard errors in parentheses. ** 
and *** indicate significance at the 5% and 1% levels, respectively. Data are restricted to participants for 
whom judged probabilities and balanced-ness of heads and tails are positively correlated. 
 

6.2.2 Insensitivity to the Weight of Evidence 

Griffin and Tversky (1992) document a strong “insensitivity to the weight of evidence” in 

inference, where beliefs are insensitive to the number of signals. To see how this can arise in our 

model, consider the inference problem of Section 2, but allow for multiple draws with replacement 

from the urn. There are 𝑛 + 1 statistical features: the selected urn, associated with the base rate 𝜋, 

and the 𝑛 draws, each associated with a likelihood. Denote by 𝐷 = j𝑛d, 𝑛ek the data, consisting of 

green and blue balls, 𝑛d + 𝑛e = 𝑛. The data is favorable to 𝐴, 𝑛d > 𝑛e, with 𝜋b < 0.5. 

As in Section 3, the DM may neglect drawn balls, focusing only on urn selection, denoted by 

𝛼. Or she may neglect urn selection and, as in the case of coin flips, attend to 𝑟 ≤ 𝑛 ball draws, 

denoted by 𝛼�. Finally, she may attend both to urn selection and to 𝑟 ≤ 𝑛 draws, denoted by 𝛼,�. 

The salience of each profile is additive in prominence 𝑃(𝛼), contrast 𝐶(𝛼) and a random shock 𝜖u.  

As for coin flips, 𝜖u does not depend on the number of draws 𝑟. We prove the following result. 
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Proposition 8 The average DM is insensitive to the evidence in favor of 𝐻b. Specifically:  

i) She underestimates 𝐻b for sufficiently many green signals 𝐷 = j𝑛d, 0k, 𝑛d > 𝑛∗. 

ii) The estimate of 𝐻b based on an extra green ball, 𝐷 = (𝑁 + 1,𝑁), drops in the number 

signals 𝑁, which also increases attention to urn selection and anchoring to base rates.  
 

Result i) is analogous to insensitivity to sample size: due to capacity constraints, the DM fails 

to integrate all signals favorable to urn 𝐴. The predicted distribution is still multimodal, with some 

people anchoring at the 𝜋b  or the likelihood 𝑞  (those with 𝐾 = 1) while others integrating more 

signals and hence yielding more extreme answers, but not to the full extent. The average estimate is 

too low compared to what is warranted by the signals. The same mechanism yields, in ii), Griffin and 

Tversky’s insensitivity to the weight of evidence. Relative to a single green signal, adding an equal 

number of green and blue signals causes the limit 𝐾 to become binding. This reduces the DM’s ability 

to appreciate that green signals outnumber the blue ones, in turn reducing the contrast associated with 

the signal itself, which boosts anchoring to the base rate. This result sharply distinguishes our model 

from rational inattention. When the DM receives a single green signal, she may anchor to the 

likelihood, exhibiting a strong overreaction as in Kahneman and Tversky (1972). Upon instead 

receiving the same favourable evidence for 𝐴 in terms of mixed signals, she may neglect all signals 

and anchor to the base rate. Instead of being aggregated, different signals interfere with one another.  

We test these predictions. In the first new treatment, 𝑇(É, subjects estimate the probability of 

𝐴 conditional on the draw of two green balls, rather than only one green signal in 𝑇c. Panel A of 

Figure 11 shows the distribution of beliefs in these two treatments. Consistent with the insensitivity 

in i), the average response is 52.6% (only 1.4 p.p. higher than in 𝑇c, 𝑝 = 0.50), which exhibits more 

average under-reaction than when one green ball is drawn. The distribution is also clearly still 

multimodal, with about 74.1% people anchored at the base rate, the likelihood, and 50:50. 

In the second new treatment, 𝑇ÊÉËc,	we test prediction ii) by harnessing beliefs after 5 green 

and 4 blue signals, under the same base rate 𝜋b = 0.25 and the likelihood 𝑞 = 0.8 as 𝑇c. Panel B of 

Figure 13 compares the resulting distribution of beliefs between 𝑇c  and 𝑇ÊÉËc . Consistent with 

prediction ii), the mode at the base rate sharply increases from 26.5%	to 39.8%, even though the 

correct answer is unchanged.  In GT’s language, increasing the weight and lowering the strength of 

evidence boosts the share of people who fully neglect the signal in favor of the base rate.23 

                                                
23 We did not elicit attention to specific numbers and colors of signals, so we cannot test whether treatment effects on 
measured attention line up with the model. We see, however, that 𝑇ÊÉËc increases attention to urn selection, consistent 
with our mechanism for insensitivity to the weight of evidence.       
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Figure 11. Multiple signals (5 green+ 4 blue and 2 green) in balls-and-urns inference task. Figure shows the 
distribution of beliefs about the probability of Jar A conditional on the signal(s). 
 

7. Conclusion 

Understanding belief formation is critical to understanding economic behavior. Statistical 

problems are a very useful laboratory for this enterprise, because they specify a correct answer that 

can be reached using the statistics provided. Over the past sixty years, psychologists and behavioral 

scientists have unveiled many systematic departures of beliefs from the standard Bayesian model 

(Benjamin 2019), including the Gambler’s Fallacy, under-reaction and overreaction in inference, and 

others.  This evidence has led to a proliferation of bias-specific models, reflecting the wide ranging 

and sometimes contradictory findings. This research has produced important insights but has also 

opened many doors, leaving a sense that anything goes. 

We argued that bias-specific models cannot account for two empirical regularities that we 

systematically document here: multimodality within a problem and instability across normatively 

irrelevant variations of the same problem. These phenomena instead point to a cognitive structure 

that helps put many different biases under a common umbrella: bottom-up attention to the features of 

events.  Stylized statistical problems are characterized by multiple features, some of which are 

irrelevant to the problem at hand but may nevertheless draw attention. Selective attention to features 

can lead to different distorted representations of the hypothesis, which are in fact different forms of 

question substitution. This mechanism accounts for many known biases, as well as new ones we 

document, promising a unified psychological approach to decisions. 

Often in the social sciences attention is conceptualized as a scarce resource that is optimally 

allocated to further the decision maker’s goals. Work on “rational inattention” in economics or the 
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efficient coding approach in psychology follows this approach. While scarcity of attention is 

uncontroversial, our analysis challenges the assumption of goal-optimality. In our experiments all 

DMs have the same incentives and yet their decisions cluster on different modes and change from 

one mode to another when goal-irrelevant aspects of the problem are changed. This suggests that 

bottom-up attention plays a key role to explaining anomalies, in line with decades of research in 

psychology showing the importance of bottom up forces for attention allocation. As we showed in 

previous work, BGS (2012), bottom-up factors can also shape attention towards goal-relevant features.  

A striking lottery payoff or the surprising price of a good (just as a striking statistic in our experiments) 

may draw attention bottom-up, distracting the decision maker from other equally if not more 

important goals and relevant features, creating choice instability. An integration of goal-driven and 

bottom-up attention mechanisms is an important avenue for future work. 

We conclude by describing other important directions for future work. One priority is to 

integrate the roles of attention and selective memory. In the statistical problems we considered, all 

relevant data is put in front of subjects. Yet recalled past experiences arguably influence what features 

they attend to, representations, and estimates. The relevance of a witness statement in court draws 

attention to itself due to the DM’s similar past experiences. Briefly mentioning that a witness is 

unreliable cues the opposite reaction – we are indeed used to neglecting unreliable data – causing 

some people to wholly neglect the report’s numerical accuracy. Understanding how past experiences 

in one problem affect which features people recall and attend to in a new problem, is an important 

ingredient in a theory of prominence and can shed light on why different people represent the same 

problem in different ways and make different choices.  Such a theory of prominence would deepen 

the account of multimodality and individual fixed effects in solving statistical problems. More 

broadly, it can shed light on which narratives or partial models people use in different cases, why 

beliefs diverge despite a great deal of common information, why learning about a process might be 

hampered by prominent past experiences (Schwartzstein 2014, Esponda, Vespa, and Yuksel 2022), 

but also why learning can be sped up once neglected relevant features are made prominent (Hanna, 

Mullainathan, and Schwartzstein 2014, Graeber 2023).  

Integrating attention and memory is also important to understand belief formation in 

naturalistic settings.  In these settings, statistics or other numerical information are often unavailable 

(or anyhow not retrieved or used), and people form beliefs by sampling information from memory.  

Bordalo, Burro et al. (2022) and Bordalo, Conlon et al (2022) present a model of such sampling based 

on the psychology of selective recall, and show that it sheds light on several belief anomalies in the 

field, characterizing the sources of both disagreement and of average bias in the distribution of 

estimates.  The approach has also proven fruitful to explain survey data on covid risks, career choices, 
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or investments (Bordalo, Burro et al. 2022, Conlon and Patel 2023, Jiang et al. 2023). Attention-

driven representations can add a crucial ingredient to this theory: which cue in the environment is 

noticed and triggers retrieval. This mechanism may be relevant for other well know puzzles such as 

the hot hand fallacy, but also in the field. For example, the salient losses or failure of an individual 

bank may draw investors’ attention, causing them to selectively retrieve past episodes of financial 

meltdown, and to neglect the rarity of cataclysmic events and strong pessimism.  

The combination of memory and bottom-up attention is also relevant for consumer choice. 

BGS (2022) offer a theory of consumer choice in which memory and attention interact to shape the 

perception of the numerical or hedonic magnitude of an attribute, and show that this approach 

accounts for reference point effects. Our current approach to attention acts at a higher cognitive level, 

shaping which attributes/features are used to represent choice problems, and which are instead 

neglected or forgotten. Selective attention to features, driven by contrast, prominence but also surprise, 

can expand our understanding of the nature, heterogeneity, and instability of decisions made by 

consumers, investors, voters, etc. Choice options have many features, some relevant/hedonic for a 

given decision and others ancillary. Some ancillary features can be created artificially or made salient 

by advertising, and influence decisions by shaping representations. This process can create question 

substitutions of different types. A consumer deciding whether to buy a good may represent the choice 

as “Is this a fair price?”; an investor considering a firm may represent it as “do I want to invest in a 

fast growing sector?”; taking a position on a policy can be represented as “am I attached to this party?”. 

The combination of memory and bottom-up attention to features raises the promise of a general theory 

of intuitive judgments in both naturalistic and abstract settings.   
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