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1. Introduction

Since long, expectations have played a central role in macroeconomics. However, most
of work considers a limited theory of expectation formation, in which agents are per-
fectly and homogeneously aware of the state of nature and others’ actions. In this paper, I
consider a theory of expectation formation that incorporates significant heterogeneity
and sluggishness in agents’ forecasts, thus relaxing the standard full information rational
expectations (FIRE) benchmark.1 I include such expectation formation features into an
otherwise standard New Keynesian (NK) model by introducing noisy and dispersed infor-
mation, rationally processed separately by each agent, andmatch the information-specific
parameters to the observed sluggishness in forecasts. I use this framework to interpret
two empirical challenges in the literature: the fall in inflation persistence and the change
in the dynamics of the Phillips curve (PC).

As for the first empirical challenge, evidence suggests that the dynamic properties
of US inflation have not been constant over time. In particular, inflation in the post-war
period exhibits a high degree of persistence up until the mid-1980s, falling significantly
since then. This fall in inflation persistence is not easily understood through the lens of
monetary models, which has resulted in the “inflation persistence puzzle” (Fuhrer 2010).2

This break coincides with a change in the US Federal Reserve’s communication policy,
which becamemore transparent and informative after the mid-1980s. Using survey data on
US firms’ forecasts, I document a significant sluggishness in responses to new information
until themid-1980s, but no evidence of sluggishness afterward.3 The theoretical framework
I build is consistent with this evidence. I argue that the change in the Fed communication
improves firms’ information and I use the model to show that the reduced stickiness in
firms’ inflation forecasts explains the fall in inflation persistence.

The second empirical challenge documents that the dynamics of the PC have changed
in recent decades. The literature has mainly focused on the output gap coefficient, arguing
for a flatter curve in recent decades (Rubbo 2019; del Negro et al. 2020; Ascari and Fosso
2021; Hazell et al. 2022). This finding indirectly implies that central bank (CB) actions,
understood as nominal interest rate changes, are less effective in affecting inflation. I

1I define sluggishness as the stickiness of current expectations on past expectations. In the data, Imeasure
sluggishness as a positive co-movement between ex-ante average forecast errors and forecast revisions.

2Persistence determines both the memory of any past shock on today’s outcome and the unconditional
volatility of an autoregressive dynamic process. See Fuhrer (2010) for a handbook literature review.

3Coibion and Gorodnichenko (2015a) find evidence for an increase in the level of information frictions
since the 1980s, and explain such an increase from a rational inattention perspective. In section 2.2, using
their data, I provide evidence of the decrease in information frictions related to inflation. I argue that this
particularity about inflation expectations comes from changes in the Fed’s communication policy.
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estimate only a modest decline in the slope of the PC since the mid-1980s, once I control
for the decrease in information frictions. Instead, I argue from the perspective of the
model that the change in the dynamics of the PC can be explained by a lack of backward-
lookingness and an increase in forward-lookingness after the mid-1980s.

In terms of the details of the model, I explain the fall in inflation persistence through a
decrease in the degree of information frictions that firms face on CB actions. Since the late
1960s, there has been a gradual improvement in the US Federal Reserve’s public disclosure
and transparency, sending clearer signals of their actions and future intentions to the
market.4 In this framework, inflation is more persistent in periods of greater forecast
sluggishness: noisy information generates an underreaction to new information because
individuals shrink their forecasts toward prior beliefs when the signals they observe are
noisy. This endogenous anchoring in forecasts causes firms to set prices to their existing
prior, thus slowing the speed of price changes. Using micro-data on inflation expectations
from the Survey of Professional Forecasters (SPF) and the Livingston Survey on Firms, I
document that firms’ forecasts used to react sluggishly before themid-1980s.However, there
is no evidence of sluggishness in recent decades. My results suggest that agents became
more informed about inflation after the change in the Federal Reserve disclosure policy.
Because inflation depends on the expectations of future inflation, the change in expectation
formation feeds into inflation dynamics, which endogenously reduces inflation persistence.
Quantitatively, I find that this change in firms’ forecasting behavior explains around 90%
of the fall in inflation persistence since the mid-1980s. Formally, I extend the textbook NK
framework in Galí (2015); Woodford (2003b) to noisy information following Angeletos and
Huo (2021), itself a simplified version of Lucas (1972); Woodford (2003a); Nimark (2008);
Lorenzoni (2009) inwhich agents only observe signals of exogenous variables. I assume that
firms do not have complete and perfect information about aggregate economic conditions.

4Before 1967 the Federal Open Market Committee (FOMC), the US Fed decision unit, only announced
policy decisions once a year in its Annual Report. In 1967, the FOMC decided to release the directive in
the Policy Report (PR), 90 days after the decision. In 1976, the PR was enlarged and its delay was reduced
to 45 days. Between 1976 and 1993 the information contained in the PR increased, without any further
changes in the announcement delay. In 1977, the Federal Reserve Reform Act officially entitled the Fed with 3
objectives: maximum employment, stable prices, and moderate long-term interest rates. In 1979, the first
macroeconomic forecasts on real GNP and GNP inflation from FOMCmembers were made available. The
“tilt” (the likelihood regarding possible future action) was introduced in the PR in 1983. Between 1985 and
1991, the Fed introduced the “ranking of policy factors”, which after each meeting ranked aggregate macro
variables in importance, signaling priorities about possible future adjustments. The minutes, a revised
transcript of the discussions during the meeting, started being released together with the PR in 1993, 45 days
after the meeting. In 1994 the FOMC introduced the immediate release of the PR after a meeting if there had
been a change, coupled with an immediate release of the “tilt” (likelihood regarding possible future action)
since 1999. Since January 2000 there has been an immediate announcement and press conference after each
meeting, regardless of the decision. See Lindsey (2003) for a comprehensive historical review. I provide a
more detailed historical analysis of the Fed‘s gradual increase in transparency in Online Appendix OA.3.
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Firms can observe their granular conditions – the output they produce given their price,–
but they do not have perfect information about aggregate variables like inflation, output, or
interest rates. In place, they observe a noisy signal that provides information on the state
of the economy, in this case, the monetary policy shock. With this piece of information,
firms form expectations on inflation, aggregate output, and interest rates. This setting
leads to a dynamic beauty contest in which firms need to form beliefs on what other firms
believe about the economy.

This paper contributes to the literature that aims to explain the fall in inflation persis-
tence observed in the US since the 1980s (Fuhrer and Moore 1995; Benati and Surico 2008;
Cogley and Sbordone 2008; Fuhrer 2010; Cogley et al. 2010; Goldstein and Gorodnichenko
2019). The literature has proposed theoretical explanations from different angles, with
the shared commonality that the fall in the persistence of inflation can be attributed to a
change in the conduct ofmonetary policy and the time-varying nature of exogenous shocks
hitting the economy. Motivated by the documented increase in the aggressiveness of the
monetary authority toward excess inflation (Clarida et al. 2000; Lubik and Schorfheide
2004), Cogley et al. (2010) estimate an NK model, enlarged with trend inflation, using two
different samples, before 1979 and after 1982. They find that the Taylor rule coefficient for
inflation increased in the second subsample, cost-push shocks became less persistent, and
the disturbances hitting the economy became less volatile. Davig and Doh (2014) employ
a regime-switching approach with time-varying parameters, finding that the monetary
policy was more aggressive before 1970 and after the Volcker disinflation, consistent with
the lower inflation persistence observed in those periods. Their analysis shows that a 40%
decline in the persistence of inflation can be attributed both to the reduction in the weight
of exogenous shocks with high persistence, which experienced a relative fall in volatility
compared to other disturbances, and the increase in the Taylor rule coefficient. Bianchi
and Ilut (2017) incorporate fiscal policy, allowing for time-varying coefficients both in
the monetary and fiscal rules and on the volatility of exogenous shocks. Their analysis
suggests that persistent inflation can arise from fiscal imbalances when monetary policy
accommodates fiscal policy. In contrast, I only consider a single parametric change – an
increase in the signal-to-noise ratio – to isolate the transmission mechanism. However,
the increase in the signal-to-noise ratio that I document could be endogenized in my
framework through the documented increase in the Taylor rule coefficient for inflation,
which dampens the general equilibrium dimension, reduces strategic complementari-
ties across agents, increases the weight that agents optimally assign to news, and boosts
the signal-to-noise ratio. Closer to the present paper, Erceg and Levin (2003) explain the
high persistence of inflation during the Volcker disinflation using a noisy information
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framework, where agents have incomplete information on the CB’s inflation target. In
contrast, I obtain a closed-form solution for inflation dynamics, allowing for a trace of the
key drivers of the fall in persistence after the Volcker disinflation. Moreover, I extend this
analysis to the structural inflation dynamics, the noisy-hybrid PC, and find evidence for a
fall in intrinsic persistence, but no evidence for a fall in the persistence of structural distur-
bances. Finally, another strand of the literature explores the relation between long-term
inflation expectations and the persistence of inflation, arguing that inflation has become
less persistent because long-term expectations are less sensitive to current developments
(Gáti 2023; Carvalho et al. 2023). Such finding can be rationalized in the current paper as
an increase in agents’ information on the CB’s inflation target.

I also contribute to the literature studying the time-varying properties of the PC. The
literature has mainly focused on the output gap coefficient, arguing for a flatter curve
in recent decades, implying a fall in the sensitivity of inflation and the real side of the
economy, including changes in the policy rate or CB actions (“inflation disconnect” puzzle,
see e.g., del Negro et al. 2020; Ascari and Fosso 2021). Instead of focusing solely on the slope,
I show that under noisy information the PC is enlarged with a backward-looking term on
lagged inflation and myopia towards expected future inflation, both of them dependent
on the degree of information frictions. First, I show that the fall in inflation persistence
can be explained by a fall in intrinsic persistence and myopia. Second, I show that under a
general information structure, the PC is modified such that current inflation is related to
current and future output through two different channels: the output gap coefficient and
firms’ expectation formation process. I estimate only a modest decline in the slope once
I control for a decline in information frictions, using SPF forecasts (Coibion et al. 2018;
Crump et al. 2019; Hazell et al. 2022).

Roadmap. The paper proceeds as follows. Section 2 documents the two empirical chal-
lenges and the decrease in forecast sluggishness and information frictions in recent
decades. In Section 3, I describe the theoretical framework, and I derive the main re-
sults in section 4. Section 5 concludes the paper.

2. Empirical Challenges and Information Frictions

In this section, I discuss the two empirical challenges and the change in inflation forecast
underrevision. First, I provide empirical evidence on the fall in the persistence of inflation
in recent decades. Second, I show that the change in persistence coincides with a decline
in forecast underreaction in recent decades. Third, I argue that the documented changes
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FIGURE 1. Time series of inflation, with subsample (pre- and post-1985) mean and standard
deviation. Source: U.S. Bureau of Economic Analysis, Gross Domestic Product: Implicit Price
Deflator, https://fred.stlouisfed.org/series/GDPDEF.

in the persistence of inflation and forecast underreaction can explain the changes in the
dynamics of the PC over time.

2.1. The First Puzzle: Inflation Persistence

A vast literature has documented that US inflation persistence has fallen in recent decades.
Fuhrer and Moore (1995); Cogley and Sbordone (2008); Fuhrer (2010); Cogley et al. (2010);
Goldstein and Gorodnichenko (2019) find evidence of a structural break in the first-order
autocorrelation of inflation in the 1980-1985 window, with persistence falling from around
0.75-0.8 to 0.5. In this section I revisit this empirical challenge and document a fall in
inflation persistence since the mid-1980s.5

The inflation time series is reported in Figure 1. I follow Fuhrer (2010) and divide
the sample into two sub-periods, pre- and post-1985:Q1 until 2020:Q2. I report the mean
and 2 standard deviation bands by each subperiod. Inflation started its upward trend
in the 1960s, continuing in the next decade with two peaks in the mid-1970s and the
early 1980s. Then, inflation started its downward trend lasting until the early 1990s, and
roughly remained at 2% afterward. The average level of inflation has fallen from 6% to 2%,
and inflation has become less volatile.6 In the monetary literature, inflation is generally
assumed to follow an independent autoregressive stochastic process. In such a case, the

5I define the inflation rate at time t, πt, as the (annualized) log growth in the index, 400× (log Pt – log Pt–1),
where Pt is the quarterly GDP deflator at time t. Inflation data is available at a quarterly frequency since
1947:Q1. However, I will stick to the 1968:Q4-2020:Q2 sample since I seek to link the results presented in this
section to surveys on expectations, which are available since 1968:Q4.

6I omit the fall in the average level and volatility of inflation from the analysis since both can be easily
explained in a trend-inflation NK setup through a decrease in the inflation target of the CB, and an increase
in the aggressiveness of the monetary authority towards the inflation gap, for which Clarida et al. (2000)
provide empirical evidence.
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Full Sample 1968:Q4–1984:Q4 1985:Q1–2020:Q2

Mean 3.373 6.151 2.111
Volatility 2.399 2.218 1.017
First-Order Autocorrelation 0.880 0.770 0.511

TABLE 1. Summary statistics over time.

stationary mean depends both on the intercept, απ in equation (1), and the lagged inflation
coefficient, ρπ. Stationary volatility depends both on the volatility of the innovation and
lagged inflation coefficients. Table 1 reports summary statistics on the mean, volatility,
and first-order autocorrelation by each subsample. In the following, I seek to investigate if
these differences across subsamples are statistically significant.

Assume that inflation follows a simple AR(1) process with a drift. Once more, I follow
Fuhrer (2010) and assume that the break date is 1985:Q1.7 I test for a (potential) structural
break on the intercept and persistence coefficients by estimating equation (1). Formally, I
consider the regression

πt = απ + ρππt–1 + απ∗ × 1{t≥t∗} + ρπ∗ × 1{t≥t∗}πt–1 + et(1)

where 1{t≥t∗} is an indicator variable equal to one if the period is within the post-1985 era
and zero otherwise, and et is the error term. I report my findings in table 2, panel A. First,
I find that both the intercept and the persistence are significant when I consider the full
sample with no structural break (column 1). Second, in a subsample analysis, I provide
evidence of the fall in inflation persistence from around 0.78 to 0.51 (see columns 2 and 3).
Third, I find evidence of a structural break in persistence, falling from 0.80 in the pre-1985
period to 0.5 afterward (columns 4 and 5). I do not find any evidence of a structural break
in the intercept. I repeat the structural break analysis in columns 6 and 7, but instead
consider 1991:Q1 as the break date. Results do not change.

Robustness. In Online Appendix OA.1.1 I explore alternative analyses, obtaining similar
results. I consider (i) two alternative measures of inflation, price inflation (CPI) and pro-
ducer inflation (PCE), (ii) rolling-sample and time-varying estimates, and (iii) a subsample
unit root analysis.

7I additionally test for the null of no structural break in inflation dynamics around 1985:Q1 (Bai and
Perron 1998, 2003). I reject the null of no break (p-value = 0.000). An agnostic date test suggests that the break
occurred in 1991:Q1. I report the results for the 1991:Q1 structural break in table 2, panel A columns 6 and 7.
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FIGURE 2. Time series of ex-ante average forecast errors and forecast revisions. Sources:
(1) First-Release Values, GDP Deflator, https://www.philadelphiafed.org/surveys-and-data/
real-time-data-research/p, and (2) Survey of Professional Forecasters, Median Forecast, GDP
Deflator, https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/median-
forecasts.

2.2. Evidence on Information Frictions

As discussed in the introduction, the actions of the Fed have become more transparent
over time. The delay between the Fed’s action and the announcement to the public has
been shortened from around a year to a few minutes, and the amount of information
contained in the Policy Report and other documents released to the public has increased
substantially. In this section, I document a contemporaneous change in beliefs around the
same period on which inflation persistence is reported to break. Using survey data on US
firms’ forecasts, I document a significant sluggishness in responses to new information
until the mid-1980s, measured by the positive co-movement of ex-ante forecast errors and
forecast revisions, but no evidence of sluggishness afterward. Using expectations data
from the Survey of Professional Forecasters (SPF), I study whether there is a significant
change in different measures of information frictions around 1985:Q1.8 The problem that
the econometrician faces when trying to quantify or estimate the degree of information
frictions is that she does not know what each agent, or the average agent, has observed at
any given point in time. The literature has approached this regression design problem by
measuring the change in actions after an inflow of information. Consider, for example, the
average (cross-sectional mean) forecast of annual inflation at time t, Ftπt+3,t, where πt+3,t
is the GDP deflator growth between periods t +3 and t –1. One can think of this object as the

8The American Statistical Association and the National Bureau of Economic Research started the survey
in 1968:Q4, which has been conducted by the Federal Reserve Bank of Philadelphia since 1990:Q1. Every three
months, professional forecasters are surveyed on their forecasts of economic variables like output, inflation,
or interest rates. These forecasters work at Wall Street financial firms, commercial banks, consulting firms,
university research centers, and other private sector companies.
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action that the average forecastermakes at time t. Let us now consider the average forecast
of 4-quarters-ahead inflation at time t – 1, Ft–1πt+3,t. The difference between these two
objects, the average forecast revisiont ≡ Ftπt+3,t –Ft–1πt+3,t, provides us with information
about the average agent action after an inflow of information between periods t and t – 1.
Coibion and Gorodnichenko (2012, 2015a) document a positive co-movement between
ex-ante average forecast errors, denoted by forecast errort ≡ πt+3,t – Ftπt+3,t, and average
forecast revisions.9 I plot the raw series in Figure 2. Formally, their regression design is

forecast errort = αrev + βrev revisiont + ut,(2)

where a positive co-movement (β̂rev > 0) suggests that positive revisions predict positive
forecast errors.10 That is, after a positive revision of annual inflation forecasts, agents
consistently under-predict inflation. Although I only focus on firms in the main text,
this form of forecast stickiness or sluggishness is consistent across different agent types
(see Coibion and Gorodnichenko (2012, 2015a) for evidence on consumers, firms, central
bankers, etc.)

A positive βrev coefficient suggests that positive revisions predict positive (and larger)
forecast errors, and thus, that agents underrevise their forecasts. The results, reported in
the first column in table 2, panel B, reject the FIRE assumption: themeasure of information
frictions, βrev, is significantly different from zero. A 1 p.p. revision predicts a 1.23 p.p.
forecast error. The average forecast is thus smaller than the realized outcome, which sug-
gests that the forecast revision was too small, or that forecasts react sluggishly. Following
the previous analyses on inflation persistence, I assume that the break date is 1985:Q1.11

Columns 2 and 3 report the subsample analysis, and provide preliminary evidence on a fall
in the underrevision behavior since the mid-1980s.12 Following a similar structural break
analysis as in Section 2.1, I study if there is a change in expectation formation around the
same break date. Formally, I test for a structural break in belief formation around 1985:Q1

9I use the first-release value of annual inflation, since forecasters do not have access to future revisions
of the data when they provide their forecast.
10Under the FIRE assumption, βrev should be zero. Since an agent’s information set is identical to each

other agent’s, the average expectation operator in (2) could be interpreted as a representative agent forecast,
and one would be effectively regressing the forecast error of the representative agent on its forecast revision.
Under rational expectations (RE), the forecast revision should not consistently predict the forecast error.
Otherwise, the agentwould incorporate this information in his information set. Therefore, a positive estimate
of βrev in the above regression suggests that the FIRE assumption is violated.

11I test for the null of no structural break in underrevision dynamics around 1985:Q1. I reject the null of
no break (p-value = 0.01). If I am instead agnostic about the break date(s), the test suggests that the break
occurred in 1980:Q1.
12This result is consistent with the subsample analysis in Angeletos et al. (2020), table VI.
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by estimating the following structural-break version of (2),

(3) forecast errort = αrev + βrevrevisiont + αrev∗ × 1{t≥t∗} + βrev∗ × 1{t≥t∗}revisiont + ut

A significant estimate of βrev∗ suggests a break in the information frictions. The results in
the fourth and fifth columns in Table 2, panel B suggest that there is a structural break
around 1985:Q1. The estimate β̂rev∗ < 0 suggests that firms’ forecasts underreact less since
1985. (In fact, I do not find any evidence of forecast stickiness.) I repeat the structural
break analysis in columns 6 and 7, but considering either 1980:Q3 (the most probable date
according to the unknown structural break test) or 1991:Q1 as the break dates, respectively.
Results do not change.

In the lens of a noisy and dispersed information framework, this implies that agents
became more more informed about inflation, with individual forecasts relying less on
priors and more on news.13 These structural break findings are consistent with alternative
measures of information frictions, as discussed in Online Appendix OA.1.2.14

Robustness. In Online Appendix OA.1.2 I explore alternative analyses, obtaining similar
results. I consider (i) rolling-window and time-varying estimates of the underrevision
coefficient, (ii) the unbalancedness in the number of respondents of the SPF, (iii) the
response of forecast errors tomonetary policy shocks, and show that they react before 1984
but not afterwards, (iv) the cross-sectional standard deviation of forecasts as disagreement,
and show that it does not react to monetary policy shocks (inconsistent with alternative
theories of belief formation), and (v) I repeat the analysis using the Livingston Survey on
Firms, finding similar results.

Comparison to Coibion and Gorodnichenko (2015a). Using the same data source, Coibion
and Gorodnichenko (2015a) estimate equation (2) each quarter separately for all variables
in the dataset, and then compute nonparametrically a local average of the estimated un-
derrevision coefficients to report the low frequency variation in the degree of information
rigidities.15 They find that information frictions have increased sin the 1980s. They link this
13In Online Appendix OA.1.2, I find that ex-ante inflation forecast errors react to monetary shocks before

1985 and not after, confirming the presence of information frictions before the mid-1980s and not afterward.
14I conduct robustness checks studying the impulse response of ex-ante inflation forecast errors to ex-ante

monetary policy shocks, the cross-sectional volatility of inflation forecasts over time, or using alternative
datasets like the Livingston Survey.
15See section III.A (pp. 2672-74). The list of variables includes forecasts of real GDP growth, housing starts,

industrial production growth, GDP deflator inflation, CPI inflation, real consumption growth, real federal
government consumption and gross investment, real state and local government consumption and gross
investment, real nonresidential fixed investment, real residential fixed investment unemployment rate,
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finding to the onset of the Great Moderation (McConnell and Perez-Quiros 2000), arguing
that the relative decrease in the volatility of macroeconomic variables, with respect to the
increase (or moderate decrease) in microeconomic variables (Davis et al. 2006; Comin and
Mulani 2006; Comin and Philippon 2005; Davis and Kahn 2008) can explain the increase in
information frictions since the 1980s from a rational inattention perspective (Maćkowiak
and Wiederholt 2012). I estimate equation (3) using their sample period and including
forecasts of all variables included in the SPF. I report the results in table 3, panel A. I
do not find evidence of information frictions before the mid-1980s, and an increase in
information frictions thereafter. The findings in this paper, instead, relate only to inflation.
Using their data on the expectations on the real GDP deflator, I find similar estimates to
the ones in table 2, panel B. I report them in table 3, panel B.

These findings suggest that while information frictions (rationally decided or not)
increased for most variables, they declined for inflation. A particularity of inflation is that
CB actions have become more salient, either through the shortened lag and the informa-
tion conveyed to the public (mid-1980s) or an explicitly set inflation target (1990s). In the
theoretical framework, I show that the increase of the precision of CB actions explains the
fall (i) in information frictions and (ii) in the persistence of inflation.

2.3. The Second Puzzle: The Phillips Curve

Unemployment in the US has fluctuated between historically large and low levels since
1985. During the Great Recession, unemployment increased to a level comparable to that
of the Volcker disinflation. Shortly after that, unemployment decreased to unprecedented
low levels. Throughout this period, inflation seemed to be unaffected and disconnected
from the changes in the real side of the economy, with no disinflation during the Great
Recession and no large inflation up to the COVID episode (Hall 2011; Ball and Mazumder
2011; Coibion and Gorodnichenko 2015b; del Negro et al. 2012; Lindé and Trabandt 2019).
This contrasts with the Volcker disinflation experience, which caused a large increase in
unemployment and gave rise to the concept of the “sacrifice ratio”.16

Taking a model-oriented view, this second empirical challenge implies that the PC
has flattened in recent decades, implying that inflation is no longer affected by other real
variables (del Negro et al. 2020; Ascari and Fosso 2021; Atkeson and Ohanian 2001; Stock

three-month Treasury bill rate, and the quarterly average level of Moody’s Aaa corporate bond yield.They
find similar results if they estimate rolling window regressions for each variable and then average across
these estimates.
16The sacrifice ratio measures the change in output per each 1 p.p. change in inflation.
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(1) (2) (3) (4) (5)
CG (2015) Sample 1968:Q4-1984:Q4 1985:Q1-2014:Q3 Structural Break

Panel A. Sample includes forecasts of all variables in the dataset.

Forecast revision 0.0484 -0.895 0.907∗∗ -0.896 -0.895
(0.445) (0.623) (0.449) (0.620) (0.623)

Revision× 1{t≥t∗} 1.807∗∗ 1.803∗∗

(0.763) (0.768)

Constant -0.333∗∗ -0.187 -0.321∗∗ -0.293∗∗ -0.187
(0.134) (0.342) (0.130) (0.125) (0.341)

Constant× 1{t≥t∗} -0.134
(0.365)

Observations 1887 399 1488 1887 1887
Panel B. Sample includes forecasts of inflation.

Revision 1.193∗∗∗ 1.344∗∗∗ 0.224 1.447∗∗∗ 1.344∗∗∗

(0.289) (0.343) (0.200) (0.364) (0.341)

Revision× 1{t≥t∗} -1.023∗∗ -1.120∗∗∗

(0.409) (0.395)

Constant 0.00200 0.257 -0.223∗∗∗ -0.0552 0.257
(0.0835) (0.196) (0.0578) (0.0803) (0.195)

Constant× 1{t≥t∗} -0.479∗∗

(0.203)

Observations 173 58 115 173 173
HAC robust standard errors in parentheses.∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE 3. Estimates of forecast underreaction, Coibion and Gorodnichenko (2015a) dataset.

and Watson 2020). The most well-known (structural) inflation equation is the NKPC,

πt = κ ỹt + βEtπt+1(4)

which relates current inflation, πt, to the current output gap, ỹt, and expected future
inflation, Etπt+1. Notice that, in this framework, inflation is only related to output through
the PC slope, κ. The most prominent explanation for the lack of dependence of inflation
on output is the fall in the output gap coefficient. The literature has extensively focused on
this coefficient, arguing that this relation has flattened and that inflation is less dependent
on any other (real) variable. The available empirical evidence is mixed, with the most
recent evidence arguing for amodest decline over time (McLeay and Tenreyro 2020; Hazell
et al. 2022).
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In section 4.2, I argue that an extension to the benchmark model, in which the assump-
tion of complete and full information (FI) is relaxed, enlarges the PC (4) with a lagged
inflation term and myopia towards expected inflation. From the perspective of the model,
the change in the dynamics of the PC can be explained by a lack of backward-lookingness
and an increase in forward-lookingness after the mid-1980s, which is supported by the
data. Once these additional terms have been controlled for, and I estimate a PC closer to
the hybrid version implied by price-indexation settings, I find only modest evidence for a
change in the slope of the PC.

2.4. Alternative Explanations within FIRE

In the Supplementary Material, section SM.1., I revisit different theories that produce a
structural relation between inflation and other forces in the economy, and I show that they
cannot explain the large fall in persistence. In the benchmark NKmodel, inflation inherits
the properties of the exogenous driving forces. Hence, to explain the fall in inflation
persistence documented in the data, a fall in the persistence of these exogenous shocks is
required. I find that the persistence of exogenousmonetary policy, total factor productivity,
and other shocks have been remarkably stable in the post-war period. Additionally, a fall
in the volatility of cost-push shocks with respect to the volatility of the other two shocks
can explain a fall in the first-order autocorrelation from 0.8 to 0.745, insufficient to explain
the documented fall.

I then consider changes in the reaction function of themonetary authority. Theprevious
literature has considered the possibility of the Fed conducting a passive monetary policy
before 1985, which in the lens of the theorywould lead to amultiplicity of equilibria. Clarida
et al. (2000) document that the inflation coefficient in the Taylor rule was well below one,
not satisfying the Taylor principle, and Lubik and Schorfheide (2004) estimate an NK
model under determinacy and indeterminacy and argue that monetary policy after 1982 is
consistent with determinacy, whereas the pre-Volcker policy is not. I find that inflation
dynamics are more persistent in the indeterminacy region, with an autocorrelation of
0.643, falling to 0.5 in the determinacy region after the mid-1980s. Another explanation put
forward by McLeay and Tenreyro (2020) is that a monetary authority conducting optimal
monetary policy under discretion could explain the disconnect without resorting to κ. I
show that an increase in the inflation coefficient in the Taylor rule can be micro-founded
through a change in the monetary stance in which the CB follows a Taylor rule in the
pre-1985 period, while it follows optimal monetary policy under discretion in the post-1985
period. Persistence increases from 0.799 to 0.800. If we instead consider a change towards
optimal commitment, the implied coefficient for inflation in the Taylor rule is required to
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increase from 1 to 4.5, which is inconsistent with empirical evidence.
Acknowledging the fact that purely forward-looking models cannot generate intrinsic

persistence, I extend the benchmark and explore backward-looking frameworks. I first
consider price indexation. A restricted firm resets its price (partially) indexed to past
inflation, which generates anchoring in aggregate inflation dynamics. A fall in the degree
of indexation could explain the fall in inflation persistence. However, the parameterization
of such a parameter is not a clear one. Price indexation implies that every price is changed
every period, and therefore one could not identify the Calvo-restricted firms in the data
and estimate indexation. The parameter is usually estimated using aggregate data and
trying to match the anchoring of the inflation dynamics, and its estimate will therefore
depend on the additional model equations. Christiano et al. (2005) assume full indexation.
Smets and Wouters (2007) estimate a value of 0.21 trying to match aggregate anchoring in
inflation dynamics. One cannot credibly claim that indexation is the cause of the fall in
inflation persistence since it needs to be identified from the macro aggregate data. The
last extension is to include trend inflation, for which the literature has documented a fall
from 4% in the 1947-1985 period to 2% afterward (see e.g., Ascari and Sbordone 2014; Stock
andWatson 2007). Augmenting the model with trend inflation creates intrinsic persistence
in the inflation dynamics through relative price dispersion, which is a backward-looking
variable that has no first-order effects in the benchmark NKmodel. I find that the fall in
trend inflation and the increase in the Taylor rule coefficients produce a small decrease in
intrinsic persistence, from 0.91 to 0.84.

3. Noisy Information

In this section, I consider a theory of expectation formation that incorporates signifi-
cant heterogeneity and sluggishness in agents’ forecasts, thus relaxing the standard FIRE
benchmark. I include such expectation formation features into an otherwise standard New
Keynesian model by introducing noisy and dispersed information, rationally processed
separately by each agent, and match the information-specific parameters to the observed
sluggishness in forecasts.17 I argue that the change in the Fed communication improved
firms’ information, and I use the model to show that the reduced underreaction in firms’

17I abstain from RE deviations. Bordalo et al. (2020) and Broer and Kohlhas (2019) find evidence of a
violation of the RE assumption by regressing (2) at the individual level, finding evidence of agent over-
confidence when forecasting inflation. I do not assume a departure from RE because over-confidence would
have no effect on aggregate dynamics (see Angeletos et al. 2020) and would therefore not affect the main
results.

14



inflation forecasts will translate into reduced persistence in inflation.18 I show that in
this framework, inflation is more persistent in periods of greater forecast sluggishness.
Noisy information generates an underreaction to new information because individuals
shrink their forecasts toward prior beliefs when the signals they observe are noisy. This
endogenous anchoring in forecasts causes firms to set prices to their existing prior, thus
slowing the speed of price changes. Because inflation depends on the expectations of
future inflation, the change in expectation formation feeds into inflation dynamics, which
endogenously reduces inflation persistence. I find that this change in firm forecasting
behavior explains around 90% of the fall in inflation persistence since the mid-1980s.

3.1. The Noisy Information New KeynesianModel

In order to relate the previous empirical findings on inflation persistence to information
frictions, I build a noisy information New Keynesian model based on the island setting
by Angeletos and Huo (2021), whereas I assume that firms cannot observe past prices.19

Firms observe the economic conditions on their island, but they do not have FI about
the economic conditions in the archipielago. In particular, firms can observe their own
granular conditions, such as their production given their price, but they do not have perfect
information about aggregate macro variables like inflation, output, or interest rates. They
observe a noisy signal that provides information on the state of the economy, in this case,
the monetary policy shock. With this piece of information, firms form expectations on
inflation, aggregate output, and interest rates.20 For simplicity, I assume that households
and the monetary authority have access to FI.21

Apart from this information friction, which I describe formally below, firms are subject
to the standard Calvo-lottery price friction, which allows us to write the price-setting
18A concern on the gradual information disclosure argument is that market participants could observe

the changes in interest rates and monetary aggregates induced by the action and could thus infer the action,
in the spirit of the Grossman and Stiglitz (1980) paradox. To alleviate this concern, I measure information
frictions using data from professional forecasters. The underlying assumption here is that professional
forecasters are among the most informed agents in the economy since their job is to make predictions
for private companies. Obtaining evidence on significant information frictions from these agents would
therefore invalidate the previous criticism.
19As a result, firms’ price-setting optimality condition can be written as a beauty contest in which firms

forecast prices as opposed to inflation. Angeletos and Huo (2021) use the simplifying assumption that firms
observe past prices but do not incorporate them to their information set, arguing that inflation contains
little statistical information about real variables, while Vives and Yang (2016) motivate this through bounded
rationality and inattention. Huo and Pedroni (2021) allow for endogenous information, but such a choice
eliminates the benefit of closed-form dynamics, and the concept of persistence becomes less clear.
20The derivation of the model is relegated to Online Appendix OA.4.
21I relax the FIRE assumption on households in Online Appendix OA.2. The framework is consistent with

a constant level of information frictions regarding expectations on output, and can explain a fall in the
persistence of inflation from 0.808 to 0.709.
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problem as a forward-looking one, and compete in a monopolistic economy. There is a
continuum of firms indexed by j ∈ I f = [0, 1], each being a monopolist producing a differ-
entiated intermediate-good variety with constant elasticity of substitution ϵ, producing
output Yjt and setting price Pjt. Technology is represented by the production function
Yjt = N1–αjt , where 1 – α is the labor share.

Aggregate Price Level Dynamics. In every period, each firm can reset its price with
probability (1–θ), independent of the time of the last price change. That is, only a measure
(1 – θ) of firms can reset their prices in a given period, and the average duration of a price
is given by 1/(1–θ). Let pt = log Pt denote the (log) aggregate price level and p∗t = log P∗t the
(log) aggregate price set by firms that can act. Such an environment implies that aggregate
price level dynamics are given (in log-linear terms) by

(5) pt = (1 – θ) p
∗
t + θ pt–1, p∗t =

∫
I f

p∗jt dj

That is, the (log) aggregate price level at time t is a weighted average of the average price
set by resetters and the average price set by non-resetters, pt–1.

Optimal Price Setting. A firm re-optimizing in period t will choose the price P∗jt that
maximizes the current market value of the profits generated while the price remains
effective. Formally, P∗jt = argmaxPjt

∑∞
k=0 θ

kEjt
{
Λt,t+k

PjtYj,t+k–Wt+kNj,t+k
Pt+k

}
, where Λt,t+k ≡

βk
(
Ct+k
Ct

)–σ
is the stochastic discount factor, and Ejt(·) denotes firm j’s expectation condi-

tional on its information set at time t, and subject to the sequence of demand schedules,
Yj,t+k =

( Pjt
Pt+k

)–ϵ
Ct+k, and their production technology. I assume that prices are set before

wages. Log-linearizing the resulting first-order condition around the zero inflation steady-
state, I obtain the familiar price-setting rule p∗jt = (1 – βθ)

∑∞
k=0(βθ)

kEjt
(
pt+k +Θm̂ct+k

)
,

where m̂ct is the deviation of real marginal costs from steady-state, and Θ = 1–α
1–α+αϵ . The

only difference between the price-setting rule arising in this framework and the one in the
benchmark comes from the expectation operator. In the benchmark case, information
sets are homogeneous and all firms allowed to act set the same price. Instead, in this
framework, each firm will set a different price based on its information set.

Aggregate Phillips curve. Market clearing in the goods and labor market implies that
ct = yt = (1 – α)nt. Using the equilibrium aggregate labor supply condition, one can
write marginal costs in terms of output, mct = wt – pt =

(
σ + φ+α1–α

)
yt, where σ is the
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elasticity of intertemporal substitution and φ is the inverse Frisch elasticity. Rewrit-
ing output in terms of its gap with respect to the flexible-prices equilibrium, p∗jt = (1 –

βθ)
∑∞
k=0(βθ)

kEjt
[
pt+k +Θ

(
σ + φ+α1–α

)
ỹt+k

]
, which one can rewrite recursively as

p∗jt = (1 – βθ)Ejt pt +
κθ

1 – θ
Ejt ỹt + βθEjt p

∗
j,t+1(6)

where κ = (1–θ)(1–βθ)
θ Θ

(
σ + φ+α1–α

)
. Condition (6) is intuitive: when a firm j sets its price, it

considers how competitive will its price be compared to the average price in the economy
(playing a game of strategic complementarities with other firms), which will be the aggre-
gate demand in the economy, and the future conditions since its price will be effective for
an unknown number of periods. To derive the aggregate PC, one can aggregate condition
(6) across firms. The aggregate PC can then be written as

πt = κθ
∞∑
k=0

(βθ)kE f
t ỹt+k + (1 – θ)

∞∑
k=0

(βθ)kE f
t πt+k + (1 – θ)

(
E
f
t pt–1 – pt–1

)
(7)

where πt = pt – pt–1 is the inflation rate and E
f
t (·) =

∫
I f

Ejt(·) dj is the average firm expecta-
tion operator. Compared to the standard framework, there is an additional term on the
right-hand side, the result of firms not perfectly observing the previous price index. At this
point, it is important to stress that to derive the aggregate PC (7) I have not yet specified an
information structure. Therefore, it should be interpreted as a general aggregate PC.22

Demand side. The demand side behaves as in the standard framework. Output gap
dynamics are described by the standard Dynamic IS (DIS) curve (8), where the current
output gap depends negatively on the expected real interest rate and positively on future
aggregate demand; and nominal interest rates are set by the CB following a Taylor rule (9),
in which the CB reacts to excessive inflation and output by reducing the nominal interest
rates, and releases a monetary policy shock (10) that has an AR(1) structure:

ỹt = –
1
σ
(it – Etπt+1) + Et ỹt+1(8)

it = ϕππt + ϕ y ỹt + vt(9)

vt = ρvt–1 + σεεvt , εvt ∼ N(0, 1)(10)

22In the benchmark model, agents perfectly observe inflation and output, and face a symmetric Nash
equilibrium game, and thus every firm acts as a representative agent firm. In such a case, the aggregate PC
(7) can be simplified to the standard one, (4).
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The monetary policy shock vt will be a key object in this economy. It is the only aggregate
state variable, and I will assume that firms will have imperfect information on the CB’s
action vt, consistent with the evidence on the transparency policy change by the Fed.23

Information Structure. To generate heterogeneous beliefs and sticky forecasts, I assume
that the information is incomplete and dispersed. Each firm j observes a noisy signal xjt
that contains information on the monetary shock vt, and takes the standard functional
form of “outcome plus noise”. Formally, signal xjt is described as

xjt = vt + σuujt, with ujt ∼ N(0, 1)(11)

where signals are agent-specific. This implies that each agent’s information set is different,
and therefore generates heterogeneous information sets across the population of firms.

An equilibriummust satisfy the individual-level optimal pricing policy functions (6),
the aggregate DIS curve (8), the Taylor rule (9), and rational expectation formation should
be consistent with the exogenous monetary shock process (10) and the signal process (11).

Solution Algorithm. Here I outline the solution algorithm, and the interested reader
is referred to the Proof of Proposition 1 in Appendix A. I first guess that the dynamics
of the output gap are endogenous to the aggregate price index and the monetary shock:
ỹt = a y pt–1 + b y pt–2 + c yvt for some unknown coefficients (a y, b y, c y). This allows me to
write the individual price-setting condition (6) as a beauty contest in which each firm’s
decision will depend on its expectation of the fundamental and others’ actions. I compute
the expectations. For example, using the Kalman filter, one can write the expectation
process as

EjtZt = ΛEj,t–1Zt–1 + Kxjt = (I –ΛL)
–1Kxjt = Λ̃(L)xjt, Zt =

[
vt pt ỹt

]⊺
(12)

where I have made use of the lag operator L, and Λ̃(z) = (I –Λz)–1K is a polynomial matrix
that depends on the guessed dynamics and the information noise σu.24 I then insert these
objects into firm j’s price policy function (6), and obtain aggregate price level dynamics.
Finally, I verify the initial guess by introducing the implied price level dynamics into the
23Instead, the shock vt could be interpreted as an inflation target shock, such that it = ϕπ(πt – πt) + ϕ y ỹt

with vt = –ϕππt, where πt is an inflation target. Such an interpretation of the results presented in this paper
would be consistent with the findings by Benati and Surico (2008), who find that countries with CBs that
follow an inflation-targeting policy experience lower inflation persistence.
24In the case of the Kalman filter, I also need to guess the dynamics of the price level. To derive the results

I use the Wiener-Hopf filter in Appendix A.
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DIS curve (8). Notice that extending the benchmark framework to noisy and dispersed
information generates anchoring in expectations, which now follow the autoregressive
process (12). This additional anchoring will result in inflation being more intrinsically
persistent in the noisy information framework, compared to the benchmark setting. The
following proposition outlines inflation dynamics.

PROPOSITION 1. Under noisy information, the price level dynamics are given by

pt = (ϑ1 + ϑ2) pt–1 – ϑ1ϑ2 pt–2 –ψπχπ(ϑ1, ϑ2)vt(13)

where ϑ1 and ϑ2 are the reciprocal of the two outside roots of the quartic polynomial

P(z) = –(βθ – z)(1 – θz)(z – ρ) (1 – ρz) – τz

[
(βθ – z)(1 – θz) + z(1 – θ)(1 – βθ)

+ z2κθ
ϑ1[σ(1 – ϑ2) + ϕ y](ϑ1 + ϑ2 – 1 – ϕπ) + (1 – ϑ2)(ϕπ – ϑ2)(σ + ϕ y)

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

+ z3κθ
ϑ1ϑ2[σ(1 – ϑ1)(1 – ϑ2) – (ϑ1 + ϑ2 – 1 – ϕπ)ϕ y]

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

]

with

ψπ =
κ

(1 – ρβ)[σ(1 – ρ) + ϕ y] + κ(ϕπ – ρ)
(14)

and χπ is a scalar endogenous to information frictions defined in the appendix, with τ = σ2ε/σ2u.

PROOF. See Appendix A.

First differencing the price level dynamics (13), one can obtain the implied inflation
dynamics as

πt = (ϑ1 + ϑ2)πt–1 – ϑ1ϑ2πt–2 –ψπχπ(ϑ1, ϑ2)∆vt(15)

In the noisy information framework, inflation is intrinsically persistent and its persistence
is governed by the new information-related parameters ϑ1 and ϑ2, as opposed to the bench-
mark framework in which it is only extrinsically persistent. The intuition for this result
is simple: inflation is partially determined by expectations (see equation 7 under noisy
information, or 4 under complete information). Under noisy information, expectations
are anchored and follow an autoregressive process (see expression 12), which creates the
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Parameter Description Value Source/Target

σ IES 1 Galí (2015)
β Discount factor 0.99 Galí (2015)
φ Inverse Frisch elasticity 5 Galí (2015)
1 – α Labor share 0.75 Galí (2015)
ϵ CES between varieties 9 Galí (2015)
θ Calvo lottery 0.89 Hazell et al. (2022)
ρ Monetary shock persistence 0.5 Galí (2015)
ϕπ Inflation coefficient Taylor rule 1.5 Galí (2015)
ϕ y Output gap coefficient Taylor rule 0.125 Galí (2015)
σε Volatility monetary shock 1 Galí (2015)

TABLE 4. Model parameters.

additional source of anchoring in inflation dynamics, measured by the information-related
parameters ϑ1 and ϑ2.

3.2. Calibrating Information Frictions

In the theoretical framework, I rationalize the average forecast underreaction through
expectation anchoring to priors. In this section, I calibrate the information friction param-
eter σu to match the observed sluggishness in forecasts across time, given the rest of the
parameters. I report the parameter values in Table 4. For the quantitative analysis, I use a
standard parameterization in the literature, with the only exception of θ = 0.89, which is
calibrated to match a PC slope κ = 0.03 (mean value in the literature, reported in Hazell
et al. 2022). Finally, I calibrate τ = 0.0715 in the pre-1985 sample to match the empirical
evidence on βrev in Table 2, panel B.

As argued before, the signal noise became more precise in the dispersed-information
model lens. In the next proposition, I relate the previous empirical findings on expectations
to model-implied inflation persistence.

PROPOSITION 2. The theoretical counterpart of the coefficient βrev in (2) is given by

βrev =
λ3ρ(1 – ϑ1λ)(1 – ϑ2λ)

(1 – λ4)(ρ – λ)

λ
∏4
j=1(λ – ξj)∏2
k=1(λ – ϑk)

–
1 – λ2

ϑ1 – ϑ2

2∑
k=1

ϑk
∏4
j=1(ϑk – ξj)

(1 – λϑk)(λ – ϑk)

(16)

where λ is the inside root of the quadratic polynomialQ(z) = (1–ρz)(z–ρ)+τz, and (ξ1, ξ2, ξ3, ξ4)
are the reciprocals of the roots of the quartic polynomial Q2(z) = ϕ0 +ϕ1z +ϕ2z2 +ϕ3z3 +ϕ4z4,
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FIGURE 3. Coefficient βrev and information frictions τ–1. In red, is the estimated underre-
vision coefficient (with 95% confidence interval, dashed line) before 1985. In blue, is the
estimated underrevision coefficient (with 95% confidence interval, dashed line) after 1985.

where ϕ0 = –ψπχπ, ϕ1 =
(
1
λ –

1
ρ

)
ϕ0, ϕ2 =

(ρ–λ)ϕ0
λ2ρ

, ϕ3 =
(ρ–λ)ϕ0[λ3–ϑ1–ϑ2+λϑ1ϑ2]

λ2ρ(1–λϑ1)(1–λϑ2)
, and ϕ4 =

–λ3+λ4ϑ2+λ4ϑ1–ϑ1ϑ2[λ–(1–λ4)ρ]
λ2ρ(1–λϑ1)(1–λϑ2)

.

PROOF. See Appendix A.

The empirical results reported in section 2.2 support a fall in information frictions in
recent decades. Proposition 2 maps the theoretical degree of information frictions, σu,
with the Coibion and Gorodnichenko (2015a) estimate. It introduces the model-implied
βrev coefficient, which depends on the monetary policy shock persistence ρ and on the
information-related parameters ϑ1, ϑ2 and λ, where λ, in turn, depends on the persistence
parameter and the signal-to-noise ratio. In the noisy information framework,βrev is strictly
positive and increases with the degree of information frictions. I show this graphically in
Figure 3. In the model lens, this underrevision is the consequence of individual anchoring
to priors and generates forecast underreaction at the aggregate level.

4. Results

4.1. Inflation Persistence

In the noisy information framework, inflation persistence is governed by ϑ1 and ϑ2. For-
mally, one canwrite the inflation first-order autocorrelation as ρ1 =

(1+ρ)(ϑ1+ϑ2)+(1–ρ)(ϑ1ϑ2–1)
1+ρϑ1ϑ2 ,

which is increasing in both ϑ1 and ϑ2. Since the ultimate goal is to understand the break in
inflation persistence documented in Section 2.1, the following proposition exposes the
determinants of ϑ1 and ϑ2, and provides analytical comparative statics.
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PROPOSITION 3. The persistence parameters satisfy (i) ϑ1 ∈ (0, ρ), (ii) ϑ1 is increasing in σu,
(iii) ϑ2 ∈ (θ, 1), and (iv) ϑ2 is decreasing in σu.

PROOF. See Appendix A.

Inflation persistence and information frictions are related through ϑ1 and ϑ2. The above
proposition is key to understanding the time-varying properties of inflation persistence.
First, part (i) establishes that ϑ1 is bounded by 0 and ρ. Part (ii) states that ϑ1 is increasing
in the degree of information frictions, formalized via the noise of the signal innovation σu.
A decrease in information frictions reduces inflation first-order autocorrelation through a
de-anchoring of individual inflation expectations, which would in turn de-anchor inflation
dynamics. Figure 4A plots the level of intrinsic persistence ϑ1 for different degrees of
information frictions, measured by τ–1. Part (iii) establishes that ϑ2 is bounded by θ and 1.
Part (iv) states that ϑ2 is decreasing in the degree of information frictions. A decrease in
information frictions increases inflation first-order autocorrelation through anchoring of
individual inflation expectations, which would in turn anchor inflation dynamics. Figure
4B plots the level of intrinsic persistence ϑ2 for different degrees of information frictions.
In the limit of no information frictions σu → 0, ϑ1 → 0 and ϑ2 → 1.

Information frictions do, therefore, have opposing effects on persistence. On the one
hand, information frictions lead to an additional persistence through an increase in ϑ1,
the standard mechanism in Angeletos and Huo (2021). On the other hand, there is an
additional component ϑ2 that is decreasing in information frictions. This element arises
from the fact that I am solving the model in prices, instead of inflation as in Angeletos
and Huo (2021) or as in the benchmark setting in Galí (2015) in which prices follow a unit
root. Looking at the price level dynamics (5), when firm j forecasts the aggregate price
level pt, she needs to forecast the average action by other firms p∗t , but also backcast
the aggregate price level in the past pt–1 (see equation 5). Information frictions relax the
forward-lookingness of the model equations, as formalized by Gabaix (2020); Angeletos
and Huo (2021), resulting in price level dynamics no longer following a unit root. In the
frictionless limit, prices follow a unit root, formalized by ϑ2 → 1. However, as shown
in Figure 4C, the net result of an increase in information frictions is an increase in the
first-order autocorrelation. These key results, coupled with the next result introduced in
Proposition 2, explain the overall fall in inflation persistence.

The key finding is that βrev and ρ1, the theoretical counterparts of Coibion and Gorod-
nichenko (2015a) underrevision estimate and inflation persistence, are closely related as I
show in Figure 4D, and the fall in the first-order autocorrelation can be explained by a
fall in information frictions. Propositions 1-2 establish a direct relationship between the
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A. Intrinsic persistence ϑ1 and information frictions τ–1

B. Intrinsic persistence ϑ2 and information frictions τ–1

C. First-Order Autocorrelation ρ1 and information frictions τ–1

D. First-Order Autocorrelation ρ1 and information frictions βrev

FIGURE 4. Comparative statics. In red, estimated first-order autocorrelation and underrevi-
sion coefficients (with 95% confidence interval, dashed line) before 1985. In blue, estimated
first-order autocorrelation and underrevision coefficients (with 95% confidence interval,
dashed line) after 1985.
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first-order autocorrelation of inflation ρ1 and βrev, our empirical measure of information
frictions. Figure 4D shows graphically the monotonically increasing relation between
inflation persistence and βrev. In the initial pre-1985 period, with βrev = 1.501 from table
2, panel B, the model-implied inflation first-order autocorrelation is ρ1 = 0.728. In the
post-1985 period, with no information frictions, the first-order autocorrelation falls to
ρ1 = ρ = 0.5, which is the persistence of the monetary policy shock in the benchmark
framework (see Galí 2015). Comparing our model results to the empirical analysis in Ta-
bles 1 and 2 (panel A), I find that the noisy information framework produces persistence
dynamics that lie within the 95% confidence interval, and can explain around 90% of the
fall in the point estimate.

Role of Calvo Friction. In this framework, the first-order autocorrelation of inflation
depends on the degree of information frictions, summarized by the two roots ϑ1 and ϑ2. A
key parameter affecting the transmission of information frictions to the economy is the
Calvo inaction probability θ since it regulates the degree of strategic complementarities
on firms’ actions. To see this, insert the aggregate price level dynamics (5) into firm j’s
best response (6), p∗jt = (1–βθ)(1–θ)

∑∞
k=0 θ

kEjt p
∗
t–k +

κθ
1–θEjt ỹt +βθEjt p

∗
j,t+1. An increase in

the Calvo inaction probability has opposing effects on the degree of strategic complemen-
tarities within firms. On the one hand, an increase in θ reduces the impact of expected
past aggregate actions through a smaller coefficient (1 – βθ)(1 – θ). On the other hand, it
increases the memory of past expectations on today’s actions,

∑∞
k=0 θ

kEjt p
∗
t–k. It seems

natural, however, that this second effect dominates when I look at inflation persistence.
Formally, I showed in proposition 3 that ϑ2 is bounded from below by θ and that it is
decreasing in the degree of information frictions σu. Therefore, a high θ limits the sensi-
tivity of the root ϑ2 to changes in σu and helps in generating the increase in the first-order
autocorrelation after an increase in σu, given that ρ1 is increasing in ϑ2.

The calibration of the Calvo pricing friction implies a mean price duration of 7.8 quar-
ters. This estimate is in the upper range in the micro literature, although aligned with
the macro literature. Bils and Klenow (2004); Klenow and Kryvtsov (2008); Nakamura
and Steinsson (2008); Goldberg and Hellerstein (2009) find a median price duration of
4.5-11 months in US micro data. Galí (2015) sets θ = 0.75 to match an implied duration of 1
year. Christiano et al. (2011) set θ = 0.85. Auclert et al. (2020); Afsar et al. (2021) estimate
θ between 0.88 and 0.93 frommacro data, implying a price duration of 12-14 quarters. In
Figure 5, I plot the implied first-order autocorrelation for different values of the Calvo
price friction in the range of the literature. Depending on this parameter, the noisy infor-
mation framework explains between 40% and 100% of the fall in the point estimate in the
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FIGURE 5. First-order autocorrelation ρ1 and price friction θ.

first-order autocorrelation.

4.2. The Phillips Curve

In this section, I argue that after controlling for changes in information frictions, the
decline in the slope of the PC appears to be relatively modest. I find evidence that a more
significant factor in the dynamics of the PC is the shift towards greater forward-lookingness
and less backward-lookingness. I conduct two main exercises. First, in a more theoretical
exercise, I use the noisy information framework to rewrite the inflation dynamics as an as
if FIRE setting with wedges (Angeletos and Huo 2021). According to my theory, the PC (4)
needs to be extended with a lagged inflation term and myopia towards expected inflation
in the pre-1985 sample period.25 Once these additional terms are controlled for, and I
estimate a PC close to the hybrid version implied by price-indexation settings, I do not find
any evidence of a change in κ, but rather a decrease in backward-lookingness. Second,
by relaxing the FIRE assumption but without any belief structure restriction, the PC is
instead given by (7). Instead of replacing expectations of future inflation by its realization,
as the literature generally does when estimating condition (4), I use the survey forecasts
to estimate (7), and I only find evidence of a modest change in the slope.

The Wedge Phillips Curve. Next, I argue that once I consider a micro-founded PC that
takes into account noisy information, I do not find any evidence of a change in the slope
of the PC. Furthermore, I show that the key drivers behind the change in the dynamics of
the PC are the fall in its backward-lookingness and the increase in its forward-lookingness
after the mid-1980s
25The derivation of the PC relies on the FIRE assumption (and, implicitly, on the Law of Iterated Expecta-

tions at the aggregate level), for which I find a strong rejection in the data.
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Let us first recall inflation dynamics in the standard model. In the benchmark model,
the PC is given by (4), the DIS curve is given by (8), the Taylor rule is given by (9) and the
monetary policy shock process is given by (10). Inserting the Taylor rule (9) into the DIS
curve (8), one can write the model as a system of three first-order stochastic difference
equations with reduced-form dynamics xt = δEtxt+1 +φvt, where xt = [ ỹt πt pt]⊺ is

a 3 × 1 vector containing output, inflation, and prices, δ =


σ

σ+ϕ y+κϕπ

1–βϕπ
σ+ϕ y+κϕπ

0
σκ

σ+ϕ y+κϕπ

κ+β(σ+ϕ y)
σ+ϕ y+κϕπ

0

0 –1 1

,
and φ = 1

σ+ϕ y+κϕπ

[
–1 –κ 0

]⊺
. Angeletos and Huo (2021) show that, using the noisy

information dynamics (A.13) and (15), one can reverse engineer an as if system dynamics
that mimics the dynamics of the noisy information model albeit maintaining the FIRE
assumption, such that the following ad-hoc system of equations xt =ωbxt–1 +δω f Etxt+1 +
φvt satisfies the model dynamics for some pair of 3 × 3 matrices (ωb,ω f ). The next
proposition states that under a certain pair (ωb,ω f ), the ad-hoc economy produces the
same dynamics of the noisy information framework.

PROPOSITION 4. The ad-hoc hybrid dynamics xt = ωbxt–1 + δω f Etxt+1 + φvt produces
identical dynamics to the noisy information model if (ωb,ω f ) satisfy

B –φ = δω f (AB + ρB)

ωb = (I3 – δω fA)A
(17)

where

A =


0 –b y a y + b y
0 ϑ1ϑ2 –(1 – ϑ1)(1 – ϑ2)
0 ϑ1ϑ2 ϑ1 + ϑ2 – ϑ1ϑ2

 , B =


–ψ yχ y(ϑ1, ϑ2)
–ψπχπ(ϑ1, ϑ2)
–ψπχπ(ϑ1, ϑ2)


a y =

ϑ1[σ(1 – ϑ2) + ϕ y](ϑ1 + ϑ2 – 1 – ϕπ) + (1 – ϑ2)(ϕπ – ϑ2)(σ + ϕ y)
[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

b y =
ϑ1ϑ2[σ(1 – ϑ1)(1 – ϑ2) – (ϑ1 + ϑ2 – 1 – ϕπ)ϕ y]

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

withψ y and χ y defined in Appendix A. In particular, the “as if” FIRE PC dynamics are described
by

πt = ωππt–1 +ω p pt–1 + κ ỹt + δ yEt ỹt+1 + δπβEtπt+1 + δ pEt pt+1(18)
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where (ωπ,ω p, δ y, δπ, δ p) depend on the (ωb,ω f ) pair, and expectation operators satisfy the
FIRE assumption.

PROOF. See Appendix A.

TheFIREwedgePC (18), togetherwith awedge IS curve derived inAppendixA, produces
identical dynamics to the noisy information setup derived in section 3.Notice that, to derive
similar dynamics in a FIRE setup, the PC needs to be extended with intrinsic persistence
and myopia. Since all new terms depend on the degree of information frictions σu, the
model predicts that changes in beliefs will affect the dynamics of the PC. In particular, the
model predicts that as information frictions vanish, i.e., in the benchmark model with
no information frictions, I have ωb,11 = ωb,12 = ωb,21 = ωb,22 = ω f ,12 = ω f ,21 = 0 and
ω f ,11 = ω f ,22 = 1. As a result,ωπ = ω p = δ y = δ p = 0, δπ = 1 and the PC is reduced to the
purely forward-looking curve (4).

I now test this theoretical prediction in the data by estimating the wedge PC (18),
allowing for a structural break in all coefficients after 1985. I proxy the output gap term
using the CBO Output Gap, replace expectations of future variables with realized future
variables and estimate the equation using the generalized method of moments (GMM).
In the estimation exercise, I focus particularly on the theoretical prediction of a lack of
backward-lookingness post-1985, instead of the slope analysis.26

In table 5 column 1, I report the estimated coefficients for the full sample exercise. I find
that only inflation-related coefficients are significant, suggesting support for backward-
lookingness and significant myopia (coefficient well below the discount factor β = 0.99).
I report the structural break results in columns 2 and 3. In column 2 I only allow for a
structural break on the contemporaneous output gap coefficient. I find no evidence of
a structural break in the slope (i.e., no evidence of flattening in the PC). In column 3 I
explore if there has been any other structural break in the dynamics of the PC. Consistent
with my previous findings on belief formation, I find a structural break in lagged and
forward inflation: in recent decades the PC has become more forward-looking and less
backward-looking. This last result aligns well with the documented fall in the persistence
of inflation and information frictions, and with the mechanism dynamics proposed by the
noisy information framework, suggesting that the fall in the first-order autocorrelation of
inflation can be explained by a lack of intrinsic persistence after the mid-1980s.

Notice that condition (17) does not uniquely determine the set of weightsω f that is
consistent with the noisy information dynamics. Different weights inω f are consistent

26As stressed in Hazell et al. (2022), aggregate macroeconomic data does not have enough power to detect
the slope of the PC.
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with noisy information dynamics, although the dynamics are unique.27 I explore which set
of wedges (ωb,ω f ) is consistent with the documented dynamics and with the findings in
table 5. Since I do not find any evidence of the relevance of the lagged price level and the
forward output gap (column 1), I choose wedges such that they produce the well-known
hybrid PC. The following corollary provides us with the hybrid wedge PC.

COROLLARY 1. The hybrid PC πt = ωππt–1 +κ ỹt +δπβEtπt+1 +χvt produces identical dynamics
to the ”as if” FIRE PC (18), where (ωπ, δπ,χ) depend on the (ωb,ω f ) pair. As information
frictions vanish,ωπ = χ = 0 and δπ = 1.

PROOF. See Appendix A.

As before, the noisy information model suggests that intrinsic persistence and myopia
in the hybrid PC should vanish in the post-1985 sample. Estimating the micro-founded
hybrid PC, reported in table 5 (columns 4 and 5), I fail to reject the null that, since the
structural break in 1985:Q1, (i) anchoring has gone to zero and (ii) myopia has disappeared.
I repeat the analysis by replacing the CBO output gap with the unemployment rate or
the CBO unemployment gap, and I find similar results (see columns 6 and 7). The true
“elephant in the room” is the shift towards greater forward-lookingness, rather than a
(potential) modest decline in the slope of the PC.

Controlling for Imperfect Expectations. To obtain the results on inflation persistence, I
have assumed a particular belief structure, RE but noisy and dispersed information. In
this section, I take an agnostic stance on expectation formation. I start the analysis from
the aggregate PC (7), derived under no assumptions on beliefs. In this case, inflation is
related to current and future output through two different channels: the slope of the PC, κ,
and firms’ expectation formation process, E

f
t (·). To test for a potential structural break in

the slope controlling for non-standard expectations, I regress the general PC (7), truncated
at k = 4, for which I do not assume a particular information structure, using real GDP and
GDP Deflator growth forecast data from the SPF. I set β and θ to their values in table 4, and
regress

πt = α1 + α2 ỹet + α3π
e
t + ηt(19)

where α2 = κ, α3 = 1 – θ, ỹet = θ
∑4
k=0(βθ)

kE
f
t ỹt+k and π

e
t =

∑4
k=0(βθ)

kE
f
t πt+k denote

the truncated sums of the expected output gap and inflation, respectively, and ηt = (1 –
θ)

(
E
f
t pt–1 – pt–1

)
+ truncation error is the error term. I use standard GMMmethods by

27Intuitively, agents’ actions can be anchored/myopic concerning aggregate output or inflation.
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Unemployment Real GDP Growth
Full Sample Structural Break Full Sample Structural Break

ỹet -0.00519∗∗∗ -0.0231∗∗∗ -0.0128 0.0245
(0.00171) (0.00679) (0.0133) (0.0224)

ỹet × 1{t≥t∗} 0.0133∗∗∗ -0.0403∗∗

(0.00493) (0.0201)

πet 0.282∗∗∗ 0.342∗∗∗ 0.258∗∗∗ 0.251∗∗∗

(0.0109) (0.0261) (0.00999) (0.0108)

Observations 199 199 199 199
HAC (1 lag) robust standard errors in parentheses. Instrument set: four lags of forecasts of
annual real GDP growth and annual GDP Deflator growth. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

TABLE 6. Estimates of regression (19).

instrumenting for expectations with 4-quarter lagged annual inflation and output gap
expectations. The results are reported in table 6. In column 1, I report the full sample
estimation using unemployment expectations as a proxy for the output gap. I find that κ
is small and similar to the value found by Hazell et al. (2022). In column 2, I regress its
(output) structural break version. I find evidence for a moderate fall in the slope of the PC.
Columns 3 to 4 report the results of the same analysis, using real GDP growth expectations
as a proxy for the output gap. I find similar results.28

Summary. I find that once I control for imperfect expectations and a potential change
in their dynamics, I only estimate a modest decline in the slope of the PC since the mid-
1980s. First, I showed that the noisy information model can explain the change in the
dynamics of the PC as a reshuffle between backward-lookingness and forward-lookingness
via changes in belief formation. Second, I documented empirically that controlling for
non-standard expectations, proxied by the forecasts submitted by professional forecasters,
I find evidence for a fall in the slope of the PC from 0.023 to 0.010.

5. Conclusion

In this paper, I explain the fall in inflation persistence since themid-1980s through changes
in beliefs. State-of-the-art monetary models face significant challenges in explaining
this fall in inflation persistence. I show that, by relaxing the FIRE assumption in the
28I repeat the analysis using the Livingston Survey in Online Appendix OA.1 and find similar results.
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A. Scatter plot of ex-ante average forecast error (vertical axis) and average forecast
revisions (horizontal axis), computed using the SPF and vintage GDP Deflator
data. Red dots correspond to 2012-2019 observations, and blue dots correspond to
observations after 2019.

B. Scatter plot contemporaneous inflation (vertical axis) and one-quarter lagged
inflation (horizontal axis). Red dots correspond to 2012-2019 observations, and
blue dots correspond to observations after 2019.

FIGURE 6. Scatter plots of forecast underrevision and inflation’s first-order autocorrelation.
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benchmark NK framework, the model can generate the documented fall in persistence.
Using micro-data on inflation expectations from the Survey of Professional Forecasters
(SPF), I argue that agents became more informed about inflation after the change in the
Federal Reserve disclosure policy, which endogenously lowers the intrinsic persistence in
inflation dynamics.

I revisit theories that produce a structural relation between inflation and other eco-
nomic forces. I show that a variety of NK models cannot explain the fall in inflation
persistence. Since the benchmark model is purely forward-looking, inflation exhibits
no intrinsic persistence, and its dynamic properties are now inherited from monetary
policy shocks. However, I document that the persistence of monetary policy shocks has
not changed over time. Acknowledging that purely forward-looking models cannot gener-
ate anchoring or intrinsic persistence, I extend the benchmark model to incorporate a
backward-looking dimension. I show that the change in the monetary stance now affects
inflation’s intrinsic persistence. The effect is small, however. Then, I show that the noisy
and dispersed information extension is consistent with the micro-data evidence on belief
formation, and generates anchoring or intrinsic inflation persistence. Using SPF data, I
document that a structural break in expectation formation, resulting in agents being more
informed about inflation, is contemporaneous with the fall in inflation persistence. The
model can therefore explain the fall in inflation persistence in a micro-consistent manner.

I discuss the consequences of noisy and dispersed information on the dynamics of the
PC and the lack of flattening. In the noisy information model, the PC is enlarged with
anchoring and myopia. Consistent with the theory, I find that both anchoring and myopia
vanish after the reduction of information frictions in the mid-1980s. Finally, taking an
agnostic stance on expectations, I show that there is evidence of only a modest decline in
the slope of the PC, once I control for imperfect expectations.

Will the 2020-2022 inflation be persistent? In this paper, I have only considered data up
until 2020:Q2. The evidence provided points towards a lessening in the underrevision be-
havior of agents and a fall in inflation persistence since the mid-1980s. Taking these results
together would make the reader conclude that current inflation will only be temporary (or,
at least, less persistent than before the mid-1980s). However, having a look at the 2020:Q2-
2022:Q2 data, one could argue that the underrevision behavior (see figure 6A) and inflation
persistence (see figure 6B) are striking back.29 Although admittedly speculative, these
29I include the 2012-2019 period to show that the increase in information frictions and persistence is

not driven by forward guidance, a major policy change that could, in principle, have dampened agents’
understanding of monetary policy due to its novelty.

32



findings suggest that CBs should focus on their communication in the coming quarters if
they want to reduce the current inflation persistence.30 This theory is imperfect, however,
since it abstains from cost-push shocks and the bottlenecks arising from the input-output
network of the economy. This suggests avenues for follow-up research, in which belief
formation frictions interact with the input-output structure of the economy.
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Appendix A. Proofs of Propositions

Proof of Proposition 1. Under noisy information on the firm side, the individual price
policy functions are given by (6). Let us guess that the equilibrium output gap dynamics
will take the form of

ỹt = a y pt–1 + b y pt–2 + c yvt(A.1)

Making use of the guess I can rewrite the price-setting condition as

p∗it =
κθc y
1 – θ

Eitvt +
κθb y
1 – θ

Eit pt–2 +
κθa y
1 – θ

Eit pt–1 + (1 – βθ)Eit pt + βθEit p
∗
i,t+1(A.2)

I now turn to solve the expectation terms in (A.2). I can write the fundamental rep-
resentation of the signal process as a system containing (10) and (11), which admits the
following state-space representation

Zt = FZt–1 +Φsit
xit = HZt +Ψsit

(A.3)

with F = ρ,Φ =
[
σε 0

]
, Zt = vt, sit =

[
εvt

uit

]
, H = 1, and Ψ =

[
0 σu

]
. It is convenient to

rewrite the uncertainty parameters in terms of precision: define τε ≡ 1
σ2ε

and τu ≡ 1
σ2u
.

The signal system can be written as

xit =
σε

1 – ρL
εvt + σuuit =

[
τ
– 12
ε

1–ρL τ
– 12
u

][
εvt

uit

]
= M(L)sit, sit ∼ N(0, I)(A.4)

The Wold theorem states that there exists another representation of the signal process
(A.4), xitt = B(L)wit, such that B(z) is invertible and wit ∼ (0,V) is white noise. Hence, I
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can write the following equivalence

(A.5) xit = M(L)sit = B(L)wit

In the Wold representation of xit, observing {xit} is equivalent to observing {wit}, and {xti }
and {wti} contain the same information. Furthermore, note that the Wold representation
has the property that, using the equivalence (A.5), both processes share the autocovariance
generating function, ρxx(z) = M(z)M⊺(z–1) = B(z)VB⊺(z–1).

Given the state-space representation of the signal process (A.3), optimal expectations
of the exogenous fundamental take the form of a Kalman filter, Eitvt = λEit–1vt–1 + Kxit,
where λ = (I – KH)F, and K is given by

K = PH⊺V–1(A.6)

P = F[P – PH⊺V–1HP]F +ΦΦ⊺(A.7)

I still need to find the unknowns B(z) and V . Propositions 13.1-13.4 in Hamilton (1994)
provide us with these objects. Unknowns B(z) and V satisfy B(z) = I +H(I – Fz)–1FK and
V = HPH⊺ +ΨΨ⊺. I can write (A.7) as

P2 + P[(1 – ρ2)σ2u – σ2ε] – σ2εσ2u = 0(A.8)

from which I can infer that P is a scalar. Denote k = P–1 and rewrite (A.8) as k =
τε
2

{
1 – ρ2 – τuτε ±

√[
τu
τε
– (1 – ρ2)

]2
+ 4τuτε

}
. I also need to find K. Now that I have found P

in terms of model primitives, I can obtain K using condition (A.6), K = 1
1+kσ2u

. I can finally
write λ as

λ =
kσ2uρ
1 + kσ2u

=
1
2

 1
ρ
+ ρ +

τ

ρ
±

√(
1
ρ
+ ρ +

τ

ρ

)2
– 4

(A.9)

One can show that one of the roots λ1,2 lies inside the unit circle and the other lies outside
as long as ρ ∈ (0, 1), which guarantees that the Kalman expectation process is stationary
and unique. I set λ to the root that lies inside the unit circle (the one with the ‘–’ sign).
Notice that I can also write V in terms of λ, V = k–1 + σ2u =

ρ
λτu

, where I have used the
identity k = λτu

(ρ–λ) . Finally, I can obtain B(z) = 1 +
ρz

(1–ρz)(1+kσ2u)
= 1–λz
1–ρz , and therefore one can

verify that B(z)VB⊺(z–1) = M(z)M⊺(z–1).
Let us now move to the forecast of endogenous variables. Consider a variable f t =
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A(L)sit. Applying the Wiener-Hopf prediction filter, I can obtain the forecast as Eit f t =[
A(L)M⊺(L–1)B(L–1)–1

]
+ V

–1B(L)–1xit, where [·]+ denotes the annihilator operator.31

Recall from condition (A.2) that I am interested in obtainingEitvt,Eit pt–2,Eit pt–1,Eit pt
and Eit p

∗
i,t+1. I need to find the A(z) polynomial for each of the forecasted variables. I start

from the exogenous fundamental, vt, to verify that the Kalman andWiener-Hopf filters

result in the same forecast. I can write the fundamental as vt =
[
τ
– 12
ε

1–ρL 0

]
sit = Av(L)sit. Let

me nowmove to the endogenous variables. In this case, I need to guess (and verify) that
each agent i’s policy function takes the form p∗it = h(L)xit.

32 The aggregate price level, given

by (5), can then be expressed as pt = (1 – θ)
∫
h(L)xit di + θ pt–1 = (1 – θ)h(L)

τ
– 12
ε

(1–ρL)(1–θL)ε
v
t .

Using the guesses, I have pt–k =
[
(1 – θ)τ–

1
2
ε

h(L)Lk
(1–ρL)(1–θL) 0

]
sit = A pk(L)sit and pi,t+1 =

h(L)
L M(L)sit =

[
τ
– 12
ε

h(L)
L(1–ρL) τ

– 12
u

h(L)
L

]
sit = Ai(L)sit. I am now armed with the necessary

objects to obtain the three different forecasts,

Eitvt =
[
Av(L)M⊺(L–1)B(L–1)–1

]
+
V–1B(L)–1xit =

[
L

τε(1 – ρL)(L – λ)

]
+

λτu
ρ

1 – ρL
1 – λL

xit

=
[
ϕv(L)
L – λ

]
+

λτ

ρ

1 – ρL
1 – λL

xit =
ϕv(L) – ϕv(λ)

L – λ
λτ

ρ

1 – ρL
1 – λL

xit, ϕv(z) =
z

1 – ρz

=
λτ

ρ(1 – ρλ)
1

1 – λL
xit =

(
1 –
λ

ρ

)
1

1 – λL
xit = G1(L)xit(A.10)

Eit pt–k =
[
A pk(L)M

⊺(L–1)B(L–1)–1
]
+
V–1B(L)–1xit =

[
h(L)Lk+1

(1 – ρL)(L – λ)(1 – θL)

]
+

(1 – θ)λτ
ρ

1 – ρL
1 – λL

xit

=
[
ϕπ(L)
L – λ

]
+

(1 – θ)λτ
ρ

1 – ρL
1 – λL

xit =
ϕπ(L) – ϕπ(λ)

L – λ
(1 – θ)λτ

ρ

1 – ρL
1 – λL

xit, ϕπ(z) =
h(z)z

(1 – ρz)(1 – θz)

= (1 – θ)
λτ

ρ

[
h(L)Lk+1

1 – θL
– h(λ)λk+1

1 – ρL
(1 – ρλ)(1 – θλ)

]
1

(1 – λL)(L – λ)
xit

= (1 – θ)
(
1 –
λ

ρ

)[
h(L)Lk+1(1 – ρλ)

1 – θL
–
h(λ)λk+1(1 – ρL)

1 – θλ

]
1

(1 – λL)(L – λ)
xit = G2(L)xit

(A.11)

Eit pi,t+1 =
[
Ai(L)M

⊺(L–1)B(L–1)–1
]
+
V–1B(L)–1xit =

[
h(L)

τε(1 – ρL)(L – λ)
+
h(L)(L – ρ)
τuL(L – λ)

]
+

λτu
ρ

1 – ρL
1 – λL

xit

31See Online Appendix OA.5 for more details on the Wiener-Hopf prediction filter and the annihilator
operator.
32In this framework agents only observe signals, and the policy function can only depend on current and

past signals.
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=
{[

h(L)
τε(1 – ρL)(L – λ)

]
+
+
[
h(L)(L – ρ)
τuL(L – λ)

]
+

}
λτu
ρ

1 – ρL
1 – λL

xit

=

{[
ϕi,1(L)
L – λ

]
+
+

[
ϕi,2(L)
L(L – λ)

]
+

}
λτu
ρ

1 – ρL
1 – λL

xit, ϕi,1(z) =
h(z)

τε(1 – ρz)
, ϕi,2(z) =

h(z)(z – ρ)
τu

=

{
ϕi,1(L) – ϕi,1(λ)

L – λ
+
ϕi,2(L) – ϕi,2(λ)

λ(L – λ)
–
ϕi,2(L) – ϕi,2(0)

λL

}
λτu
ρ

1 – ρL
1 – λL

xit

=
λ

ρ

{
h(L)
L – λ

[
τu

τε(1 – ρL)
+
L – ρ
L

]
–
h(λ)
L – λ

[
τu

τε(1 – ρλ)
+
λ – ρ
λ

]
–
ρh(0)
λL

}
1 – ρL
1 – λL

xit

=
{
h(L)
L – λ

[(
1 –
λ

ρ

)
1 – ρλ
1 – ρL

+
λ(L – ρ)
ρL

]
–
h(0)
L

}
1 – ρL
1 – λL

xit = G3(L)xit

(A.12)

Recall the best response for a firm i, condition (A.2). To be consistent with firm opti-
mization, the policy function h(z) must satisfy (A.2) at all times and signals. Plugging the
obtained expressions and rearranging by h(z), I can write C̃(z)h(z)xit = d[z; h(λ), h(0)]xit,
where

C̃(z) = (z – βθ)(1 – θz)(z – λ)(1 – λz) – z2κθ
(
(1 – θ)(1 – βθ)

κθ
+ za y + z2b y

)(
1 –
λ

ρ

)
(1 – ρλ)

= λ

{
(βθ – z)(1 – θz)(z – ρ)

(
z –

1
ρ

)
–
τ

ρ
z
[
(βθ – z)(1 – θz) + κθ

(
(1 – θ)(1 – βθ)

κθ
+ za y + z2b y

)
z
]}

= λC(z)

and

d[z; h(λ), h(0)] =
κθc y
1 – θ

(
1 –
λ

ρ

)
z(z – λ)(1 – θz) – h(0)βθ(1 – ρz)(z – λ)(1 – θz)

– h(λ)
λ

1 – θλ

(
1 –
λ

ρ

)
κθ

(
(1 – θ)(1 – βθ)

κθ
+ λa y + λ2b y

)
z(1 – ρz)(1 – θz)

Notice that I can write polynomial C̃(z) in terms of its roots as C̃(z) = θλ
(
1 – τκb yρ

)
(z –

ζ1)(z – ζ2)(z – ϑ–11 )(z – ϑ
–1
2 ) where ζ1, ζ2 are the inside roots of C(z), and ϑ1 and ϑ2 are the

reciprocals of the outside roots. To have a causal h(z) polynomial, I need to eliminate the
inside roots in its denominator, λC(z). I choose h(0) and h(λ) so that d[ζ1; h(0), h(λ)] = 0 and
d[ζ2; h(0), h(λ)] = 0. As a result, I can write d[z; h(0), h(λ)] =

κθλτc y
(1–θ)ρ(1–ρζ1)(1–ρζ2)

(z – ζ1)(z –
ζ2)(1 – θz), and hence the policy function is

h(z) =
κc y
1 – θ

τϑ1ϑ2(
ρ – τκb y

)
(1 – ρζ1)(1 – ρζ2)

1 – θz
(1 – ϑ1z)(1 – ϑ2z)
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Finally, the aggregate price level dynamics follow pt = (1 – θ) h(L)1–θLvt =
κc y τϑ1ϑ2

(ρ–τκb y)(1–ρζ1)(1–ρζ2)
1

(1–ϑ1L)(1–ϑ2L)
vt. I can therefore write inflation dynamics as πt =

(1 – L) pt = (ϑ1 + ϑ2)πt–1 – ϑ1ϑ2πt–2 + c p∆vt where c p = κc y
τϑ1ϑ2

(ρ–τκb y)(1–ρζ1)(1–ρζ2) . Inserting
inflation dynamics into the DIS equation (8) I can obtain output gap dynamics

ỹt =
1
σ
(–ϕπ pt + ϕπ pt–1 + σEt ỹt+1 + Et pt+1 – pt – vt)

=
(σa y + ϑ – ϕπ)(1 + ϑ) + ϕπ + σb y – ϑ

σ
pt–1 –

(σa y + ϑ – ϕπ)ϑ
σ

pt–2

–
1 – ρ(c p – σc y) – (σa y + ϑ – ϕπ)c p

σ
vt(A.13)

To be consistent with our earlier guess (A.1), it must be that

a y =
ϑ1[σ(1 – ϑ2) + ϕ y](ϑ1 + ϑ2 – 1 – ϕπ) + (1 – ϑ2)(ϕπ – ϑ2)(σ + ϕ y)

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

b y =
ϑ1ϑ2[σ(1 – ϑ1)(1 – ϑ2) – (ϑ1 + ϑ2 – 1 – ϕπ)ϕ y]

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

and two additional coefficients (c p, c y) irrelevant for persistence. Finally, I can rewrite the
C̃(z) polynomial as

C̃(z) =
λ

ρ

{
– (βθ – z)(1 – θz)(z – ρ) (1 – ρz) – τz

[
(βθ – z)(1 – θz) + z(1 – θ)(1 – βθ)

+ z2κθ
ϑ1[σ(1 – ϑ2) + ϕ y](ϑ1 + ϑ2 – 1 – ϕπ) + (1 – ϑ2)(ϕπ – ϑ2)(σ + ϕ y)

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

+ z3κθ
ϑ1ϑ2[σ(1 – ϑ1)(1 – ϑ2) – (ϑ1 + ϑ2 – 1 – ϕπ)ϕ y]

[σ(1 – ϑ1) + ϕ y][σ(1 – ϑ2) + ϕ y]

]}

Proof of Proposition 2. I am interested in obtaining βrev = C(forecast errort,revisiont)
V(revisiont)

. Using
the results from the proof of Proposition 1 I can write the forecast error as

πt+3,t – E
f
t πt+3,t = pt+3 – pt–1 – E

f
t ( pt+3 – pt–1) =

ϕ0 + ϕ1L + ϕ2L2 + ϕ3L3 + ϕ4L4

(1 – λL)(1 – ϑ1L)(1 – ϑ2L)
εvt+3

= ϕ0
(1 – ξ1L)(1 – ξ2L)(1 – ξ3L)(1 – ξ4L)

(1 – λL)(1 – ϑ1L)(1 – ϑ2L)
εvt+3

=
ϕ0(λ – ξ1)(λ – ξ2)
(λ – ϑ1)(λ – ϑ2)

k∑
k=0

λk[εvt+3–k – (ξ3 + ξ4)ε
v
t+2–k + ξ3ξ4ε

v
t+1–k]
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–
ϕ0(ϑ1 – ξ1)(ϑ1 – ξ2)
(λ – ϑ1)(ϑ1 – ϑ2)

k∑
k=0

ϑk1[ε
v
t+3–k – (ξ3 + ξ4)ε

v
t+2–k + ξ3ξ4ε

v
t+1–k]

+
ϕ0(ϑ2 – ξ1)(ϑ2 – ξ2)
(λ – ϑ2)(ϑ1 – ϑ2)

k∑
k=0

ϑk2[ε
v
t+3–k – (ξ3 + ξ4)ε

v
t+2–k + ξ3ξ4ε

v
t+1–k]

where ϕ0 = c p, ϕ1 =
(
1
λ –

1
ρ

)
c p, ϕ2 = (ρ–λ)c p

λ2ρ
, ϕ3 = (ρ–λ)c p[λ3–ϑ1–ϑ2+λϑ1ϑ2]

λ2ρ(1–λϑ1)(1–λϑ2)
, ϕ4 =

–λ3+λ4ϑ2+λ4ϑ1–ϑ1ϑ2[λ–(1–λ4)ρ]
λ2ρ(1–λϑ1)(1–λϑ2)

and (ξ1, ξ2, ξ3, ξ4) are the reciprocals of the roots of the poly-
nomial ϕ0 + ϕ1z + ϕ2z2 + ϕ3z3 + ϕ4z4. The average forecast revision is given by

E
f
t πt+3,t – E

f
t–1πt+3,t = E

f
t ( pt+3 – pt–1) – E

f
t–1( pt+3 – pt–1) =

c p(ρ – λ)(1 – λ4)
ρλ3(1 – ϑ1λ)(1 – ϑ2λ)(1 – λL)

εvt

=
c p(ρ – λ)(1 – λ4)

ρλ3(1 – ϑ1λ)(1 – ϑ2λ)

∞∑
k=0

λkεvt–k

and I can finally write βrev as

βrev =
C(forecast errort, revisiont)

V(revisiont)
=
λ3ρ(1 – ϑ1λ)(1 – ϑ2λ)

(1 – λ4)(ρ – λ)

{
λ(λ – ξ1)(λ – ξ2)(λ – ξ3)(λ – ξ4)

(λ – ϑ1)(λ – ϑ2)

– (1 – λ2)
[
ϑ1(ϑ1 – ξ1)(ϑ1 – ξ2)(ϑ1 – ξ3)(ϑ1 – ξ4)

(1 – λϑ1)(λ – ϑ1)(ϑ1 – ϑ2)
+
ϑ2(ϑ2 – ξ1)(ϑ2 – ξ2)(ϑ2 – ξ3)(ϑ2 – ξ4)

(1 – λϑ2)(λ – ϑ2)(ϑ1 – ϑ2)

]}

Proof of Proposition 3. I start from themore general case studied in proposition ??. Under
no information frictions on the household side, I can write the characteristic polynomial
of (??) as

C(z) =
(1 – θz)z
ρσ

{
(z – 1)z2(1 – ϕπz)βθκ(ρ – λ)(1 – ρλ)

+β[ϕ yz – (1 – z)σ][ρ(1 – θz)(z – βθ)(z – λ)(1 – λz) – z2(1 – θ)(1 – βθ)(ρ – λ)(1 – ρλ)
}

=
(1 – θz)zλ
ρσ

{
(z – 1)z2(1 – ϕπz)βθκτ

+β[ϕ yz – (1 – z)σ][(1 – θz)(z – βθ)[(z – ρ)(1 – ρz) + τz] – z2(1 – θ)(1 – βθ)τ
}

where C(z) has seven roots. Using the following relations,

C(0) = 0
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C(λ) = –
βλ3(1 – θλ)(ρ – λ)(1 – ρλ)

ρσ

{
θκ(1 – λ)(1 – λϕπ) + (1 – βθ)(1 – θ)[λϕ y – (1 – λ)σ]

}
< 0

C(ρ) =
βθ(ρ – λ)(1 – ρ)ρ(1 – ρθ)(1 – ρλ)

σ

{
ρκ(ρϕπ – 1) + (β – ρ)[(1 – ρ)σ – ρϕ y]

}
> 0

C
(

σ

σ + ϕ y

)
= –
βθκ(ρ – λ)(1 – ρλ)σ2[(1 – θ)σ + ϕ y][σ(ϕπ – 1) – ϕ y]ϕ y

ρ(σ + ϕ y)6
< 0

C(1) =
β(1 – θ)2(1 – βθ)λ(1 – ρ)2ϕ y

ρσ
> 0

C(β/θ) =
(1 – β)β2

θ5ρσ

{
–βθκ(β – θ)(ρ – λ)(1 – ρλ)(βϕπ – θ)

+[(β – θ)σ + βϕ y][ρ(1 – β)(1 – θ2)(θ – βλ)(β – θλ) – βθ(1 – θ)(1 – βθ)(ρ – λ)(1 – ρλ)]
}

< 0

C(ρ–1) =
βθ(θ – ρ)(1 – ρ)(ρ – λ)(1 – ρλ)

ρ7σ

{
(ϕπ – ρ)κ + (1 – ρβ)[ϕ y + (1 – ρ)σ]

}
> 0,

I show that the seven roots are all real, four of them are between 0 and 1, and three of
them are larger than 1. To show that ϑ1 is less than ρ, it is sufficient to show that C(ρ–1) > 0.
Since C(ϑ1) = 0, it has to be that ϑ–11 is larger than ρ–1, or ϑ1 < ρ. To show that ϑ2 is more
than θ, it is sufficient to show that C(β/θ) > 0. Since C(ϑ2) = 0, it has to be that C(z) has a
zero between z = 1 and z = θ–1. And thus, ϑ–12 is smaller than ρ–1, or ϑ2 > θ.

Taking the derivative of C(z) with respect to τ, and evaluating that derivative at z = ϑ–1g

for g ∈ {1, 2},
∂C(ϑ–1g )
∂τ = (θ – ϑg)

βθg(1–θg)λ{κ(ϕπ–ϑg)+(1–βϑ)[ϕ y+σ(1–ϑg)]}
ϑ6gρσ

. I obtain ∂C(ϑ
–1
1 )

∂τ > 0 and

∂C(ϑ–12 )
∂τ < 0. Combining this with the earlier observation that

∂C(ϑ–1g )
∂z < 0 for g ∈ {1, 2}, and

using the Implicit Function Theorem, I infer that ϑ1 (ϑ2) is increasing (decreasing) in σu.

Proof of Proposition 4. In the benchmark NKmodel the PC is given by (4), the DIS curve
is given by (8), the Taylor rule is given by (9) and the monetary policy shock process is
given by (10). Inserting the Taylor rule (9) into the DIS curve (8), one can write the model
as a system of two first-order stochastic difference equations, Ãxt = B̃Etxt+1 + C̃vt, where
xt = [ ỹt πt pt]⊺ is a 3 × 1 vector containing output, inflation and prices, Ã is a 3 × 3
coefficient matrix, B̃ is a 3× 3 coefficient matrix and C̃ is a 3× 1 vector satisfying

Ã =


σ + ϕ y ϕπ 0
–κ 1 0
0 0 1

 , B̃ =


σ 1 0
0 β 0
0 –1 1

 , and C̃ =


–1
0
0



42



Premultiplying the system by Ã–1 I obtain xt = δEtxt+1 +φvt, where δ = Ã–1B̃ andφ = Ã–1C̃.
In the dispersed information framework, structural-form dynamics are given by Asxt =
Bsxt–1 + Csvt, where

As =


1 0 0
0 1 –1
0 0 1

 , Bs =


0 –b y a y + b y
0 0 –1
0 ϑ1ϑ2 ϑ1 + ϑ2 – ϑ1ϑ2

 , and Cs =


c y
0

–ψπχπ


with (a y, b y, c y) defined in the proof of Proposition 1. Premultiplying by A–1s I obtain the
reduced-form dynamics xt = Axt–1 + Bvt, where A = A–1s Bs and B = A–1s Bs.

Using the Method for Undetermined Coefficients, the ad-hoc dynamics and the noisy
information dynamics are observationally equivalent if

Axt–1 + Bvt = φvt + δω f Etxt+1 +ωbxt–1 = φvt + δω f Et(Axt + Bvt+1) +ωbxt–1

= φvt + δω f (Axt + BEtvt+1) +ωbxt–1 = φvt + δω f (Axt + Bρvt) +ωbxt–1

= φvt + δω f [A(Axt–1 + Bvt) + Bρvt] +ωbxt–1 =
[
δω fAA +ωb

]
xt–1 +

[
φ + δω f (A + ρ)B

]
vt

They are thus equivalent ifB–φ = δω f (AB+ρB) andωb = (I3–δω f A)A for certainmatrices
ωb andω f , with elements ωb,ij and ω f ,ij in their ij position, respectively. The system
of restrictions (17) implies that ωb,11 = ωb,21 = ωb,31 = 0. I need to multiply the system
by Ã to back out the structural dynamics. In particular, I can write inflation dynamics as
πt = ω1πt–1 +ω2 pt–1 + κ ỹt +ω3Et ỹt+1 +ω4Etπt+1 +ω5Et pt+1, whereω1 = ωb,22 – κωb,12,
ω2 = ωb,23 – κωb,13,ω3 = βω f ,21,ω4 = βω f ,22 andω5 = βω f ,23.

Proof of Corollary 1. Using the model dynamics (A.13)-(13), I can write

ω2 pt–1 +ω3Et ỹt+1 +ω5Et pt+1 = ω2 pt–1 +ω3
[
–b yπt + (a y + b y) pt –ψ yχ yρvt

]
+

+ω5
[
ϑ1ϑ2πt + (ϑ1 + ϑ2 – ϑ1ϑ2) pt –ψπχπρvt

]
=
{
ω5ϑ1ϑ2 –ω3b y + [ω3(a y + b y) +ω5(ϑ1 + ϑ2 – ϑ1ϑ2)]

}
ϑ1ϑ2πt–1+

+
{
ω2 – (ω5ϑ1ϑ2 –ω3b y)(1 – ϑ1)(1 – ϑ2) + [ω3(a y + b y) +ω5(ϑ1 + ϑ2 – ϑ1ϑ2)](ϑ1 + ϑ2 – ϑ1ϑ2)

}
pt–1+

+
{
–(ω5ϑ1ϑ2 –ω3b y)ψπχπ – [ω3(a y + b y) +ω5(ϑ1 + ϑ2 – ϑ1ϑ2)]ψπχπ – ρ(ω3ψ yχ y +ω5ψπχπ)

}
vt

and I can use the two degrees of freedom to setω3a y +ω5(ϑ1 +ϑ2) = 0 andω5ϑ1ϑ2 –ω3b y =
ω2, with χ = –[ω3a y +ω5(ϑ1 + ϑ2 + ρ)]ψπχπ –ω3ρψ yχ y = –ρ(ω5ψπχπ +ω3ψ yχ y).

43


	Introduction
	Empirical Challenges and Information Frictions
	The First Puzzle: Inflation Persistence
	Evidence on Information Frictions
	The Second Puzzle: The Phillips Curve
	Alternative Explanations within FIRE

	Noisy Information
	The Noisy Information New Keynesian Model
	Calibrating Information Frictions

	Results
	Inflation Persistence
	The Phillips Curve

	Conclusion
	Proofs of Propositions

