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THE MOMENT-SOS HIERARCHY

Jൾൺඇ B. Lൺඌඌൾඋඋൾ

Abstract
The Moment-SOS hierarchy initially introduced in optimization in 2000, is

based on the theory of the K-moment problem and its dual counterpart, polyno-
mials that are positive on K. It turns out that this methodology can be also applied
to solve problems with positivity constraints “f (x) � 0 for all x 2 K” and/or linear
constraints on Borel measures. Such problems can be viewed as specific instances
of the “Generalized Problem of Moments” (GPM) whose list of important appli-
cations in various domains is endless. We describe this methodology and outline
some of its applications in various domains.

1 Introduction

Consider the optimization problem:

(1-1) P : f � = inf
x
ff (x) : x 2 Ω g;

where f is a polynomial and Ω � Rn is a basic semi-algebraic set, that is,

(1-2) Ω := f x 2 Rn : gj (x) � 0; j = 1; : : : ; m g;

for some polynomials gj , j = 1; : : : ; m. Problem P is a particular case of Non Linear
Programming (NLP) where the data (f; gj , j = 1; : : : ; m) are algebraic, and therefore
the whole arsenal of methods of NLP can be used for solving P. So what is so specific
about P in Equation (1-1)? The answer depends on the meaning of f � in Equation (1-1).

If one is interested in a local minimum only then efficient NLP methods can be used
for solving P. In such methods, the fact that f and gj ’s are polynomials does not help
much, that is, this algebraic feature of P is not really exploited. On the other hand
if f � in Equation (1-1) is understood as the global minimum of P then the picture is
totally different. Why? First, to eliminate any ambiguity on the meaning of f � in
Equation (1-1), rewrite Equation (1-1) as:

(1-3) P : f � = sup f� : f (x) � � � 0; 8x 2 Ω g

Research supported by the European Research Council (ERC) through ERC-Advanced Grant # 666981 for
the TAMING project.
MSC2010: primary 90C26; secondary 90C22, 90C27, 65K05, 14P10, 44A60.
Keywords: K-Moment problem, positive polynomials, global optimization, semidefinite relaxations.

3761

http://icm2018.org
http://dx.doi.org/10.9999/icm2018-v3-p


THE MOMENT-SOS HIERARCHY 3762

because then indeed f � is necessarily the global minimum of P.
In full generality, most problems Equation (1-3) are very difficult to solve (they are

labelled NP-hard in the computational complexity terminology) because:

Given � 2 R, checking whether “f (x) � � � 0 for all x 2 Ω” is difficult.

Indeed, by nature this positivity constraint is global and therefore cannot be handled
by standard NLP optimization algorithms which use only local information around a
current iterate x 2 Ω. Therefore to compute f � in Equation (1-3) one needs an efficient
tool to handle the positivity constraint “f (x)�� � 0 for all x 2 Ω”. Fortunately if the
data are algebraic then:

1. Powerful positivity certificates fromReal AlgebraicGeometry (Posi-tivstellensätze
in german) are available.

2. Some of these positivity certificates have an efficient practical implementation
via Linear Programming (LP) or Semidefinite Programming (SDP). In particular
and importantly, testing whether a given polynomial is a sum of squares (SOS)
simply reduces to solving a single SDP (which can be done in time polynomial
in the input size of the polynomial, up to arbitrary fixed precision).

After the pioneers works of Shor [1998] and Nesterov [2000], Lasserre [2000, 2000/01]
and Parrilo [2000, 2003] have been the first to provide a systematic use of these two key
ingredients in Control and Optimization, with convergence guarantees. It is also worth
mentioning another closely related pioneer work, namely the celebrated SDP-relaxation
of Goemans and Williamson [1995] which provides a 0:878 approximation guarantee
for MAXCUT, a famous problem in non-convex combinatorial optimization (and prob-
ably the simplest one). In fact it is perhaps the first famous example of such a successful
application of the powerful SDP convex optimization technique to provide guaranteed
good approximations to a notoriously difficult non-convex optimization problem. It
turns out that this SDP relaxation is the first relaxation in the Moment-SOS hierarchy
(a.k.a. Lasserre hierarchy) when applied to the MAXCUT problem. Since then, this
spectacular success story of SDP relaxations has been at the origin of a flourishing
research activity in combinatorial optimization and computational complexity. In par-
ticular, the study of LP- and SDP-relaxations in hardness of approximation is at the core
of a central topic in combinatorial optimization and computational complexity, namely
proving/disproving Khot’s famous Unique Games Conjecture1 (UGC) in Theoretical
Computer Science.

Finally, another “definition” of the global optimum f � of P reads:

(1-4) f � = inf
�
f

Z
Ω

f d� : �(Ω) = 1 g

1For this conjecture and its theoretical and practical implications, S. Khot was awarded the prestigious
Nevanlinna prize at the last ICM 2014 in Seoul Khot [2014] .
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where the ‘inf” is over all probability measures on Ω. Equivalently, writing f asP
˛ f˛ x˛ in the basis of monomials (where x˛ = x

˛1

1 � � � x
˛n
n ):

(1-5) f � = inf
y
f

X
˛

f˛ y˛ : y 2M(Ω); y0 = 1 g;

where M(Ω) = fy = (y˛)˛2Nn : 9� s.t. y˛ =
R
Ω x

˛ d�; 8˛ 2 Nng, a convex cone.
In fact Equation (1-3) is the LP dual of Equation (1-4). In other words standard LP
duality between the two formulations Equation (1-4) and Equation (1-3) illustrates the
duality between the “Ω-moment problem” and “polynomials positive on Ω”.

Problem (1-4) is a very particular instance (and even the simplest instance) of the
more general Generalized Problem of Moments (GPM):

(1-6) inf
�1;:::;�p

f

pX
j=1

Z
Ωj

fj d�j :

pX
j=1

fij d�j � bi ; i = 1; : : : ; s g;

for some functions fij : Rnj ! R, i = 1; : : : ; s, and sets Ωj � Rnj , j = 1; : : : ; p.
The GPM is an infinite-dimensional LP with dual:

(1-7) sup
�1;:::;�s�0

f

sX
i=1

�i bi : fj �

sX
i=1

�i fij � 0 on Ωj ; j : 1; : : : ; pg:

Therefore it should be of no surprise that the Moment-SOS hierarchy, initially devel-
oped for global optimization, also applies to solving the GPM. This is particularly in-
teresting as the list of important applications of the GPM is almost endless; see e.g.
Landau [1987].

2 The MOMENT-SOS hierarchy in optimization

2.1 Notation, definitions and preliminaries. Let R[x] denote the ring of polynomi-
als in the variables x = (x1; : : : ; xn) and let R[x]d be the vector space of polynomials
of degree at most d (whose dimension is s(d ) :=

�
n+d

n

�
). For every d 2 N, let

Nn
d
:= f˛ 2 Nn : j˛j (=

P
i ˛i ) � dg, and let vd (x) = (x˛), ˛ 2 Nn, be the vector

of monomials of the canonical basis (x˛) of R[x]d . Given a closed set X � Rn, let
P (X) � R[x] (resp. Pd (X) � R[x]d ) be the convex cone of polynomials (resp. poly-
nomials of degree at most 2d ) that are nonnegative on X. A polynomial f 2 R[x]d is
written

x 7! f (x) =
X

˛2Nn

f˛ x˛;

with vector of coefficients f = (f˛) 2 Rs(d) in the canonical basis of monomials
(x˛)˛2Nn . For real symmetric matrices, let hB;Ci := trace (BC) while the notation
B � 0 stands for B is positive semidefinite (psd) whereas B � 0 stands for B is positive
definite (pd).
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The Riesz functional. Given a sequence y = (y˛)˛2Nn , the Riesz functional is the
linear mapping Ly : R[x]! R defined by:

(2-1) f (=
X

˛

f˛ x˛) 7! Ly(f ) =
X

˛2Nn

f˛ y˛:

Moment matrix. The moment matrix associated with a sequence y = (y˛), ˛ 2 Nn,
is the real symmetric matrixMd (y) with rows and columns indexed by Nn

d
, and whose

entry (˛; ˇ) is just y˛+ˇ , for every ˛; ˇ 2 Nn
d
. Alternatively, let vd (x) 2 Rs(d) be the

vector (x˛), ˛ 2 Nn
d
, and define the matrices (Bo;˛) � Ss(d) by

(2-2) vd (x) vd (x)T =
X

˛2Nn
2d

Bo;˛ x˛; 8x 2 Rn:

Then Md (y) =
P

˛2Nn
2d

y˛ Bo;˛ . If y has a representing measure � then Md (y) � 0

because hf;Md (y)fi =
R

f 2d� � 0, for all f 2 R[x]d .
A measure whose all moments are finite, is moment determinate if there is no other

measure with same moments. The support of a Borel measure � on Rn (denoted
supp(�)) is the smallest closed set Ω such that �(Rn n Ω) = 0.

Localizing matrix. With y as above and g 2 R[x] (with g(x) =
P

 gx ), the
localizing matrix associated with y and g is the real symmetric matrix Md (g y) with
rows and columns indexed by Nn

d
, and whose entry (˛; ˇ) is just

P
 g y˛+ˇ+ , for

every ˛; ˇ 2 Nn
d
. Alternatively, let Bg;˛ 2 Ss(d) be defined by:

(2-3) g(x) vd (x) vd (x)T =
X

˛2Nn
2d+degg

Bg;˛ x˛; 8x 2 Rn:

Then Md (g y) =
P

˛2Nn
2d+degg

y˛ Bg;˛ . If y has a representing measure � whose
support is contained in the set fx : g(x) � 0g then Md (g y) � 0 for all d because
hf;Md (g y)fi =

R
f 2 gd� � 0, for all f 2 R[x]d .

SOS polynomials and quadratic modules. A polynomial f 2 R[x] is a Sum-of-
Squares (SOS) if there exist (fk)k=1;:::;s � R[x], such that f (x) =

Ps
k=1 fk(x)2, for

all x 2 Rn. Denote by Σ[x] (resp. Σ[x]d ) the set of SOS polynomials (resp. SOS
polynomials of degree at most 2d ). Of course every SOS polynomial is nonnegative
whereas the converse is not true. In addition, checking whether a given polynomial f

is nonnegative on Rn is difficult whereas checking whether f is SOS is much easier
and can be done efficiently. Indeed let f 2 R[x]2d (for f to be SOS its degree must
be even), x 7! f (x) =

P
˛2Nn

2d
f˛ x˛ . Then f is SOS if and only if there exists a real

symmetric matrix XT = X of size s(d ) =
�

n+d
n

�
, such that:

(2-4) X � 0; f˛ = hX;Bo;˛i; 8˛ 2 Nn
2d ;
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and this can be checked by solving an SDP.
Next, let x 7! g0(x) := 1 for all x 2 Rn. With a family (g1; : : : ; gm) � R[x] is

associated the quadratic module Q(g) (= Q(g1; : : : ; gm)) � R[x]:

(2-5) Q(g) :=

8<: mX
j=0

�j gj : �j 2 Σ[x]; j = 0; : : : ; m

9=; ;

and its truncated version

(2-6) Qk(g) :=

8<: mX
j=0

�j gj : �j 2 Σ[x]k�dj
; j = 0; : : : ; m

9=; ;

where dj = ddeg(gj )/2e, j = 0; : : : ; m.

Definition 1. The quadratic module Q(g) associated with Ω in Equation (1-2) is said
to be Archimedean if there exists M > 0 such that the quadratic polynomial x 7!
M � kxk2 belongs to Q(g) (i.e., belongs to Qk(g) for some k).

If Q(g) is Archimedean then necessarily Ω is compact but the reverse is not rue.
The Archimedean condition (which depends on the representation of Ω) can be seen as
an algebraic certificate that Ω is compact. For more details on the above notions of
moment and localizing matrix, quadratic module, as well as their use in potential appli-
cations, the interested reader is referred to Lasserre [2010], Laurent [2009], Schmüdgen
[2017].

2.2 Two certificates of positivity (Positivstellensätze). Below we describe two par-
ticular certificates of positivity which are important because they provide the theoretical
justification behind the so-called SDP- and LP-relaxations for global optimization.

Theorem 2.1 (Putinar [1993]). Let Ω � Rn be as in Equation (1-2) and assume that
Q(g) is Archimedean.

(a) If a polynomial f 2 R[x] is (strictly) positive on Ω then f 2 Q(g).
(b) A sequence y = (y˛)˛2Nn � R has a representing Borel measure on Ω if and

only if Ly(f
2 gj ) � 0 for all f 2 R[x], and all j = 0; : : : ; m. Equivalently, if and

only ifMd (ygj ) � 0 for all j = 0; : : : ; m, d 2 N.

There exists another certificate of positivity which does not use SOS.

Theorem 2.2 (Krivine [1964a], Krivine [1964b], and Vasilescu [2003]). Let Ω � Rn

as in Equation (1-2) be compact and such that (possibly after scaling) 0 � gj (x) � 1

for all x 2 Ω, j = 1; : : : ; m. Assume also that [1; g1; : : : ; gm] generates R[x].
(a) If a polynomial f 2 R[x] is (strictly) positive on Ω then

(2-7) f (x) =
X

˛;ˇ2Nn

c˛;ˇ

mY
j=1

gj (x)˛j (1 � gj (x))ˇj ;
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for finitely many positive coefficients (c˛;ˇ )˛;ˇ2Nm .
(b) A sequence y = (y˛)˛2Nn � R has a representing Borel measure on Ω if and

only if Ly

0@ mY
j=1

gj (x)˛j (1 � gj (x))ˇj

1A � 0 for all ˛; ˇ 2 Nm.

The two facets (a) and (b) of Theorem 2.1 and Theorem 2.2 illustrate the duality
between polynomials positive on Ω (in (a)) and the Ω-moment problem (in (b)). In
addition to their mathematical interest, both Theorem 2.1(a) and Theorem 2.2(a) have
another distinguishing feature. They both have a practical implementation. Testing
whether f 2 R[x]d is in Q(g)k is just solving a single SDP, whereas testing whether
f van be written as in Equation (2-7) with

Pm
i=1 ˛i + ˇi � k, is just solving a single

Linear Program (LP).

2.3 TheMoment-SOShierarchy. TheMoment-SOS hierarchy is a numerical scheme
based on Putinar’s theorem. In a nutshell it consists of replacing the intractable positiv-
ity constraint “f (x) � 0 for all x 2 Ω” with Putinar’s positivity certificate f 2 Qd (g)

of Theorem 2.1(a), i.e., with a fixed degree bound on the SOS weights (�j ) in Equa-
tion (2-6). By duality, it consists of replacing the intractable constraint y 2M(Ω) with
the necessary conditionsMd (gj y) � 0, j = 0; : : : ; m, of Theorem 2.1(b) for a fixed d .
This results in solving an SDP which provides a lower bound on the global minimum.
By allowing the degree bound d to increase, one obtains a hierarchy of SDPs (of increas-
ing size) which provides a monotone non-decreasing sequence of lower bounds. A simi-
lar strategy based on Krivine-Stengle-Vasilescu positivity certificate (Equation (2-7)) is
also possible and yields a hierarchy of LP (instead of SDPs). However even though one
would prefer to solve LPs rather than SDPs, the latter Moment-LP hierarchy has several
serious drawbacks (some explained in e.g. Lasserre [2015a, 2002b]), and therefore we
only describe the Moment-SOS hierarchy.

Recall problem P in Equation (1-1) or equivalently in Equation (1-3) and Equa-
tion (1-4), where Ω � Rn is the basic semi-algebraic set defined in Equation (1-2).

The Moment-SOS hierarchy. Consider the sequence of semidefinite programs
(Qd )d2N with d � d̂ := max[deg(f );maxj deg(gj )]:

(2-8) Qd : �d = inf
y
fLy(f ) : y0 = 1; Md (gj y) � 0; 0 � j � m g

(where y = (y˛)˛2Nn
2d
)2, with associated sequence of their SDP duals:

(2-9) Q�
d : ��

d = sup
�;�j

f� : f � � =

mX
j=0

�j gj ; �j 2 Σ[x]d�dj
; 0 � j � mg

(where dj =e(deggj )/2e). By standard weak duality in optimization ��
d
� �d for

every d � d̂ . The sequence (Qd )d2N forms a hierarchy of SDP-relaxations of P
2In Theoretical Computer Science, y is called a sequence of “pseudo-moments”.
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because �d � f � and �d � �d+1 for all d � d̂ . Indeed for each d � d̂ , the constraints
ofQd consider only necessary conditions for y to be the moment sequence (up to order
2d ) of a probability measure onΩ (cf. Theorem 2.1(b)) and thereforeQd is a relaxation
of Equation (1-5).

By duality, the sequence (Q�
d
)d2N forms a hierarchy of SDP-strenghtenings of

Equation (1-3). Indeed in Equation (2-9) one has replaced the intractable positivity
constraint of Equation (1-3) by the (stronger) Putinar’s positivity certificate with de-
gree bound 2d � 2dj on the SOS weights �j ’s.

Theorem 2.3 (Lasserre [2000, 2000/01]). Let Ω in Equation (1-2) be compact and
assume that its associated quadratic module Q(g) is Archimedean. Then:

(i) As d ! 1, the monotone non-decreasing sequence (�d )d2N (resp. (��
d
)d2N)

of optimal values of the hierarchy (Equation (2-8)) (resp. Equation (2-9)) converges to
the global optimum f � of P.

(ii) Moreover, let yd = (yd
˛ )˛2Nn

2d
be an optimal solution of Qd in Equation (2-8),

and let s = maxj dj (recall that dj = d(deggj )/2e). If

(2-10) rankMd (yd ) = rankMd�s(yd ) (=: t)

then �d = f � and there are t global minimizers x�
j 2 Ω, j = 1; : : : ; t , that can be

“extracted” from yd by a linear algebra routine.

The sequence of SDP-relaxations (Qd ), d � d̂ , and the rank test (Equation (2-10))
to extract global minimizers, are implemented in the GloptiPoly software Henrion,
Lasserre, and Löfberg [2009].

Finite convergence and a global optimality certificate. After being introduced in
Lasserre [2000], in many numerical experiments it was observed that typically, finite
convergence takes place, that is, f � = �d for some (usually small) d . In fact there is
a rationale behind this empirical observation.

Theorem 2.4 (Nie [2014a]). Let P be as in Equation (1-3) where Ω in Equation (1-2)
is compact and its associated quadratic module is Archimedean. Suppose that at each
global minimizer x� 2 Ω:
� The gradients (rgj (x�))j=1;:::;m are linearly independent. (This implies exis-

tence of nonnegative Lagrange-KKT multipliers ��
j , j � m, such that rf (x�) �Pm

j=1 ��
j rgj (x�) = 0 and ��

j gj (x�) = 0 for all j � m.)
� Strict complementarity holds, that is, gj (x�) = 0 ) ��

j > 0.
� Second-order sufficiency condition holds, i.e.,

hu;r2
x (f (x�) �

mX
j=1

��
j gj (x�))ui > 0;

for all 0 ¤ u 2 r(f (x�) �
Pm

j=1 ��
j gj (x�))?.
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Then f � f � 2 Q(g), i.e., there exists d � and SOS multipliers ��
j 2 Σ[x]d��dj

,
j = 0; : : : ; m, such that:

(2-11) f (x) � f � = ��
0 (x) +

mX
j=1

��
j (x)gj (x):

With Equation (2-11), Theorem 2.4 provides a certificate of global optimality in
polynomial optimization, and to the best of our knowledge, the first at this level of
generality. Next, observe that x� 2 Ω is a global unconstrained minimizer of the ex-
tended Lagrangian polynomial f � f � �

Pn
j=1 ��

j gj , and therefore Theorem 2.4
is the analogue for non-convex polynomial optimization of the Karush-Kuhn-Tucker
(KKT) optimality conditions in the convex case. Indeed in the convex case, any local
minimizer is global and is also a global unconstrained minimizer of the Lagrangian
f � f � �

Pm
j=1 ��

j gj .
Also interestingly, whenever the SOS weight ��

j in Equation (2-11) is non trivial,
it testifies that the constraint gj (x) � 0 is important for P even if it is not active at
x� (meaning that if gj � 0 is deleted from P then the new global optimum decreases
strictly). The multiplier ��

j plays the same role in the KKT-optimality conditions only
in the convex case. See Lasserre [2015a] for a detailed discussion.
Finite convergence of the Moment-SOS-hierarchies (Equations (2-8) and (2-9)) is an
immediate consequence of Theorem 2.4. Indeed by Equation (2-11) (f �; ��

0 ; : : : ; ��
m)

is a feasible solution of Q�
d� with value f � � ��

d
� f � (hence ��

d
= �d = f �).

Genericity: Importantly, as proved in Nie [2014a], the conditions in Theorem 2.4 are
generic. By this we mean the following: Consider the class P (t; m) of optimization
problems Pwith data (f; g1; : : : ; gm) of degree bounded by t , and with nonempty com-
pact feasible setΩ. Such a problem P is a “point” in the spaceR(m+1)s(t) of coordinates
of (f; g1; : : : ; gm). Then the “good” problems P are points in a Zariski open set. More-
over, generically the rank test (Equation (2-10)) is also satisfied at an optimal solution
of Equation (2-8) (for some d ); for more details see Nie [2013].
Computational complexity: Each relaxation Qd in Equation (2-8) is a semidefinite
program with s(2d ) =

�
n+2d

n

�
variables (y˛), and a psd constraint Md (y) � 0 of

size s(d ). Therefore solving Qd in its canonical form Equation (2-8) is quite expen-
sive in terms of computational burden, especially when using interior-point methods.
Therefore its brute force application is limited to small to medium size problems.
Exploiting sparsity: Fortunately many large scale problems exhibit a structured spar-
sity pattern (e.g., each polynomial gj is concerned with a few variables only, and the
objective function f is a sum

P
i fi where each fi is also concerned with a few vari-

ables only). ThenWaki, Kim, Kojima, andMuramatsu [2006] have proposed a sparsity-
adapted hierarchy of SDP-relaxations which can handle problemsPwith thousands vari-
ables. In addition, if the sparsity pattern satisfies a certain condition then convergence of
this sparsity-adapted hierarchy is also guaranteed like in the dense case Lasserre [2006].
Successful applications of this strategy can be found in e.g. Laumond, Mansard, and
Lasserre [2017a] in Control (systems identification) and inMolzahn andHiskens [2015]



THE MOMENT-SOS HIERARCHY 3769

for solving (large scale) Optimum Power Flow problems (OPF is an important problem
encountered in the management of energy networks).

2.4 Discussion. We claim that the Moment-SOS hierarchy and its rationale Theo-
rem 2.4, unify convex, non-convex (continuous), and discrete (polynomial) Optimiza-
tion. Indeed in the description of P we do not pay attention to what particular class of
problems P belongs to. This is in sharp contrast to the usual common practice in (local)
optimization where several classes of problems have their own tailored favorite class
of algorithms. For instance, problems are not treated the same if equality constraints
appear, and/or if boolean (or discrete variables) are present, etc. Here a boolean vari-
able xi is modeled by the quadratic equality constraint x2

i = xi . So it is reasonable
to speculate that this lack of specialization could be a handicap for the moment-SOS
hierarchy.

But this is not so. For instance for the sub-class of convex3 problems P where f

and (�gj )j=1;:::;m are SOS-convex4 polynomials, finite convergence takes place at the
first step of the hierarchy. In other words, the SOS hierarchy somehow “recognizes”
this class of easy problems Lasserre [2015a]. In the same time, for a large class of 0/1
combinatorial optimization problems on graphs, the Moment-SOS hierarchy has been
shown to provide the tightest upper bounds when compared to the class of lift-and-
project methods, and has now become a central tool to analyze hardness of approxima-
tions in combinatorial optimization. For more details the interested reader is referred
to e.g. Lasserre [2002b], Laurent [2003], Barak and Steurer [2014], Khot [2010, 2014]
and the many references therein.

3 The Moment-SOS hierarchy outside optimization

3.1 A general framework for the Moment-SOS hierarchy. Let Ωi � Rni be a
finite family of compact sets, M(Ωi ) (resp. C(Ωi )) be the space of finite Borel signed
measures (resp. continuous functions) on Ωi , i = 0; 1; : : : ; s, and let T be a continuous
linear mapping with adjoint T�:

T : M(Ω1) � � � � �M(Ωs)!M(Ω0)

C(Ω1) � � � � � C(Ωs) C(Ω0) : T�

Let � := (�1; : : : ; �s) and let �i � 0 stand for �i is a positive measure. Then consider
the general framework:

(3-1) � = inf
��0
f

sX
i=1

hfi ; �i i : T(�) = �;

sX
i=1

hfij ; �i i � bj ; j 2 J g;

3Convex problems Pwhere f and (�gj )j=1;:::;m are convex, are considered “easy” and can be solved
efficiently.

4Apolynomialf 2 R[x] is SOS-convex if its Hessianr2f is a SOSmatrix-polynomial, i.e.,rf 2(x) =
L(x)L(x)T for some matrix-polynomial L 2 R[x]n�p .
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where J is a finite or countable set, b = (bj ) is given, � 2M(Ω0) is a given measure,
(fij )j 2J , i = 1; : : : ; s, are given polynomials, and h�; �i is the duality bracket between
C(Ωi ) and M(Ωi ) (hh; �i i =

R
Ωi

hd�i ), i = 1; : : : ; s.
As we will see, this general framework is quite rich as it encompasses a lot of im-

portant applications in many different fields. In fact Problem (3-1) is equivalent to the
Generalized Problem of Moments (GPM):

(3-2)
� = inf

��0
f

sX
i=1

hfi ; �i i : hT� pk ; �i = hpk ; �i; k = 0; 1; : : :

sX
i=1

hfij ; �i i � bj ; j 2 J g;

where the family (pk)k=0;::: is dense in C(Ω0) (e.g. a basis of R[x1; : : : ; xn0
]).

The Moment-SOS hierarchy can also be applied to help solve the Generalized Prob-
lem of Moments (GPM) (Equation (3-2)) or its dual :

(3-3)
�� = sup

(�j �0;�)

f
X

k

k hpk ; �i+ h�; bi :

s.t. fi �
X

k

k (T� pk)i �
X
j 2J

�j fij � 0 on Ωi for all i g;

where the unknown  = (k)k2N is a finite sequence.

3.2 A hierarchy of SDP-relaxations. Let

(3-4) Ωi := f x 2 Rni : gi;`(x) � 0; i = 1; : : : ; mi g; i = 1; : : : ; s;

for some polynomials (gi;`) � R[x1; : : : ; xni
], ` = 1; : : : ; mi . Let di;` = ddeg(gi;`)/2e

and d̂ := maxi;j;`[deg(fi ); deg(fij ); deg(gi;`)]. To solve Equation (3-2), define the
“moment” sequences yi = (yi;˛), ˛ 2 Nni , i = 1; : : : ; s, and with d 2 N, define
Γd := fpk : deg(T �pk)i � 2d; i = 1; : : : ; sg. Consider the hierarchy of semidefinite
programs indexed by d̂ � d 2 N:

(3-5)

�d = inf
(yi )
f

sX
i=1

Lyi
(fi ) :

sX
i=1

Lyi
((T �pk)i ) = hpk ; �i; pk 2 Γd

sX
i=1

Lyi
(fij ) � bj ; j 2 Jd

Md (yi ); Md�d`
(gi` yi ) � 0; ` � mi ; i � sg;

where Jd � J is finite
S

d2N Jd = J . Its dual SDP-hierarchy reads:

(3-6)

��
d
= sup

(�j �0;k)

f
X

pk2Γd

k hpk ; �i+ h�; bi :

s.t. fi �
X

pk2Γd

k (T� pk)i �
X
j 2J

�j fij =

miX
`=0

�i;` gi;`

�i;` 2 Σ[x1; : : : ; xni
]d�di;`

; i = 1; : : : ; sg;
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As each Ωi is compact, for technical reasons and with no loss of generality, in the
sequel we may and will assume that for every i = 1; : : : ; s, gi;0(x) = Mi�kxk2, where
Mi > 0 is sufficiently large.

Theorem 3.1. Assume that � > �1 and that for every i = 1; : : : ; s, fi0 = 1. Then
for every d � d̂ , Equation (3-5) has an optimal solution, and limd!1 �d = �.

3.3 Example In Probability and Computational Geometry.

Bounds onmeasures withmoment conditions. LetZ be a random vector with values
in a compact semi-algebraic setΩ1 � Rn. Its distribution � onΩ1 is unknown but some
of its moments

R
x˛ d� = b˛ , ˛ 2 Γ � Nn, are known (b0 = 1). Given a basic semi-

algebraic set Ω2 � Ω1 we want to compute (or approximate as closely as desired) the
best upper bound on Prob(Z 2 Ω2). This problem reduces to solving the GPM:

(3-7)
� = sup

�1;�2�0

fh1; �2i : hx˛; �1i+ hx˛; �2i = b˛; ˛ 2 Γ;

�i 2M(Ωi ); i = 1; 2 g;

WithΩ1 andΩ2 as in Equation (3-4) onemay compute upper bounds on � by solving the
Moment-SOS hierarchy (Equation (3-5)) adapted to problem (Equation (3-7)). Under
the assumptions of Theorem 3.1, the resulting sequence (�d )d2N converges to � as
d !1; for more details the interested reader is referred to Lasserre [2002a].

Lebesgue & Gaussian measures of semi-algebraic sets. Let Ω2 � Rn be compact.
The goal is to compute (or approximate as closely as desired) the Lebesgue measure
�(Ω2) of Ω2. Then take Ω1 � Ω2 be a simple set, e.g. an ellipsoid or a box (in fact any
set such that one knows all moments (b˛)˛2Nn of the Lebesgue measure on Ω1). Then:

(3-8)
�(Ω2) = sup

�1;�2�0

fh1; �2i : hx˛; �1i+ hx˛; �2i = b˛; ˛ 2 Nn;

�i 2M(Ωi ); i = 1; 2 g:

Problem (3-8) is very similar to (3-7) except that we now have countably many mo-
ment constraints (Γ = Nn). Again, with Ω2 and Ω2 as in Equation (3-4) one may com-
pute upper bounds on �(Ω2) by solving the Moment-SOS hierarchy (Equation (3-5))
adapted to problem (3-8). Under the assumptions of Theorem 3.1, the resulting mono-
tone non-increasing sequence (�d )d2N converges to �(Ω2) from above as d ! 1.
The convergence �d ! �(Ω2) is slow because of a Gibb’s phenomenon5. Indeed the
semidefinite program (Equation (3-6)) reads:

��
d = inf

p2R[x]2d

f

Z
Ω1

p d� : p � 1 on Ω2; p � 0 on Ω1g;

5The Gibbs’ phenomenon appears at a jump discontinuity when one approximates a piecewise C 1 func-
tion with a continuous function, e.g., by its Fourier series.
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i.e., as ! 1 one tries to approximate the discontinuous function x 7! 1Ω2
(x) by

polynomials of increasing degrees. Fortunately there are several ways to accelerate the
convergence, e.g. as in Henrion, Lasserre, and Savorgnan [2009] (but loosing the mono-
tonicity) or in Lasserre [2017] (preserving monotonicity) by including in Equation (3-5)
additional constraints on y2 coming from an application of Stokes’ theorem.

For the Gaussian measure � we need and may take Ω1 = Rn and Ω2 is not neces-
sarily compact. Although both Ω1 and Ω2 are allowed to be non-compact, the Moment-
SOS hierarchy (Equation (3-5)) still converges, i.e., �d ! �(Ω2) as d ! 1. This is
because the moments of � satisfy the generalized Carleman’s condition

(3-9)
1X

k=1

�Z
Rn

x2k
i d�

��1/2k

= +1; i = 1; : : : ; n;

which imposes implicit constraints on y1 and y2 in Equation (3-5), strong enough to
guarantee �d ! �(Ω2) as d ! 1. For more details see Lasserre [ibid.]. This deter-
ministic approach is computationally demanding and should be seen as complementary
to brute forceMonte-Carlo methods that provide only an estimate (but can handle larger
size problems).

3.4 In signal processing and interpolation. In this application, a signal is identified
with an atomic signed measure � supported on few atoms (xk)k=1;:::;s � Ω, i.e., � =Ps

k=1 �k ıxk
, for some weights (�k)k=1;:::;s .

Super-Resolution. The goal of Super-Resolution is to reconstruct the unknown mea-
sure � (the signal) from a few measurements only, when those measurements are the
moments (b˛)˛2Nn

t
of �, up to order t (fixed). One way to proceed is to solve the

infinite-dimensional program:

(3-10) � = inf
�
fk�kT V :

Z
x˛ d� = b˛; ˛ 2 Nn

t g;

where the inf is over the finite signed Borel measures onΩ, and k�kT V = j�j(Ω) (with
j�j being the total variation of �). Equivalently:

(3-11) � = inf
�+;���0

fh1; �+ + ��
i : hx˛; �+

� ��
i = b˛; ˛ 2 Nn

t g;

which is an instance of the GPM with dual:

(3-12) �� = sup
p2R[x]t

f
X

˛2Nn
t

p˛ b˛ : kpk1 � 1 g;

where kpk1 = supfjp(x)j : x 2 Ωg. In this case, the Moment-SOS hierarchy (Equa-
tion (3-5)) with d � d̂ := dt/2e, reads:

(3-13)
:�d = inf

y+;y�
fy+

0 + y�
0 : y+

˛ � y�
˛ = b˛; ˛ 2 Nn

t

Md (y˙) � 0; Md (g` y˙) � 0; ` = 1; : : : ; mg;
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where Ω = fx : g`(x) � 0; ` = 1; : : : ; mg.
In the case where Ω is the torus T � C, Candès and Fernandez-Granda [2014]

showed that if ı > 2/fc (where ı is the minimal distance between the atoms of �,
and fc is the number of measurements) then Equation (3-10) has a unique solution and
one may recover � exactly by solving the single semidefinite program (Equation (3-10))
with d = dt/2e. The dual (Equation (3-12)) has an optimal solutionp� (a trigonometric
polynomial) and the support of �+ (resp. ��) consists of the atoms z 2 T of � such
that p�(z) = 1 (resp. p�(z) = �1). In addition, this procedure is more robust to noise
in the measurements than Prony’s method; on the other hand, the latter requires less
measurements and no separation condition on the atoms.

In the general multivariate case treated in De Castro, Gamboa, Henrion, and Lasserre
[2017] one now needs to solve the Moment-SOS hierarchy (Equation (3-11)) for d =

d̂ ; : : : (instead of a single SDP in the univariate case). However since the moment con-
straints of Equation (3-11) are finitely many, exact recovery (i.e. finite convergence of
the Moment-SOS hierarchy (Equation (3-13))) is possible (usually with a few measure-
ments only). This is indeed what has been observed in all numerical experiments of
De Castro, Gamboa, Henrion, and Lasserre [ibid.], and in all cases with significantly
less measurements than the theoretical bound (of a tensorized version of the univariate
case).

In fact, the rank condition (Equation (2-10)) is always satisfied at an optimal solution
(y+; y�) at some step d of the hierarchy (Equation (3-13)), and so the atoms of �+ and
�� are extracted via a simple linear algebra routine (as for global optimization). Nie’s
genericity result Nie [2013] should provide a rationale which explains why the rank
condition (Equation (2-10)) is satisfied in all examples.

Sparse interpolation. Here the goal is to recover an unknown (black-box) polynomial
p 2 R[x]t through a few evaluations of p only. In Josz, Lasserre, and Mourrain [2017]
we have shown that this problem is in fact a particular case of Super-Resolution (and
even discrete Super-Resolution) on the torus T n � Cn. Indeed let z0 2 T n be fixed,
arbitrary. Then with ˇ 2 Nn, notice that

p(zˇ
0 ) =

X
˛2Nn

d

p˛ (zˇ1

01 � � � z
ˇn

0n )
˛ =

X
˛2Nn

d

p˛ (z˛1

01 � � � z
˛n

0n )
ˇ

=

Z
Tn

zˇ d

0@ X
˛2Nn

d

p˛ ız˛
0

1A =

Z
Tn

zˇ d�:

In other words, one may identify the polynomial p with an atomic signed Borel mea-
sure � on T n supported on finitely many atoms (z˛

0 )˛2Nn
t
with associated weights

(p˛)˛2Nn
t
.

Therefore, if the evaluations of the black-box polynomial p are done at a few “pow-
ers” (zˇ

0 ), ˇ 2 Nn, of an arbitrary point z0 2 T n, then the sparse interpolation problem
is equivalent to recovering an unknown atomic signed Borel measure � on T n from
knowledge of a few moments, that is, the Super-Resolution problem that we have just
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described above. Hence one may recover p by solving the Moment-SOS hierarchy
(Equation (3-13)) for which finite convergence usually occurs fast. For more details
see Josz, Lasserre, and Mourrain [2017].

3.5 In Control & Optimal Control. Consider the Optimal Control Problem (OCP)
associated with a controlled dynamical system:

(3-14)
J � = inf

u(t)

Z T

0

L(x(t);u(t)) dt : ẋ(t) = f (x(t);u(t)); t 2 (0; T )

x(t) 2 X; u(t) 2 U; 8t 2 (0; T )

x(0) = x0; x(T ) 2 XT ;

where L; f are polynomials, X;XT � Rn and U � Rp are compact basic semi-
algebraic sets. In full generality the OCP problem (Equation (3-14)) is difficult to
solve, especially when state constraints x(t) 2 X are present. Given an admissible
state-control trajectory (t; x(t);u(t)), its associated occupation measure �1 up to time
T (resp. �2 at time T ) are defined by:

�1(A � B � C ) :=

Z
[0;T ]\C

1(A;B)((x(t);u(t)) dt ; �2(D) = 1D(x(T ));

for all A 2 B(X), B 2 B(U), C 2 B([0; T ]), D 2 B(XT ). Then for every differen-
tiable function h : X � [0; T ]! R

h(T; x(T )) � h(0; x0) =

Z T

0

(
@h(x(t);u(t))

@t
+

@h(x(t);u(t))
@x

f (x(t);u(t))) dt;

or, equivalently, with S := [0; T ] � X � U:Z
XT

h(T; x) d�2(x) = h(0; x0) +
Z
S
(
@h(x;u)

@t
+

@h(x;u)
@x

f (x;u)) d�1(t; x;u):

Then the weak formulation of the OCP (Equation (3-14)) is the infinite-dimensional
linear program:

(3-15)

� = inf
�1;�2�0

f

Z
S

L(x;u) d�1 :

s.t.
Z
XT

h(T; �) d�2 �

Z
S
(
@h

@t
+

@h

@x
f ) d�1 = h(0; x0)

8h 2 R[t; x] g:

It turns out that under some conditions the optimal values of Equations (3-14) and (3-15)
are equal, i.e., J � = �. Next, if one replaces “for all h 2 R[t; x;u]” with “for all
tkx˛uˇ ”, (t; ˛; ˇ) 2 N1+n+p”, then Equation (3-15) is an instance of the GPM (Equa-
tion (3-2)). Therefore one may apply the Moment-SOS hierarchy (Equation (3-5)). Un-
der the conditions of Theorem 3.1 one obtains the asymptotic convergence �d ! � =

J � as d ! 1. For more details see Lasserre, Henrion, Prieur, and Trélat [2008] and
the many references therein.
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Robust control. In some applications (e.g. in robust control) one is often interested
in optimizing over sets of the form:

G := fx 2 Ω1 : f (x;u) � 0; 8u 2 Ω2g;

where Ω2 � Rp , and Ω1 � Rn is a simple set, in fact a compact set such that one
knows all moments of the Lebesgue measure � on Ω1.

The set G is difficult to handle because of the universal quantifier. Therefore one is
often satisfied with an inner approximation Gd � G, and if possible, with (i) a simple
form and (ii) some theoretical approximation guarantees. We propose to approximateG
from inside by sets of (simple) form Gd = fx 2 Ω1 : pd (x) � 0g where pd 2 R[x]2d .

To obtain such an inner approximationGd � G, define F : Ω1 ! R, x 7! F (x) :=
min
u
ff (x;u) : u 2 Ω2g. Then with d 2 N, fixed, solve:

(3-16) inf
p2R[x]2d

Z
Ω1

(F � p) d� : f (x;u) � p(x) � 0; 8(x;u) 2 Ω1 � Ω2g:

Any feasible solution pd of Equation (3-16) is such that Gd = fx : pd (x) � 0g � G.
In Equation (3-16)

R
Ω1

(F � p) d� = kF � pk1 (with k � k1 being the L1(Ω1)-norm),
and

inf
p

Z
Ω1

(F � p) d� =

Z
Ω1

F d�„ ƒ‚ …
=cte

+ inf
p

Z
Ω1

�p d� = cte � sup
p

Z
Ω1

p d�

and so in Equation (3-16) it is equivalent to maximize
R
Ω1

pd�. Again the Moment-
SOS hierarchy can be applied. This time one replaces the difficult positivity constraint
f (x;u) � p(x) � 0 for all (x;u) 2 Ω1 � Ω2 with a certificate of positivity, with a
degree bound on the SOS weights. That is, if Ω1 = fx : g1;`(x) � 0; ` = 1; : : : ; m1g

and Ω2 = fu : g2;`(u) � 0; ` = 1; : : : ; m2g, then with di;` := d(deg(�i;`)/2e, one
solves

(3-17)

�d = sup
p2R[x]2d

Z
Ω1

p d� : f (x;u) � p(x) = �0(x;u)

+

m1X
`=1

�1;`(x;u)gi;`(x) +
m2X
`=1

�2;`(x;u)gi;`(u)

�i;` 2 Σ[x;u]d�di;`
; ` = 1; : : : ; mi ; i = 1; 2:

Theorem 3.2 (Lasserre [2015b]). Assume that Ω1 � Ω2 is compact and its associated
quadratic module is Archimedean. Let pd be an optimal solution of Equation (3-17).
If �(fx 2 Ω1 : F (x) = 0g) = 0 then lim

d!1
kF � pdk1 = 0 and lim

d!1
�(G nGd ) = 0.

Therefore one obtains a nested sequence of inner approximations (Gd )d2N � G,
with the desirable property that �(G n Gd ) vanishes as d increases. For more details
the interested reader is referred to Lasserre [ibid.].
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Example 1. In some robust control problems one would like to approximate as closely
as desired a non-convex set G = fx 2 Ω1 : �min(A(x)) � 0g for some real symmet-
ric r � r matrix-polynomial A(x), and where x 7! �min(A(x)) denotes its smallest
eigenvalue. If one rewrites

G = fx 2 Ω1 : uTA(x)u � 0; 8u 2 Ω2g; Ω2 = fu 2 Rr : kuk = 1g;

one is faced with the problem we have just described. In applying the above methodol-
ogy the polynomial pd in Theorem 3.2 approximates �min(A(x)) from below inΩ1, and
kpd (�)� �min(A(�))k1 ! 0 as d increases. For more details see Henrion and Lasserre
[2006].

There are many other applications of the Moment-SOS hierarchy in Control, e.g.
in Systems Identification Cerone, Piga, and Regruto [2012] and Laumond, Mansard,
and Lasserre [2017a], Robotics Posa, Tobenkin, and Tedrake [2016], for computing
Lyapunov functions Parrilo [2003], largest regions of attraction Henrion and Korda
[2014], to cite a few.

3.6 Some inverse optimization problems. In particular:

Inverse Polynomial Optimization. Here we are given a polynomial optimization
problem P : f � = minff (x) : x 2 Ωg with f 2 R[x]d , and we are interested in
the following issue: Let y 2 Ω be given, e.g. y is the current iterate of a local minimiza-
tion algorithm applied to P. Find

(3-18) g� = arg min
g2R[x]d

fkf � gk1 : g(x) � g(y) � 0; 8x 2 Ω g;

where khk1 =
P

˛ jh˛j is the `1-norm of coefficients of h 2 R[x]d . In other words,
one searches for a polynomial g� 2 R[x]d as close as possible to f and such that y 2 Ω

is a global minimizer of g� on Ω. Indeed if kf � g�k1 is small enough then y 2 Ω

could be considered a satisfying solution of P. Therefore given a fixed small � > 0, the
test kf �g�k1 < � could be a new stopping criterion for a local optimization algorithm,
with a strong theoretical justification.

Again the Moment-SOS hierarchy can be applied to solve Equation (3-18) as posi-
tivity certificates are perfect tools to handle the positivity constraint “g(x) � g(y) � 0

for all x 2 Ω”. Namely with Ω as in Equation (1-2), solve:

(3-19) �t = min
g2R[x]d

f kf � gk1 : g(x) � g(y) :=

mX
j=0

�j (x)gj (x); 8x g;

where g0(x) = 1 for all x, and �j 2 Σ[x]t�dj
, j = 0; : : : ; m. Other norms are possible

but for the sparsity inducing `1-norm k � k1, it turns out that an optimal solution g� of
Equation (3-19) has a canonical simple form. For more details the interested reader is
referred to Lasserre [2013].



THE MOMENT-SOS HIERARCHY 3777

Inverse Optimal Control. With the OCP (Equation (3-14)) in Section 3.5, we now
consider the following issue: Given a database of admissible trajectories
(x(t ; x� );u(t; x� )), t 2 [�; T ], starting in initial state x� 2 X at time � 2 [0; T ], does
there exist a Lagrangian (x;u) 7! L(x;u) such that all these trajectories are optimal
for the OCP problem (Equation (3-14))? This problem has important applications, e.g.,
in Humanoid Robotics to explain human locomotion Laumond, Mansard, and Lasserre
[2017b].

Again the Moment-SOS hierarchy can be applied because a weak version of the
Hamilton-Jacobi-Bellman (HJB) optimality conditions is the perfect tool to state whether
some given trajectory is �-optimal for the OCP (Equation (3-14)). Indeed given � > 0

and an admissible trajectory (t; x�(t);u�(t)), let ' : [0; T ]�X! R, and L : X�U!
R, be such that:

(3-20) '(T; x) � 0; 8 x 2 X;
@'(t; x)

@t
+

@'(t; x)
@x

f (x;u) + L(x;u) � 0;

for all (t; x;u) 2 [0; T ] � X � U, and: '(T; x�(T )) > ��,

(3-21)
@'(t; x�(t))

@t
+

@'(t; x�(t))

@x
f (x�(t);u�(t)) + L(x�(t);u�(t)) < �;

for all t 2 [0; T ]. Then the trajectory (t; x�(t);u�(t)) is an �-optimal solution of the
OCP (Equation (3-14)) with x0 = x�(0) and Lagrangian L. Therefore to apply the
Moment-SOS hierarchy:

(i) The unknown functions ' and L are approximated by polynomials in R[t; x]2d

andR[x;u]2d , where d is the parameter in theMoment-SOS hierarchy (Equation (3-6)).
(ii) The above positivity constraint (Equation (3-20)) on [0; T ] � X � U is replaced

with a positivity certificate with degree bound on the SOS weights.
(iii) Equation (3-21) is stated for every trajectory (x(t ; x� );u(t; x� )), t 2 [�; T ], in

the database. Using a discretization ft1; : : : ; tN g of the interval [0; T ], the positivity
constraints (Equation (3-21)) then become a set of linear constraints on the coefficients
of the unknown polynomials ' and L.

(iv) � in Equation (3-21) is now taken as a variable and one minimizes a criterion of
the form kLk1 +  �, where  > 0 is chosen to balance between the sparsity-inducing
norm kLk1 of the Lagrangian and the error � in the weak version of the optimality
conditions (Equation (3-20)inv2). A detailed discussion and related results can be found
in Pauwels, Henrion, and Lasserre [2016].

3.7 Optimal design in statistics. In designing experiments onemodels the responses
z1; : : : ; zN of a random experiment whose inputs are represented by a vector t =

(ti ) 2 Rn with respect to known regression functions Φ = ('1; : : : ; 'p), namely:
zi =

Pp
j=1 �j 'j (ti ) + "i , i = 1; : : : ; N , where �1; : : : ; �p are unknown parameters

that the experimenter wants to estimate, "i is some noise and the (ti )’s are chosen by
the experimenter in a design space X � Rn. Assume that the inputs ti , i = 1; : : : ; N ,
are chosen within a set of distinct points x1; : : : ; x` 2 X, ` � N, and let nk denote the
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number of times the particular point xk occurs among t1; : : : ; tN . A design � is then
defined by:

(3-22) � =

�
x1 : : : x`
n1

N : : : n`

N

�
:

The matrixM(�) :=
P`

i=1
ni

N
Φ(xi )Φ(xi )

T is called the information matrix of � . Op-
timal design is concerned with finding a set of points in X that optimizes a certain
statistical criterion �(M(�)), which must be real-valued, positively homogeneous, non
constant, upper semi-continuous, isotonic w.r.t. Loewner ordering, and concave. For
instance in D-optimal design one maximizes �(M(�)) := log det(M(�)) over all � of
the form (Equation (3-22)). This is a difficult problem and so far most methods have
used a discretization of the design space X.

The Moment-SOS hierarchy that we describe below does not rely an any discretiza-
tion and works for an arbitrary compact basic semi-algebraic design space X as defined
in Equation (1-2). Instead we look for an atomic measure on X (with finite support)
and we proceed in two steps:
� In the first step one solves the hierarchy of convex optimization problems indexed by
ı = 0; 1; : : :.

(3-23)
�ı = sup

y
flog det(Md (y)) : y0 = 1

Md+ı(y) � 0; Md+ı�dj
(gj y) � 0g;

where d is fixed by the number of basis functions 'j considered (here the monomials
(x˛)˛2Nn

d
). (Note that Equation (3-23) is not an SDP because the criterion is not linear

in y, but it is still a tractable convex problem.) This provides us with an optimal solution
y�(ı). In practice one chooses ı = 0.
� In a second step we extract an atomic measure � from the “moments” y�(ı), e.g. via
Nie’s method Nie [2014b] which consists of solving the SDP:

(3-24)
�r = sup

y
fLy(fr) : y˛ = y�

˛(ı); 8˛ 2 Nn
2d

Md+r(y) � 0; Md+r�dj
(gj y) � 0g;

where fr is a (randomly chosen) polynomial strictly positive on X. If (y�
˛(ı))˛2Nn

2d

has a representing measure then it has an atomic representing measure, and generically
the rank condition (Equation (2-10)) will be satisfied. Extraction of atoms is obtained
via a linear algebra routine. We have tested this two-steps method on several non-trivial
numerical experiments (in particular with highly non-convex design spaces X) and in
all cases we were able to obtain a design. For more details the interested reader is
referred to De Castro, Gamboa, Henrion, Hess, and Lasserre [2017].

Other applications & extensions. In this partial overview, by lack of space we have
not described some impressive success stories of the Moment-SOS hierarchy, e.g. in
coding Bachoc and Vallentin [2008], packing problems in discrete geometry de Laat
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and Vallentin [2015] and Schürmann and Vallentin [2006]. Finally, there is also a non-
commutative version Pironio, Navascués, and Acı́n [2010] of the Moment-SOS hierar-
chy based on non-commutative positivity certificates Helton and McCullough [2004]
and with important applications in quantum information Navascués, Pironio, and Acı́n
[2008].

4 Conclusion

The list of important applications of the GPM is almost endless and we have tried to
convince the reader that the Moment-SOS hierarchy is one promising powerful tool
for solving the GPM with already some success stories. However much remains to be
done as its brute force application does not scale well to the problem size. One possi-
ble research direction is to exploit symmetries and/or sparsity in large scale problems.
Another one is to determine alternative positivity certificates which are less expensive
in terms of computational burden to avoid the size explosion of SOS-based positivity
certificates.
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