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Abstract

Standard optimal capital tax theory abstracts from modeling asset prices, making it un-
suitable for thinking about capital gains and wealth taxation. We study optimal redistribu-
tive taxation in an environment with asset price changes, adopting the modern finance
view that asset prices fluctuate not only because of changing cash flows, but also due to
other factors (“discount rates”). We show that the optimal tax base (i) generally differs from
the case with constant asset prices, and (ii) depends on the sources of asset-price changes.
Whenever asset prices fluctuate, and are not exclusively driven by cash flow changes, taxes
must target realized trades and generally involve a combination of realization-based cap-
ital gains and dividend taxes. This result stands in contrast to the classic Haig-Simons
comprehensive income tax concept, as well as recent proposals for wealth or accrual-based
capital gains taxes.
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“Many of the distortions associated with the present system of capital gains taxation result from its
deviation from the Haig-Simons approach. These deviations may have historical explanations but their
persistence is hard to rationalize from an economic perspective.” (Auerbach, 1989)

The treatment of capital gains due to changing asset prices lies at the heart of many debates

regarding the taxation of capital income and wealth. While capital gains are typically taxed on

realization (i.e. asset sale) in practice, a long tradition in public finance going back to von

Schanz (1896), Haig (1921) and Simons (1938) advocates for taxing capital gains on accrual.

This idea has recently made its way into policy proposals, including by the Biden administra-

tion.1 In the United States, such tax policies would invariably end up in the Supreme Court

which has, for more than a hundred years, heard cases about, but never conclusively ruled on,

whether unrealized gains constitute income.2 Finally, debates about wealth taxation often end

up being about the desirability (and practicality) of taxing wealth changes due to asset-price

movements, simply because such unrealized capital gains typically dwarf ordinary saving and

income flows for top wealth holders.

The existing public finance literature on optimal capital taxation abstracts from explicitly

modelling changing asset prices, and therefore provides no guidance in these debates.3 Our

paper aims to fill this gap in the literature by “putting the ‘finance’ into ‘public finance’.”

That is, we study optimal redistributive taxation in the presence of asset price fluctuations.

Importantly, we do so adopting the view of the modern finance literature that asset prices

change not only in response to changing cash flows but also due to changes in discount rates

(Campbell and Shiller, 1988). In this dichotomy, “discount rates” simply means any sources of

asset price changes other than current and expected future cash flows. Empirically, asset prices

move too much to be accounted for by changing cash flows alone, both at high frequencies and

over longer time horizons.4

Our main contribution is to show that optimal redistributive taxes (i) generally differ from

the case with constant asset prices, and (ii) depend on the sources of asset-price changes.

Whenever asset prices fluctuate beyond movements due to cash flow changes, taxes must

target realized trades, and generally involve a combination of realization-based capital gains

1U.S. Office of Management and Budget (2022), U.S. Department of the Treasury (2022), Saez et al. (2021),
Zucman (2024), and The Economist (2024). Leiserson and Yagan (2021) calculate that the 400 wealthiest U.S. families
paid an average tax rate of only 8.2% in the years 2010 to 2018 by including unrealized capital gains in the tax base.

2Most recently Moore v. United States in 2024 but going back to Eisner v. Macomber in 1920. The key open
question is whether unrealized gains constitute income under the 16th Amendment of the U.S. constitution. See
Fox and Liscow (2024) for a useful summary of the legal arguments and the U.S. Supreme Court’s position.

3See, for example, the classic contributions of Atkinson and Stiglitz (1976), Chamley (1986), and Judd (1985).
Like us, Piketty et al. (2023) lament the absence of asset-price effects from this literature but nevertheless proceed
without explicitly modeling them. Interestingly, Lucas (1990) begins his review of the literature with a discussion
of capital gains taxation: “When I left graduate school, in 1963, I believed that the single most desirable change in
the U.S. tax structure would be the taxation of capital gains as ordinary income. I now believe that neither capital
gains nor any of the income from capital should be taxed at all. My earlier view was based on what I viewed as the
best available economic analysis, but of course I think my current view is based on better analysis.” However, also
Lucas does not explicitly consider changing asset prices (though see the discussion of Lucas’ quote in Section 1).

4See for example Shiller (1981), Campbell and Shiller (1988), Cochrane (2011), Greenwald et al. (2019) and van
Binsbergen (2020) as well as the secular increase in many measures of price-dividend ratios and the decline in real
interest rates. While this is the conventional view, others have argued that fluctuations in cash flows are first order.
Our reading of this debate is that it is imperative to understand the tax implications of both sources.
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and dividend taxes. The reason is that, holding constant cash flows, asset-price increases re-

distribute toward asset sellers who realize capital gains, away from asset purchasers who pay

a higher price for a given dividend stream while not directly affecting those who do not trade.

Optimal redistributive taxation must take this dynamic into account, as well as accounting for

any changes in relative income due to cash flows changes.

Taxes that are optimal in environments with constant asset prices may cease to be optimal,

or even change in counterintuitive ways, when asset prices fluctuate. While a wealth tax may

be optimal with constant asset prices, its progressivity needs to change whenever asset prices

move and optimal taxation may even prescribe tax cuts for the wealthiest when asset prices

rise. Taxing unrealized capital gains is optimal only in restrictive knife-edge cases, so that our

results also stand in contrast to the classic Haig-Simons comprehensive income tax concept.5

We begin our study of redistributive taxation with changing asset prices in an environ-

ment that is purposely simple: a deterministic small open economy in which a large number

of investors trade one asset with an exogenously given asset price and homogeneous asset re-

turns across investors. Investors begin with heterogeneous endowments of the asset and face

different income profiles. The small open economy assumption allows us to study the implica-

tions of fluctuations in asset prices and cash flows on the income distribution in a transparent

manner. Later in the paper, we study various extensions, including leveraged borrowing and

general equilibrium, and show that the results from this simple setting generalize.

We are interested in how the optimal tax system responds to changes in asset prices. As

a first step, we assume the government has access to type-specific lump-sum taxes and char-

acterize the set of first-best tax schedules that trace out the Pareto frontier. This benchmark is

useful as it generates a clear distinction in how taxes respond to changes in discount rates ver-

sus cash flows. We then show that the principles observed in the first-best problem are present

in a second-best allocation in which the government is restricted to distortive taxes à la Mir-

rlees (1971), so that the classic tradeoff between redistribution and efficiency arises. While the

first-best is clearly not realistic and implies extreme predictions about optimal tax rates, it turns

out to be instructive about the optimal tax base, i.e., what taxes should condition on depending

on the sources of asset price changes. These results then generalize in a natural way to more

interesting second-best tax systems.

To explain our findings, it is useful to consider the standard definition for an asset’s return

Rt+1 =
Dt+1 + pt+1

pt
, (1)

where pt denotes the asset’s price and Dt its cash flow, i.e. the return equals dividend yield

plus capital gain. While the existing literature features either a constant asset price or small

movements of asset returns (see the literature discussion below), we instead allow both cash

flows and asset prices, and hence returns, to change in flexible ways. In particular, we allow

for changes in asset returns Rt that are independent of changes in cash flows Dt, i.e. discount

5Immediately after the quote at the beginning of this introduction, Auerbach (1989) adds: “It is therefore disap-
pointing and puzzling that the debate about capital gains taxes continues to focus almost exclusively on tax rates
rather than on tax structure.” We wholeheartedly agree.
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rate changes.

Consider the following thought experiment. The economy is initially in a steady state with

asset price p, dividend D, and associated asset return R. In this initial steady state, there is

a tax system in place that optimally redistributes across investors according to some Pareto

weights. Now suppose that, at time t = 0, the time paths of asset prices, cash flows, and hence

returns change to some alternative time paths {pt, Dt, Rt}. In particular, asset prices pt, may

increase because expected future cash flows increase or for other reasons, i.e. discount rate

changes. The question we are after is: how should the tax system respond to these changes?

A useful stepping stone for answering this question is the idea of “Slutsky compensation,”

defined as the change in the investor’s budget that keeps the initial consumption bundle af-

fordable at the new prices and dividends. We show that this compensation generally requires

conditioning on realized trades: when asset prices rise, sellers benefit and hence need to be

taxed whereas buyers lose and hence need to be compensated. Of course, dividend income

changes are also compensated or taxed. Building on the Slutsky-compensation logic, optimal

taxation in the first-best problem is straightforward: just like Slutsky compensation, it taxes

sellers, compensates buyers, and taxes dividend income changes. Importantly, optimal lump-

sum taxes generally target realized trades rather than asset holdings.

There are two useful polar special cases. In the first special case, the time path of asset

prices {pt} changes while cash flows remain at the initial steady state D. Because asset returns

going forward {Rt} change, this case corresponds to asset price changes driven entirely by

discount rates. In the second special case, asset prices and cash flows {pt, Dt} instead change

proportionately and in such a way that the asset return remains at the initial steady state R.

This corresponds to asset price changes driven entirely by cash flows.

We show that, in the first special case with changing discount rates, optimal lump-sum

taxes depend only on investors’ realized trades (purchases and sales) as well as the price

changes relative to steady state, and are independent of investors’ asset holdings. Intuitively,

rising asset prices benefit sellers, who are therefore taxed, and hurt buyers, who are therefore

subsidized. In contrast, in the second special case with changing cash flows, optimal lump-

sum taxes target the investor’s individual wealth gain due to the asset price change, so that

it is asset holdings rather than transactions that matter. However, this is a knife-edge result:

whenever asset-price changes are not exclusively driven by cash flow changes, optimal lump-

sum taxes target realized trades as well.

While our formula for optimal redistributive taxes is reminiscent of realization-based cap-

ital gains taxation systems observed in practice, it also differ in important ways. For example,

optimal taxes (i) not only tax sellers but also compensate buyers who experience “purchasing

losses” when prices rise; (ii) they compensate realized capital losses and tax “purchasing gains”

when prices fall; (iii) they tax net rather than gross transactions (selling and re-investing at the

same price should not incur a tax liability); (iv) they adjust for inflation; and (v) the capital gain

or loss is typically calculated relative to a basis that differs from the historical basis at which

the investor purchased the asset. Finally, in this first-best case with non-distortive taxation, our

formula prescribes an extreme tax rate of 100%, i.e. the government taxes away realized capital
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gains in their entirety and uses the proceeds to compensate the losers from rising prices.

Turning to second-best tax systems à la Mirrlees (1971), our results regarding the optimal

tax base carry over from the first-best analysis in a natural way. In this environment, only a

subset of investor choices can be taxed, for example asset sales, consumption, or savings. We

show that the incentive compatibility constraints share some key similarities across the various

settings. Our main interest remains how the second-best tax schedule changes when asset

prices rise. We show that the second-best tax schedule monotonically increases as a function of

trading gains, albeit with a slope less than in the first-best. This is intuitive – taxing asset sellers

in response to a price increase achieves a better distribution of income, like in the first-best, but

also distorts saving behavior. If end-of-period wealth is taxed rather than sales, optimal taxes

may become less progressive when asset prices rise. Intuitively, if those holding the asset at

the end of the period are net purchasers, they should be subsidized rather than taxed (relative

to the baseline tax schedule). While this example is extreme, it illustrates why the fluctuating

market value of investors’ asset holdings is a problematic target for redistributive taxes.

Wealth taxes are sometimes marketed as taxes on “presumptive income” (Zucman, 2024,

or the Dutch “box 3” wealth tax): for example, a 2% wealth tax is equivalent to a 40% tax on

presumed capital income from a constant asset return of 5%. This analogy shows clearly why

taxing fluctuating wealth market values is problematic. Consider an investor with an asset

(e.g. a private business) initially worth $100m which generates a dividend income of $5m and

which is subject to a 2% wealth tax of $2m. In the notation above, Dt and pt are initially fixed at

D and p with an asset return R− 1 = D/p = 5%. The asset value then jumps up permanently

by a factor two to p = 2p = $200m so that also the investor’s wealth tax liability doubles to

$4m. The key question is what happens to the investor’s presumptive versus actual income.

Suppose first that the increased asset value is exclusively due to higher cashflows, i.e. div-

idend income also doubles to D = $10m (special case 2). In this special case, from (1), the

asset return remains constant at D/p = $10m/$200m = 5% and therefore the increase in pre-

sumptive income exactly matches the increase in actual income. However, in all other cases

in which dividends increase by less than a factor of two, this is no longer true: actual in-

come increases by less than presumptive income. The problem is that it is incorrect to apply

the same constant 5% presumed return to the new valuation of p =$200m because the true re-

turn to wealth D/p actually falls. In the extreme case in which dividend income remains fixed

(special case 1), presumptive income doubles to 5%× $200m = $10m while actual income is

completely unchanged at $5m. The unchanged dividend income corresponds to a lower re-

turn to wealth of only R − 1 = D/p = 2.5% so that the correct income calculation would

have been 2.5%× $200m = $5m rather than the (incorrect) presumptive income calculation of

5%× $200m = $10m. Thus “presumptive income” is overestimated and hence wealth taxes

redistribute suboptimally whenever asset valuations are not exclusively driven by cash flows.

We also show how these results depend on the household’s inter-temporal elasticity of

substitution (IES). Given that the distortion generated by second-best taxation is on saving

behavior, a lower IES brings us closer to the first-best tax schedule. In particular, we prove

that, in the limit as the IES goes to zero, the second-best tax schedule achieves the first-best
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allocation. This establishes that the insights from the first-best tax system are not based on a

knife-edge scenario, but extend qualitatively to more realistic environments.

Finally, we consider various extensions, including risk and borrowing, bequests, return

heterogeneity, and general equilibrium considerations. While these extensions change our op-

timal tax formula in natural and instructive ways, the key findings emphasized in this intro-

duction remain unchanged. Specifically, in contrast to the classic Haig-Simons comprehensive

income tax concept as well as proposals for wealth or accrual-based capital gains taxes, opti-

mal redistributive taxes generally target realized trades. An extension in which investors trade

the same asset but receive heterogeneous cash flows makes clear just how knife-edge the case

is in which wealth or accrual-based capital gains taxes are optimal. Specifically, suppose that

cash flows increase but only for a subset of the investors, thereby increasing the equilibrium

asset price. Then the remaining investors experience an increase in the asset price but without

a corresponding increase in cash flows, exactly as if there had been a lower discount rate, with

sellers benefiting and buyers losing. Therefore, taxes on unrealized capital gains or wealth are

no longer optimal even when asset prices are driven entirely by changing cash flows.

Our extensions with borrowing and heterogeneous returns also allow us to speak to an

issue that has received attention in the popular debate: wealthy individuals borrowing against

appreciating assets rather than selling them, often aiming to take advantage of the “stepped-

up basis” for bequeathed assets as part of a “buy, borrow, die” tax avoidance strategy. Our

results suggest that basis step-up should be eliminated, thereby also eliminating the viability

of this strategy. Absent the stepped-up basis, the wealthy would still benefit from borrowing

against high-return assets with lower-interest loans. But exploiting such return differences is a

feature of any levered investment strategy and should not be considered tax avoidance.

Literature. Our paper contributes to the theoretical public finance literature studying the op-

timal taxation of capital income and wealth. Apart from the classic contributions we already

mentioned, see the references in Section 1.4 as well as the surveys by Golosov et al. (2007),

Banks and Diamond (2010), Bastani and Waldenstrom (2020), Stantcheva (2020) and Scheuer

and Slemrod (2021). To differentiate our paper from this literature, it is again useful to consider

the expression for an asset’s return (1).

The existing literature features either a constant asset price (and hence no capital gains or

losses whatsoever) or works with variants of the neoclassical growth model. In the growth

model, asset-return movements are typically small, reflecting the disappointing asset-pricing

properties of the standard real business cycle model. Our analysis instead allows for flexible

changes in asset returns Rt that are independent of changes in cash flows Dt, i.e. discount rate

changes. Within the environments it has considered, the literature has shown that taxing asset

holdings may be optimal, for example by means of a wealth tax. Our paper instead shows that

such taxes are problematic whenever asset prices fluctuate and are not exclusively driven by

cash flow changes. In all such cases, taxes must target realized trades, and generally involve a

combination of realization-based capital gains and dividend taxes.

In line with our argument that it is essential to “put the ‘finance’ into ‘public finance’”, a
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growing positive literature has documented an important role for asset-price and interest-rate

changes in driving wealth inequality and has studied the macroeconomic and distributional

implications of these trends (e.g. Bonnet et al., 2014; Rognlie, 2015; Kuhn et al., 2020; Gomez,

2016; Wolff, 2022; Gomez and Gouin-Bonenfant, 2020; Cioffi, 2021; Catherine et al., 2020, 2024;

Greenwald et al., 2021; Moll, 2020; Martı́nez-Toledano, 2022; Fagereng et al., 2023). The logic

of our results is closely related to Moll (2020) and Fagereng et al. (2023) who study the welfare-

relevant redistributive effects of changing asset prices. Our paper contributes to this literature

by instead studying the normative implications of changing asset prices, specifically their im-

plications for optimal capital taxation.

There is also an empirical literature studying behavioral responses, specifically of asset

sales, to capital gains taxation aiming to estimate the relevant elasticities.6 While our paper

tackles optimal distortive taxation à la Mirrlees (1971) only in a stylized two-period model

which is not suitable for making quantitative predictions about optimal tax rates, such elastic-

ities will of course be key inputs in more serious quantitative work.

While the modern theoretical public finance literature provides no guidance on the opti-

mal tax treatment of capital gains, there is an older, mostly verbal or graphical literature that

anticipates some of the key ideas in our paper, in particular Paish (1940), Kaldor (1955) and

Whalley (1979), which were partly reactions to the work of Haig (1921) and Simons (1938) that

developed the eponymous income concept.

Roadmap. Section 1 spells out our baseline environment. Section 2 focuses on a special case

with two time periods that we use in much of our subsequent analysis. Section 3 studies the

first-best allocation assuming that the government has access to type-specific lump-sum taxes.

In contrast, Section 4 incorporates the classic tradeoff between redistribution and efficiency

in a second-best world with distortive taxation. Section 5 shows how our findings regarding

optimal taxes carry over to the multi-period model of Section 1. Section 6 considers various

extensions, including risk and borrowing, bequests, return heterogeneity, and general equilib-

rium considerations. Section 7 concludes.

1 Baseline model

We begin by spelling out our baseline environment, which we then use to study optimal redis-

tributive taxation in the following. This baseline model is kept purposely simple; in particular,

we study a deterministic small open economy in which a large number of investors trade one

asset with an exogenously given asset price and homogeneous asset returns across investors.

Section 6 considers various extensions, including general equilibrium, return heterogeneity,

risk and borrowing, and intergenerational considerations. For now, we omit taxes from the

6See for example the handbook chapter by Poterba (2002), Feldstein et al. (1980) and Agersnap and Zidar (2021).
The literature has paid particular attention to the “lock-in effect” of realization-based capital gains taxation and has
proposed various solutions to eliminate this incentive to postpone selling appreciated assets, see e.g. Vickrey (1939),
Auerbach (1989), and Auerbach (1991). There are also theoretical and quantitative studies of behavioral responses
including the lock-in effect (e.g. Constantinides, 1983; Chari et al., 2005; Smith and Miller, 2023).
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analysis, which we will introduce in Section 3.

1.1 Investors

Time is discrete with time periods t = 0, 1, ..., T, where T may be finite or infinite. There is a

continuum of heterogeneous investors indexed by their type θ ∈ [θ, θ̄], which is distributed

in the population according to the cumulative distribution function F(θ). Investors have pref-

erences over consumption in the T time periods, (c0, ..., cT), captured by the utility function

U(c0, ..., cT), which is strictly increasing and strictly concave in all its arguments. Investors

receive type-specific exogenous income flows {yt(θ)}T
t=0. They can transfer income across pe-

riods by saving in an asset that pays a deterministic dividend stream {Dt}T
t=0 and trades at an

exogenously given price {pt}T
t=0. Investors have an initial asset endowment k0(θ) and decide

how many assets {kt+1(θ)}T
t=0 to carry into the next period. There is no short-selling constraint,

and hence kt+1(θ) may be negative or positive. We could also allow for additional assets, for

example a risk-free bond, but these would be perfect substitutes in our deterministic environ-

ment and would therefore not affect our analysis. We consider the more interesting case with

multiple assets that are imperfect substitutes in Section 6.

The problem of an investor of type θ is to maximize her welfare

U(θ) = max
{ct(θ),kt+1(θ)}T

t=0

U(c0(θ), ..., cT(θ)),

subject to the sequence of budget constraints:

ct(θ) + pt(kt+1(θ)− kt(θ)) = yt(θ) + Dtkt(θ) ∀t ≥ 0, (2)

with k0(θ) given and where we impose pT = 0 in the final period.

The only fundamental underlying heterogeneity across investors is in initial asset holdings

k0(θ) as well as income over time {yt(θ)}T
t=0. This heterogeneity generates gains from trade,

with natural buyers and sellers of the asset. Figure 1 depicts an example with two time periods

in which high θ types have lower initial income y0(θ) but higher future income y1(θ) and

relatively similar initial asset holdings k0(θ). In this example, low θ types will be buyers of the

asset (savers with c0(θ) < y0(θ)) whereas high θ types will be sellers (effective borrowers with

c0(θ) > y0(θ)).

The asset return is given by equation (1) in the introduction: Rt+1 = (Dt+1 + pt+1)/pt,

i.e. the return equals dividend yield plus capital gain. The investor’s intertemporal optimality

condition (Euler equation) is

Uct(c0(θ), ..., cT(θ)) = Rt+1Uct+1(c0(θ), ..., cT(θ)), (3)

where Uct ≡ ∂U/∂ct for t = 0, ..., T. For future reference, it is also useful to define the cumula-
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sellers

Figure 1: Two-period example of heterogeneity in initial assets and incomes over time
Notes: In this two-period example, low θ types who have high initial income y0(θ) and low future income y1(θ) will be buyers of
the asset (savers) whereas high θ types for whom the opposite is true will be sellers (borrowers).

tive return between time t and t + s for s ≥ 1:7

Rt→t+s ≡ Rt+1 · Rt+2 · · · Rt+s, (4)

Haig-Simons income. The budget constraint (2) states that “consumption plus saving equals

income.” An equivalent way of writing this accounting identity adds unrealized capital gains

(pt − pt−1)kt(θ) on both sides, thus changing the definitions of saving and income (consump-

tion is unchanged):

ct(θ) + ptkt+1(θ)− pt−1kt(θ)︸ ︷︷ ︸
change in wealth

= yt(θ) + Dtkt(θ) + (pt − pt−1)kt(θ)︸ ︷︷ ︸
Haig-Simons income

∀t ≥ 0.

Formulation (2) features disposable income, whereas this formulation features “Haig-Simons

income” which includes unrealized capital gains (Haig, 1921; Simons, 1938). Defining the

market value of wealth8 at(θ) ≡ pt−1kt(θ) and the net return including capital gains rt =

(Dt + pt − pt−1)/pt−1 = Rt − 1, Haig-Simons income also equals yt(θ) + rtat(θ), i.e. income

including total capital income. Similarly, adding at(θ) on both sides of the budget constraint,

yields the standard

ct(θ) + at+1(θ) = yt(θ) + Rtat(θ) ∀t ≥ 0, (5)

with a0(θ) = p−1k0(θ) given.

A useful utility function. We have not imposed any assumptions on the utility function U
besides it being strictly increasing and strictly concave. But for many of our results it will be

7To obtain compact present-value summations, we will denote no discounting by Rt→t, i.e. Rt→t ≡ 1.
8The mismatching time subscripts in at(θ) ≡ pt−1kt(θ) are solely due to our notational convention which uses

kt(θ) to denote asset holdings at the beginning of period t. Alternatively, using kt(θ) to denote asset holdings at the
end of period t, (2) becomes ct(θ) + pt(kt(θ)− kt−1(θ)) = yt(θ) + Dtkt−1(θ) so that wealth is at(θ) ≡ ptkt(θ).
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useful to specialize this utility function to:

U(c0, ..., cT) = G (C(c0, ..., cT)) where

C(c0, ..., cT) =

(
T

∑
t=0

βtc
σ−1

σ
t

) σ
σ−1

and G(C) =
C1−γ

1− γ
with σ, γ > 0.

(6)

Here, C is a composite commodity in which β is the discount factor used to discount consump-

tion in the second time period and σ is the intertemporal elasticity of substitution. The param-

eter γ governs curvature over this composite commodity. Note that this utility is a monotone

transformation of the more standard intertemporally separable utility function ∑∞
t=0 βtu(ct),

with u(c) = c1−1/σ

1−1/σ . As a result, the investor’s Euler equation (3) specializes to the standard

Euler equation

ct(θ)
−1/σ = βRt+1ct+1(θ)

−1/σ.

The reason for working with this monotone transformation is that some of our results involve

taking the limit of the utility function as the intertemporal elasticity of substitution σ goes to

zero, which is ill-defined for the standard specification.9 In contrast, the utility function (6)

satisfies U(c0, ..., cT) → G(min{c0, ..., cT}) as σ → 0, i.e., it converges to a (monotone transfor-

mation of a) Leontief utility function, as expected.

1.2 Aggregate economy

The economy’s aggregate resource constraint is found by simply aggregating investors’ budget

constraints (2) across individuals. To this end, we use the convention to denote aggregate

variables by capital letters, for example

Ct =
∫

ct(θ)dF(θ), Kt =
∫

kt(θ)dF(θ),

and so on. With this notation, the aggregate resource constraint is

ptKt+1 + Ct = (pt + Dt)Kt + Yt (7)

for all t. As already noted, our benchmark analysis focuses on a small open economy with an

exogenously given time path for asset prices and dividends {pt, Dt}T
t=0. Hence, the economy’s

aggregate asset holdings at time t + 1, Kt+1, may differ from those at t, Kt, as the economy

as a whole may be a net buyer or net seller of K. Let Xt ≡ Kt − Kt+1 denote aggregate net

sales. In Section 6.1, we alternatively consider a closed economy general equilibrium version

of the model in which the asset that investors save in is in fixed supply, so that asset sales or

purchases are zero in the aggregate: for every seller, there is a buyer.

9For example c1−1/σ

1−1/σ → 0 as σ→ 0 for all c > 1 (the numerator converges to zero and the denominator to −∞).
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1.3 Sources of asset-price changes

Our interest is in the taxation of gains or losses due to changes in asset prices. The asset-pricing

literature draws an important distinction between different sources of asset price changes, in

particular distinguishing between asset discount rates and cash flows. In this dichotomy, “dis-

count rates” simply means any sources of asset price changes other than current and expected

cash flows. Using a log-linear accounting decomposition of observed asset price changes due

to Campbell and Shiller (1988), much of this literature has found that discount rate shocks ac-

count for most of asset price fluctuations.10 Other studies have argued that fluctuations in cash

flows are first order.11 Our reading of this debate is that it is imperative to understand the tax

implications of both sources.

To this end, consider the equation for the asset return (1) but adopt the perspective of the

asset-pricing literature to treat required asset returns or discount rates {Rt} as a primitive and

prices {pt} as an outcome. One way of thinking about this is that, in equilibrium models, it is

typically the asset returns {Rt} that are pinned down which, in turn, determine asset prices.12

Rearranging (1) as pt = R−1
t+1(Dt+1 + pt+1) and iterating forward using Rt→t+s defined in (4)

yields

pt =
T−t

∑
s=1

Dt+s

Rt→t+s
, (8)

i.e. the asset price equals the present-discounted value of dividends. There are thus two

sources of rising asset prices: rising dividends {Dt+s} and declining discount rates {Rt+s}.
Campbell and Shiller (1988) provide a log-linear accounting decomposition of (8) that makes

this precise.

Our analysis below considers optimal taxation when asset prices change relative to some

baseline. One useful example of such a baseline is the Gordon growth model (Gordon and

Shapiro, 1956) in which T = ∞, discount rates are constant Rt+1 = R and cash flows grow at a

constant rate Dt+1/Dt = G > 1 so that

pt =
Dt+1

R− G
. (9)

In the Gordon growth model, asset price growth is entirely due to dividend growth and the

price-dividend ratio is constant. Another example of a baseline is simply a steady state with

constant dividend D, return R and asset price p (the Gordon growth model with G = 1).

In our simple partial equilibrium model with exogenous prices and dividends {pt, Dt}, we

can then consider the following two extremal experiments to isolate discount rates and cash

flows as the two drivers of asset price changes.

10See Campbell (2018, Section 5.3.1) for an expository treatment and derivation of the Campbell-Shiller decom-
position.

11See for example, Larrain and Yogo (2008) and Atkeson et al. (2024) but also see Nagel (2024).
12For example, in the two-period general equilibrium version of our model in section 6.1, the investors’ Euler

equation together with market clearing pins down the equilibrium return as R∗ = 1
β

(
Y0

Y1+DK0

)−1/σ
. This then pins

down the equilibrium asset price as p∗ = D/R∗ = β
(

Y0
Y1+DK0

)1/σ
which is the expression in equation (34).
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1. Changes in the path of the asset price {pt} holding dividends {Dt} fixed. This corre-

sponds to asset price changes driven entirely by discount rate changes (the asset return

{Rt+1} changes).

2. Changes in the path of the asset price {pt} that are accompanied by proportional changes

in dividends {Dt} such that the asset return {Rt+1} stays constant.13

Both of these cases are the opposite extremes of the general case, with arbitrary changes in

{pt} and {Dt}, which corresponds to asset price changes driven by a mixture of dividend and

discount rate changes. One of our main arguments in Section 3 is that special case 2, in which

the asset return stays constant because asset price increases are accompanied by proportional

rising dividends or, equivalently, the asset price change is driven entirely by cash flows, is

an extreme knife-edge case with some special results that do not carry over to any deviation

from this configuration. Furthermore, as we show in Section 6, in a richer model with return

heterogeneity, these results no longer apply even when asset prices are driven exclusively by

dividend changes.

1.4 Comparison to setups studied in the capital taxation literature

Before proceeding, we briefly connect our setup to other models in the existing literature on op-

timal capital taxation. These make different assumptions on the determination of asset prices

and dividends {pt, Dt}T
t=0, and hence returns {Rt}T

t=0.

Partial equilibrium models with constant return. This is the special case in which Rt =

R for all t. The most obvious way of generating this result is to assume that pt = p and

Dt = D for all t. Alternatively, prices and dividends could grow at the same constant rate.

This captures models of capital taxation with a linear savings technology, such as the finite-

horizon models based on Atkinson and Stiglitz (1976) (e.g. Saez, 2002; Scheuer and Wolitzky,

2016; Hellwig and Werquin, 2024; Ferey et al., 2024), some of the new dynamic public finance

literature (surveyed in Golosov et al. (2007)), or infinite-horizon partial equilibrium models

such as Saez and Stantcheva (2018).

Neoclassical growth model. Starting with Chamley (1986), many papers have studied opti-

mal capital taxation in variants of the growth model. Denote by ∑∞
t=0 βtU(Ct) the preferences

of the representative consumer and by f (Kt, AtLt) the constant-returns technology for pro-

ducing output, where Ct is consumption, Kt is capital, At is productivity, and Lt is labor with

inelastic supply Lt = 1. How to map the growth model into our setup depends on the partic-

ular decentralization. In all decentralizations, the asset return is Rt+1 = fK(Kt+1, At+1) + 1− δ

and this asset return equals the relevant discount rate (this is the standard Euler equation):

Rt+1 =
1
β

U′(Ct)

U′(Ct+1)
. (10)

13Section 5 spells out the conditions for asset-price and dividend changes to keep returns constant.
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Furthermore, the unit price of capital (relative to consumption) equals one because the con-

sumption good can be converted into investment one-for-one.14

In contrast, dividends and asset prices {Dt, pt}∞
t=0 differ according to the particular decen-

tralization and asset-market structure. Our asset could be physical units of capital, in which

case the asset price is fixed at pt = 1 and there are no capital gains or losses. Alternatively, it

could be shares in the representative firm which are in unit fixed supply, the typical assump-

tion in the literature studying asset pricing in production economies (e.g. Jermann, 1998). The

cash flows Dt are then firm profits net of investment and the asset price equals the firm’s capi-

tal stock pt = Kt+1 (see Appendix A.1) so that there are capital gains and losses. An interesting

case is that of a balanced growth path (BGP) with productivity growth At+1/At = G > 1 and

isoelastic preferences U′(C) = C−1/σ. On this BGP, the asset return is constant and pinned

down from R = (1/β)G1/σ but it consists of both a dividend yield and a capital gains compo-

nent:
Dt+1

pt
= R− G,

pt+1

pt
= G.

Capital gains are driven entirely by growing cash flows and the price-dividend ratio is constant

as in the Gordon growth model. The correct notion of capital income is the sum of dividend

income plus (unrealized) capital gains. Chamley’s result is that the long-run tax rate on this

combined capital income should be zero (which makes sense of the Lucas quote in footnote 3).

However, even in this decentralization, it is still true that the price per unit of capital equals

one. Furthermore, movements in the asset return Rt+1 – e.g. along the transition or in response

to movements in productivity – are quantitatively small, analogous to the disappointing asset-

pricing properties of the real business cycle model.15

Growth models with heterogeneous households. Going back to Judd (1985), many contri-

butions have studied capital taxation in growth models with heterogeneous households or

entrepreneurs (see Werning (2007), Shourideh (2012), Farhi et al. (2012), Straub and Wern-

ing (2020), Benhabib and Szöke (2021) and Guvenen et al. (2023, 2024) for recent examples).

Despite the (often) rich heterogeneity, the backbone of all of these papers is the neoclassical

growth model so the discussion in the preceding paragraph still applies.

Our setup. The setups studied in the existing literature feature either constant asset prices

(and hence no capital gains whatsoever) or small movements of asset returns (discount rates)

and a constant unit price of capital. We instead study optimal taxation with exogenous time

paths for asset prices and dividends {pt, Dt}T
t=0 and hence returns {Rt}T

t=0. This simplification

allows us to take on board the modern finance view that asset prices change not only because

of changing cash flows but also due discount rates. While our baseline analysis is therefore

14We discuss this property in more detail in Appendix A.1 where we also discuss how to break it.
15The difficulty with explaining asset returns in real-business cycle models is closely connected to the assump-

tion that the consumption good can be converted into investment one-for-one. For example, Jermann (1998) writes
that “in the standard one-sector model agents can easily alter their production plans to reduce fluctuations in con-
sumption. This suggests that the frictionless and instantaneous adjustment of the capital stock is a major weakness
in this framework.”
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silent on the ultimate fundamental drivers of asset prices (preferences and technology), Sec-

tion 6 considers extensions featuring general equilibrium and risk premia and shows that our

findings remain valid in these richer environments.

2 Two time periods

We now use the special case with two time periods, t = 0, 1, to illustrate the redistributive

effects of asset-price changes. Much of our analysis of optimal taxation in subsequent sections

similarly uses this two-period case before we show later that the findings carry over to the

multi-period case in a natural fashion.

2.1 The investor’s problem

With two time periods t = 0, 1, the investor’s problem is to maximize utility U(c0(θ), c1(θ))

subject to the following budget constraints:

c0(θ) + p(k1(θ)− k0(θ)) = y0(θ), (11)

c1(θ) = y1(θ) + Dk1(θ). (12)

Given that the world ends after time period 1, the asset price p1 = 0. For simplicity, we also

assume that the asset pays no dividend in the first period D0 = 0. Given this, we then drop

the time-subscripts on p0 and D1 to ease notation. The asset’s returns in the two time periods

are given by

R0 ≡
p

p−1
and R1 ≡

D
p

, (13)

which is the standard expression (1) with D0 = p1 = 0 and where p−1 denotes a constant

baseline price.

As will become clear, a useful reformulation of the investors’ problem is in terms of asset

sales

x(θ) ≡ k0(θ)− k1(θ), (14)

where x > 0 represents sales and x < 0 purchases of k. Using this definition, the investors’

problem becomes

U(θ) = max
{c0(θ),c1(θ),x(θ)}

U(c0(θ), c1(θ)) s.t.

c0(θ) = y0(θ) + px(θ)

c1(θ) = y1(θ) + D(k0(θ)− x(θ))

(15)

The t = 0 budget constraint states that consumption c0(θ) equals exogenous income y0(θ)

plus revenue from asset sales px(θ). The t = 1 budget constraint states that consumption c1(θ)

equals exogenous income y1(θ) plus capital income D(k0(θ)− x(θ)) consisting of the dividend

payments D on the assets brought forward to period 1, k0(θ)− x(θ).

13



It is sometimes useful to combine the two period budget constraints in (15) into a present-

value budget constraint:

c0(θ) +
p
D

c1(θ) = y0(θ) +
p
D

y1(θ) + pk0(θ), (16)

This constraint states that the present-discounted value of consumption (discounted at the

asset return R = D/p defined in (13)) equals the present-discounted value of income plus

initial wealth. This constraint can also be aggregated across all investors to yield

C0 +
p
D

C1 ≤ Y0 +
p
D

Y1 + pK0, (17)

which is the economy’s aggregate resource constraint in this partial equilibrium model.

Sources of asset-price changes and our two special cases. In the two-period model, the dis-

cussion of cash flows and discount rates as drivers of asset-price changes in Section 1.3 is

particularly simple. Treating the required return R1 and dividends D as the primitives in (13),

the two-period version of (8) is simply p = D/R1. Special Case 1 (only discount rate changes)

is thus the case in which the asset price p changes holding dividends D fixed. On the opposite

extreme, Special Case 2 (only cash flow changes) is the case in which both p and D change

proportionately such that the asset return R1 = D/p stays constant.

2.2 An Envelope Condition

The goal of our paper is to study optimal redistributive taxation with changing asset prices;

specifically, to study the optimal response of the tax system to rising asset prices. As a warm

up, it is useful to first consider a simpler question: what are the redistributive effects of rising

asset prices and cash flows, i.e. who wins and who loses as a result of these changes? Consider

small deviations of the asset price dp and dividends dD. Following Moll (2020) and Fagereng

et al. (2023), we use the envelope theorem to differentiate the value function V(θ) of investors

defined in (15) to obtain

dU(θ) = Uc0(θ)
(

x(θ)dp +
p
D

k1(θ)dD
)

. (18)

The most interesting case is our Special Case 1: asset price changes but holding cashflows fixed,

dp > 0 but dD = 0. In this case, the effect of a rise in p is given by marginal utility times the

extent to which this rise relaxes the budget constraint at t = 0, namely asset sales x(θ) times the

price change dp. Intuitively, a rising asset price benefits individuals who plan to sell the asset

(i.e., x(θ) > 0) and hurts individuals who plan to buy the asset (i.e., x(θ) < 0). In particular,

to first order, it does not affect individuals who do not plan to trade (i.e., x(θ) = 0): for those

individuals, the increasing asset price is merely a “paper gain” with no corresponding effect

on consumption and thus welfare. To first order, only asset transactions matter whereas asset

holdings do not.

When dividends rise as well dD > 0—as in Special Case 2 and intermediate cases—the
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term involving k1(θ)dD becomes non-zero. The intuition is that rising dividends directly ben-

efit asset holders (k1(θ) > 0). However, it remains true that the direct welfare effect of the

asset-price change dp itself depends only on asset transactions x(θ).

3 First best

We are interested in how the optimal tax system responds to changes in asset prices. As a first

step, we will answer this question assuming that the government has access to type-specific

lump-sum taxes (first best). While this is not realistic and implies extreme predictions about

optimal tax rates (indeed, we will consider more realistic, second-best tax systems in Section

4), it turns out to be instructive about the optimal tax base, i.e., what taxes should condition on

depending on the sources of asset price changes.

3.1 First-best consumption allocation

For a given asset price p and dividend D, any Pareto efficient allocation {c∗0(θ), c∗1(θ)} solves

max
{c0(θ),c1(θ)}

∫
ω(θ)U(c0(θ)c1(θ))dF(θ) (19)

subject to the aggregate resource constraint (17), where ω(θ) is the Pareto weight on an investor

of type θ. While this planning problem can be solved for general preferences, the solution is

particularly simple under the assumption that preferences are given by (6). In this case, the

planner simply assigns to each investor θ a time-invariant share of (optimally chosen) aggre-

gate consumption C∗t :

c∗t (θ) = Ω(θ)C∗t , t = 0, 1, (20)

where the share Ω(θ) satisfies

Ω(θ) ≡ ω(θ)1/γ∫
ω(θ′)1/γdF(θ′)

. (21)

The optimal allocation can be implemented in a decentralized equilibrium when the gov-

ernment is able to redistribute with type-specific lump-sum taxes T0(θ) in period 0 and T1(θ)

in period 1. The investors’ budget constraints (11) and (12) become

c0(θ) = y0(θ) + px(θ)− T0(θ) (22)

c1(θ) = y1(θ) + D(k0(θ)− x(θ))− T1(θ) (23)

We impose the government budget constraints∫
T0(θ)dF(θ) =

∫
T1(θ)dF(θ) = 0,

which implies, without loss, that the government does not own assets itself.
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To back out the optimal taxes from the optimal consumption allocation {c∗0(θ), c∗1(θ)}, we

can use the budget constraints (22) and (23). Given the ability of an investor to move resources

inter-temporally, T0(θ) and T1(θ) are not separately pinned down and we require a normaliza-

tion. One example, which we pick in the following, is to set T1(θ) = 0. Then the second-period

budget constraint (23) determines

x∗(θ) =
y1(θ)− c∗1(θ)

D
+ k0(θ)

and we obtain, from the first-period budget constraint (22),

T0(θ) = y0(θ) + px∗(θ)− c∗0(θ)

However, we will also consider alternative normalizations later on when this is convenient.

3.2 Taxing changing asset prices

We now consider how the tax T0(θ) on a given investor should change in response to an asset

price change. We start with the general case, which allows for asset prices driven by a mixture

of discount rate and dividend changes. The two experiments discussed in Section 1.3 will then

emerge as special (extremal) cases. We assume that prices and dividends are originally at some

baseline levels p and D and then change discretely by some amounts ∆p and ∆D. Importantly,

at the original prices and dividends, a tax system T0(θ) is in place that optimally redistributes

across investors and implements the corresponding Pareto efficient allocation. To obtain clean

results, we will assume that preferences satisfy (6) in the following.

Proposition 1. Let the asset price change from p to p = p + ∆p and dividends from D to D =

D + ∆D. Then the optimal tax T0(θ) (when T1(θ) = 0) is given by

T0(θ) = T0(θ) + x(θ)∆p +
p
D

k1(θ)∆D−Ω(θ)
[

X∆p +
p
D

K1∆D
]

= T0(θ) + x(θ)∆p +
p
D

k1(θ)∆D−Ω(θ)

[
X∆p +

p
D

K1∆D
]

where

• T0(θ) is the optimal tax at the initial price p and dividends D,

• x(θ) (x(θ)) are investor θ’s asset sales at the initial price p and dividends D (new price p and
dividend D) and X (X) are the corresponding aggregate asset sales,

• k1(θ) (k1(θ)) are investor θ’s second-period asset holdings at the initial price p and dividends D
(new price p and dividend D) and K1 (K1) are the corresponding aggregate asset holdings,

• and Ω(θ) is defined in (21).

Slutsky Compensation. To build intuition for this result, it is helpful to relate it to the con-

cept of “Slutsky compensation,” which is sometimes used to define income and substitution
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effects of price changes. Slutsky compensation is defined as the change in the investor’s total

budget (i.e., the change in initial endowment y0) that keeps the initial consumption bundle

affordable at the new prices (e.g. Mas-Colell et al., 1995, pp. 29-30).16 Using this idea, we have

the following lemma:17

Lemma 1. When the asset price changes from p to p = p + ∆p and dividends change from D to
D + ∆D, the corresponding Slutsky compensation ∆y0(θ) is given by

∆y0(θ) = −x(θ)∆p− p
D

k1(θ)∆D.

This reveals that the first part of the optimal tax change characterized in the first equation in

Proposition 1 coincides with the Slutsky compensation for the underlying price and dividend

change. It is useful to organize the interpretation of the result and why it is related to Slutsky

compensation along the special cases from Section 1.3.

3.2.1 Special Case 1: Only Discount Rate Changes

This is the first experiment discussed in Section 1.3, namely, an asset price change ∆p exclu-

sively driven by a change in the discount rate and hence holding dividends constant ∆D = 0.

Then we immediately obtain the following corollary of Proposition 1:

Corollary 1. Let the asset price change from p to p = p + ∆p holding dividends fixed D = D. Then
the optimal tax T0(θ) is given by

T0(θ) = T0(θ) + x(θ)∆p−Ω(θ)X∆p = T0(θ) + x(θ)∆p−Ω(θ)X∆p.

The first equation in Corollary 1 shows that the change in the optimal tax in response to an

asset price change is closely related to the Slutsky compensation from Lemma 1. Indeed, the

two would coincide if there were no aggregate asset sales with the “rest of the world.” The

change in T0(θ) makes investor θ’s original consumption allocation just affordable again, and

then redistributes the aggregate capital gains in the optimal way, determined by the Pareto

weights ω(θ) and the curvature of preferences γ, as summarized by the welfare weights Ω(θ).

According to Lemma 1, to make investors’ initial consumption bundle just affordable, buy-

ers (i.e., x(θ) < 0) are compensated for the price increase (subsidized) whereas sellers (i.e.,

x(θ) > 0) are taxed. Figure 2 provides a graphical representation of Slutsky compensation

based on the Fisher diagram, the standard graphical apparatus for intertemporal consumption

choice problems. However, we include only the budget sets, and omit the indifference curves.

Panel (a) plots the case of a seller while panel (b) plots that of a buyer. In both panels, the

16The standard use of Slutsky compensation is to compute “Slutsky-compensated demand.” In particular, the
difference between Slutsky-compensated demand at the new prices and demand at the old prices is one definition
of the substitution effect. An alternative definition of income and substitution effects is based on “Hicksian com-
pensation,” which is the change in total budget that restores the original level of utility. We thank Dejanir Silva for
pointing out the connection of the welfare gains formula (18) to the Slutsky compensation idea. See Caramp and
Silva (2023) for a related result in the context of monetary policy transmission via asset prices.

17The term “Slutsky compensation” is normally reserved for pure price changes. Here and elsewhere we use it
to also refer to compensation of dividend changes ∆D.
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steeper solid line is the budget constraint at the initial asset price p and the dashed line is that

at the new, higher price p. A change in the asset price rotates the budget constraint through

the endowment point, with an increase in price generating a shallower budget line (the slope

is −D/p).18 A reference line is drawn through the initial consumption allocation (c0, c1) with

the slope of the new budget line. The horizontal shift between the dashed line and this parallel

reference line is the amount of resources needed to be added or subtracted in period 0 to afford

the initial consumption allocation at the new prices. This is the Slutsky compensation. For the

seller (left panel), the rise in price moves the initial consumption point into the interior of the

budget set, implying a negative Slutsky compensation. The converse is true for the buyer.
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(a) Effect on seller
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(b) Effect on buyer

Figure 2: Slutsky compensation after a pure asset-price increase (Special Case 1)
Notes: The figure depicts Slutsky compensation in response to an asset price increase. In both panels, the solid red line is the initial budget
line, with the endowment and consumption points marked. The shallower dashed line through the endowment point is the new budget line
after the price change. The solid black line parallel to the dashed line is the budget line after the Slutsky compensation, which by definition
contains the initial consumption allocation at the new prices. Panel (a) depicts an initial seller of the asset while Panel (b) depicts a buyer.

The intuition for why the Slutsky compensation is relevant for the optimal tax change in

Corollary 1 is that a pure discount rate change does not change aggregate resources other than

through trade with the rest of the world; hence, in a closed economy, the initial consumption

level of every individual remains the relevant target for optimal policy, which is what precisely

what Slutsky compensation is designed to deliver. The additional term in Corollary 1 then

captures the optimal distribution of the aggregate gains, which is additively separable from

the individual compensation given our preference assumption.

The second equation in Corollary 1 shows that the optimal tax T0(θ) can also be written in

terms of asset sales at the new asset price p. For example, if x(θ) > 0 and ∆p > 0, then T0(θ)

effectively taxes the realized capital gains of investor θ. Because of the lump-sum nature of the

tax system, these gains are in fact taxed away completely, at a rate of 100%. Note that x(θ) are

the new asset sales not only at the new price but also at the new taxes. In certain cases, the old

and new asset sales coincide, x(θ) = x(θ).19

18To see that the slope of the present-value budget constraint (16) is −D/p and that the endowment point is
given by c0(θ) = y0(θ) and c1(θ) = y1(θ) + Dk0(θ) as in Figure 2, it is useful to write it as c1(θ) = D

p (y0(θ) −
c0(θ)) + y1(θ) + Dk0(θ).

19In particular, this happens in the closed economy of Section 6.1 in which aggregate asset sales are zero, X =
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When X = 0, as would be the case when βD/p = 1 and Y0 = Y1 + DK0 or in the closed

economy we consider in Section 6.1, the tax

T0(θ) = T0(θ) + x(θ)∆p

corresponds to a realization-based capital gains tax (relative to the reference price p), akin to

the kind of capital gains taxes implemented in many countries. However, our tax formula is

not limited to when the investor sells the asset (x(θ) > 0) and realizes a gain (∆p > 0). It also

prescribes to compensate realized capital losses (x(θ) > 0 and ∆p < 0) as well as purchasing

gains and losses (when x(θ) < 0). For instance, when the investor purchases the asset and

its price falls, she benefits from a ”purchasing gain” x(θ)∆p > 0, which is also taxed away.

Generally, the optimal tax base is given by what we refer to as the ”trading gains and losses.”

Importantly, when the investor does not trade (x(θ) = 0), no tax change is triggered by the

asset price change (except for a redistribution of the potential aggregate capital gains or losses

X∆p). This reveals another difference from typical real-world capital gains taxes: the optimal

tax conditions on net transactions only. For instance, if an individual sells a house and then

buys another house of the same quality and price, and house prices go up, she realizes a capital

gain on the sold house and a purchasing loss on the purchased house, which cancel out. By

contrast, since typical tax systems, in practice, do not contain the second component (i.e., the

subsidy on the purchasing loss), they would only tax the (gross) realized capital gains from the

first transaction. Finally, given that our theory features only real variables, it prescribes taxing

inflation-indexed capital gains (as practiced in some countries like Israel).

3.2.2 General Case

We can now return to the general case in Proposition 1. In addition to the terms discussed so

far, from the pure price change ∆p, new terms capturing the dividend change ∆D emerge. Ac-

cording to both formulas in Proposition 1, the additional dividend income, discounted back to

period 0, must also be taxed away, and the aggregate dividend income change is redistributed

optimally according to the welfare weights. In other words, the tax/subsidy on trading gains

and losses must be complemented by a dividend income tax if dividends increase, and a sub-

sidy if they decrease.

This is again closely related to the Slutsky compensation in Lemma 1. Intuitively, investors

with asset holdings k1(θ) > 0 benefit from a higher dividend ∆D > 0 and therefore need to

be taxed in order to make their initial consumption bundle just affordable. Graphically, the

combination of rising asset prices and rising dividends means that the budget line not only

rotates around the endowment point but also shifts outwards due to the rising dividends—see

Figure 3a.

While the intuition is therefore similar to the welfare gains formula (18), an important dif-

ference is that the Slutsky compensation argument follows exclusively from investors’ budget

X = 0. In this case, optimal policy simply takes everyone back to their initial consumption allocation, which
implies x(θ) = x(θ).
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Figure 3: Slutsky compensation of combined asset-price and cash-flow changes
Notes: This figure is similar in composition to Figure 2, but allows for both price and dividend changes. Relative to the previous figure, in this
case the endowment point shifts by the change in dividend income. The figure omits the new budget line absent the Slutsky compensation.

constraints at the two prices. As a result, assumptions on preferences or the optimality of the

initial allocation (used in applying the envelope theorem in equation (18)) play no role. Since

budget constraints are linear in prices, Lemma 1 holds for arbitrary non-infinitesimal asset

price and dividend changes. This property translates to the optimal tax result in Proposition 1.

Similar to the special case in Corollary 1, Proposition 1 shows that T0(θ) can be written

both in terms of asset sales x(θ) and asset holdings k1(θ) under the old prices (in which case

dividend income must be discounted using the new discount rate p/D) or in terms of asset

sales x(θ) and asset holdings k1(θ) under the new prices (in which case the old discount rate

p/D must be used). In fact, when we allow the lump-sum taxes in both periods to adjust

(rather than using the normalization T1(θ) = 0), we can write the optimal tax as

T0(θ) = T0(θ) + x(θ)∆p−Ω(θ)X∆p = T0(θ) + x(θ)∆p−Ω(θ)X∆p

T1(θ) = T1(θ) + k1(θ)∆D−Ω(θ)K1∆D = T1(θ) + k1(θ)∆D−Ω(θ)K1∆D,

where {Tt(θ)}, t = 0, 1, are some taxes that implement the optimum at the old prices and div-

idends. Hence T0(θ) deals with the pure asset price change in the form of a realization-based

tax on capital gains just like in Corollary 1, whereas T1(θ) acts as a tax on the changed dividend

income in t = 1. In particular, no discounting is needed under this alternative normalization.20

20The same is true for the Slutsky compensation. When we allow compensation in both periods, i.e. ∆y1(θ) in
addition to ∆y0(θ), we can write

∆y0(θ) = −x(θ)∆p and ∆y1(θ) = −k1(θ)∆D.

In general, only the present value of ∆y0(θ) and ∆y1(θ) is pinned down. In particular, one can show that any
combination satisfying

∆y0(θ) +
p
D

∆y1(θ) = −x(θ)∆p− p
D

k1(θ)∆D

achieves the Slutsky compensation goal of making the initial consumption bundle just affordable.
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3.2.3 Special Case 2: Only Cash Flow Changes

We are now ready to consider the second extreme case from Section 1.3 where asset prices

change exclusively because of a change in future dividends. For simplicity, we return to the

normalization T1(θ) = 0.

Corollary 2. Let the asset price change from p to p = p + ∆p and let dividends change from D to
D = D + ∆D such that ∆D/∆p = D/p. Then the optimal tax T0(θ) is given by

T0(θ) = T0(θ) + k0(θ)∆p−Ω(θ)K0∆p

Since dividends and the asset price grow by the same percentage, the asset return R1 =

D/p remains unchanged, i.e., the new return R1 = (D + ∆D)/(p + ∆p) equals the old return

R1 = D/p. According to the corollary, the optimal tax T0(θ) then taxes the investor’s individ-

ual wealth gains k0(θ)∆p due to the asset price change. Hence, in this case, the first-best opti-

mal tax system conditions on the investor’s unrealized capital gains. This tax base is therefore

consistent with an accrual-based capital gains tax, as under the Haig-Simons comprehensive

income tax (Haig, 1921, and Simons, 1938), or a wealth tax.

Of course, since Proposition 1 continues to apply, we could still express the optimum as a

combination of a tax on trading gains and a dividend income tax. Why do the two collapse

to the accrual-based tax in Corollary 2, which only depends on initial wealth in t = 0? The

reason can be understood as follows: If the investor sells all her assets, then x(θ) = k0(θ)

and k1(θ) = 0. Hence, there is no dividend income in t = 1, and realized capital gains in

t = 0 are given by k0(θ)∆p, just as in the corollary. Now suppose instead that the investor

decides not to sell all her assets. This results in some dividend income in t = 1 (since now

k1(θ) = k0(θ) − x(θ) > 0), but at the same time in reduced realized capital gains in t = 0.

When the price and dividend changes happen to be proportional, the two effects exactly offset

each other and the overall income change is still given by k0(θ)∆p, no matter how much the

individuals sells. Formally, we can use the first equation in Proposition 1, for instance, to

obtain

x(θ)∆p +
p
D

k1(θ)∆D = x(θ)∆p +
p
D
(k0(θ)− x(θ))∆p

D
p
= k0(θ)∆p

Since this holds for all investors, the aggregate quantities collapse in the same way, so Corollary

2 obtains.

Figure 3b relates this case graphically to the corresponding Slutsky compensation. In con-

trast to Figures 2 and 3a, the budget line does not change slope (which remains unchanged at

−D/p) and instead shifts outward. Specifically, the increase in dividends means that the en-

dowment point (y0(θ), y1(θ) + Dk0(θ)) simply shifts upward. In the lifetime budget constraint

(16), the return D/p remains unchanged and therefore the only effect of the joint asset price

and dividend change is the revaluation of initial wealth pk0(θ).

While this special case, where the asset price change is accompanied by a dividend change

such that the discount rate remains fixed, therefore provides a justification for using the Haig-

Simons income concept as the tax base, this logic demonstrates that it is knife-edge. Whenever
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capital gains are not entirely due to dividend changes, i.e. as soon as discount rate changes

are part of the story as well—in the Fisher diagram of Figures 2 and 3, as soon as the budget

line rotates even a little bit—, the additional dividend income and capital gains no longer

cancel out. Moreover, we will show in Section 6.2 that the cancellation result will break down,

even when asset prices are exclusively driven by dividend changes, in a richer model with

heterogeneous returns.

3.3 Discussion

Baseline asset price. Proposition 1 characterizes the change in optimal taxes in response to

an asset price and dividend change. Thus, it captures a comparative-static comparison: how

taxes should differ in an economy with old prices and dividends p and D compared to another

economy with new prices and dividends p and D. This also affects the interpretation of the

”trading gains and losses” x(θ)∆p, for instance. While they bear similarities to realized capital

gains (in case of an asset sale), an important difference is that computing the price change ∆p
requires fixing some baseline price p. Notably, as will become even clearer in the multi-period

extension in Section 5, this baseline price does not necessarily coincide with the historical basis

at which the investor purchased the asset. Instead, one needs to decide which price (and

dividend) change the tax system should compensate. This becomes particularly clear in the

case of a purchasing gain or loss (with x < 0): in this case, Proposition 1 prescribes a tax

or subsidy, but since the investor has not owned the asset prior to purchasing it, there is no

historical basis to go back to when computing the price change.

One example for a baseline price and dividend would be to imagine that there is some ex-

ante uncertainty about them, and p and D represent the corresponding means. In this case, the

old allocation can be interpreted as the optimum under these expected prices and dividends.

By contrast, the new prices and dividends p and D would be the ex-post realized ones, so the

tax system is tasked to compensate the winners and losers relative to the ex-ante expectations.

Another natural benchmark would be the hypothetical asset price path if discount rates had

not fallen, but we also discuss other examples in Section 5.

Finally, when comparing to the models of capital taxation with linear savings technology,

Special Case 2 is the relevant baseline (since it holds the rate of return fixed). The same is true

for the literature based on the neoclassical growth model along a balanced growth path.

Baseline taxes. The comparison in Proposition 1 also assumes that, both under the old and

new prices and dividends, taxes are set optimally for given Pareto weights. Hence, if taxes un-

der the old prices and dividends were not set optimally (or based on different Pareto weights),

we can always decompose the overall change in taxes into two steps: First, holding old prices

and dividends fixed, a reform of the old taxes towards the optimum according to the new

Pareto weights. Second, holding Pareto weights fixed, a move from the optimum under the

old prices and dividends towards the optimum under the new ones. Our analysis isolates the

second step. The first step has nothing to do with asset prices and is completely standard,

namely, a tax reform moving the allocation from the interior of the Pareto frontier (or along the
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frontier) towards a particular point on that frontier in a given economy.

Endogenous payout policy and share repurchases. Businesses have control over their divi-

dend payments and may have alternative means of distributing their profits to shareholders,

specifically via share repurchases. Appendix B.4 therefore provides an alternative, capital-

structure neutral formulation of our setup in which such distinctions are immaterial. This is

particularly important when we study the second-best problem with distortive taxation later

on because such a neutral formulation avoids creating incentives for firms to distort their cap-

ital structure. The key idea of this formulation is to consolidate the firm and investor budget

constraints, in particular to consider profits net of investment as the relevant measure of cash

flows Dt regardless of whether they are distributed to investors via dividend payments or

share repurchases and to consider the firm’s total value as the relevant measure of the share

price pt.

Owner-occupied housing. Owner-occupied housing generates a utility flow of housing ser-

vices and implementing our tax formula therefore requires valuing this “utility dividend.”

The appropriate solution is to use a rental equivalence approach that measures the dividend

D as imputed rents, i.e. to value owner-occupied housing services as the rental income the

homeowner could have received if the house had been let out. Thus, if part of the house-

price increase in New York City was due to the city’s amenities improving, rents would rise

so that ∆Dt > 0 in addition to ∆pt > 0 and our formula would prescribe taxing the addi-

tional imputed rents. This approach is already used by some countries including Switzerland

(“Eigenmietwert”) and Denmark.

3.4 Alternative implementations: taxes on total capital income or expenditure

In Proposition 1, we have expressed the first-best tax response to asset price and dividend

changes in terms of investors’ realized capital gains and additional dividend income. We now

show that the optimal tax change can be equivalently understood in two alternative ways: one

based on total capital income and another one based on consumption.

3.4.1 A tax on total capital income

In Section 1, we demonstrated that equation (5) is an equivalent way of writing the budget

constraint (2) when using an investor’s market value of wealth a0(θ) ≡ p−1k0(θ) in period 0

and a1(θ) ≡ pk1(θ) in period 1. This implies that an alternative way of writing the first-best

tax response in Proposition 1 is in terms of these wealth holdings and the changes in the total

returns R0 and R1, as the following proposition shows.

Proposition 2. Let the asset price change from p to p = p+∆p and dividends from D to D = D+∆D
resulting in return changes ∆R0 = R0 − R0 and ∆R1 = R1 − R1. Then the optimal tax T0(θ) (when
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T1(θ) = 0) is given by

T0(θ) = T0(θ) + a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1
R1

A1∆R1

]
= T0(θ) + a0(θ)∆R0 +

1
R1

a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1
R1

A1∆R1

]
where a1(θ) (a1(θ)) is investor θ’s period-1 wealth at the new (old) returns (a0(θ) = a0(θ) since p−1

is fixed) and A0, A1 and A1 are the corresponding aggregate wealth holdings.

At first glance, the tax change in Proposition 2 appears related to a Haig-Simons notion

of income: in each period, the additional total capital income at(θ)∆Rt, including unrealized

gains, is taxed (and, just like in Proposition 1, this can be written both in terms of the old or new

wealth holdings and the aggregate income is redistributed optimally according to the weights

Ω(θ)). However, there is an important difference. It is easiest to see this by considering an

increase in the asset price p holding dividends fixed (Special Case 1). In this case, we have

∆R0 =
∆p
p−1

> 0 and ∆R1 =
D
p
− D

p
< 0

since p = p+∆p > p. Hence, the investor faces a tax in period 0 (due to the higher return from

the increased asset price) but a subsidy in period 1. The reason for the latter is that, whereas the

asset price has increased, dividends have not, so the dividend-price ratio and thus the return

in period 1 has been reduced, which needs to be compensated.

While the former tax increase (due to the unrealized capital gains in the initial period) in-

deed corresponds to a Haig-Simons income tax, the latter subsidy (due to the lower dividend-

price ratio subsequently) does not. But Proposition 2 shows that they belong together. There-

fore, due to these opposing effects, the total change in taxes is generally ambiguous. In fact,

we know from Proposition 1 that it depends solely on whether the investor is a buyer or seller.

For instance, when x(θ) = 0 so the individual is not trading, the additional tax in period 0 and

the subsidy in period 1 precisely cancel out.21

The intuition for Proposition 2 can again be linked to the Slutsky compensation. In other

words, it is possible to re-write the Slutsky compensation in Lemma 1 based on the investor’s

wealth holdings and total return changes, as follows:

Lemma 2. When the asset price changes from p to p = p + ∆p and the dividend changes from D to
D + ∆D, the corresponding Slutsky compensation ∆y0(θ) is given by

∆y0(θ) = −a0(θ)∆R0 −
1

R1
a1(θ)∆R1.

21In the multi-period model, a one-off, permanent increase in the asset price would trigger a one-off tax followed
by a subsidy forever, in a way that their present value sum is zero for an investor who is not trading (see Proposition
9 in Appendix D.3). Thus, the alternative implementation in Proposition 2 can lead to very volatile taxes over time
compared to Proposition 1.
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3.4.2 An expenditure tax

There is a long-standing debate in public finance about the potential advantages of taxes on

consumption or expenditures, notably in the context of capital gains. For instance, when dis-

cussing the Haig-Simons income concept (which is typically understood to include consump-

tion plus unrealized capital gains), Kaldor (1955, p. 44) writes:

“We may now turn to the other type of capital appreciation which reflects a fall in interest rates
rather than the expectation of higher earning power. [...] The rise in capital values in this case [comes]
without a corresponding increase in the flow of real income accruing from that wealth. [...] For in so far
as a capital gain is realized [...] the benefit derived from the gain is equivalent to that of any other casual
profit. If however it is not so realized, there is clearly only a smaller benefit. [Therefore] treating the two
kinds of capital gains in the same way is not an equitable method of measuring taxable capacities.”

Given this problem with using Haig-Simons income as the tax base, Kaldor instead ad-

vocates for an expenditure-based tax. This raises the question whether the optimal tax re-

sponse to changing asset prices and dividends in Proposition 1 could also be understood as a

consumption-based (or, equivalently, an expenditure-based) tax, independent of the source of

capital gains. We formalize this conjecture in the following proposition. To do so, denote by

{ct(θ)}, t = 0, 1, the optimal consumption allocation at the old prices and dividends p and D
(i.e., the solution to the Pareto problem (19)), and by {ct(θ)} at the new prices and dividends

p = p + ∆p and D = D + ∆D. Let {Tt(θ)}, t = 0, 1, be some lump-sum taxes that implement

the optimum at the old prices and dividends. Finally, let ĉt(θ), t = 0, 1, denote investor θ’s in-
dividually optimal consumption allocation under the new prices and dividends but when taxes

are held fixed at the old level. Formally, ĉt(θ) solves

max
c0(θ),c1(θ),x(θ)

U(c0(θ), c1(θ)) s.t. (22) and (23)

when taxes are given by {Tt(θ)}. Then we have the following result:

Proposition 3. Suppose asset prices increase from p to p = p + ∆p and dividends from D to D =

D + ∆D. The optimal consumption allocation at the new prices and dividends {ct(θ)}, t = 0, 1, can be
implemented with taxes given by

Tt(θ) = Tt(θ) + ∆ĉt(θ)−Ω(θ)∆Ct, t = 0, 1

where ∆ĉt(θ) ≡ ĉt(θ)− ct(θ) and

∆Ct =
∫

ct(θ)dF(θ)−
∫

ct(θ)dF(θ).

Hence, the new optimum can be implemented with a combination of a lump-sum tax equal

to ∆ĉt(θ), which is the amount by which individuals would have changed their consumption

after the price and dividend change if taxes had stayed at their old level Tt(θ), and a trans-

fer equal to the difference between the old and new desired consumption ∆ct(θ) = Ω(θ)∆Ct.
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Notably, if the parameter changes ∆p and ∆D are ”zero-sum,” so that optimal aggregate con-

sumption Ct does not change, then a pure expenditure-based tax is sufficient. In line with

Kaldor’s logic, just like Proposition 1, this works for any combination of asset price and divi-

dend changes. Indeed, we show in Appendix B that

∆ĉ0(θ) +
p
D

∆ĉ1(θ) = x(θ)∆p +
p
D

k1(θ)∆D, (24)

so the present value of the consumption change (holding taxes fixed) is directly linked to the

capital gains and change in dividend income when p and D change. For instance, the in-

vestors who would increase their consumption in response to a pure asset price increase (in

the absence of a further tax change) are precisely those who sell the asset, and vice versa.

4 Second best

We now turn to the case where the government’s tax instruments are more limited. Specifically,

rather than having access to lump-sum taxes, it is restricted to taxes that condition on investors’

choices, such as their asset sales, wealth, or consumption. Hence, these taxes will distort in-

dividuals’ behavior, inducing the classic tradeoff between redistribution and efficiency. While

this will lead to optimal marginal tax rates less than 100%, our main conclusion will be that the

previous results on the tax base generalize in a natural way.

4.1 Mirrlees Problem

An asset sales tax. We begin with the case of a (non-linear) tax Tx(px) on asset sales, paid in

period 0, which is similar to a realization-based capital gains tax. Hence, the investors’ budget

constraints become

c0(θ) = y0(θ) + px(θ)− Tx(px(θ))

c1(θ) = y1(θ) + D(k0(θ)− x(θ)).

In the language of Mirrlees (1971), this corresponds to a situation where x(θ) (and hence

zx(θ) ≡ px(θ) − Tx(px(θ))) is observable but k0(θ), y0(θ) and y1(θ) are not. The incentive

constraints are therefore

U(θ) ≡ U(zx(θ) + y0(θ), D(k0(θ)− x(θ)) + y1(θ))

≥ U(zx(θ̂) + y0(θ), D(k0(θ)− x(θ̂)) + y1(θ)) ∀θ, θ̂. (25)

Abstracting from bunching, we work with the local version of the incentive constraints. By the

envelope theorem,

U′(θ) = Uc0(c0(θ), c1(θ))y′0(θ) + Uc1(c0(θ), c1(θ))(Dk′0(θ) + y′1(θ)) ∀θ. (26)
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Hence, the second-best problem corresponding to the optimal asset sales tax is

max
{c0(θ),c1(θ),U(θ)}

∫
ω(θ)U(θ)dF(θ) (27)

subject to the resource constraint (17), the incentive constraints (26), and U(θ) = U(c0(θ), c1(θ)).

Given a constrained optimal allocation, we can then back out the optimal marginal asset sales

tax T′x(px(θ)) from the individual Euler equations:

T′x(px(θ)) = 1− D
p

Uc1(c0(θ), c1(θ))

Uc0(c0(θ), c1(θ))
.

A wealth tax. Alternatively, consider a tax Tk(pk1(θ)) on investors’ wealth in period 1.22 This

corresponds to a setting where k1(θ) (and hence zk(θ) ≡ Dk1(θ)− Tk(pk1(θ))) is observable,

resulting in the global incentive constraints

U(θ) ≡ U(p(k0(θ)− k1(θ)) + y0(θ), zk(θ) + y1(θ))

≥ U(p(k0(θ)− k1(θ̂)) + y0(θ), zk(θ̂) + y1(θ)) ∀θ, θ̂. (28)

The local incentive constraints can therefore be written in the same general form as in the case

of the asset sales tax, namely

U′(θ) = Uc0(c0(θ), c1(θ))A(θ) + Uc1(c0(θ), c1(θ))B(θ) ∀θ, (29)

with the only difference that, now,

A(θ) = pk′0(θ) + y′0(θ) and B(θ) = y′1(θ).

Hence, the second-best problem for the wealth tax is the same as above, except for the incentive

constraints (29) instead of (26).23 For a given optimal allocation, we can again compute the

optimal marginal wealth tax based on the Euler equation:

T′k(pk1(θ)) =
D
p
− Uc0(c0(θ), c1(θ))

Uc1(c0(θ), c1(θ))
.

Other taxes. We can allow for other taxes instruments that condition on investors’ choices.

For example, the second-best problems for consumption taxes are very similar. Notably, we

show in Appendix C that the general incentive constraints (29) still apply, with the only differ-

ence that the terms A(θ) and B(θ) are modified. In the case of a nonlinear tax on c0, we have

22This is equivalent to a tax on dividend income Dk1(θ) since dividends D are the same for all investors in our
baseline model. By contrast, a tax on period-0 wealth pk0(θ) would be lump-sum and return us to the first-best
case when k0(θ) is invertible.

23In fact, as can be seen immediately from the incentive constraints, the two second-best problems are identical
when investors only differ in their incomes y0(θ) and y1(θ) but not in their initial wealth k0(θ). In other words, in
this case, a wealth tax and an asset sales tax are two decentralizations of the same optimal allocation.
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A(θ) = 0 and

B(θ) = Dk′0(θ) +
D
p

y′0(θ) + y′1(θ),

whereas a tax on c1 implies

A(θ) = pk′0(θ) + y′0(θ) +
p
D

y′1(θ)

and B(θ) = 0. More generally, this structure extends to any such second-best problem, in-

cluding when combinations of taxes are available (such as an asset sales tax in period 0 plus a

wealth tax in period 1).

Solution. In Appendix C, we show how to find the Mirrleesian Pareto optima for all these

tax instruments. We can then use this solution to show how the optimal tax schedule changes

in response to an asset price change. In the next subsection, we numerically compute these

changes for the CES preferences defined in equation (6).

4.2 Taxing changing asset prices

We consider an example economy with investors θ uniformly distributed on the unit interval

and y0(θ) = 1− θ, y1(θ) = θ and k0(θ) = 0.1 for all θ ∈ [0, 1]. Thus, similar to Figure 1, higher-

θ investors feature a more backloaded income profile (while there is no heterogeneity in the

initial asset endowment), making them natural sellers (borrowers), whereas lower-θ investors

are buyers (savers). As a baseline, we set the intertemporal elasticity of substitution σ = 0.5,

γ = 1 (so G(C) = log(C)), β = 0.5, p = 1 and D = 2. We compute the utilitarian optimum

(with ω(θ) = 1 for all θ) for this baseline and then compare it to a situation where the asset

price rises by 30% to p = 1.3, holding dividends D fixed. As a result, this exercise illustrates

Special Case 1, where the asset price change is entirely driven by a change in the discount rate.

Assets sales tax. The left panel in Figure 4 shows the optimal asset sales tax schedules Tx(px)
in both of these economies, which are decreasing. The reason is that, in this specification,

higher-θ individuals have the lower present-value of income, so the direction of redistribution

runs from low- to high-θ types. As discussed above, asset sales x are naturally increasing in

θ, so the optimal tax schedule puts a tax on the (richer) buyers and a subsidy on the (poorer)

sellers.

Our main interest is in how the optimal tax changes in response to the asset price increase.

This is depicted in the right panel of Figure 4, where we plot the change in the tax ∆Tx(px)
as a function of the trading gains and losses x∆p. It reveals a positive relationship, just like in

Corollary 1, albeit with a slope of less than one. This is intuitive: the solution now balances

the optimal redistribution, which works in the same way as in the first-best case (namely,

increasing the tax burden on the sellers, who gain from the asset price increase, and lowering

it for the buyers), with the distortive effects of a positive marginal tax rate on investors’ savings

behavior. In other words, the rising asset price already accomplishes some redistribution from
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Figure 4: Optimal asset sales tax with increasing asset prices
Notes: The left panel depicts the second-best tax schedule, as a function of asset sales px(θ), for two alternative prices of the asset. The
right panel depicts the difference between the schedule associated with p=1.3 and the baseline p=1.0 schedule, ∆Tx . The right panel plots
∆Tx(px(θ)) against the net trading gains x(θ)∆p, depicting that the change in taxes increases in net gains.

richer to poorer individuals in this economy, and the optimal tax policy response therefore

involves less redistribution than before.

Wealth tax. Figure 5 shows the corresponding graphs for the alternative implementation of

the optimum with a wealth tax. In this example, the wealth tax is increasing in period-1 wealth

pk1: since richer, low-θ investors have a more front-loaded income stream, they will buy more

assets and hence exhibit more wealth at the beginning of the second period. Thus, in terms

of levels, a progressive wealth tax with a positive tax burden on wealthy individuals and a

subsidy on those with low wealth (or even debt) is optimal. However, the right panel shows

that the optimal response to increasing asset prices is to make the wealth tax less progressive.

This is because, again, wealthy individuals are buyers in this case, who lose from the asset price

increase, so their tax burden should fall as a compensation. Conversely, low-wealth borrowers

are sellers of the asset, and hence benefit from the asset price increase, so their tax burden

should increase.

An example of such a configuration would be housing markets where relatively well-off

households, who already own a house, want to upsize (for instance because of a growing fam-

ily). Thus, despite being in the upper percentiles of the wealth distribution, these households

are net buyers. As a result, when house prices rise, they are worse off, and introducing a pro-

gressive wealth tax in this situation would not achieve the desired direction of redistribution.

Thus, while a wealth tax in this example can be used to implement the constrained opti-

mum, its comparative statics in response to an asset price increase may be counter-intuitive.

This is because the wealth tax (or related accrual-based tax instruments) is an indirect way of
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Figure 5: Optimal wealth tax with increasing asset prices
Notes: The left panel depicts the second-best tax schedule, as a function of period one wealth, pk1, for two alternative prices of the asset. The
right panel depicts the difference between the schedule associated with p=1.3 and the baseline p=1.0 schedule, ∆Tk . The right panel plots
∆Tk(pk1) against period one wealth, depicting that the change in taxes decreases in period one wealth.

targeting buyers versus sellers, which is what ultimately drives the welfare effects. By con-

trast, the comparative statics of the asset sales tax are always the same (as in the right panel of

Figure 4) since conditioning on realized capital gains directly targets the correct tax base.

4.3 Role of the intertemporal elasticity of substitution

In Figure 6, we return to the asset sales tax and show its optimal response to an asset price in-

crease for different values of the intertemporal elasticity of substitution (the dark blue schedule

is the same as in the right panel of Figure 4). It illustrates that the optimal second-best policy

converges to the first-best solution in Corollary 1, with a 100% marginal tax rate on realized

capital gains, as σ approaches zero. The intuition is simply that a vanishing substitution elas-

ticity implies a vanishing savings distortion from the tax, which therefore becomes equivalent

in the limit to a lump-sum tax instrument. This demonstrates that our first-best results from

the previous Section 3 are not knife-edge, but extend qualitatively to the case of more realistic

and limited tax instruments as long as the distortive effects remain small. The next proposition

formalizes this result.

Denote by Γ∗ ≡ {(c∗0(θ), c∗1(θ))} the optimal first-best allocation solving (19) subject to (17)

when preferences are given by (6) with σ = 0, so that C(c0, c1) = min{c0, c1}. Let V∗(θ) ≡
C(c∗0(θ), c∗1(θ)) for all θ. For any σ, denote by ΓM(σ) ≡ {(cM

0 (θ, σ), cM
1 (θ, σ))} the solution to

the general Mirrlees problem (27) subject to (17) and (29) for the same Pareto weights {ω(θ)}.
Finally, let a(θ) ≡ min{A(θ), B(θ)} and b(θ) = max{A(θ), B(θ)} for each θ ∈ [θ, θ]. Then we

obtain the following result:

30



Figure 6: Capital gains tax with a decreasing intertemporal elasticity of substitution

Proposition 4. If V∗(θ) satisfies V∗′(θ) ∈ (a(θ), b(θ)) for all θ, then

lim
σ→0

ΓM(σ) = Γ∗,

i.e., in the Leontief limit σ → 0, the solution to the Mirrlees problem converges to the first-best alloca-
tion.

4.4 Portfolio choice with distortive taxes and the lock-in effect

Given that we work with a single-asset environment, our analysis in this section does not

allow for the possibility of taxes distorting portfolio choice. This is an important limitation

that should be addressed in subsequent work by extending our analysis to multiple assets.

An important case of taxes distorting portfolio choice is the ”lock-in” effect emphasized in

the capital gains taxation literature (see e.g. Auerbach, 1991; Constantinides, 1983; Chari et al.,

2005). Specifically, the idea is that a realization-based tax system creates incentives to defer

the liquidation of appreciated assets due to the resulting interest advantage. While we briefly

revisit this issue in our analysis of the multi-period model in the next Section, a full analysis of

optimal distortive taxation in the presence of the lock-in effect is left for future work.

5 Optimal taxation in the multi-period model

In this section, we return to the case of first-best tax instruments and show how our results on

optimal taxation from the two-period model extend to the general multi-period model intro-

duced in Section 1.
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Figure 7: Example time paths for asset price, dividends, and discount rate

5.1 Comparing asset price and dividend paths

In its most general form, Proposition 5 below will consider arbitrary baseline time paths {pt}T
t=0

and {Dt}T
t=0 which then change to

{pt}T
t=0 = {pt + ∆pt}T

t=0 and {Dt}T
t=0 = {Dt + ∆Dt}T

t=0.

To fix ideas, it is useful to consider a particular thought experiment. The economy is initially in

a steady state with constant dividend D, asset price p and associated asset return R = 1+ D/p.

In this initial steady state, there is a tax system Tt(θ) in place that optimally redistributes across

investors, thereby implementing the Pareto optimal allocation. At time t = 0, the time paths

of dividends and asset prices change to

{pt}T
t=0 = {p + ∆pt}T

t=0 and {Dt}T
t=0 = {D + ∆Dt}T

t=0.

Equivalently, as in Section 1.3, we can think of the change in asset prices as being driven by

changes in discount rates {∆Rt+1}T
t=0 and cash flows {∆Dt}T

t=0.24 The question we consider is:

how should optimal redistributive taxes respond to these capital gains?

Figure 7 illustrates one example of this thought experiment: at time zero, asset prices pt

start increasing but without any corresponding increase in cash flows Dt (panels (a) and (b));

equivalently, the asset discount rate Rt jumps up initially and then declines secularly to a lower

long-run level (panel (c)) and this is what generates the capital gains. This example therefore

corresponds to Special Case 1 discussed in Section 1.3 in which the asset price changes are

driven entirely by discount rate changes.

Instead of being in a steady state initially, the economy could alternatively be on a balanced

growth path (BGP) where dividends grow at some constant rate G, so Dt = GtD0, and rates

of return are constant: Rt+1 = R for all t. For example, this would happen in an equilibrium

24As discussed in Section 1.3, in equilibrium models, it is typically the time path of asset returns {Rt+1} that is
pinned down which, in turn, determines the asset price pt = ∑T−t

s=1 R−1
t→t+sDt+s.
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model with a neoclassical production side and productivity growth of the type discussed in

Section 1.4. This implies that prices also grow at a constant rate pt = Gt p0, consistent with

a BGP.25 Moreover, in this initial BGP, there is a (time-varying) tax system Tt(θ) in place that

optimally redistributes across investors. We will return to this case below.

5.2 Taxing changing asset prices and dividends

The Pareto problem with lump-sum taxes is

max
{ct(θ),kt+1(θ)}T

t=0

∫
ω(θ)U(c0(θ), ..., cT(θ))dF(θ)

subject to (7) and the given time paths for the asset price {pt}T
t=0 and dividend {Dt}T

t=0. This

yields the following generalization of Proposition 1:

Proposition 5. Suppose asset prices change by {∆pt}T
t=0 and dividends by {∆Dt}T

t=0. Then optimal
taxes {Tt(θ)}T

t=0 are such that

T

∑
t=0

R−1
0→tTt(θ) =

T

∑
t=0

R−1
0→t[Tt(θ) + xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt + Kt∆Dt)]

where xt(θ) = kt(θ)− kt+1(θ).

In the multi-period model, our results from the two-period case thus apply to the present

value of taxes.26 So far, we have not normalized taxes, so Proposition 5 leaves room for many

different implementations. A natural example is to set

Tt(θ) = Tt(θ) + xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt + Kt∆Dt) for all t, (30)

meaning that we tax or subsidize the trading gains and losses as well as the change in dividend

income period by period.

Special Case 1. It is instructive to consider the first extreme case from Section 1 where as-

set prices change exclusively because of a change in discount rates, i.e. ∆Dt = 0 for all t.
For example, as in Figure 7, the economy could initially be in a steady state with constant

dividend D, asset price p and discount rate R and with a tax system Tt(θ) that optimally re-

distributes across investors. But then there are capital gains driven entirely by discount rate

changes. Or the starting point may be a BGP with a constant discount rate R but dividend

growth Dt = GtD0 and then discount rates change to generate capital gains. As expected,

25Specifically, when Dt = GtD0 and Rt+1 = R for all t, then pt =
G

G−R
Dt for all t.

26Proposition 5 expresses the change in the present value of taxes using sales xt(θ) and asset holdings kt(θ)
under the new prices and dividends, but the rates of return R0→t under the old prices and dividends. Analogously
to Proposition 1, it is also possible to write the change in taxes in the opposite way, namely

T

∑
t=0

R−1
0→tTt(θ) =

T

∑
t=0

R−1
0→t[Tt(θ) + xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt + Kt∆Dt)]
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both in Proposition 5 and the particular implementation (30), all terms involving ∆Dt drop

and optimal redistributive taxes condition only on realized trades {xt(θ), Xt} and not on asset

holdings {kt(θ), Kt}.

Special Case 2. It is also instructive to consider the second extreme case from Section 1 where

asset prices change exclusively because of a change in future dividends. First, note from (8)

that the the asset price in period 0 satisfies p0 = ∑T
s=1 R−1

0→sDs. Now consider a change in prices

and dividends such that

∆Dt+1 + ∆pt+1

∆pt
=

Dt+1 + pt+1

pt
for all t (31)

This means that asset prices change in such a way that the rates of return Rt+1 remain un-

changed for all t ≥ 1, so the asset price change is entirely driven by dividend changes:

∆pt =
T−t

∑
s=1

R−1
t→t+s∆Dt+s. (32)

Analogous to the example in Figure 7, the economy could initially be in a steady state with

constant D, p and R but then there are capital gains driven by a change in future dividends

{∆Dt} but with the discount rate being unaffected.

Then we obtain the following result:

Corollary 3. Suppose the change in prices {∆pt}T
t=0 and dividends {∆Dt}T

t=0 satisfies (31). Then
optimal taxes are such that

T

∑
t=0

R−1
0→tTt(θ) =

T

∑
t=0

R−1
0→tTt(θ) + [k0(θ)−Ω(θ)K0] (∆D0 + ∆p0)

In words, the change in the present value of taxes in this special case is given by the ac-

crued gains in period 0, precisely like in Corollary 2 in the two-period model. One particular

implementation is a one-time wealth tax or accrual-based capital gains tax at t = 0:

T0(θ) = T0(θ) + [k0(θ)−Ω(θ)K0] (∆D0 + ∆p0).

Another useful perspective on Corollary 3 which explains why only initial asset holdings k0(θ)

show up is via the alternative tax implementation that taxes changes in total capital income

due to changes in returns {∆Rt} already mentioned in Section 3.4. To this end, Proposition 9

in Appendix D.3 spells out the multi-period analogue of Proposition 2. Analogous to (30), a

natural per-period implementation is

Tt(θ) = Tt(θ) + at(θ)∆Rt −Ω(θ)At∆Rt for all t.

The key observation for understanding why only initial asset holdings k0(θ) show up is that

Special Case 2 with purely dividend-driven asset prices means that, while the initial return
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changes ∆R0 = (∆D0 + ∆p0)/p−1 6= 0, all returns going forward are unchanged ∆Rt = 0 for

all t ≥ 1. Hence only the time-zero terms a0(θ)∆R0 show up in the tax formula. But, since

a0(θ) = p−1k0(θ), this exactly equals the term k0(θ)(∆D0 + ∆p0) in Corollary 3. In contrast,

in all other cases except Special Case 2, rising asset prices affect returns going forward so that

∆Rt 6= 0 for t ≥ 1 and hence there are extra terms in the optimal tax formula – see Section 3.4

for the intuition.

However, even in Special Case 2 with a purely dividend-driven asset price change, this

Haig-Simons tax only works once in the initial period, not each period. Indeed, from (32) we

have ∆p0 = ∑T
t=1 R−1

0→t∆Dt and hence another way of writing the tax change is

T

∑
t=0

R−1
0→tTt(θ) =

T

∑
t=0

R−1
0→tTt(θ) + [k0(θ)−Ω(θ)K0]

T

∑
t=0

R−1
0→t∆Dt.

Hence, a period-by-period implementation would set

Tt(θ) = Tt(θ) + k0(θ)∆Dt −Ω(θ)K0∆Dt for all t,

which does not correspond to a tax on the accrued gains (nor dividend income) in each period.

Deferral advantage. As already noted, the literature on capital gains taxation has empha-

sized that a realization-based tax system can create a lock-in effect due to the interest advan-

tage from deferring to liquidate appreciated assets. While an accrual-based system as under

the Haig-Simons comprehensive tax base would avoid this issue, Vickrey (1939) and Auer-

bach (1991) have proposed modified (”retrospective”) realization-based capital gains taxes that

eliminate this deferral advantage. These tax systems make the tax rate contingent on the hold-

ing period, effectively charging interest on delayed realizations.27

The optimal tax policy described in Proposition 5 shares precisely this feature by fixing the

present-value of taxes. In particular, one implementation of the optimum would be to set

∆T0 =
T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt + Kt∆Dt)]

and ∆Tt = 0 all t 6= 0. An alternative would be to set

∆T1/R1 =
T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt + Kt∆Dt)]

and ∆Tt = 0 all t 6= 1. Therefore,

∆T1 = R1 × ∆T0,

i.e. the tax liability is exactly growing at the rate of interest. While this connection to the Vick-

rey and Auerbach proposals is interesting, a full analysis of the lock-in effect would require

studying optimal distortive taxation with portfolio choice (see Section 4.4).

27For instance, Vickrey (1939) writes of a desirable tax system that “The discounted value of the series of tax payments
made by any taxpayer should be independent of the way in which his income is allocated to the various income years.”
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Baseline prices and dividends. As the multi-period model makes particularly clear, the tax

on the trading gains and losses xt(θ)∆pt is computed based on some price change each period

that compares the (new) price pt to some (old) reference price pt. As in Figure 7, this reference

price could be the price in some initial steady state pt = p. Alternatively, it could be the price

path on an initial BGP on which dividends and hence prices grow at a constant rate pt = Gt p0.

As a result, the reference price does not necessarily coincide with the historical basis at

which the investor purchased the asset in some previous period, so the trading gains and

losses do not generally correspond to realized capital gains in practice. Instead, the tax is

designed to compensate individuals for asset price changes relative to some benchmark that

needs to be defined, including for investors who purchase the asset and have not owned it in

the past. For example, consider again the BGP example where dividends and prices initially

grow at a constant rate. Then suppose there is a change (such as a fall in interest rates) that

leads to a different path of prices and dividends. If the redistributive goal is to compensate the

winners and losers from this change, the tax system is adjusted based on a comparison, each

period, between the actual prices and dividends and the ones that would have occurred if the

balanced growth path had continued.

6 Extensions

In this section, we show how the results derived in the benchmark setting extend to richer

environments. In particular, we discuss extensions with a closed economy general equilibrium

model, heterogeneous returns, aggregate risk and borrowing, and intergenerational transfers.

For simplicity, we return to the two-period case.

6.1 General equilibrium

Our baseline model features a small open economy with an exogenously given asset price and

dividend. Instead, we now consider a closed economy with the asset in fixed supply, so∫
k0(θ)dF(θ) =

∫
k1(θ)dF(θ) = K. (33)

The asset price p must adjust to satisfy the market clearing condition (33). If preferences are

given by (6), the equilibrium asset price p∗ can be solved in closed form:

p∗ = βD
(

Y0

Y1 + DK

) 1
σ

. (34)

This illustrates the various potential drivers of asset price changes in general equilibrium. A

particularly natural one is an increase in the discount factor β, which, holding dividends fixed,

increases the asset price p∗ proportionally. This allows us to obtain the following result:

Proposition 6. Suppose the equilibrium asset price changes from p∗ to p∗ = p∗ + ∆p∗, holding
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dividends and the aggregate endowment fixed. Then the optimal tax T0(θ) is given by

T0(θ) = T0(θ) + x(θ)∆p∗ = T0(θ) + x(θ)∆p∗

where T0(θ) is the optimal tax at the initial price p∗ and x(θ) = x(θ) are investor θ’s asset sales at the
initial and old prices p∗ and p∗, respectively.

Hence, we obtain the same result as in Corollary 1 except that, since aggregate asset sales

X must be zero in the closed economy, the intercept term vanishes. Moreover, individual asset

sales in fact remain unchanged in response to the asset price change, so x(θ) = x(θ) for all θ.

Intuitively, in the closed economy, total resources do not change when we hold dividends and

the aggregate endowment fixed. Hence, the Pareto planner aims to get each investor back to

its original consumption bundle after the asset price change. The tax reform in Proposition 6

achieves this through the Slutsky compensation as in Lemma 1.

We can also consider a change in dividends D in general equilibrium. Equation (34) reveals

that an increase in D has a less than proportional effect on the asset price p∗ due to the indirect

effect on the aggregate endowment. Hence, a change in dividends will simultaneously increase

the equilibrium rate of return R∗ = D/p∗. As a result, the knife-edge result in Corollary

2, which lended support to a Haig-Simons accrual-based tax in the special case of a purely

dividend-driven asset price change, does not extend to general equilibrium.

6.2 Heterogeneous returns

So far, we have assumed that investors are heterogeneous in their initial endowments k0(θ) and

incomes y0(θ) and y1(θ), but they all achieve the same dividends D per unit of their asset hold-

ings k1(θ) in period 1. We next show how our results extend to the case with heterogeneous

dividends D(θ) which implies that different investors earn different returns R(θ) ≡ D(θ)/p.28

Just introducing this additional heterogeneity into our baseline model does not change

our results on Pareto optimal tax policy. The reason is that it is efficient, in the absence of

further frictions, to allocate all asset holdings to the individual with the highest dividends

Dmax ≡ maxθ D(θ). Hence, the planner can transfer resources at rate of return R = Dmax/p,

returning us effectively to the case without return heterogeneity. Those individuals with lower

dividends will not hold the asset, but the government saves for them (using the highest-return

individual) through taxes and transfers T0(θ) and T1(θ). Hence, Proposition 1 goes through,

with the only twist that almost all investors will be sellers with x(θ) = k0(θ) and k1(θ) = 0.

Trading with adjustment costs. To prevent this trivial outcome, it is useful to introduce a

second asset as well as some trading friction. Individuals can save both in a bond b(θ), which

trades at price q in period 0, and in the asset, which trades at price p in period 0 and delivers

28See, e.g., Gerritsen et al. (2020), Schulz (2021) and Guvenen et al. (2023, 2024) for recent analyses of capital
taxation with heterogeneous returns.
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dividends D(θ) in period 1. Thus, an investor’s budget constraints are:

c0(θ) + qb(θ) = px(θ)− χ(x(θ)) + y0(θ)− T0(θ)

c1(θ) = D(θ)(k0(θ)− x(θ)) + b(θ) + y1(θ).

The trading frictions are captured by an adjustment cost χ(x) that is increasing in |x| and

convex. This cost ensures that it is no longer efficient to allocate all capital to the individual

with the highest return.

The present-value budget constraint is:

c0(θ) + qc1(θ) = qD(θ)(k0(θ)− x(θ)) + px(θ)− χ(x(θ)) + y0(θ) + qy1(θ)− T0(θ),

which immediately implies that an investor’s optimal asset sales x(θ) satisfy

qD(θ) + χ′(x(θ)) = p (35)

The left-hand side captures the marginal cost of selling more assets: the investor will have less

dividend income and will need to pay the additional trading cost. On the other hand, the asset

price on the right-hand side is the additional revenue from the sale. As a result, due to the

convex adjustment cost, investors with higher returns D(θ) will sell less and therefore hold

more of the asset. Also note that the presence of adjustment costs in (35) implies that

R(θ) ≡ D(θ)

p
≥ 1

q
, (36)

so that (i) the usual no-arbitrage condition equalizing the return on the asset R(θ) to that on

the bond 1/q may not hold and, therefore, (ii) different investors θ may obtain different asset

returns R(θ) in equilibrium. This opens up the door to the returns R(θ) of different investors

changing differentially in response to heterogeneous cash flow changes, which will be impor-

tant below.

The aggregate resource constraint can be written as∫
c0(θ)dF(θ) + q

∫
c1(θ)dF(θ) = Y (37)

where

Y = Y0 + qY1 + max
{x(θ)}

∫
[px(θ) + qD(θ)(k0(θ)− x(θ))− χ(x(θ))] dF(θ)

Thus, the first-best Pareto problem takes the same form as in Section 3. For simplicity, we

continue to assume our preference specification (6) and normalize T1(θ) = 0, which leads to

the following result:

Proposition 7. Suppose the equilibrium asset price changes from p to p = p + ∆p, holding dividends
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D(θ) and the bond price q fixed. Then the optimal tax T0(θ) satisfies the second-order approximation

T0(θ) ≈ T0(θ) + x(θ)∆p−Ω(θ)X∆p− 1
2

[
χ′′(x(θ))∆x(θ)2 −Ω(θ)

∫
χ′′(x(θ))∆x(θ)2dF(θ)

]
where ∆x(θ) ≡ x(θ)− x(θ).

Hence, even with heterogeneous returns and trading frictions, Corollary 1 goes through to

first order, and an additional second-order term emerges that captures the change in adjust-

ment costs due to the asset price change.

General equilibrium. This result is particularly useful when combining it with our previous

general-equilibrium analysis. Suppose the asset is in fixed supply, as in the preceding subsec-

tion, and assume, for simplicity, a quadratic adjustment cost χ(x) = κx2. Then the optimality

condition (35) together with the market clearing condition X = 0 immediately implies

p∗ = q
∫

D(θ)dF(θ).

The equilibrium price equals the discounted average dividends in the economy. This is in-

tuitive, since even investors with a low dividend can sell their asset to other investors with

higher dividends, so the asset price must reflect the average dividend when χ is symmetric

around zero and quadratic. As already anticipated above, in equilibrium, different investors

experience differential returns given by

R∗(θ) ≡ D(θ)

p∗
=

D(θ)

q
∫

D(θ̃)dF(θ̃)
.

Consider now an increase in dividends D(θ) for some subset of the investors in the economy.

This will induce an increase in the equilibrium asset price p∗ for all investors, including for

those whose dividends did not change.29 Put differently, those investors whose dividends

D(θ) increase experience an increase in their asset return R∗(θ); however those investors whose

dividends D(θ) remain unchanged, actually experience a decline in their asset return R∗(θ).
Since these latter investors face a pure asset price increase without a simultaneous dividend

change, their optimal tax change, to a first order, is given by ∆T0(θ) ≈ x(θ)∆p∗ as in Proposi-

tions 6 and 7.

Importantly, this is true even though the asset price change is ultimately driven by a divi-

dend change. Hence, our knife-edge result from Corollary 2, which found that a Haig-Simons

accrual-based tax can implement the optimum in the special case of a purely dividend-driven

asset price change, does not survive in this richer model. The reason is that Corollary 2 relied

on the fact that the effect of the asset price change and the dividend change happened to cancel

in the baseline model where everyone achieves the same rate of return. With heterogeneous

dividends, these effects will no longer cancel in general (not even for the investors whose divi-

29If bonds are in fixed supply as well, then the bond price q will also adjust, but in general this will not undo
the change in the average dividends.
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dends change) so the Haig-Simons tax never applies. By contrast, a tax on both realized capital

gains and dividends as in Proposition 1 continues to work.

6.3 Aggregate Risk

Consider our benchmark environment, but extended to allow for aggregate risk in the second-

period dividend. In particular, let D(s) denote the realized dividend in the second period,

where s ∈ S denotes the aggregate state of the economy in period t = 1 and S denotes the

finite set of possible outcomes. Let π(s) denote the probality state s will be realized.

Preferences. We extend consumer preferences to incorporate risk aversion following Epstein

and Zin (1989). In particular, let µ be the following certainty equivalence aggregator:

µ ({c1(s)}s∈S) ≡
(

∑
s∈S

π(s)c1(s)1−α

) 1
1−α

,

where α ≥ 0 is the coefficient of relative risk aversion. With this, we can extend the preferences

defined in (6):

U(c0, {c1(s)}) = G (C (c0, µ ({c1(s)}))) ,

where, as in (6), G = C1−γ/(1− γ) and C is a CES aggregator over c0 and µ with elasticity σ.

Asset Markets. Aggregate dividend risk implies that saving in capital is risky. Just like in

the preceding subsection, we therefore allow the agents to also trade in a risk-free bond. Let p
denote the period-0 price of capital and q denote the price of the zero-coupon risk-free bond.

The consumer’s flow budget constraints become:

c0(θ) = p(k0(θ)− k1(θ))− qb(θ) + y0(θ)− T0(θ)

c1(θ, s) = D(s)k1(θ) + b(θ) + y1(θ)− T1(θ, s), ∀s ∈ S,

where b denotes the quantity of the risk-free bond purchased (which can be negative when the

agent borrows). Note that we allow taxes and transfers in the second period to be indexed by

s.

We retain the small-open-economy assumption, and denote M(s) as the stochastic discount

factor of the representative counterparty in global financial markets. In particular, the period-0

Arrow-Debreu price of a unit of consumption delivered in state s is π(s)M(s). No arbitrage

implies:

p = ∑
s∈S

π(s)M(s)D(s)

q = ∑
s∈S

π(s)M(s).
(38)
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In order to ensure that aggregate risk is relevant, we assume∫
T0(θ)dF(θ) =

∫
T1(θ, s)dF(θ) = 0 ∀s ∈ S,

so the economy cannot insure itself other than through trading capital and the risk-free bond

with the rest of the world. In other words, it does not have access to the full set of Arrow-

Debreu insurance markets. Hence, aggregate second-period allocations are spanned by the

risk-free bond and payoffs to capital:

C1(s) ≡
∫

c1(θ, s)dF(θ) = D(s)K1 + Y1 + B, ∀s ∈ S, (39)

where K1 =
∫

k1(θ)dF(θ), Y1 =
∫

y1(θ)dF(θ), and B =
∫

b(θ)dF(θ).30

First Best. The first-best allocation is the solution to

max
{c0(θ),{c1(θ,s)},X}

E

∫
ω(θ)U(c0(θ), µ({c1(θ, s)))dF(θ) (40)

subject to∫
c0(θ)dF(θ) + q

∫
c1(θ, s)dF(θ) = Y0 + qY1 + pX + qD(s)(K0 − X) ∀s ∈ S.

As shown in Appendix E.4, the homotheticity of preferences implies that the first-best al-

location can be studied as a two-stage budgeting problem. The first stage is to solve a single-

agent portfolio problem involving aggregates C0 and C1(s):

max
{C0,{C1(s)},X}

U(C0, µ({C1(s)})) s.t. C0 + qC1(s) = Y0 + qY1 + pX + qD(s)(K0 − X).

Letting an asterik denote the solution to the first stage, the second stage involves allocating

aggregate consumption according to the rule:

c∗0(θ) = Ω(θ)C∗0 , c∗1(θ, s) = Ω(θ)C∗1 (s), (41)

where Ω(θ) is defined in (21).

Decentralization of First Best. As in the benchmark environment, the fact that individuals

can trade assets generates an indeterminacy in the tax system that decentralizes the first-best

allocation. With two assets, there are two dimensions of indeterminacy, spanned by the payoffs

to the risk-free bond and risky capital. Specifically:

Lemma 3. Suppose a : Θ→ R and m : Θ→ R are functions of θ such that
∫

a(θ)dF =
∫

m(θ)dF =

0. Then there exists a first-period tax schedule T0 : Θ → R that implements the first-best when

30Without loss of generality, we assume that the government does not own bonds or capital directly, and thus
the aggregates B and K1 reflect the aggregated holdings of private individuals.
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combined with the following second-period tax schedules:

T1(θ, s) = a(θ) + m(θ)D(s) ∀θ, s.

That is, the tax schedule can be an aribtrary linear function of the payoffs to risky capital. This

follows from the fact that individuals can always adjust their private holding of bonds and

capital to account for differences in the tax system that are spanned by the payoffs to bonds

and capital.

Comparative Statics. We are now in position to revisit how changes in asset prices and cash

flows induce changes in the optimal tax schedules. The natural extension of the “discount rate

shock” in Corollary 1 to this environment is a change in the pricing kernel M, holding D fixed.

That is, M(s) = M(s) + ∆M(s). For example, suppose attitudes toward risk change, or the

time discounting inherent in M changes. This would induce changes in the price of capital

and risk-free bonds even in the absence of changes to dividends. Additionally, it could be the

case that cash flows themselves change: D(s) = D(s) + ∆D(s). The next result considers the

general case and extends Proposition 1 to the case with risky capital.

Proposition 8. Suppose the pricing kernel changes from M(s) to M(s) = M(s) + ∆M(s) and divi-
dends from D(s) to D(s) = D(s) + ∆D(s). Let ∆p ≡ ∑s π(s)M(s)D(s)−∑s π(s)M(s)D(s) and
∆q ≡ ∑s π(s)∆M(s). Then the following change to the tax schedules is an optimal response:

T0(θ) = T0(θ) + x(θ)∆p− b(θ)∆q−Ω(θ) [X∆p− B∆q]

T1(θ, s) = T1(θ, s) + k1(θ)∆D(s)−Ω(θ)K1∆D(s).

As before, it is easiest to discuss this result separating changes in discount factors from cash

flows. For the case of an asset-price change exclusively due to discount-rate variation (Special

Case 1), the counterpart to Corollary 1 is:

Corollary 4. Suppose the pricing kernel changes ∆M(s) 6= 0 for some s ∈ S, while dividends are
unchanged: ∆D(s) = 0 for all s ∈ S. Then an optimal change in the tax schedule is to maintain second
period taxes T1(θ, s) = T1(θ, s), ∀s, θ, and set

T0(θ) = T0(θ) + x(θ)∆p− b(θ)∆q−Ω(θ) [X∆p− B∆q] .

Compared to Corollary 1, the only difference is the additional compensation for changes

in the bond price ∆q. The intuition is simply that a change in the interest rate on the bond

redistributes between borrowers and savers, and the first-best tax response counteracts this.

A noteworthy example is a change in the pricing kernel ∆M(s) such that ∑s∈S π(s)∆M(s) =
0. Then ∆q = 0, so the risk-free rate is unchanged, and since we also hold dividends fixed, this

corresponds to a pure risk-premium change. In this case, we collapse back to Corollary 1. In

other words, even in this richer setting, the optimal tax response to an asset price change in-

duced by a risk-premium change targets the realized trading gains and losses exactly like in

our deterministic benchmark model.
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For the case of asset price changes driven by only cash-flow changes (Special Case 2), we

show that Corollary 2 from the deterministic model also goes through:

Corollary 5. Suppose ∆D(s) 6= 0 for some s ∈ S, while ∆M(s) = 0 for all s ∈ S. Then an optimal
change in the tax schedule is to keep T1(θ, s) = T1(θ, s) unchanged and set

T0(θ) = T0(θ) + k0(θ)∆p−Ω(θ)K0∆p.

Hence, a Haig-Simons tax on unrealized gains can be applied in period 0 in this case, but,

as before, it is knife-edge and breaks down whenever the pricing kernel changes.

Subjective beliefs. Subjective beliefs—optimism and pessimism—may play a role in driv-

ing asset prices. For example, Adam et al. (2017) and Bordalo et al. (2023) argue that, while

measures of actual current and expected future cash flows cannot account for asset-price fluc-

tuations, variation in subjective expectations about these cash flows can. The setup in this

section allows us to consider this case. To this end, recall from (38) that the asset prices p
and q depend on the probabilities π(s) with which different states s ∈ S occur as well as the

stochastic discount factor M(s) with which a representative counterparty in global financial

markets discounts these states. To capture subjective beliefs, we can replace the actual proba-

bilities π(s) by some alternative subjective beliefs π̃(s), while assuming that the social planner

continues to use the correct probabilities π(s). More optimism in financial markets then corre-

sponds to π̃(s) changing in such a way as to put a higher probability on states s in which cash

flows D(s) are high. Modeled in this way, optimism about cash flows generates an increase in

the asset price p while leaving actual cash flows unaffected. Changes in subjective beliefs are

therefore equivalent to discount rate shocks.

6.4 Borrowing versus Selling

An argument that frequently comes up in discussions about the redistributive effects of asset-

price changes is that wealthy individuals do not necessarily need to sell their appreciated as-

sets; instead they can just borrow against the appreciated asset values. The Economist (2024)

provides an instructive example:

“Say you own a successful business – so successful that your stake in it is worth $1bn. How should
you finance your spending? If you [...] sell $20m-worth of shares [...], the entire sum represents capital
gains and will be taxed at 20%, which would mean a $4m hit. What if, instead, you called up your
wealth manager and agreed to put up $100m-worth of equity as collateral for a $20m loan. In 2021
the interest rate on the loan might have been just 2% a year, meaning that returns from holding the
equity, rather than selling it, would easily have covered the cost of servicing the borrowing. Because
the proceeds of loans, which must be eventually repaid, are not considered income, doing so would have
incurred no tax liability at all.”

Both the setups in Sections 6.2 (heterogeneous returns) and 6.3 (aggregate risk) feature

borrowing and are therefore useful for analyzing how optimal taxation should treat borrowing

43



versus selling. The most instructive case is that of positive capital gains ∆p > 0 but without a

corresponding change in interest rates ∆q = 0. In Section 6.3 with risk, this case obtains for a

pure risk-premium change – see equation (38). Setting ∆q = 0 in Corollary 4 yields

T0(θ) = T0(θ) + x(θ)∆p−Ω(θ)X∆p.

Similarly, in Section 6.2 with heterogeneous returns, Proposition 7 shows that the same ex-

pression holds to first order. Perhaps surprisingly, this result shows that the tax formula is

independent of whether and how much investors borrow when their assets appreciate and is, in

fact, identical to that in Corollary 1. Contrary to a recent proposal by Fox and Liscow (2024),

it is not necessary to tax borrowing. An analogous result can be shown in a version of the

multi-period model in Section 5 with borrowing.

The intuition is that, also with the option to borrow, investors need to sell their appreciating

assets at some point in order to benefit from rising asset prices (the exception is “stepped-up ba-

sis” which we discuss in the next subsection). The key observation (which is sometimes missed

in the popular debate) is that loans need to be repaid at some point. If investors never sell their

assets, they will need to repay their loans out of income they could have otherwise consumed

and hence they do not benefit from the capital gains.31 On the other hand, if investors do sell

to repay the loan, the realized trade should be taxed at that point.

The example at the beginning of this subsection emphasized an important motive for bor-

rowing rather than selling an asset: the asset’s return often exceeds the rate at which investors

can borrow. While the setup with aggregate risk in Section 6.3 does not allow for this possibil-

ity, the setup with heterogeneous returns in Section 6.2 has precisely this feature – see equation

(36). Still, this consideration does not change the optimal tax formula. The intuition is that,

while such return differences are undoubtedly important, they are not special to the case of

wealthy individuals borrowing against appreciating assets. Instead they are a feature of any
levered investment strategy. For example, many homeowners with an outstanding mortgage

invest some of their income in the stock market rather than pre-paying their mortgage, pre-

cisely because stock returns exceed mortgage interest rates. Investors using levered invest-

ment strategies to take advantage of such return differences is simply an orthogonal issue that

should not be considered tax avoidance.

6.5 Bequests and Suboptimality of Step-Up in Basis at Death

We finally consider a version of our model with multiple generations in which parents be-

queath to their children. We use this version to consider a peculiarity of the tax system in the

U.S. and many other advanced economies: step-up in basis at death for inherited assets, a tax

rule that eliminates the taxable capital gain that occurred between the original purchase of the

31A case in which things are more complicated and investors may benefit from capital gains even without selling
is the case of a binding collateral constraint that gets relaxed by a rising asset price. Fagereng et al. (2023) discuss
this case at length. Given our focus on the top of the wealth distribution, we here abstract from binding constraints.
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asset and the heir’s acquisition, thereby reducing the heir’s tax liability.32

To keep things simple, we model dynasties of non-overlapping generations that are altru-

istic toward their offspring à la Barro and Becker (1989). A new generation of investors is born

every τ years and investors live for τ − 1 periods. An investor of dynasty θ born at time t
(cohort t) has lifetime utility

Vt(θ) = U(ct(θ), ..., ct+τ−1(θ)) + αβτVt+τ(θ), (42)

where 0 ≤ α ≤ 1 measures altruism toward the next generation and U(ct, ..., ct+τ−1) is given

by (6) with T = τ − 1. The sequential budget constraint is still given by (2) but now with

the convention that kτ(θ), k2τ(θ), k3τ(θ), and so on denote bequests left by investors in their

last year of life toward their offspring in the next generation. Because investors are altruistic,

these bequests will generally be positive. As is standard, the Barro-Becker assumption implies

that we can work with the preferences of dynasties.33 The Pareto problem is to maximize∫
ω(θ)V0(θ)dF(θ) subject to (7) where ω(θ) is the Pareto weight on dynasty θ.

A particularly simple case is that of full altruism α = 1 and γ = 1/σ. Then the time-0

utility of dynasty θ is given by V0(θ) = ∑∞
t=0 βtct(θ)

σ−1
σ , which is a special case of (6) with

T = ∞. Therefore, everything collapses to the multi-period model from Section 5, in particular

Proposition 5 applies. More generally, when α < 1 or γ 6= 1/σ, Proposition 5 is modified to

include a time-varying consumption allocation rule Ωt(θ) in place of the constant rule Ω(θ)

(i.e. the planner now allocates consumption ct(θ) = Ωt(θ)Ct to dynasty θ).

Suboptimality of Step-Up of Basis on Death. Because (a modified) Proposition 5 still ap-

plies, so does the discussion about the baseline relative to which capital gains are calculated.

As discussed there, a natural benchmark is the price path on an initial BGP on which divi-

dends and hence prices grow at a constant rate pt = Gt p0. Step-up of basis on death would

instead correspond to a case in which the baseline price pt resets to the current market price pt

every τ years, i.e. whenever a generation dies and is replaced by the next generation. In the

Barro-Becker setup analyzed here, from the point of a view of a dynasty or the social planner,

there is nothing special about the dates at which one generation passes the baton to the next

and therefore also no argument for resetting the basis in this way. Instead, a natural approach

is the “carry-over basis” already used by a number of countries including Germany, Italy, and

Japan (OECD, 2021).

32Many good explanations of step-up in basis can be found on the internet, particularly by financial and estate
planning services. Some of these are explicit that they consider the rule to be a loophole, for example Trust and
Will (2024) which begins the discussion thus: “Loopholes – you may not always use them, but when you do need
them, you’re sure glad they’re there. [...] The Step-Up in Basis loophole is used to circumvent capital gains taxes,
or to pay the least amount of this type of inheritance tax as is legally possible.”

33For example, repeated substitution of (42) implies that the dynasty θ’s utility at time 0 is given by

V0(θ) = U(c0(θ), ..., cτ−1(θ)) + αβτU(cτ(θ), ..., c2τ−1(θ)) + α2β2τU(c2τ(θ), ..., c3τ−1(θ)) + ...
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Buy, Borrow, Die. In recent years, a tax avoidance strategy known as “buy, borrow, die” has

become popular among wealthy families, particularly in the U.S. (e.g. Ensign and Rubin, 2021;

The Economist, 2024; Fox and Liscow, 2024). The idea is to borrow against appreciating assets

rather than selling them and then taking advantage of the stepped-up basis at death, thereby

allowing those who employ this strategy to avoid paying capital-gains taxes altogether. In

combination with the discussion in the preceding subsection on borrowing versus selling, our

results suggests that the stepped-up basis loophole should be eliminated. Absent stepped-up

basis, the wealthy would still benefit from borrowing against high-return assets with lower-

interest loans as described in the preceding subsection. But this is just like any other levered

investment and should not be considered a tax avoidance strategy.

7 Conclusion

We “put the ‘finance’ into ‘public finance’,” meaning that we study optimal redistributive tax-

ation with changing asset prices. Importantly, we adopt the modern finance view that asset

prices change not only because of changing cash flows but also due to changes in discount

rates, risk premia, or subjective beliefs.

To summarize our results, it is useful to juxtapose them with the following naı̈ve intuition

implicit in proposals for wealth taxes or taxes on unrealized capital gains: when the value of

Jeff Bezos’ Amazon stocks doubles so should his tax liability. Our results show that this in-

tuition is, in general, incorrect. Optimal taxes instead generally depend on (i) whether Bezos

sells his Amazon shares and (ii) whether and by how much cash flows, here Amazon’s profits,

increase. In our baseline model these are, in fact, the only determinants of optimal taxes. Gen-

eralizations of the type considered in Section 6 complicate the optimal tax formulas in some

cases but it remains true that taxes that target only asset holdings rather than asset transactions

are generally suboptimal.
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Appendix

A Appendix for Section 1

A.1 Mapping the Neoclassical Growth Model into Our Setup

As is standard, a representative consumer has preferences ∑∞
t=0 βtU(Ct) where Ct is consumption, the

consumption good is produced according to a constant-returns technology Yt = f (Kt, AtLt) where Kt

is capital, At is productivity and Lt is labor, labor is supplied inelastically Lt = 1, and the resource
constraint is

Ct + It = Yt, Kt+1 = It + (1− δ)Kt, (43)

where It is investment. Importantly, the fact that the consumption good Yt can be converted into in-
vestment one-for-one immediately pins down the unit price of capital (relative to consumption) at one.
We discuss this property in more detail momentarily where we also discuss how to break it.

A.1.1 The Price of Capital in Variants of the Growth Model

To understand why the unit price of capital is pinned down at one in the growth model and to see how
to break this result, it is useful to consider a more general model in which the result does not necessarily
hold: a two-sector growth model with a separate investment goods production sectors. The model is
the same as in section 1.4 except that the resource constraint is

Ct + ιt = Yt, It = Gt(ιt), Kt+1 = It + (1− δ)Kt. (44)

Here ιt units of the consumption produce It units of investment according to a production function Gt

which is increasing but which may be concave G′′t ≤ 0 or may vary over time. Profit maximization of
investment goods producer is

max
ιt

ptGt(ιt)− ιt.

As long as the marginal product G′(ιt) is positive, producers choose ιt to satisfy the optimality condition

ptG′t(ιt) = 1. (45)

This model has two interesting polar special cases:

1. Neoclassical growth model: It = G(ιt) = ιt so that G′(ιt) = 1. In this case the resource constraints
(44) become Ct + It = Yt and the optimality condition (45) implies pt = 1.

2. Capital in fixed supply (Section 6.1): G(ιt) = 0 for all ιt and δ = 0. In this case It = ιt = 0 so that
the resource constraints (44) become Ct = Yt. The price of capital pt is pinned down by market
clearing It = 0 rather than the optimality condition (45) because there is no optimization problem
for investment goods production.

A.1.2 Growth Model with a Stock Market

This appendix spells out in more detail a decentralization of the growth model in which households
trade shares in the representative firm which are in unit fixed supply. The budget constraint of the
representative household is

pt(St+1 − St) + Ct = Yt + DtSt.
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Here, each share St is a claim on the profits of the representative firm. In equilibrium, shares are in unit
fixed supply

St = 1.

Denoting the wage by Wt, the firm’s cash flows are

Dt = Yt −WtLt − It

Using that labor is paid its marginal product Wt = fL(Kt, AtLt)At, that f (Kt, AtLt) = fK(Kt, AtLt)Kt +

fL(Kt, AtLt)AtLt because of constant returns, and Lt = 1:

Dt = fK(Kt, At)Kt + (1− δ)Kt − Kt+1. (46)

The discount rate is still given by (10) and hence Rt+1 = fK(Kt+1, At+1) + 1− δ in equilibrium.
We next show that the share price equals the value of the capital stock pt = Kt+1. First, as usual, the

share price equals the present-discounted value of dividends, i.e. it satisfies (8) with T = ∞.

Lemma 4. The share price equals the value of the capital stock

pt = Kt+1.

Proof. Because the share price satisfies (8) with T = ∞ it equivalently satisfies

pt = R−1
t+1(Dt+1 + pt+1).

Using Rt+1 = fK(Kt+1, At+1) + 1− δ and (46)

pt( fK(Kt+1, At+1) + 1− δ) = ( fK(Kt+1, At+1)Kt+1 + (1− δ)Kt+1 − Kt+2) + pt+1.

The pt sequence satisfying this equation is pt = Kt+1 as claimed.

Remark on Lemma 4. Note that it is still true that the price per unit of capital (rather than the price
of the entire capital stock pt = Kt+1) equals one.

Balanced Growth Path (BGP). Assume that productivity At grows at a constant rate

At+1 = GAt, G > 1 ⇒ At = Gt A0

and that households have isoelastic preferences

U(C) =
C1−1/σ

1− 1/σ
.

Then the economy has a BGP on which the capital stock, output, and consumption all grow at the same
rate G. On this BGP, the asset return is constant

Rt+1 = fK(Kt+1, At+1) + 1− δ = fK(K∗0 , A0) + 1− δ = R
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where we have used that fK(Kt, At) is homogeneous of degree zero in (Kt, At). The initial location of
the BGP K∗0 is pinned down by the discount rate

R =
1
β

Gσ.

On the BGP, the asset price grows at a constant rate resulting in capital gains

pt+1

pt
=

Kt+2

Kt+1
= G.

From (46), the dividend yield is given by

Dt+1

pt
=

fK(Kt+1, At+1)Kt+1 + (1− δ)Kt+1 − Kt+2

Kt+1
= fK(Kt+1, At+1) + 1− δ− G = R− G. (47)

so that
Dt+1

pt
+

pt+1

pt
= R

as expected. Also note that from (47) we have

pt =
Dt+1

R− G

Therefore, all capital gains are driven entirely by growing cash flows and the price-dividend ratio is
constant as in the Gordon growth model (Gordon and Shapiro, 1956). Also note that all capital gains
are, in fact, unrealized. This is because, in equilibrium, the representative household does not buy or
sell any shares (which are in fixed supply).

B Appendix for Section 3

B.1 Proof of Equations (20) and (21)

The optimal consumption allocation described in equations (20) and (21) for the deterministic model in
Section 3 is a special case of the more general result for the stochastic economy in Section 6 (for S = 1),
which we prove in Appendix E.4.

B.2 Proof of Proposition 1

We begin with proving the first equation in Proposition 1. From the budget constraint (22) we have

T0(θ) = y0(θ)− c0(θ) + p x(θ)

T0(θ) = y0(θ)− c0(θ) + px(θ).

where we denote by ct(θ), t = 0, 1, consumption at the old prices and dividends. Subtracting the former
from the latter, we obtain

∆T0(θ) = T0(θ)− T0(θ) = x(θ)∆p + p(x(θ)− x(θ))− (c0(θ)− c0(θ)). (48)

By the second-period budget constraint (23) and the normalization that T1(θ) is held fixed, we have

c1(θ)− c1(θ) = k1(θ)∆D− D(x(θ)− x(θ)) (49)
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and thus
p(x(θ)− x(θ)) =

p
D

[
k1(θ)∆D− (c1(θ)− c1(θ))

]
.

Substituting in (48), we obtain

∆T0(θ) = x(θ)∆p +
p
D

k1(θ)∆D−
[
(c0(θ)− c0(θ)) +

p
D
(c1(θ)− c1(θ))

]
.

Next, recall the solution to the planning problem (19). Using ct(θ) = Ω(θ)Ct we have

∆T0(θ) = x(θ)∆p +
p
D

k1(θ)∆D−Ω(θ)
[
C0 − C0 +

p
D
(C1 − C1)

]
. (50)

To rewrite the expression in square brackets, we work with the aggregate resource constraints. Since∫
T0(θ)dF(θ) =

∫
T1(θ)dF(θ) = 0 we have C0 = pX + Y0 and C1 = D(K0 − X) + Y1. Therefore

C0 − C0 = pX− pX = X∆p + p∆X,

C1 − C1 = D(K0 − X)− D(K0 − X) = K0∆D− D∆X− X∆D = K1∆D− D∆X

where ∆X = X− X. Combining yields

C0 − C0 +
p
D
(C1 − C1) = X∆p +

p
D

K1∆D.

Substituting in (50) delivers the final result:

∆T0(θ) = x(θ)∆p +
p
D

k1(θ)∆D−Ω(θ)
[

X∆p +
p
D

K1∆D
]

.

The proof of the second equation in Proposition 1 follows the same steps. Equation (48) can equivalently
be written as

∆T0(θ) = x(θ)∆p + p(x(θ)− x(θ))− (c0(θ)− c0(θ)) (51)

and equation (49) as
c1(θ)− c1(θ) = k1(θ)∆D− D(x(θ)− x(θ))

and thus
p(x(θ)− x(θ)) =

p
D

[k1(θ)∆D− (c1(θ)− c1(θ))] .

Substituting in (51), we obtain

∆T0(θ) = x(θ)∆p +
p
D

k1(θ)∆D−
[
(c0(θ)− c0(θ)) +

p
D
(c1(θ)− c1(θ))

]
= x(θ)∆p +

p
D

k1(θ)∆D−Ω(θ)

[
C0 − C0 +

p
D
(C1 − C1)

]
. (52)

By the aggregate resource constraints

C0 − C0 = pX− pX = X∆p + p∆X

C1 − C1 = D(K0 − X)− D(K0 − X) = K0∆D− D∆X− X∆D = K1∆D− D∆X

Combining yields

C0 − C0 +
p
D
(C1 − C1) = X∆p +

p
D

K1∆D.
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Substituting in (52) delivers the final result:

∆T0(θ) = x(θ)∆p +
p
D

k1(θ)∆D−Ω(θ)

[
X∆p +

p
D

K1∆D
]

.

B.3 Proof of Lemma 1

As in the Lemma, denote the old price by p and the new price by p = p + ∆p. Similarly, denote the
old dividend by D and the new dividend by D = D + ∆D. Denote the original consumption bundle by
(c0(θ), c1(θ)). Slutsky compensation is defined as the change in the investor’s total budget y0(θ) that
keeps the original consumption bundle (c0(θ), c1(θ)) affordable at the new asset price p and dividend
D. In the remainder of the proof, we suppress the dependence of variables on θ for notational simplicity.

The lifetime budget line at the original price is the set of points (c0, c1) such that

c0 +
p
D

c1 = y0 +
p
D

y1 + pk0 (53)

The Slutsky-compensated budget line at the new price is the set of points (c0, c1) such that

c0 +
p
D

c1 = y0 +
p
D

y1 + pk0 + ∆y0, (54)

where ∆y0 is the Slutsky compensation term. The aim is to solve for ∆y0 such that the two budget lines
intersect at the point (c0, c1) = (c0, c1), i.e. so that the original consumption bundle remains affordable
at the new prices. To this end, evaluate (53) and (54) at (c0, c1) and subtract the old budget constraint
(53) from the new budget constraint (54)(

p
D
− p

D

)
c1 =

(
p
D
− p

D

)
y1 + k0∆p + ∆y0

Rearranging, we have

∆y0 =

(
p
D
− p

D

)
(c1 − y1)− k0∆p =

(
p
D
− p

D
+

∆p
D

)
(c1 − y1)− k0∆p

where the second equality used p = p − ∆p. Using the second-period budget constraint (12), which
implies c1 − y1 = Dk1, yields

∆y0 =

(
p
D
− p

D

)
Dk1 + (k1 − k0)∆p = p

(
D
D
− 1
)

k1 + (k1 − k0)∆p = − p
D

k1∆D− x∆p

where the last equality uses the definition of asset sales in (14) which implies x = k0− k1. Reintroducing
the explicit dependence on θ yields the in the Lemma.

B.4 Endogenous payout policy and share repurchases

The capital-structure neutral reformulation of our setup is easiest to explain in the multi-period model
of Section 1. Consider a firm that produces an income stream (i.e. earnings minus investment) {Πt}∞

t=0

from its fundamental (e.g., non-financial) operations. Investors have budget constraint (2) and we as-
sume for simplicity that the only asset at their disposal is firm shares so that kt(θ) denotes share hold-
ings, pt denotes the share price, and Dt denotes the business dividends per share. The firm’s cash flows
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are distributed to shareholders through both dividends and share repurchases:

Πt = KtDt + (Kt −Kt+1)pt (55)

where and Kt =
∫

kt(θ)dF(θ) denotes the total amount of outstanding shares. When Kt+1 < Kt the
business is repurchasing its own shares. From this equation it is already apparent that share repurchases
and dividend payments are equivalent means of distributing cash flows {Πt}∞

t=0 to shareholders as a
whole. When the business repurchases its shares (i.e., Kt+1 < Kt) this results in an income stream
(kt(θ)− kt+1(θ))pt for those individual selling their shares to the business.

Denoting by st(θ) ≡ kt(θ)/Kt the individual’s ownership share of the business and by Vt ≡ Kt pt

the market value of the business, we can combine the individual and business budget constraints, (2)
and (55), to obtain:

ct(θ) + Vt(st+1(θ)− st(θ)) = yt(θ) + Πtst(θ) (56)

This budget constraint has the same form as (2), except that (i) the dividend per share Dt is replaced by
the income stream from operations Πt, (ii) the price per share pt is replaced by the market value of the
firm Vt, and (iii) the number of shares held by the individuals kt(θ) is replaced by the ownership share
in the business st(θ). An alternative viewpoint on this consolidated budget constraint is to consider
the return to investing in the business. See Fagereng et al. (2023) for more discussion on this capital-
structure neutral reformulation.

B.5 Proof of Proposition 2

In a similar manner to Proposition 1, we use the budget constraint in the first period to get

T0(θ) = y0(θ)− c0(θ)− a1(θ) + R0a0(θ)

T0(θ) = y0(θ)− c0(θ)− a1(θ) + R0a0(θ).

Subtracting the former from the latter, we obtain

∆T0(θ) = T0(θ)− T0(θ) = (c0(θ)− c0(θ)) + (a1(θ)− a1(θ)) + a0(θ)∆R0. (57)

From the second-period budget constraint we have

c1(θ)− c1(θ) = R1a1(θ)− R1a1(θ). (58)

Note that we can write it as

c1(θ)− c1(θ) = a1(θ)(R1 − R1) + R1(a1(θ)− a1(θ)) (59)

Thus we have
a1(θ)− a1(θ) =

1
R1

(c1(θ)− c1(θ)) +
1

R1
a1(θ)∆R1

Replacing in (57) we get

∆T0(θ) = a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −

[
(c0(θ)− c0(θ)) +

1
R1

(c1(θ)− c1(θ))

]
.
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Again, using the solution to the planning problem (19), we know ct(θ) = Ω(θ)Ct. So we have

∆T0(θ) = a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −Ω(θ)

[
C0 − C0 +

1
R1

(C1 − C1)

]
. (60)

Similar to Proposition 1, working with the aggregate resource constraints we have

C0 + A1 = Y0 + R0 A0,

C1 = Y1 + R1 A1.

Therefore
C0 − C0 = −∆A1 + A0∆R0,

C1 − C1 = R1 A1 − R1 A1 = R1∆A1 + A1∆R1.

Replacing in equation (60) we get the final result

T0(θ) = T0(θ) + a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1
R1

A1∆R1

]
. (61)

The proof of the second equation in Proposition 2 follows the same steps. Equation (59) can equivalently
be written as

c1(θ)− c1(θ) = a1(θ)(R1 − R1) + R1(a1(θ)− a1(θ)). (62)

Thus we have
a1(θ)− a1(θ) =

1
R1

(c1(θ)− c1(θ)) +
1

R1
a1(θ)∆R1

Replacing in (57) we get

∆T0(θ) = a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −

[
(c0(θ)− c0(θ)) +

1
R1

(c1(θ)− c1(θ))

]
.

Again, using the solution to the planning problem (19), we know ct(θ) = Ω(θ)Ct. So we have

∆T0(θ) = a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −Ω(θ)

[
C0 − C0 +

1
R1

(C1 − C1)

]
. (63)

Working with the aggregate resource constraints we have

C0 − C0 = −∆A1 + A0∆R0,

C1 − C1 = R1 A1 − R1 A1 = R1∆A1 + A1∆R1.

Replacing in equation (63) we get the final result

T0(θ) = T0(θ) + a0(θ)∆R0 +
1

R1
a1(θ)∆R1 −Ω(θ)

[
A0∆R0 +

1
R1

A1∆R1

]
. (64)

B.6 Proof of Lemma 2

The proof is similar to that of Lemma 1. The lifetime budget constraint at the initial returns is

c0 +
c1

R1
= y0 +

y1

R1
+ R0a0. (65)
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The Slutsky-compensated budget line at the new returns is

c0 +
c1

R1
= ∆y0 + y0 +

y1

R1
+ R0a0. (66)

As before, we evaluate (65) and (66) at (c0, c1) and subtract the old budget constraint (65) from the new
budget constraint (66):

c1

(
1

R1
− 1

R1

)
= ∆y0 + y1

(
1

R1
− 1

R1

)
+ a0∆R0. ⇒ ∆y0 =

(
1

R1
− 1

R1

)
(c1 − y1)− a0∆R0

Using the second period budget constraint we have

∆y0 =

(
1

R1
− 1

R1

)
(R1a1)− a0∆R0.

Simplifying, we get

∆y0 = − 1
R1

a1∆R1 − a0∆R0.

B.7 Proof of Proposition 3

An investor’s present-value budget constraint at the new prices and dividends (p, D) and new taxes
Tt(θ) is

c0(θ) +
p
D

c1(θ) + T0(θ) +
p
D

T1(θ) = y0(θ) +
p
D

y1(θ) + pk0(θ) (67)

The present-value budget constraint at the new prices and dividends (p, D) but old taxes Tt(θ) is

ĉ0(θ) +
p
D

ĉ1(θ) + T0(θ) +
p
D

T1(θ) = y0(θ) +
p
D

y1(θ) + pk0(θ) (68)

Subtracting (68) from (67) yields

c0(θ)− ĉ0(θ) +
p
D
(c1(θ)− ĉ1(θ)) + T0(θ)− T0(θ) +

p
D
(T1(θ)− T1(θ)) = 0

which we can rewrite as

∆T0(θ) +
p
D

∆T1(θ) = ĉ0(θ)− c0(θ) +
p
D
(ĉ1(θ)− c1(θ)) (69)

Next, observe that, for t = 1, 2,

ĉt(θ)− ct(θ) = ĉt(θ)− ct(θ)− (ct(θ)− ct(θ)) = ∆ĉt(θ)− ∆ct(θ) = ∆ĉt(θ)−Ω(θ)∆Ct,

where the last step uses the solution to the Pareto problem (19). Substituting back in equation (69) yields

∆T0(θ) +
p
D

∆T1(θ) = ∆ĉ0(θ)−Ω(θ)∆C0 +
p
D
(∆ĉ1(θ)−Ω(θ)∆C1).

One way of implementing this is to set, in each period t = 0, 1,

∆Tt(θ) = ∆ĉt(θ)−Ω(θ)∆Ct

as in Proposition 3.
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B.8 Proof of Equation (24)

Start with the first-period budget constraint (22) holding fixed the old taxes when prices and dividends
change

T0(θ) = y0(θ)− c0(θ) + p x(θ)

T0(θ) = y0(θ)− ĉ0(θ) + px̂(θ)

where we denote by x̂(θ) the investor’s optimal asset sales at the old taxes but new prices and divi-
dends. Subtracting the former from the latter, we obtain

0 = x(θ)∆p + p(x̂(θ)− x(θ))− (ĉ0(θ)− c0(θ)). (70)

By the second-period budget constraint (23) and holding the old taxes T1(θ) fixed, we have

ĉ1(θ)− c1(θ) = k1(θ)∆D− D(x̂(θ)− x(θ))

and thus
p(x̂(θ)− x(θ)) =

p
D

[
k1(θ)∆D− (ĉ1(θ)− c1(θ))

]
.

Substituting in (70), we obtain

0 = x(θ)∆p +
p
D

k1(θ)∆D−
[
∆ĉ0(θ) +

p
D

∆ĉ1(θ)
]

.

C Appendix for Section 4

C.1 Second-best problem for alternative tax instruments

A tax on c0. Consider first a tax on period-0 consumption. This means that pre-tax consumption in
period 0, given by z0(θ) ≡ px(θ) + y0(θ), is observable, so after-tax consumption is c0(θ) = z0(θ) −
T0(z0(θ)), where T0(z0) is the nonlinear consumption tax in t = 0. Hence,

x(θ) =
z0(θ)− y0(θ)

p

and we can write the global incentive constraints as

U(θ) ≡ U
(

c0(θ), D
(

k0(θ)−
z0(θ)− y0(θ)

p

)
+ y1(θ)

)
≥ U

(
c0(θ̂), D

(
k0(θ)−

z0(θ̂)− y0(θ)

p

)
+ y1(θ)

)
∀θ, θ̂.

The local incentive constraints are therefore given by (29) with A(θ) = 0 and

B(θ) = Dk′0(θ) +
D
p

y′0(θ) + y′1(θ).

A tax on c1. Consider next a tax on period-1 consumption. Pre-tax consumption in period 1 is
z1(θ) ≡ D(k0(θ)− x(θ)) + y1(θ) and after-tax consumption is c1(θ) = z1(θ)− T1(z1(θ)), where T1(z1)
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is the nonlinear consumption tax in t = 1. Hence,

x(θ) =
y1(θ)− z1(θ)

D
+ k0(θ)

and we can write the global incentive constraints as

U(θ) ≡ U
( p

D
(y1(θ)− z1(θ)) + pk0(θ) + y0(θ), c1(θ)

)
≥ U

( p
D
(y1(θ)− z1(θ̂)) + pk0(θ) + y0(θ), c1(θ̂)

)
∀θ, θ̂.

The local incentive constraints are therefore again given by (29) but with

A(θ) = pk′0(θ) + y′0(θ) +
p
D

y′1(θ)

and B(θ) = 0.
Further tax instruments. More generally, for any tax instrument conditioning on some observable

choices, we can decompose consumption in each period t = 0, 1 into its observable and its unobservable
components: ct(θ) = co

t (θ) + cu
t (θ). For instance, with an assets sales tax, the observable components

are co
0(θ) = zx(θ) in period 0 and co

1(θ) = −Dx(θ) in period 1, whereas the unobservable components
are cu

0 (θ) = y0(θ) and cu
1 (θ) = Dk0(θ) + y1(θ). Hence, the general incentive constraint can be written as

U(θ) ≡ U (co
0(θ) + cu

0 (θ), co
1(θ) + cu

1 (θ))

≥ U
(
co

0(θ̂) + cu
0 (θ), co

1(θ̂) + cu
1 (θ)

)
∀θ, θ̂.

The local incentive constraints are therefore always given by (29) with A(θ) = cu
0
′(θ) and B(θ) = cu

1
′(θ).

Note that this general approach also allows for combinations of the tax instruments considered so far.
For example, suppose there is both an asset sales tax in period 0 and a wealth tax in period 1. Then
co

0(θ) = zx(θ) and co
1(θ) = D(k0(θ) − x(θ)) while cu

0 (θ) = y0(θ) and cu
1 (θ) = y1(θ), so we obtain

A(θ) = y′0(θ) and B(θ) = y′1(θ).
34

C.2 Solving the general second-best problem

For any preferences U(c0, c1) = G(C(c0, c1)) and any of the tax instruments considered, we can write
the second-best Pareto problem as

max
{c0(θ),c1(θ),V(θ)}

∫
ω(θ)G(V(θ))dF(θ)

subject to the incentive constraints

V′(θ) = Cc0(c0(θ), c1(θ))A(θ) + Cc1(c0(θ), c1(θ))B(θ) ∀θ (71)

where Cct ≡ ∂C/∂ct, the resource constraint

Y ≥
∫ (

c0(θ) +
p
D

c1(θ)
)

dF(θ) (72)

with
Y ≡ pK0 + Y0 +

p
D

Y1,

34In this case, the asset sales tax and the wealth tax are not separately determined, but the optimal consumption
allocation is.
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and
V(θ) = C(c0(θ), c1(θ)) ∀θ.

It is useful to substitute out c0(θ) = Φ(V(θ), c1(θ)) where Φ(., c1) is the inverse function of C(., c1)

with respect to its first argument. This allows us to write the maximization problem in terms of V(θ)

and c1(θ) only. Attaching multipliers µ(θ) to the incentive constraint for type θ and η to the resource
constraint, the corresponding Lagrangian becomes, after integrating by parts,

L =
∫

ω(θ)G(V(θ))dF(θ)−
∫

µ′(θ)V(θ)dθ

−
∫

µ(θ) [C0(Φ(V(θ), c1(θ)), c1(θ))A(θ) + C1(Φ(V(θ), c1(θ)), c1(θ))B(θ)] dθ

−η
∫ [

Φ(V(θ), c1(θ)) +
p
D

c1(θ)
]

dF(θ).

Using the fact that
∂Φ
∂V

=
1

C0
and

∂Φ
∂c1

= −U1

U0

and dropping arguments to simplify notation, the first-order condition for c1(θ) is

µ

[(
Cc0c0 Cc1

Cc0

− Cc0c1

)
A +

(
Cc0c1 Cc1

Cc0

− Cc1c1

)
B
]
= η f

[
p
D
− Cc1

Cc0

]
(73)

and for V(θ)

ω f G′(V) = µ′ + µ

[
Cc0c0

Cc0

A +
Cc0c1

Cc0

B
]
+

η f
Cc0

(74)

where Ccsct denotes the second derivates ∂2C/(∂cs∂ct). Together with the incentive constraints (71),
the resource constraint (72) and the boundary conditions µ(θ) = µ(θ) = 0, equations (73) and (74)
determine the optimal solution {V(θ), c1(θ), µ(θ), η}.

C.3 CES utility and numerical algorithm

Under the CES preferences given in equation (6), it turns out to be convenient to work with

ξ(θ) ≡ c0(θ)

c1(θ)
.

Then the first-order conditions (73) and (74) can be written as

µ(θ)

σc1(θ)

(
ξ(θ)

σ−1
σ + β

) 1
σ−1

(B(θ)− A(θ)/ξ(θ)) = η f (θ)
(

p
βD
− ξ(θ)

1
σ

)
(75)

ω(θ) f (θ)G′(V(θ)) = µ′(θ) +
βµ(θ)

σc1(θ)

B(θ)− A(θ)/ξ(θ)

ξ(θ)
σ−1

σ + β
+ η f (θ)

(
1 + βξ(θ)

1−σ
σ

) 1
1−σ . (76)

Moreover, the incentive constraints (71) become

V′(θ) =
(

ξ(θ)
σ−1

σ + β
) 1

σ−1
(

ξ(θ)−
1
σ A(θ) + βB(θ)

)
(77)

and, by definition of CES utility,

V(θ) = c1(θ)
(

ξ(θ)
σ−1

σ + β
) σ

σ−1 . (78)
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We first use (75) together with (78) to numerically solve for ξ(θ) as a function of µ(θ), V(θ) and η.
Substituting this in (76) and (77) delivers a system of two ordinary differential equations in µ(θ) and
V(θ) that we can solve, given any η, using the boundary conditions µ(θ) = µ(θ) = 0. Finally, we find η

such that the resource constraint (72) is satisfied, noting that c0(θ) = ξ(θ)c1(θ).

C.4 Proof of Proposition 4

We are interested in analyzing the limiting behavior as σ → 0 of {ξ(θ), V(θ), µ(θ), c1(θ), η} satisfy-
ing (75) to (78), the resource constraint (72) and the boundary conditions. We make their dependence
on σ explicit and write {ξ(θ, σ), V(θ, σ), µ(θ, σ), c1(θ, σ), η(σ)}. We continue to denote by µ′(θ, σ) the
derivative of µ with respect to θ.

Lemma 5. µ(θ, σ) remains bounded for all θ as σ→ 0, i.e. µ(θ, σ)→ µ(θ, 0) with |µ(θ, 0)| < ∞ for all θ.

Proof. Equations (75) and (76) simplify in the limit as σ→ 0. To see this, we use the notation f (σ) ∼ g(σ)
for two functions f and g to indicate that limσ→0 f (σ)/g(σ) = 1. Then, for any ξ(θ) ≷ 1, as σ→ 0

(
ξ(θ, σ)

σ−1
σ + β

) 1
σ−1

=
(

ξ(θ, σ)1− 1
σ + β

) 1
σ−1 ∼

(
ξ(θ, σ)−

1
σ + β

)−1

(
ξ(θ, σ)

σ−1
σ + β

)−1
∼
(

ξ(θ, σ)−
1
σ + β

)−1

(
1 + βξ(θ, σ)

1−σ
σ

) 1
1−σ

=
(

1 + βξ(θ, σ)
1
σ−1
) 1

1−σ ∼ 1 + βξ(θ, σ)
1
σ .

Therefore (75) and (76) become

µ(θ, σ)

σc1(θ, σ)

B(θ)− A(θ)/ξ(θ, σ)

ξ(θ, σ)−
1
σ + β

= η(σ) f (θ)
(

p
βD
− ξ(θ, σ)

1
σ

)
(79)

ω(θ) f (θ)G′(V(θ, σ)) = µ′(θ, σ) +
βµ(θ, σ)

σc1(θ, σ)

B(θ)− A(θ)/ξ(θ, σ)

ξ(θ, σ)−
1
σ + β

+ η(σ) f (θ)
(

1 + βξ(θ, σ)
1
σ

)
(80)

Substituting (79) into (80) we have

ω(θ) f (θ)G′(V(θ, σ)) = µ′(θ, σ) + η(σ) f (θ)
[

p
βD
− ξ(θ, σ)

1
σ

]
β + η(σ) f (θ)

(
1 + βξ(θ, σ)

1
σ

)
= µ′(θ, σ) + η(σ) f (θ)

(
1 +

p
D

)
Or equivalently

µ′(θ, σ) =
(

ω(θ)G′(V(θ, σ))− η(σ)
(

1 +
p
D

))
f (θ)

Integrating and using the boundary condition µ(θ, σ) = 0 we have

µ(θ, σ) =
∫ θ

θ

(
ω(s)G′(V(s, σ))− η(σ)

(
1 +

p
D

))
dF(s). (81)

Because all objects on the right-hand side of this equation are bounded, we obtain Lemma 5.

Lemma 6. ξ(θ, σ)→ 1 as σ→ 0.

Proof. The proof is by contradiction. Fix a θ and suppose that ξ(θ, σ) does not converge to 1 as σ → 0
for that θ. There are two cases.
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1. ξ(θ, σ)→ ξ(θ, 0) < 1 for that θ, i.e. c0(θ, 0) < c1(θ, 0). In this case

ξ(θ, σ)
1
σ → 0, ξ(θ, σ)

σ−1
σ = ξ(θ, σ)1− 1

σ ∼ ξ(θ, σ)−
1
σ → ∞,

(
ξ(θ, σ)

σ−1
σ + β

) 1
σ−1 ∼ ξ(θ, σ)

1
σ → 0

Using these, (75) becomes

µ(θ, σ)
ξ(θ, σ)

1
σ

σ
(B(θ)− A(θ)/ξ(θ, σ)) = η(σ) f (θ)c1(θ, σ)

p
βD

(82)

We argue that the less obvious term ξ(θ, σ)
1
σ /σ on the left-hand side of (82) converges to zero as

σ→ 0. Since ξ(θ, σ)→ ξ(θ, 0) < 1 as σ→ 0, there is an upper bound ξ̄(θ) ∈ (ξ(θ, 0), 1) and some
σ̄ such that ξ(θ, σ) ≤ ξ̄(θ) for all σ ≤ σ̄. Therefore

0 ≤ lim
σ→0

ξ(θ, σ)
1
σ

σ
≤ lim

σ→0

ξ̄(θ)
1
σ

σ
(83)

with ξ̄(θ) < 1. We prove that the upper bound converges to zero as σ→ 0 using l’Hopital. To see
this,

lim
σ→0

ξ̄(θ)
1
σ

σ
= lim

x→∞
ξ̄(θ)xx = lim

x→∞

x
e−x log ξ̄(θ)

= lim
x→∞

1
− log ξ̄(θ)e−x log ξ̄(θ)

= lim
x→∞
− ξ̄(θ)x

log ξ̄(θ)
= 0.

Therefore, using (83) we also have

lim
σ→0

ξ(θ, σ)
1
σ

σ
= 0. (84)

From Lemma 5 we know that µ(θ, σ) remains bounded as σ → 0. Therefore taking σ → 0 in (82)
and using (84) yields

0 = η(0) f (θ)c1(θ, 0)
p

βD

which is a contradiction because c1(θ, 0) > 0 and f (θ) > 0 for at least some θ and η(0) > 0. We
have thus ruled out case 1.

2. ξ(θ, σ)→ ξ(θ, 0) > 1 for that θ, i.e. c0(θ, 0) > c1(θ, 0). In this case

ξ(θ, σ)
1
σ → ∞, ξ(θ, σ)

σ−1
σ = ξ(θ, σ)1− 1

σ ∼ ξ(θ, σ)−
1
σ → 0,

(
ξ(θ, σ)

σ−1
σ + β

) 1
σ−1 → β−1

Using this, we can write equation (75) as

µ(θ, σ)ξ(θ, σ)−
1
σ

βσ
(B(θ)− A(θ)/ξ(θ, σ)) = η(σ)c1(θ, σ) f (θ)

(
p

βD
ξ(θ, σ)−

1
σ − 1

)
. (85)

We argue that
ξ(θ, σ)−

1
σ

σ
→ 0.

Since ξ(θ, σ) → ξ(θ, 0) > 1 as σ → 0, there is a lower bound ξ(θ) ∈ (1, ξ(θ, 0)) and some σ̄ such
that ξ(θ, σ) ≥ ξ(θ) for all σ ≤ σ̄. Therefore

0 ≤ lim
σ→0

ξ(θ, σ)−
1
σ

σ
≤ lim

σ→0

ξ(θ)−
1
σ

σ
(86)
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with ξ(θ) > 1. Finally, we prove that the upper bound in (86) converges to zero using l’Hopital:

lim
σ→0

ξ(θ)−
1
σ

σ
= lim

x→∞
ξ(θ)−xx = lim

x→∞

x

ex log ξ(θ)
= lim

x→∞

1

log ξ(θ)ex log ξ(θ)
= lim

x→∞

ξ(θ)−x

log ξ(θ)
= 0

Therefore, using (86) we also have

lim
σ→0

ξ(θ, σ)−
1
σ

σ
= 0. (87)

Moreover, from Lemma 5 we know that µ(θ, σ) remains bounded as σ→ 0. Hence, (85) becomes

0 = −η(0) f (θ)c1(θ, 0)

which is a contradiction because c1(θ, 0) > 0 and f (θ) > 0 for at least some θ, and η(0) > 0. We
have thus ruled out case 2.

Since both cases lead to a contradiction we conclude that instead ξ(θ, σ)→ 1 as σ→ 0.

[To be completed]

D Appendix for Section 5

D.1 Proof of Proposition 5

An investor’s sequential budget constraint under the old price and dividend path {pt}T
t=0 and {Dt}T

t=0

is
Tt(θ) = yt(θ) + Dtkt(θ) + pt(kt(θ)− kt+1(θ))− ct(θ)

and under the new price and dividend path {pt}T
t=0 and {Dt}T

t=0:

Tt(θ) = yt(θ) + Dtkt(θ) + pt(kt(θ)− kt+1(θ))− ct(θ)

Subtracting one from the other yields:

∆Tt(θ) = kt(θ)∆Dt + xt(θ)∆pt + (Dt + pt)∆kt(θ)− pt∆kt+1(θ)− ∆ct(θ)

where xt(θ) = kt(θ)− kt+1(θ). Premultiplying by R−1
0→t and rearranging yields

R−1
0→t∆Tt(θ) = R−1

0→t[xt(θ)∆pt + kt(θ)∆Dt − ∆ct(θ)] + R−1
0→t(Dt + pt)∆kt(θ)− R−1

0→t pt∆kt+1(θ)

Note that

R−1
0→t(Dt + pt) =

Dt + pt
R0→t

=
Dt + pt

R0→t−1
Dt+pt

pt−1

=
pt−1

R0→t−1

Therefore

R−1
0→t∆Tt(θ) = R−1

0→t[xt(θ)∆pt + kt(θ)∆Dt − ∆ct(θ)] + R−1
0→t−1 pt−1∆kt(θ)− R−1

0→t pt∆kt+1(θ)
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Summing from t = 0 to t = T, we obtain

T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt − ∆ct(θ)]

+
T

∑
t=0

R−1
0→t−1 pt−1∆kt(θ)−

T

∑
t=0

R−1
0→t pt∆kt+1(θ)

Using ∆k0(θ) = 0 and changing the index in the second sum on the right-hand side,

T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt − ∆ct(θ)]

+
T−1

∑
t=0

R−1
0→t pt∆kt+1(θ)−

T

∑
t=0

R−1
0→t pt∆kt+1(θ)

Therefore

T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt − ∆ct(θ)]− R−1

0→T pT∆kT+1(θ)

Since kT+1(θ) = 0, the last term vanishes. Therefore,

T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt − ∆ct(θ)]

=
T

∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt]−Ω(θ)

T

∑
t=0

R−1
0→t∆Ct (88)

where the second line uses the optimal consumption allocation.
Subtracting the sequential resource constraints under the new and old price and dividend path

yields
∆Ct = Xt∆pt + Kt∆Dt + (Dt + pt)∆Kt − pt∆Kt+1

Following the same steps as before yields

T

∑
t=0

R−1
0→t∆Ct =

T

∑
t=0

R−1
0→t[Xt∆pt + Kt∆Dt]

Substituting back in (88), we obtain Proposition 5.
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D.2 Proof of Corollary 3

Under condition (31), we have

T

∑
t=0

R−1
0→t∆Tt(θ) =

T

∑
t=0

R−1
0→t[kt(θ)(∆pt + ∆Dt)− kt+1(θ)∆pt −Ω(θ)(Kt(∆pt + ∆Dt)− Kt+1∆pt)]

=
T

∑
t=0

R−1
0→t [kt(θ)−Ω(θ)Kt] (∆pt + ∆Dt)

−
T

∑
t=0

R−1
0→t [kt+1(θ)−Ω(θ)Kt+1]

pt
Dt+1 + pt+1

(∆pt+1 + ∆Dt+1)

=
T

∑
t=0

R−1
0→t [kt(θ)−Ω(θ)Kt] (∆pt + ∆Dt)

−
T

∑
t=0

R−1
0→t+1 [kt+1(θ)−Ω(θ)Kt+1] (∆pt+1 + ∆Dt+1)

=
T

∑
t=0

R−1
0→t [kt(θ)−Ω(θ)Kt] (∆pt + ∆Dt)−

T+1

∑
t=1

R−1
0→t [kt(θ)−Ω(θ)Kt] (∆pt + ∆Dt)

= [k0(θ)−Ω(θ)K0] (∆p0 + ∆D0)− R−1
0→T+1 [kT+1(θ)−Ω(θ)KT+1] (∆pT+1 + ∆DT+1)

= [k0(θ)−Ω(θ)K0]∆p0

since the last term vanishes and ∆D0 = 0.

D.3 Multi-period version of Proposition 2 (taxing total capital income)

Proposition 9. Suppose asset prices change by {∆pt}T
t=0 and dividends by {∆Dt}T

t=0 resulting in return
changes {∆Rt}T

t=0 . Then optimal taxes {Tt(θ)}T
t=0 are such that

T

∑
t=0

R−1
0→tTt(θ) =

T

∑
t=0

R−1
0→t[Tt(θ) + at(θ)∆Rt −Ω(θ)At∆Rt]

Proof. The proof follows exactly analogous steps to the proof of Proposition 5.

E Appendix for Section 6

E.1 Proof of Equation (34)

Recall the Euler equation (3) under preferences (6):

c0(θ)
−1/σ = βRc1(θ)

−1/σ

with R = D/p. Since it holds for all investors, it aggregates to

C1 =

(
β

D
p

)σ

C0.

Moreover, integrating the budget constraints (11) and (12) across investors and using the market clear-
ing condition (33), we obtain C0 = Y0 and C1 = Y1 + DK in the closed economy. Substituting back in
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the aggregate Euler equation, the equilibrium asset price p∗ must satisfy

Y1 + DK =

(
β

D
p∗

)σ

Y0,

which can be rearranged to deliver equation (34).

E.2 Proof of Proposition 6

First observe that, given preferences (6), the optimal consumption allocation still satisfies ct(θ) =

Ω(θ)Ct, t = 0, 1. Since C0 = Y0 and C1 = Y1 + DK in the closed economy and we hold both divi-
dends and the aggregate endowment fixed, this immediately implies that no investor’s consumption is
changing in response to the asset price change ∆p∗, so ct(θ) = ct(θ) for all θ, t = 0, 1. By the second-
period budget constraint (23) and the normalization T1(θ) = 0, this implies in turn that x(θ) = x(θ) for
all θ. The result then follows from Proposition 1 and the fact that ∆D = 0 and X = K0 − K1 = 0.

E.3 Proof of Proposition 7

Subtract an investor’s budget constraints under the old and new prices in period 0:

c0(θ)− c0(θ) + q(b(θ)− b(θ)) = px(θ)− p x(θ)− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T0(θ))

= (p− p)x(θ) + p(x(θ)− x(θ))− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T0(θ))

and in period 1:

c1(θ)− c1(θ) = D(θ)(x(θ)− x(θ)) + b(θ)− b(θ)

We eliminate b(θ)− b(θ) by substituting the latter into the former:

c0(θ)− c0(θ) + q(c1(θ)− c1(θ)) + qD(θ)(x(θ)− x(θ))

= (p− p)x(θ) + p(x(θ)− x(θ))− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T0(θ))

Rearranging and using (35) yields

c0(θ)− c0(θ) + q(c1(θ)− c1(θ))− χ′(x(θ))(x(θ)− x(θ))

= (p− p)x(θ)− (χ(x(θ))− χ(x(θ)))− (T0(θ)− T0(θ))

The second-order Taylor approximation for χ(x) around the point x(θ) is:

χ(x(θ))− χ(x(θ)) ≈ χ′(x(θ))(x(θ)− x(θ)) +
1
2

χ′′(x(θ))(x(θ)− x(θ))2

Substituting this, we obtain

c0(θ)− c0(θ) + q(c1(θ)− c1(θ)) = x(θ)∆p− 1
2

χ′′(x(θ))(∆x(θ))2 − (T0(θ)− T0(θ)) (89)

where ∆x(θ) ≡ x(θ)− x(θ).
Since the aggregate resource constraint (37) takes the same form as (17), the Pareto problem (19)

67



subject to (37) still implies ct(θ) = Ω(θ)Ct, t = 0, 1, under preferences (6). Hence, (89) can be written as

∆T0(θ) = x(θ)∆p− 1
2

χ′′(x(θ))(∆x(θ))2 −Ω(θ)
[
C0 − C0 + q(C1 − C1)

]
Integrating (89) across all investors implies

C0 − C0 + q(C1 − C1) = X∆p− 1
2

∫
χ′′(x(θ))∆x(θ)2dF(θ)

and substituting this back delivers Proposition 7.

E.4 Proof of Equation (41)

We characterize the solution to the planning problem (40). Letting η(s) denote the multiplier on the
resource constraint for state s ∈ S, the first-order conditions for c0(θ) and c1(θ, s) are:

ω(θ)U0 = ∑
s′

η(s′)

ω(θ)U1
∂µ(·)

∂c1(θ, s)
= qη(s), ∀s ∈ S,

where U0 = ∂U/∂c0 and U1 = ∂U/∂µ. This implies that

U0

U1∂µ/∂c1(θ, s)
=

∑s′ η(s′)
qη(s)

is independent of θ. Given the functional forms, we have that c∗1(θ, s)/c∗0(θ) is independent of θ. That
is, the ratio of consumption between periods is equalized across individuals and equal to the aggregate
ratio C∗1 (s)/C∗0 . In particular, c1(θ, s) = ζ(s)c0(θ) for some constant of proportionality ζ(s) that is
common across agents. Substituting into the certainty-equivalent aggregator µ, we have µ({c∗1(θ, s)) =
c∗0(θ)µ({ζ(s)}), and hence the first-order condition for c0 becomes

ω(θ)c0(θ)
−γ = χ,

where χ is independent of θ. Integrating over θ we obtain

C0 = χ−1/γ
∫

ω(θ)
1
γ dF(θ),

and
c∗0(θ) = Ω(θ)C∗0 ,

where Ω(θ) = ω(θ)
1
γ /
∫

ω(θ)
1
γ dF(θ). Given that c∗1(θ, s)/c0(θ) = C1(s)/C0, we have that c∗1(θ, s) =

Ω(θ)C∗1 (s), as well. Finally, given that the ratio of first and second period consumptions are equalized
across θ, it is equivalent to maximize first over the aggregates C0 and C1(s) and then allocate across θ

according to the optimal rule.
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E.5 Proof of Lemma 3

In the decentralized equilibrium, the individual’s problem is

max U(c0(θ), {c1(θ, s)}) s.t.

c0(θ) = y0(θ) + px(θ)− qb(θ)− T0(θ)

c1(θ, s) = b + D(s)(k0(θ)− x(θ))− T1(θ, s) ∀s ∈ S.

Eliminating b, we can write the budget set as S present-value constraints (suppressing θ):

c0 + qc1 = y0 + qy1 + px + qD(s)(k0 − x)− T0 − T1(s) ∀s ∈ S.

The first-order conditions for this problem take the same form as the planning problem, so the first-best
allocation satisfies the individual’s problem as long as it satisfies the budget set. For this, we need to
find a tax scheme {T0, T1(·, s)} and asset positions {b, x} such that for all θ and s:

Ω(θ)C∗0 = y0(θ) + px(θ)− qb(θ)− T0(θ)

Ω(θ)C∗1 (s) = y1(θ) + D(s)(k0(θ)− x(θ)) + b(θ)− T1(θ, s).

Using T1(θ, s) = a(θ) + m(θ)D(s) and the aggregate resource constraint in state s, we have:

Ω(θ) (D(s)K∗1 + Y1 + B∗) = y1(θ) + D(s)(k0(θ)− x(θ)) + b(θ)− a(θ)−m(θ)D(s).

For each s ∈ S, set

x(θ) = −m(θ)−Ω(θ)K∗1 − k0(θ)

b(θ) = Ω(θ)(Y1 + B∗)− y1(θ) + a(θ),

and the second-period budget constraint is satisfied for all s ∈ S. Setting

T0(θ) = Ω(θ)C∗0 + y0(θ) + px(θ)− qb(θ),

the first-period budget constraint is satisfied, as well. Morevoer, we have
∫

T0(θ)dF = 0. Hence, the tax
system along with the proposed policies {b, x} ensures that the household’s necessary and sufficient
conditions are satisfied evaluated at the first-best allocation.

E.6 Proof of Proposition 8

Recall that given aggregates {C0, {C1(s)}}, the first-best allocation can be written:

c0(θ) = Ω(θ)C0

c1(θ, s) = Ω(θ)C1(s) ∀s,

where Ω(θ) is given by (21). Thus, the change in the first-best allocation is

∆c0(θ) = Ω(θ)∆C0

∆c1(θ, s) = Ω(θ)∆C1(s).
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From the aggregate resource condition:

∆C0 = pX− pX− qB + qB

= X∆p + p∆X− B∆q− q∆B,

and

∆C1(s) = D(s)(K0 − X) + B− D(s)(K0 − X)− B

= (K0 − X)∆D(s) + D(s)∆X + ∆B.

We now show that the first-best allocation is affordable for each θ. Let individual θ alter first-period
saving by:

∆b(θ) = Ω(θ)∆B,

and capital sales:

∆x(θ) = Ω(θ)∆X.

If the first-best allocation is attainable with these portfolio choices and the proposed lump-sum trans-
fers, they are consistent with individual optimization. This follows from the fact that the first-best
allocation optimizes the distribution of consumption across time and states for each θ given the budget
set.

The proposed tax for period zero is:

∆T0(θ) = x(θ)∆p− b(θ)∆q−Ω(θ)(X∆p− B∆q).

Then, under the proposed tax policy:

∆c0(θ) = px(θ)− px(θ)− qb + qb− ∆T0(θ)

= x(θ)∆p + p∆x(θ)− b(θ)∆q− q∆b(θ)− ∆T0(θ)

= x(θ)∆p− b(θ)∆q + pΩ(θ)∆X− qΩ(θ)∆B . . .

− [x(θ)∆p− b(θ)∆q−Ω(θ)(X∆p− B∆q)]

= Ω(θ) (X∆p− B∆q− q∆B + p∆X)

= Ω(θ)∆C0.

For the second period in state s, the proposed tax is:

∆T1(θ, s) = (k0(θ)− x(θ))∆D(s)−Ω(θ)((K0 − X)∆D(s)).
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The change in the budget constraint in the second period becomes:

∆c1(θ, s) = D(s)(k0(θ)− x(θ))− D(s)(k0(θ)− x(θ)) + ∆b− ∆T1(θ, s)

= (k0(θ)− x(θ))∆D(s)− D(s)∆x(θ) + ∆b− ∆T1(θ, s)

= (k0(θ)− x(θ))∆D(s)− D(s)Ω(θ)∆X + Ω(θ)∆B

− [(k0(θ)− x(θ))∆D(s)−Ω(θ)((K0 − X)∆D(s))]

= Ω(θ)
(
(K0 − X)∆D(s)− D(s)∆X + ∆B

)
= Ω(θ)C1(θ, s).

Hence, the proposed taxes allow each θ to afford the change in the first-best allocation.

E.7 Proof of Corollary 5

∆M(s) = 0, ∀s ∈ S implies that

∆p = ∑
s

π(s)M(s)∆D(s)

∆q = 0.

Substituting into Proposition 8, we have

T0(θ) = T0(θ) + x(θ)∆p−Ω(θ)X∆p

T1(θ, s) = T1(θ, s) + (k0(θ)− x(θ))∆D(s)−Ω(θ) (K0 − X)∆D(s).

We can exploit Lemma 3 and consider an alternative tax system, as stated in the corollary:

T̂0(θ) = T0(θ) + k0(θ)∆p−Ω(θ)K0∆p

T̂1(θ, s) = T1(θ, s).

In the latter, relative to the former, agent θ pays (k1(θ)−Ω(θ)K1)∆p more in taxes in the first-period.
Instead, she pays (k1(θ)−Ω(θ)K1)∆D(s) less in taxes in period 1 in every state s. Reducing its invest-
ment in risky capital by the amount of extra taxes in period 0, the agent perfectly undoes the tax changes
in both periods and each state of the world. Hence, the budget sets are invariant to this transformation,
and either allows the agent to afford the first-best allocation.
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