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We study the problem of a partisan gerrymanderer who assigns voters to equipopulous
districts to maximize his party’s expected seat share. The designer faces both aggregate,
district-level uncertainty (how many votes his party will receive) and idiosyncratic, voter-
level uncertainty (which voters will vote for his party). Pack-and-pair districting, where
weaker districts are “packed” with a single type of voter, while stronger districts contain
two voter types, is optimal for the gerrymanderer. The optimal form of pack-and-pair dis-
tricting depends on the designer’s popularity and the relative amounts of aggregate and id-
iosyncratic uncertainty. When idiosyncratic uncertainty dominates, a designer with major-
ity support pairs all voters, while a designer with minority support packs opposing voters
and pairs more favorable voters; these plans resemble uniform districting and “packing-and-
cracking,” respectively. When aggregate uncertainty dominates, the designer packs moderate
voters and pairs extreme voters; this “matching slices” plan has received some attention in
the literature. Estimating the model using precinct-level returns from recent US House elec-
tions shows that, in practice, idiosyncratic uncertainty dominates. We discuss implications
for redistricting reform, political polarization, and detecting gerrymandering. Methodolog-
ically, we exploit a formal connection between gerrymandering—partitioning voters into
districts—and information design—partitioning states of the world into signals.
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1. INTRODUCTION

Legislative district boundaries are drawn by political partisans under many electoral systems
(Bickerstaff, 2020). In the United States, the significance of partisan districting has grown with
the rise of computer-assisted districting (Newkirk, 2017), together with intense partisan efforts
to gain and exploit control of the districting process. These trends culminated in “The Great
Gerrymander of 2012” (McGhee, 2020), where the Republican party’s Redistricting Majority
Project (REDMAP), having previously targeted state-level elections that would give Republi-
cans control of redistricting, aggressively redistricted several states, including Michigan, Ohio,
Pennsylvania, and Wisconsin. The resulting districting plans are widely viewed as contributing
to the outcome of the 2012 general election, where Republican congressional candidates won
a 33-seat majority in the House of Representatives with 49.4% of the two-party vote (McGann,
Smith, Latner, and Keena, 2016). In light of these developments—along with the Supreme
Court ruling in Rucho v. Common Cause (2019) that partisan gerrymanders are not judiciable
in federal court and the continued prominence of gerrymandering in the 2020 US redistricting
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cycle (Rakich and Mejia, 2022)—partisan gerrymandering looks likely to remain an important
feature of American politics for some time.

This paper studies the problem of a partisan gerrymanderer (the “designer”) who assigns
voters to a large number of equipopulous districts so as to maximize his party’s expected seat
share.1 This problem approximates the one facing many partisan gerrymanderers in the United
States, where the constraint that districts must be equipopulous is strictly enforced.2 In practice,
gerrymanderers also face additional constraints, such as the federal requirements that districts
are contiguous and do not discriminate on the basis of race, and various state-level restrictions
such as “compactness” requirements, requirements to respect political sub-divisions such as
county lines, requirements to represent racial or ethnic groups or other communities of interest,
and so on. While these complex constraints can be important, we believe that often they are
not as binding as they might seem, and also that they are more productively considered on a
case-by-case basis rather than as part of a general theoretical analysis.3 We therefore follow
much of the literature (discussed below) in focusing on the simpler problem with only the
equipopulation constraint.

When the designer has perfect information, the solution to this problem is well-known. If
the designer’s party is supported by a minority of voters of size m < 1/2, he “packs” 1 −
2m opposing voters in districts where he receives zero votes and “cracks” the remaining 2m
voters in districts which he wins with 50% of the vote. If the designer has majority support,
he can win all districts by making them identical. Thus, under perfect information, pack-and-
crack is optimal for a designer with minority support, while uniform districting is optimal for a
designer with majority support. We instead consider the more general and realistic case where
the designer must allocate a variety of types of voters (or, more realistically, groups of voters
such as census blocks or precincts) under uncertainty. The goal of this paper is to characterize
optimal partisan gerrymandering in this setting and to draw implications for some broader legal
and political economy issues surrounding gerrymandering.

In outline, our model and results are as follows. We assume that the designer faces both ag-
gregate, district-level uncertainty (how many votes his party will receive) and idiosyncratic,
voter-level uncertainty (which voters will vote for his party). Aggregate uncertainty is pa-
rameterized by a one-dimensional aggregate shock, while voters are parameterized by a one-
dimensional type that determines a voter’s probability of voting for the designer’s party for each
value of the aggregate shock. We assume that the distributions of the aggregate and idiosyn-
cratic shocks are symmetric and unimodal with log-concave densities drawn from the same
location-scale family. This assumption lets us cleanly compare the “amounts” of aggregate and
idiosyncratic uncertainty.

Our first result is that optimal districting takes a pack-and-pair form. Under pack-and-pair
districting, the designer creates weaker districts that contain a single voter type (which are
analogous to the packed districts under pack-and-crack) and stronger districts that contain two
voter types (which are analogous to the cracked districts under pack-and-crack). The class of

1We hasten to add that studying this problem does not endorse gerrymandering, any more than studying monopo-
listic behavior endorses monopoly.

2In Karcher v. Daggett (1983), the Supreme Court rejected a districting plan in New Jersey with less than a
1% deviation from population equality, finding that “there are no de minimus population variations, which could
practically be avoided, but which nonetheless meet the standard of Article I, Section 2 [of the U.S. Constitution]
without justification.”

3An exception is the requirement to respect county lines, which we address in Section 6.2. See Friedman and
Holden (2008) for discussion of the other constraints. For example, contiguity is not as severe a constraint as it might
seem, because contiguous districts can have highly irregular shapes. The title of this paper, typeset in Gerry font
(https://www.uglygerry.com/), contains many examples of irregularly shaped districts.

https://www.uglygerry.com/
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pack-and-pair plans admits a tight characterization but is rich enough to cover a variety of
districting plans, including refinements of all of the main plans proposed in the prior literature.
The optimality of pack-and-pair districting is thus a key organizing result.

We then turn to our main substantive results, which characterize optimal districting as a
function of the designer’s popularity and the relative amounts of idiosyncratic and aggregate
uncertainty. First, we show that if the designer has strong support from all voter types, then a
negative assortative districting (NAD) plan is optimal, where extreme left and right-wing vot-
ers are paired together. Conversely, if the designer has weak support from all voter types and
idiosyncratic uncertainty is larger than aggregate uncertainty, then a segregation plan is opti-
mal, where each district contains only a single voter type. Second, if aggregate uncetainty is
very small, optimal districting for a designer with majority support approximates NAD, while
optimal districting for a designer with minority support approximates a pack-opponents-and-
pair (POP) plan, where unfavorable voters are segregated and more favorable voters are paired
in a negatively assortative manner. The former result is analogous to the optimality of uniform
districting for a designer with majority support without uncertainty, because NAD plans are
versions of uniform districting that pair voter types rather than pooling all types together; simi-
larly, the latter result is analogous to the optimality of pack-and-crack districting for a designer
with minority support without uncertainty, because POP plans are versions of pack-and-crack
districting that segregate unfavorable voters and pair more favorable voter types rather than
pooling them. Indeed, while exactly optimal districting with small aggregate uncertainty ap-
proximates NAD or POP, much simpler uniform districting or pack-and-crack plans are approx-
imately optimal (for the cases of majority and minority designer support, respectively). Third,
if idiosyncratic uncertainty is very small, optimal districting approximates NAD with a 50-50
voter type split in each district.4 Fourth, in the intermediate region where both the designer’s
support among voters and the ratio of aggregate and idiosyncratic uncertainty are balanced,
mixed plans can be optimal (as well as a pack-moderates-and-pair plan, where moderate vot-
ers are segregated and extreme left and right-wing voters are paired), and we can numerically
trace out the boundaries of the parameter regions where each type of plan is optimal.

As we discuss in Section 6, the form of optimal partisan districting has significant implica-
tions for several political and legal issues, including redistricting reform, intra- and inter-district
political polarization, and measuring gerrymandering. Since our results show that the ratio of
idiosyncratic and aggregate uncertainty is a key determinant of the form of optimal districting,
it is therefore important to understand whether idiosyncratic or aggregate uncertainty is larger
in practice. We answer this question using precinct-level returns from the 2016, 2018, and 2020
US House elections. The data clearly show that idiosyncratic uncertainty is much larger than
aggregate uncertainty. Intuitively, this finding results from the simple observation that, in prac-
tice, most precinct vote splits are much closer to 50-50 (the vote split under high idiosyncratic
uncertainty) than 100-0 or 0-100 (the vote splits under high aggregate uncertainty).5 Therefore,
for the realistic parameter range, exactly optimal districting approximates NAD (for a designer
with majority voter support) or POP (for a designer with minority support), while uniform dis-
tricting or pack-and-crack is approximately optimal. This finding can help explain why actual
gerrymandering usually resembles uniform districting or pack-and-crack.

Methodologically, we establish a formal connection between gerrymandering—partitioning
voters into districts—and information design—partitioning states of the world into signals.

4This result refines the main result of Friedman and Holden (2008).
5This observation also implies that simpler models with only two types of voters or precincts (e.g., Owen and Grof-

man 1988) cannot closely approximate the problem facing actual gerrymanderers, who must assign many different
types of precincts.
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The partisan gerrymandering problem we study is mathematically equivalent to a non-linear
Bayesian persuasion problem with a one-dimensional state, a one-dimensional action for the
receiver, and state-independent sender preferences. Our results are novel in the context of this
persuasion problem, so this paper directly contributes to information design as well as gerry-
mandering. More importantly, we establish a strong connection between these topics.6

Related Literature. The closest prior papers on optimal partisan gerrymandering are Owen
and Grofman (1988), Friedman and Holden (2008), and Gul and Pesendorfer (2010). Owen and
Grofman’s model is equivalent to the special case of our model with two voter types. Gul and
Pesendorfer study competition between two designers who each control districting in some area
and aim to win a majority of seats.7 A simplified version of their model with a single designer
is equivalent to the special case of our model with uniform idiosyncratic shocks. Friedman and
Holden consider a model similar to ours (although with finitely many districts, rather than a
continuum as in our model and Gul and Pesendorfer), but their main results concern the case
where idiosyncratic uncertainty is much smaller than aggregate uncertainty. In contrast, we do
not restrict the relative amounts of aggregate and idiosyncratic uncertainty, and we show em-
pirically that the practically relevant case is the one where idiosyncratic uncertainty dominates
(i.e., the opposite of the case emphasized by Friedman and Holden).

The broader literature on gerrymandering and redistricting addresses a wide range of issues,
including geographic constraints on gerrymandering (Sherstyuk, 1998, Shotts, 2001, Puppe
and Tasnádi, 2009), gerrymandering with heterogeneous voter turnout (Bouton, Genicot, Cas-
tanheira, and Stashko, 2023, Gomberg, Pancs, and Sharma, 2024), socially optimal districting
(Gilligan and Matsusaka, 2006, Coate and Knight, 2007, Bracco, 2013), measuring district
compactness (Chambers and Miller, 2010, Fryer and Holden, 2011, Ely, 2022), the interac-
tion of redistricting and policy choices (Shotts, 2002, Besley and Preston, 2007, Groll and
O’Halloran, 2024), measuring gerrymandering (King and Browning, 1987, McGhee, 2014,
Stephanopoulos and McGhee, 2015, Deford, Duchin, and Solomon, 2021, Gomberg, Pancs,
and Sharma, 2023), and assessing the consequences of redistricting (among many: Gelman
and King, 1994b, McCarty, Poole, and Rosenthal, 2009, Hayes and McKee, 2009, Jeong and
Shenoy, 2022, Sabet and Yuchtman, 2024). As the partisan gerrymandering problem interacts
with many of these issues, our analysis may facilitate future research in these areas.

Outline. The paper is organized as follows: Section 2 presents the model. Section 3 es-
tablishes general properties of optimal districting plans that hold regardless of the designer’s
popularity or the amount of aggregate and idiosyncratic uncertainty. Section 4 contains our
main theoretical and numerical results, which characterize optimal districting as a function of
these parameters. Section 5 contains our empirical results, which estimate which parameters
are the practically relevant ones. Section 6 discusses policy implications. Section 7 concludes.
All proofs are deferred to the appendix.

2. MODEL

We consider a standard electoral model with one-dimensional voter types (parameterizing
voter partisanship) and one-dimensional aggregate uncertainty in each district-level race (pa-
rameterizing the vote share for the designer’s party).

6Contemporaneous papers by Lagarde and Tomala (2021) and Gomberg, Pancs, and Sharma (2023) also emphasize
connections between gerrymandering and information design, albeit in less general models: Lagarde and Tomala
assume two voter types, while Gomberg, Pancs, and Sharma assume no aggregate uncertainty. The closest paper in
the persuasion literature is our companion paper, Kolotilin, Corrao, and Wolitzky (2024), which we discuss later on.

7Friedman and Holden (2020) study designer competition in the model of their 2008 paper.
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Voters and Vote Shares. There is a continuum of voters. A voter votes for the designer’s
party (for short, “votes for the designer”) iff

s− r− t≥ 0,

where
• s ∈ [s, s], with s < s, is the voter’s type, which is observed by the designer and is the object

of districting. The population distribution of s is denoted by F .
• r ∈ R is the aggregate shock in the voter’s district, which realizes after districting. The

distribution of r in each district is denoted by G.8

• t ∈R is an idiosyncratic, voter-specific “taste shock,” which also realizes after districting.
The distribution of t is denoted by Q.

Thus, the share of type-s voters who vote for the designer in a district where the aggregate
shock takes value r equals Q(s− r).

Note that the designer faces two kinds of uncertainty at the time of districting: aggregate,
district-level uncertainty, r, and idiosyncratic, voter-level uncertainty, t. Many of our results
turn on a comparison of the “amount” of each kind of uncertainty. To facilitate this comparison,
we assume that G and Q have the same shape, in that there exists η > 0 such that G(r) =
Q(ηr).9 We also define γ = η2/(1 + η2) ∈ (0,1), so the ratio of the variances of r and t is
(1− γ)/γ. The parameter γ thus captures the share of idiosyncratic uncertainty. We say that
aggregate uncertainty is larger than idiosyncratic uncertainty if γ < 0.5, while idiosyncratic
uncertainty is larger if γ > 0.5.

The model is now fully parameterized by the distributions F and Q and the parameter
γ ∈ (0,1). We assume that F and Q are four-times differentiable and that the corresponding
densities f and q are strictly positive. We also assume that q is symmetric about 0 and strictly
log-concave:

d2

dt2
ln (q(t))< 0 for all t.

This implies that Q is strictly convex below 0 and strictly concave above 0, with Q(0) = 1/2.
Log-concavity of q is a key assumption. This standard property is satisfied by many distribu-

tions (Bagnoli and Bergstrom, 2005) and is similar to Friedman and Holden’s (2008) “Informa-
tive Signal Property” assumption. Substantively, it captures the realistic feature that moderate
voters are more sensitive to the aggregate shock than more extreme voters.10

Districting Plans. The designer assigns voters to a continuum of equipopulous districts
based on their types s, and thus determines the distribution P of s in each district.11 A district
is characterized by the distribution P of voter types s it contains. Thus, a districting plan—
which specifies the measure of districts with each voter type distribution P—is a distribution

8The correlation among district-level aggregate shocks is irrelevant for our analysis. However, we do estimate it
empirically.

9Mathematically, this says that G and Q lie in the same location-scale family. An earlier version of this paper,
Kolotilin and Wolitzky (2020), contains additional results where G and Q have different shapes.

10As Nathaniel Rakich and Nate Silver put it in describing the “elasticity scores” in FiveThirtyEight.com’s fore-
casting model, “Voters at the extreme end of the spectrum—those who have close to a 0 percent or a 100 percent
chance of voting for one of the parties—don’t swing as much as those in the middle,” (Rakich and Silver, 2018).

11We follow Gul and Pesendorfer (2010) in assuming a continuum of districts. Since districting plans in the US
are drawn at the state level, this implicitly assumes that each state contains a large number of districts. Of course,
this is a better approximation for state legislative districts and for congressional districts in large states than it is for
congressional districts in small states. Introducing integer constraints on the number of districts, while interesting and
realistic, would complicate the analysis and obscure our insights.
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H over distributions P of s, such that the population distribution of s is given by F : that is,
H∈∆∆[s, s] and ∫

P (s)dH(P ) = F (s) for all s.12

For example, under uniform districting, where all districts are the same, H assigns proba-
bility 1 to P = F . In the opposite extreme case of segregation, where each district consists
entirely of one type of voter, every distribution P in the support of H takes the form P = δs
for some s ∈ [s, s], where δs denotes the degenerate distribution on voter type s. Finally, the
best-known districting plan is pack-and-crack, where there is a cutoff voter type s∗ ∈ (s, s)
such that supp(H) = {P,P ′} and P and P ′ are the lower and upper truncations of F at s∗.

We say that a districting plan is pure if (almost) each voter type s is assigned to only one
kind of district (so there is a unique P ∈ supp(H) such that s ∈ supp(P )) and mixed otherwise.
Since the distribution of voter types F is continuous, it is natural to expect pure districting to
be optimal, but we will see that this is not always the case.

Designer’s Problem. The designer wins a district iff he receives a majority of the district
vote. Thus, the designer wins a district with voter type distribution P (henceforth, “district
P ”) iff the district’s aggregate shock r satisfies

∫
Q(s − r)dP (s) ≥ 1/2. Since Q(s − r) is

decreasing in r and Q(0) = 1/2, the designer wins district P iff

r ≤ r∗(P ) :=

{
r :

∫
Q(s− r)dP (s) =Q(0)

}
.

Note that the threshold shock r∗(P ) to win a segregated district P = δs is simply s, while in
general r∗(P ) lies somewhere in the convex hull of supp(P ). We say that a district P is weaker
than another district P ′ if r∗(P )< r∗(P ′). Since the aggregate shock has the same distribution
in all districts, the designer wins weaker districts with lower probability.

We assume that the designer maximizes his party’s expected seat share.13 Thus, the designer’s
problem is

max
H∈∆∆[s,s]

∫
G(r∗(P ))dH(P )

s.t.
∫

PdH(P ) = F.

This problem is similar to that of Friedman and Holden (2008), which in turn nests Owen
and Grofman (1988) and a single-designer version of Gul and Pesendorfer (2010).14 It is also
equivalent to a Bayesian persuasion problem where the designer splits a prior distribution F
into posterior distributions P and obtains utility G(r∗(P )) from inducing posterior P .15

12Throughout, for any compact metric space X , ∆X denotes the set of Borel probability measures on X , endowed
with the weak* topology. For any µ ∈∆X , its support supp(µ) is the smallest compact set of measure one.

13See Section 7 and Kolotilin and Wolitzky (2020) for discussion of more general designer objectives.
14Friedman and Holden assume a finite number of districts rather than a continuum and do not assume that G and

Q have the same shape. Owen and Grofman assume binary voter types. Gul and Pesendorfer consider a majoritarian
objective with both state-level and district-level aggregate shocks; however, after conditioning on the pivotal value of
the state-level shock, their problem reduces to maximizing expected seat share with only district-level shocks.

15Specifically, the designer’s problem lies in the translation-invariant subcase of the state-independent sender case
of the persuasion problem studied in Kolotilin, Corrao, and Wolitzky (2024), which specializes the general Bayesian
persuasion problem of Kamenica and Gentzkow (2011) by assuming that the state and the receiver’s action are one-
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3. OPTIMAL PARTISAN GERRYMANDERING: GENERAL PROPERTIES

We first establish two general properties of optimal districting plans that hold regardless of
the designer’s popularity or the amount of aggregate and idiosyncratic uncertainty. The first of
these, single-dippedness, is the key property identified by Friedman and Holden (2008)—we
just re-establish their result in our continuum-district model. The second property, pack-and-
pairedness, is novel.

3.1. Single-Dippedness

We first show that optimal districting plans are strictly single-dipped, in that more extreme
voters are assigned to stronger districts: formally, any district P ∈ supp(H) containing any two
voter types s < s′′ is stronger than any district P ′ ∈ supp(H) containing any intervening voter
type s′ ∈ (s, s′′), in that r∗(P ′)< r∗(P ).16 Note that if districting is strictly single-dipped then
each district contains at most two distinct voter types. Thus, any district P in the support of a
strictly single-dipped districting plan H is either segregated (if | supp(P )| = 1) or paired (if
| supp(P )|= 2). For example, segregation is strictly single-dipped, but uniform districting and
pack-and-crack are not.

LEMMA 1: Any optimal districting plan is strictly single-dipped.

Lemma 1 recapitulates Lemma 1 of Friedman and Holden (2008) in our continuum-district
model.17 To see the intuition, suppose a districting plan creates two districts, 1 and 2, with the
same threshold aggregate shock r∗, but where District 1 contains moderate voters and District
2 contains a mix of left-wing and right-wing extremists. Since q is log-concave, the vote share
is more sensitive to the aggregate shock in District 1 than in District 2, which implies that a
marginal voter is more likely to be pivotal in District 2 than in District 1. The designer can
then profitably exploit this asymmetry by re-assigning some unfavorable voters to District 1
and re-assigning some favorable voters to District 2, thus weakening the moderate District 1
and strengthening the extreme District 2. Breaking all ties in favor of extreme disticts in this
manner leads to strictly single-dipped districting.

3.2. Pack-and-Pairedness

A strictly single-dipped districting plan can contain a mix of segregated and paired districts of
varying strengths. If such a plan has the further property that every segregated district is weaker
than every paired district (i.e., there do not exist P,P ′ ∈ supp(H) such that | supp(P )| = 1,
| supp(P ′)|= 2, and r∗(P )> r∗(P ′)), we say that the plan is pack-and-pair.

A pack-and-pair plan H can be described in a simple way. There is a bifurcation point
rb ∈ [s, s] that divides the segregated and paired districts, so that r∗(P )≤ rb for all segregated
districts P ∈ supp(H), and r∗(P )> rb for all paired districts P ∈ supp(H). The assignment

dimensional, the receiver’s utility is supermodular and concave in her action, and the sender’s utility is independent
of the state and increasing in the receiver’s action. In the gerrymandering context, the designer’s preferences are state-
independent because he only cares about how many districts he wins and not directly about the districts’ composition.

16We say that a district P “contains” a voter type s if s ∈ supp(P ).
17Kolotilin, Corrao, and Wolitzky (2024) give sufficient conditions for single-dippedness in a more general model

that allows state-dependent designer preferences.
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of voters to paired districts is then described by a decreasing function s1 and an increasing func-
tion s2, where the two types in a paired district P are s1(r

∗(P )) and s2(r
∗(P ))> s1(r

∗(P )).
Stronger paired districts thus contain more extreme voters, as single-dippedness requires.18

Despite this tight characterization, a range of interesting districting plans are pack-and-pair,
including the following:

Segregation, where all voters are segregated: P = δr∗(P ) for all P ∈ supp(H), or equivalently
rb = s.

Pack-Moderates-and-Pair (PMP), where moderate voters are segregated and extreme voters
are paired in a negatively assortative manner: H is pure, rb ∈ (s, s), and there exists ŝ ∈
(s, rb) such that a district P ∈ supp(H) is segregated iff r∗(P ) ∈ [ŝ, rb].

Pack-Opponents-and-Pair (POP), where unfavorable voters are segregated and more favor-
able voters are paired in a negatively assortative manner: H is pure, rb ∈ (s, s), and there
exists ŝ ∈ (s, rb) such that a district P ∈ supp(H) is segregated iff r∗(P ) ∈ [s, ŝ].

Negative Assortative Districting (NAD), where all voters are paired in a negatively assorta-
tive manner: rb = infP∈supp(H) r

∗(P ).

These four plans feature prominently in our results (as illustrated in Figures 1–3) and war-
rant some discussion. First, segregation and NAD are the extreme pack-and-pair plans where
all voter types are segregated and where only a single type is segregated. There is a unique
segregatation plan, but there is a continuum of NAD plans, depending on the weights on the
different voter types in each paired district. (Similarly, there is also a continuum of PMP and
POP plans.) NAD plans can be viewed as “strictly single-dipped versions” of uniform district-
ing: starting from uniform districting and splitting the pool of voters into pairs in a strictly
single-dipped manner yields NAD.

Similarly, POP plans are strictly single-dipped version of Gul and Pesendorfer’s (2010)
“p-segregation” plan, where unfavorable voters are segregated and more favorable voters are
pooled: starting from p-segregation and splitting the pool into pairs yields POP. POP can also
be obtained from pack-and-crack districting by first splitting the weak districts into segregated
ones (yielding p-segregation) and then splitting the strong districts into pairs.

Finally, PMP is the same as Friedman and Holden’s (2008) “matching slices” plan, with the
difference that Friedman and Holden assume a finite number of districts and do not mention
the possibility of segregating a non-trivial interval of moderate voter types.

An instructive example of a plan that can be strictly single-dipped but not pack-and-pair is
“Pack-Supporters-and-Pair,” where favorable voters are segregated and less favorable voters
are paired. This plan can be obtained from pack-and-crack by splitting weak districts into pairs
and splitting strong districts into segregated ones.

Our first main result is that pack-and-pair districting is optimal if idiosyncratic uncertainty is
larger than aggregate uncertainty.

THEOREM 1: If idiosyncratic uncertainty is larger than aggregate uncertainty, there is a
unique optimal districting plan, which is pack-and-pair.

Numerically, pack-and-pair districting is also optimal when idiosyncratic uncertainty is
smaller than aggregate uncertainty, but we were not able to prove this.19 However, Theorem
1 covers the empirically relevant case, as we will estimate that γ is much greater than 0.5.

18Lemma 5 in Appendix A formalizes the description of a pack-and-pair plan by a bifurcation point rb and func-
tions s1 and s2. In particular, we define the bifurcation point as the infimum of r∗(P ) over all paired districts
P ∈ supp(H).

19See Figures 1–3, where all optimal plans are pack-and-pair. In these figures, G and Q are normal. Using Lemma
6 in Appendix A, we have checked numerically that pack-and-pair is also always optimal when G and Q are logistic.
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The intuition for Theorem 1 is as follows. First, log-concavity of g implies that G, the distri-
bution of the aggregate shock, is first convex and then concave. Second, convexity of G favors
segregation (as splitting a district with threshold aggregate shock r∗ into districts with threshold
shocks r∗−ε and r∗+ε increases expected seat share when G is convex and Q is linear), while
concavity of G favors pairing. Thus, when G is first convex and then concave, weak districts
should be segregated and strong districts should be paired. This is precisely pack-and-pair.20

Theorem 1 is a fundamental result: it is optimal to make paired districts stronger than seg-
regated ones. However, while pack-and-pair plans admit a tight characterization, we have seen
that a wide variety of plans are pack-and-pair. The next section characterizes optimal plans as
a function of F , Q, and γ.

As an aside, we note that Theorem 1 also contributes to the Bayesian persuasion literature.
An important disclosure policy that frequently arises in this literature is upper censorship,
where states below a cutoff are disclosed and states above the cutoff are pooled. Upper cen-
sorship is often optimal in “linear” persuasion problems, where a posterior can be summarized
by its mean (Kolotilin, 2018, Kolotilin, Mylovanov, and Zapechelnyuk, 2022). However, in
non-linear persuasion problems, a version of strict single-dippedness often holds, so disclosure
polices that pool more than two states (like upper censorship) cannot be optimal (Kolotilin,
Corrao, and Wolitzky, 2024). This raises the question of when a strictly single-dipped version
of upper censorship—such as a pack-and-pair policy—is optimal. Theorem 1 is the first result
in the literature to give sufficient conditions for such policies to be optimal.

4. OPTIMAL PARTISAN GERRYMANDERING IN DIFFERENT PARAMETER REGIMES

We now present our results on optimal districting as a function of the designer’s popularity
and the ratio of idiosyncratic and aggregate uncertainty. First, NAD is optimal if the designer
has strong support from all voter types, and segregation is optimal if the designer has weak
support from all voter types and idiosyncratic uncertainty is larger than aggregate uncertainty
(Theorem 2). Second, optimal plans approximate NAD or POP with equally strong paired dis-
tricts if aggregate uncertainty is small (Theorem 3). Since we will estimate that aggregate un-
certainty is small empirically, Theorem 3 is our most practically relevant result. However, while
exactly optimal plans approximate NAD or POP, uniform districting or pack-and-crack district-
ing are also approximately optimal. Third, optimal plans approximate NAD with a 50-50 voter
type split in each district if idiosyncratic uncertainty is small (Theorem 4). Fourth, in the inter-
mediate region where both the designer’s support among voters and the ratio of idiosyncratic
and aggregate uncertainty are balanced, mixed versions of POP and PMP can be optimal, and
we can numerically trace out the boundaries of the parameter regions where each type of plan
emerges (Theorem 5 and the subsequent numerical results). Overall, we give a fairly complete
picture of how optimal districting varies with the designer’s support and the ratio of idiosyn-
cratic and aggregate uncertainty, which we illustrate in Figure 3 at the end of this section.

4.1. Optimal Districting with Imbalanced Voter Support

We first investigate optimal districting when voter support is highly imbalanced between the
parties. This case is relatively simple and is not too unrealistic: we will estimate that in around

The normal and logistic families are the only standard location-scale families we are aware of with symmetric and
strictly log-concave densities on R.

20A complication is that log-concavity of q always favors pairing. In Section 4.1, we explain how γ > 0.5 ensures
that the log-concavity of g “dominates” that of q.
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half of US states, voter support is sufficiently imbalanced that NAD (an optimal plans in the
high imbalanced case) is optimal for our estimated parameters.21

We say that the designer has uniformly strong support if s ≥ 0. This means that, when the
aggregate shock takes its modal value of 0, all voter types vote for the designer with probability
at least 50%. Thus, a designer with uniformly strong support can only lose a district when the
aggregate shock lands in the right (unfavorable) tail. Conversely, the designer has uniformly
weak support if s≤ 0, so he can only win a district when the aggregate shock lands in the left
tail. Finally, the designer has balanced support if r∗(F ) = 0, so the overall vote is 50-50 when
the aggregate shock takes its modal value.

THEOREM 2: The following hold:
1. If the designer has uniformly strong support, there is a unique optimal districting plan,

which is NAD.
2. If the designer has uniformly weak support and idiosyncratic uncertainty is larger than

aggregate uncertainty, there is a unique optimal districting plan, which is segregation.
3. If the designer has balanced support, NAD and segregation are both suboptimal.

Since NAD plans are strictly single-dipped versions of uniform districting, the optimality
of NAD in case 1 is akin to the optimality of uniform districting for a designer with majority
support in the absence of aggregate uncertainty. To see why NAD is optimal, recall that any
strictly single-dipped plan that never segregates two distinct voter types is NAD. So, since
s≥ 0, it suffices to show that it is sub-optimal for the designer to segregate any two voter types
s < s′ that lie in a region where G is concave. To see this, suppose the designer pools a few
type-s voters in with the type-s′ voters. The marginal effect of this change on the designer’s
expected seat share among type-s voters is

G(s′)−G(s),

which is the increased probability of winning a type-s voter’s district when she moves from the
weak district δs to the strong district δs′ . On the other hand, the marginal effect of this change
on the designer’s expected seat share among type-s′ voters is

Q(s− s′)−Q(0)

q(0)
g(s′).

This follows because the first term is the marginal effect on the threshold shock to win the
strong district, where this comes from using the implicit function theorem to calculate dr/dρ
at ρ= 0 from the equation

ρQ(s− r) + (1− ρ)Q(s′ − r) =Q(0),

and the second term is the density of the aggregate shock at r∗(δs′) = s′. Finally, the sum of
the two effects is positive, because

G(s′)−G(s)

g(s′)
> s′ − s >

Q(0)−Q(s− s′)

q(0)
,

21However, the estimated parameters are not extreme enough to satisfy the conditions in Theorem 2, which are
sufficient but not necessary for NAD to be optimal.
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where the first inequality is by strict concavity of G on [s, s′], and the second inequality is by
strict convexity of Q on [s− s′,0].

The intuition for why segregation is optimal in case 2 is that, for any two voter types s and
s′ that lie in a region where G is “sufficiently convex” relative to Q, we have

G(s′)−G(s)

g(s′)
<

Q(0)−Q(s− s′)

q(0)
,

which by a similar logic as above implies that it is optimal for the designer to separate any
two voter types rather than pooling them. Note that it is not enough for G to be just slightly
convex, because now (in contrast to case 1) the convexity of G and the convexity of Q compete
in comparing the two effects above: intuitively, log-concavity of Q favors pooling, because a
few unfavorable voters are unlikely to be pivotal and thus can be safely added to a stronger
district. The proof of Theorem 2 shows that the convexity of G “wins” if γ ≥ 0.5. Intuitively,
when γ ≥ 0.5, G is more convex than Q, which suffices for the above inequality.

In case 3, neither NAD nor segregation are optimal, so the optimal plan creates a mix of
segregated and paired districts.22 The intuition is that the designer prefers pooling any two
positive voter types, so segregation is suboptimal; but at the same time, for any strictly single-
dipped NAD plan, there exist nearby voter types that are paired in a district P with r∗(P )< 0,
and the designer is better-off segregating these types.

We remark that the logic of Theorem 1 is a more intricate variant of Theorem 2’s. Note
that a strictly single-dipped plan is not pack-and-pair iff there exist s < r < s′ ≤ s′′ such that
voter types s < s′ are paired in a district P with r∗(P ) = r ∈ (s, s′) and voter type s′′ is
segregated. Suppose toward a contradiction that such a plan is optimal. As in case 2 of Theorem
2, if idiosyncratic uncertainty is larger than aggregate uncertainty then pooling type-s voters in
district P is worse than segregating them if r ≤ 0 (the range where G is convex), so we must
have r > 0. But then, it can be shown that the planner would be better-off removing a few type-
s voters from district P and pooling them in with the type-s′′ voters, by a similar argument as
in Theorem 2.

To turn the above arguments into rigorous proofs of Theorems 1 and 2, we rely on duality
and complementary slackness theorems developed in Kolotilin, Corrao, and Wolitzky (2024),
which we restate as Lemma 2 in Appendix A. The key implication of Lemma 2 is that there is
a well-defined Lagrange multiplier λ(r∗(P )) on the constraint

∫
Q(s− r∗(P )dP (s) =Q(0),

which is given by the formula

λ(r∗(P )) =
g(r∗(P ))∫

q(s− r∗(P ))dP (s)

for all districts P in the support of an optimal plan H, and that the designer only assigns type-s
voters to districts P that maximize

G(r∗(P )) + λ(r∗(P ))(Q(s− r∗(P ))−Q(0)).

Intuitively, λ(r∗(P )) is the designer’s value of an extra vote in district P , which equals the
product of the designer’s marginal utility of increasing r∗(P ) (which equals g(r∗(P ))) and the

22Proposition 1 of Friedman and Holden (2008) shows that PMP (“matching slices”) is optimal when idiosyncratic
uncertainty is sufficiently small, but their discussion focuses on NAD. In contrast, Proposition 2 shows that NAD is
never optimal with symmetric parties and a continuum of districts.
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derivative of r∗(P ) with respect to ε in the equation
∫
Q(s− r∗(P ))dP (s) =Q(0)− ε (which

equals 1/
∫
q(s− r∗(P ))dP (s) by the implicit function theorem). The designer’s “total value”

of assigning a type-s voter to district P then equals the sum of G(r∗(P )) (the probability of
winning district P ) and λ(r∗(P ))(Q(s− r∗(P ))−Q(0)) (the product of the designer’s value
of an extra vote in district P and the number of net votes provided by a type-s voter at the
pivotal aggregate shock r∗(P )). The proofs of Theorems 1 and 2 combine Lemma 2 and the
above arguments.

4.2. Optimal Districting with Small Aggregate or Idiosyncratic Uncertainty

We now consider optimal districting when either aggregate or idiosyncratic uncertainty is
small. We will see that the small aggregate uncertainty case is the empirically relevant one.
We include the small idiosyncratic uncertainty case for completeness and also to show how the
main result of Friedman and Holden (2008) fits in our framework.23

Aggregate uncertainty is small when F and Q are fixed and γ → 1, so the aggregate shock
r is close to 0 with high probability. When aggregate uncertainty is small and r∗(F ) > 0 (so
the designer has majority support at the modal aggregate shock), the designer’s expected seat
share is close to 1 under uniform districting. But since uniform districting is not strictly single-
dipped, it cannot be exactly optimal for any γ < 1, by Lemma 1. Instead, we show that optimal
districting approximates NAD with equally strong paired districts.Intuitively, when aggregate
uncertainty is small and r∗(F )> 0, optimal districting starts from uniform districting and then
splits pooled districts into equally strong paired districts in a negatively assortative manner.

When aggregate uncertainty is small and r∗(F ) < 0, the designer’s optimal expected seat
share is approximately 1 − F (s∗(0)), where, for any r ∈ (r∗(F ), s), s∗(r) is defined so that
the designer’s vote share among voter types s ≥ s∗(r) at aggregate shock r is 50%.24 This
expected seat share can be approximated by a pack-and-crack plan where, for a small ε > 0,
voter types s < s∗(ε) are assigned to identical weak districts that the designer loses with high
probability, and voter types s≥ s∗(ε) are assigned to identical strong districts that the designer
wins with a vote share close to 50% with high probability.25 However, since pack-and-crack
districting is not strictly single-dipped, it cannot be exactly optimal. Instead, we show that
optimal districting approximates POP with equally strong paired districts. Intuitively, when
aggregate uncertainty is small and r∗(F ) < 0, optimal districting starts from pack-and-crack
and then splits the packed districts into segregated districts and splits the cracked districts into
equally strong paired districts in a negatively assortative manner.

To state our result, let H∗ be the unique districting plan that segregates types below s∗(0)
(if s∗(0) > s, which holds when r∗(F ) < 0) and pairs types above s∗(0) in equally strong
districts in a negatively assortative manner. Formally, letting r∗+(F ) = max{0, r∗(F )}, H∗ is
the unique plan H such that, for any P ∈ supp(H), either (a) supp(P ) = {s(P )} such that
s(P ) ∈ [s, s∗(0)] ∪ {r∗+(F )}, or (b) supp(P ) = {s1(P ), s2(P )} such that r∗(P ) = r∗+(F ),
s∗(0)≤ s1(P )< s2(P )≤ s, and∫

[s∗(0),s1(P )]∪[s2(P ),s]

(Q(s− r∗+(F ))−Q(0))dF (s) = 0. (1)

23The results in this subsection, Theorems 3 and 4, do not require the assumption that G and Q lie in the same
location-scale family, although this assumption facilitates the exposition.

24Formally, define s∗(r) as the smallest s̃ ∈ [s, s] such that
∫ s

s̃
(Q(s−r)−Q(0))dF (s)≥ 0. Note that s∗(r) = s

if r ≤ r∗(F ), s∗(r) = s if r ≥ s, and s∗(r) ∈ (s, s) if r ∈ (r∗(F ), s).
25This is shown formally in Lemma 10 in the appendix.
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THEOREM 3: As aggregate uncertainty vanishes (γ → 1 with F and Q fixed), the optimal
expected seat share converges to 1− F (s∗(0)), and the optimal districting plan converges to
H∗.26 Thus, when aggregate uncertainty is small, optimal districting approximates NAD with
equally strong paired districts if r∗(F )≥ 0 and approximates POP with equally strong paired
districts if r∗(F )< 0.

The intuition for why paired districts are approximately equally strong is that, when aggre-
gate uncertainty is small, it is approximately optimal for the designer to assign voters among
the paired districts so as to make the weakest of these districts as strong as possible. Mathemat-
ically, this follows from log-concavity. This simple and intuitive property is the basis for the
gerrymandering test we propose in Section 6.4.

To appreciate how optimal districting with small aggregate uncertainty differs from uniform
districting (when r∗(F ) ≥ 0) or p-segregation (when r∗(F ) < 0), consider the difference be-
tween pooling an interval of voter types and splitting the pool into equally strong paired dis-
tricts in a negatively assortative manner. This splitting does not affect the designer’s expected
seat share. Indeed, it does not affect the joint distribution over voter types s and threshold
shocks r∗(P ) in districts to which they are assigned, because if P = αP ′ + (1 − α)P ′′ and
r∗(P ′) = r∗(P ′′), then r∗(P ) = r∗(P ′) = r∗(P ′′). Thus, in terms of outcomes (joint distri-
butions of s and r∗(P )), NAD with equally strong paired districts is equivalent to uniform
districting, and POP with equally strong paired districts is equivalent to p-segregation. How-
ever, viewed as districting plans (distributions of P ), NAD with equally strong paired districts
is quite different from uniform districting, and POP with equally strong paired districts is quite
different from p-segregation. Thus, Theorem 3 implies that optimal districting plans with small
aggregate uncertainty are quite different from uniform districting and p-segregation; but also
that, at the same time, these differences are not very consequential for the joint distribution of
s and r∗(P ) or the designer’s expected seat share.

We now turn to the case where idiosyncratic uncertainty is small. Here, F and G are fixed
and γ → 0, so each idiosyncratic shock t is close to 0 with high probability. In this case,
whether the designer wins a district P at aggregate shock r is essentially determined by the
median voter type sP in district P : with a unique median sP , the designer loses districts where
sP < r − ε and wins districts where sP > r + ε. Therefore, any optimal districting plan must
approximate the highest feasible distribution of district median voters, which is attained by
pairing each voter type s above the population median sm = F−1(1/2) with below-median
types, with 50% weight on the above-median type. Under such a plan with an extra ε weight
on the above-median type in each district, the designer’s expected seat share is approximately
2
∫ s

sm
G(r)dF (r). Moreover, for such a plan to be strictly single-dipped, all voter types must

be paired in a negatively assortative manner. The resulting districting plan approximates NAD
with a 50-50 voter type split in each district.

Let H∗∗ be NAD with a 50-50 split in each district. Formally, H∗∗ is the unique plan H
such that, for any P ∈ supp(H), we have either (a) supp(P ) = {sm}, or (b) supp(P ) =
{s1(P ), s2(P )} such that s≤ s1(P )< sm < s2(P )≤ s, and F (s1(P )) = 1− F (s2(P )).

THEOREM 4: As idiosyncratic uncertainty vanishes (γ → 0 with F and G fixed), the optimal
expected seat share converges to 2

∫ s

sm
G(r)dF (r), and the optimal districting plan converges

to H∗∗. Thus, when idiosyncratic uncertainty is small, optimal districting approximates NAD
with a 50-50 voter type split in each district.

26The latter convergence is in the weak* topology.
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Theorem 4 is similar to Friedman and Holden’s (2008) main result. With finitely many dis-
tricts, Friedman and Holden show that, when idiosyncratic uncertainty is sufficiently small,
optimal districting is a discrete version of PMP.27 Theorem 4 adds that, in the limit, only one
district is segregated, and the voter type split in all other districts is 50-50.

Comparing Theorems 3 and 4, we see that varying the ratio of aggregate and idiosyncratic
uncertainty leads to completely different districting plans. When aggregate uncertainty is small,
pack-and-crack is approximately optimal, and the exactly optimal plan is close to NAD or POP
with equally strong paired districts. When idiosyncratic uncertainty is small, pack-and-crack
is far from optimal, and the optimal plan is close to NAD with a 50-50 voter type split in
each district. In particular, while a NAD plan can arise in either case, the plans are extremely
different: NAD with equally strong paired districts is outcome-equivalent to uniform districting,
while NAD with a 50-50 split (or, away from the limit, a 50 − ε-50 + ε split in favor of the
higher type) in each district is very different from uniform districting with small idiosyncratic
uncertainty, as r∗(P ) is much higher in 50− ε-50 + ε districts with more extreme voter types.
(For example, compare Figures 2(d) and 2(f).) The critical role of the ratio of aggregate and
idiosyncratic uncertainty motivates estimating this parameter in Section 5.

The distinction between optimal districting under small aggregate uncertainty and small id-
iosyncratic uncertainty relates to results in the probabilistic voting literature. When aggregate
uncertainty is very small, the probability that the designer wins a district is approximately de-
termined by the mean voter type in the district, as in probabilistic voting models with partisan
taste shocks (e.g., Hinich 1977, Lindbeck and Weibull 1993). Optimizing the distribution of dis-
trict means against a unimodal aggregate shock then requires segregating opposing voters and
pooling more favorable voters, as in p-segregation or POP or NAD with equally strong paired
districts. In contrast, when aggregate uncertainty is very small, the probability that the designer
wins a district is approximately determined by the median voter type in the district, as in proba-
bilistic voting models with an uncertain median bliss point (e.g., Wittman 1983, Calvert 1985).
The distribution of district medians is then optimized by pairing above-population-median and
below-population-median voter types, as in NAD with a 50-50 voter type split in each district.28

4.3. The Balanced Case and Regime Transitions

Finally, we analyze optimal districting in the intermediate case where neither the parties’
supporters nor the amounts of aggregate and idiosyncratic uncertainty are highly imbalanced.
Here, optimal districting will take the form of either POP, PMP, or a mixed versions of these
districting plans that we call “Y-districting.” We say that a pack-and-pair plan H is Y-districting
if there exists a positive number ε > 0 such that

1. For all r ∈ [rb − ε, rb + ε] (where rb is the bifurcation point), there exists P ∈ supp(H)
such that r∗(P ) = r.

2. The functions s1 and s2 describing the voter types in paired districts are twice differen-
tiable and satisfy limr↓rb s1(r) = limr↓rb s2(r).29

27Friedman and Holden’s proof relies on perturbation arguments, while our proofs use duality.
28The distinction between mean and median-dependence applies to several related strands of the literature. In

gerrymandering, Owen and Grofman (1988) and Gul and Pesendorfer (2010) study the mean-dependent case,
while Friedman and Holden (2008) study an approximately median-depedent case. In persuasion, Kolotilin (2015),
Gentzkow and Kamenica (2016), Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), Kolotilin (2018), Dworczak
and Martini (2019), and Kleiner, Moldovanu, and Strack (2021) study the mean-depedent case, while Kolotilin, Cor-
rao, and Wolitzky (2024) study a general case nesting both the mean and quantile (e.g., median)-dependent case, and
Yang and Zentefis (2024) and Kolotilin and Wolitzky (2024) study the quantile-dependent case.

29Differentiability is used in the proof of Theorem 5. It may be possible to drop it.
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Note that Y-districting encompasses a mixed version of POP, where there exists ŝ ∈ (s, rb) such
that voter types in [s, ŝ) are always segregated and types in (ŝ, rb) are sometimes segregated and
sometimes paired, as well as a mixed version of PMP, where there exists ŝ ∈ (s, rb) such that
types in [s, ŝ) are always paired and types in (ŝ, rb) are sometimes segregated and sometimes
paired.30 We will show that, with balanced voter support, POP is optimal when idiosyncratic
uncertainty is “substantially” larger than aggregate uncertainty, PMP is optimal when aggregate
uncertainty is larger than idiosyncratic uncertainty, and Y-districting (and, in particular, mixed
POP or mixed PMP) is optimal in the intermediate range.

To analyze these cases, we let J be the distribution with variance 1 satisfying Q(t) =
J(t/

√
γ) and G(r) = J(r/

√
1− γ), so that the variances of t and r are γ and 1−γ. For exam-

ple, if Q and G are normal then J is the standard normal distribution. By varying γ while fixing
J , we can simultaneously approximate the low-aggregate uncertainty and low-idiosyncratic un-
certainty limits analyzed in Theorems 3 and 4, as Q is almost constant as γ → 1 and G is almost
constant as γ → 0.

Our analytic result in this section is modest: if Y-districting is optimal, then the ratio of id-
iosyncratic and aggregate uncertainty must fall in an intermediate range. However, numerically
it appears that this result actually fully characterizes optimal districting when voter support is
balanced: at least when J is normal and F is uniform, our necessary conditions for optimality
of Y-districting are also approximately sufficient, and when the ratio of idiosyncratic uncer-
tainty to aggregate uncertainty is below (resp., above) the range where Y-districting is optimal,
then PMP (resp., POP) is optimal.

THEOREM 5: If Y-districting is optimal, then rb = 0 and γ ∈ (0.5,
√
3− 1≈ 0.732].

The proof of Theorem 5 proceeds by deriving three necessary conditions for optimal Y-
districting to involve a bifurcation point at r and showing that these conditions imply that r
must equal 0 and γ must lie in an intermediate range. The first condition (equation (18) in
Appendix A) says that it is optimal to pair voter types just below and just above r. The sec-
ond condition (equation (19)) says that it is optimal to segregate types just below r. The third
condition (equation (20)) says that the proportions of favorable and unfavorable voters in each
district P with r∗(P ) = r′ just above r actually induce the desired cutoff r′. Intuitively, for
it to be optimal to pair nearby voter types around r, G must be weakly concave at r; and for
it to be optimal to segregate voter types just below r, G must be weakly convex at r. Hence,
bifurcation can occur only at 0, the inflection point of G. Moreover, if we take parameters
where Y-districting is optimal and increase aggregate uncertainty, it eventually becomes opti-
mal to always segregate voter types just below 0 rather than pairing them with higher voter
types, at which point optimal districting becomes PMP (with a bifurcation point below 0). On
the other hand, if we take parameters where Y-districting is optimal and decrease aggregate
uncertainty, it eventually becomes optimal to always pair voter types just below 0 with higher
voter types rather than segregating them, at which point optimal districting becomes POP (with
a bifurcation point above 0).

If we take for granted that the condition γ ∈ (0.5,0.732) is sufficient as well as necessary for
Y-districting to be optimal, the above intuition suggests that, with balanced voter support, PMP
is optimal when γ ≤ 0.5, Y-districting is optimal when γ ∈ (0.5,0.732), and POP is optimal
when γ ≥ 0.732. Figure 1 presents numerical solutions that verify this heuristic. In the figure, J

30In contrast, under POP there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are always segregated and types in (ŝ, rb)
are always paired, while under PMP there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are always paired and types in
(ŝ, rb) are always segregated.
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is standard normal and F is uniform on [−1,1].31 Voter types are on the x-axis, and the thresh-
old shocks to win the districts to which each voter type is assigned are on the y-axis. (Thus,
packed districts lie on the 45◦ line, while paired districts straddle the 45◦ line.) For mixed dis-
tricting plans (i.e., Y-districting, the middle row of the figure), the shading intensity indicates
the probability that a voter type is assigned to each district. We see that optimal districting takes
exactly the conjectured form: PMP is optimal for γ ∈ {0.1,0.3,0.5}, Y-districting is optimal
for γ ∈ {0.6,0.65,0.7}, and POP is optimal for γ ∈ {0.8,0.9,0.95}. The highest value of γ
in the figure, γ = 0.95, is the value closest to our empirical estimates. When γ = 0.95, POP
remains optimal but now closely resembles p-segregation. Thus, for what we will see is the
empirically relevant parameter range, p-segregation is approximately optimal.

We now explain how optimal districting transitions from PMP to POP as γ increases. First,
consider the extreme cases where γ ≈ 0 (small idiosyncratic uncertainty) and γ ≈ 1 (small ag-
gregate uncertainty). When γ ≈ 0, PMP is optimal; moreover, optimal districting approximates
NAD with a 50-50 split in each district, which implies that the bifurcation point is below 0 and
the range of values of r∗(P ) across paired districts P is large.32 When γ ≈ 1, POP is optimal;
moreover, paired districts are almost equally strong (the range of r∗(P ) across paired districts
P is small), which implies that the bifurcation point is above 0.33 Now, when γ increases from
0 toward 0.5, the range of r∗(P ) across paired districts decreases (as the range of probable
aggregate shocks decreases), and the proportion of packed districts increases. When γ reaches
0.5, it becomes optimal to pack voters with s = 0. Since it cannot be optimal to pack voters
with s > 0, once γ crosses 0.5 it becomes optimal to pair voters with s just above 0 with a
few slightly less favorable voters. At this point, districting takes the form of mixed PMP. As
γ increases farther above 0.5, the range of r∗(P ) across paired districts continues to decrease,
and the left arm of the “Y” gets steeper as the right arm gets flatter.34 At some point, the right
arm of the Y becomes flatter than the left arm, so that the most extreme left-wing voters have no
right-wing voters to match with, at which point these voters are segregated: this point marks the
transition from mixed PMP to mixed POP, which occurs at γ = 2/3 in the uniform case illus-
trated in Figure 1.35 The γ = 0.65 and γ = 0.7 panels in the figure illustrate points just before
and just after this transition. As γ increases further, more and more mixed unfavorable voters
are assigned to paired districts, until all such voters are assigned to paired districts, at which
point optimal districting becomes POP, and the bifurcation point becomes positive. This occurs
when γ ≈ 0.732. Finally, as γ increases beyond 0.732, the range of r∗(P ) across paired dis-
tricts continues to decrease, and the optimal POP plan eventually approximates p-segregation.

Figure 2 illustrates optimal districting for the same parameters as Figure 1, except that now
voter types are uniform on [x−1, x+1] where x is scaled to give an expected vote share of 40%
(top panels) or 60% (bottom panels). The figure shows that a less popular designer segregates
more unfavorable voters, while a more popular voter pools more voters. The last panel shows
that NAD (approximating uniform districting) is optimal for a designer with a 60% expected
vote share and γ = 0.9.

31More precisely, we approximate the designer’s problem by a finite-dimensional linear program and then solve
it using Gurobi Optimizer. Our approximation specifies that s is uniformly distributed on {−1,−0.99, . . . ,0.99,1}
and that the designer is constrained to create districts P satisfying r∗(P ) ∈ {−1,−0.99, . . . ,0.99,1}.

32Another property of optimal PMP plans is that the left arm of the “Y” is infinitely steep at the bifurcation point,
i.e., limr↓rb s′1(r) = 0.

33Another property of optimal POP plans is that pairing at the bifurcation point is smooth, i.e., limr↓rb s′1(r) =
−∞ and limr↓rb s′2(r) =∞.

34The proof of Theorem 5 shows that, for all sufficiently small positive r, |s′1(r)| is decreasing in γ (i.e., the left
arm gets steeper) and s′2(r) is increasing in γ (i.e., the right arm gets flatter).

35The transition point is the unique value of γ at which limr↓0 |s′1(r)|= limr↓0 s′2(r).
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(a) γ = 0.1 (b) γ = 0.3 (c) γ = 0.5

(d) γ = 0.6 (e) γ = 0.65 (f) γ = 0.7

(g) γ = 0.8 (h) γ = 0.9 (i) γ = 0.95

FIGURE 1.—Optimal Districting with Balanced Voter Support as Share of Idiosyncratic Uncertainty Varies
Notes: The optimal districting plan is PMP for γ ∈ {0.1,0.3,0.5}, Y-districting for γ ∈ {0.6,0.65,0.7} (and,
specifically, mixed PMP for γ ∈ {0.6,0.65} and mixed POP for γ = 0.7), and POP for γ ∈ {0.8,0.9,0.95}. Our
empirical estimates of γ in Section 5 are above 0.96 for all US states.

Figure 3 illustrates the form of optimal districting as a function of the designer’s expected
vote share and γ. The figure continues to assume that J is standard normal and F is uniform
on [x− 1, x+ 1], where x is scaled so that the designer’s expect vote share ranges from 0 to
1. The figure shows that segregation is optimal for an unpopular designer (unless aggregate
uncertainty dominates), NAD is optimal for a popular one, and optimal districting ranges from
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(a) γ = 0.1 (b) γ = 0.6 (c) γ = 0.9

(d) γ = 0.1 (e) γ = 0.6 (f) γ = 0.9

FIGURE 2.—Optimal Districting with Imbalanced Voter Support as Share of Idiosyncratic Uncertainty Varies
Notes: In the top and bottom panels, the designer’s expected vote share is 40% and 60%.

PMP to Y-districting to POP as γ ranges from 0 to 1 with balanced voter support. These results
match Theorems 2–5.36

Figure 3 also plots our point estimates of the (Republican) designer’s expected vote share
and γ for every US state. (The data and estimation procedure is described in the next section.)
The most important observation is that γ is close to 1 in every state: the mean estimate for γ
(weighted by the number of districts in each state) is 0.986, and the lowest estimate (in North
Carolina) is 0.962. These estimates are all far above the cutoff of 0.732 above which POP is
optimal with balanced voter support. Thus, NAD (approximating uniform districting) is optimal
for a Republican designer in Republican states like Alabama, Wyoming, and Louisiana, while
POP (approximating pack-and-crack) is optimal for a Republican designer in swing states like
Michigan and North Carolina, as well as in Democratic states like New York and California
(in the fanciful event that the Republicans found themselves controlling districting in such a
state).37

36Due to numerical error, it is difficult to confidently classify optimal plans within one or two grid points of the
boundaries between the regions where different plans are optimal in Figure 3. (By continuity, plans of different forms
are both approximately optimal near the boundary.) The boundaries should thus be viewed as approximations.

37A caveat is that Figure 3 is a 2-dimensional plot and thus neglects heterogeneity in the variance of s across states,
which we also estimate. It turns out that assuming that the variance of s is 1/

√
3 ≈ 0.577 in all states—which is

implicitly what Figure 3 does—yields the correct classification of optimal districting for every state except Hawaii,
where Republican-optimal districting is actually segregation.
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FIGURE 3.—Optimal Districting as Designer’s Expected Vote Share and Share of Idiosyncratic Uncertainty Vary
Notes: Each US state is located at its point estimate in Table I in Section 5.

REMARK 1—Approximate Optimality of Pack-and-Crack: Lemma 10 in the appendix
shows that uniform districting (for a designer with majority support) or pack-and-crack dis-
tricting (for a designer with minority support) is approximately optimal with small aggregate
uncertainty. The intuition is simple: with small aggregate uncertainty, the designer with mi-
nority support can obtain an expected seat share of approximately 1 − F (s∗(0)) by creating
slightly fewer than 1− F (s∗(0)) identical districts each with an expected vote share slightly
greater than 1/2, and 1− F (s∗(0)) is the optimal expected seat share in the limit. Moreover,
pack-and-crack districting is also approximately optimal for realistic parameters. For the same
parameters as in Figure 1 (which, recall, has balanced voter support), Figure 4 plots the ex-
pected seat share under the optimal pack-and-crack plan and under the unconstrained optimal
plan. The figure shows that the unconstrained optimal expected seat share never exceeds the
pack-and-crack optimal expected seat share by more than 0.1% for any value of γ above 0.95.
(Recall that our lowest point estimate of γ for any US state is 0.962.) We also estimate that the
maximum loss from pack-and-crack relative to optimal districting in any US state (accounting
for unbalanced voter support) is 0.56% (see Table I in Section 5).38

38The maximum loss is attained by Rhode Island, a Democratic state where Republicans are very unlikely to ever
control districting. If we exclude the Democratic states of Rhode Island, Massachusetts, and Maine, the maximum
estimated loss from pack-and-crack relative to optimal districting in any US state is 0.09%.
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FIGURE 4.—Expected Seat Share under Optimal Districting and Optimal Pack-and-Crack Districting

5. ESTIMATION

We have seen that the form of optimal districting depends on a comparison of the amount of
aggregate and idiosyncratic uncertainty facing the designer, and in particular on the parameter
γ (the share of idiosyncratic uncertainty), as well as the designer’s expected vote share. We now
estimate these parameters using precinct-level returns from recent US House elections. We first
describe our data and empirical model, then present some simple summary statistics and plots,
and finally estimate γ.

5.1. Data and Empirical Model

Our data are the precinct-level returns from the US House elections in 2016, 2018, and 2020,
which were recently standardized and made freely available by Baltz et al. (2022). For each
precinct n and election year y ∈ {2016,2018,2020}, we observe the total two-party vote kny

and the share of the two-party vote for the Republican candidate vny .39 The data are a repeated
cross-section rather than a panel, because there is no general way to match precincts across
elections (for example, because precinct boundaries change frequently; Baltz et al. 2022, p. 6).
We drop all districts with an uncontested House race in any of 2016, 2018, or 2020 (which drops
25% of all districts).40 This results in dropping South Dakota and Vermont from the analysis, as

39A “precinct” is the smallest election-reporting unit in a state, which typically corresponds to a geographic area
where all voters vote at the same polling place. Maine and New Jersey report election returns only at the township
level, so for these states n indexes townships rather than precincts. Also, for some elections where a nominally third-
party candidate runs in place of an official Democratic or Republican candidate, we manually re-label this candidate as
a Democrat or Republican. For example, in New York, we re-assign Working Families Party candidates as Democrats
and re-assign Conservative Party candidates as Republicans. Throughout, we focus on the two-party vote kny and
the Republican share of the two-party vote vny , ignoring third parties.

40Keeping these districts would bias our estimate of γ, because the relevant vote shares are for contested elections,
and if these districts were contested their vote shares would be different from 0 or 1. Keeping a district with one or
two uncontested elections only for the elections where it is contested would also bias our estimate of γ, by distorting
the estimated swing across elections. Dropping uncontested districts does likely bias our estimate of the voter type
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in these states the single at-large district was uncontests in 2020 and 2016, respectively; we also
drop Pennsylvania, as it was redistricted between 2016 and 2018. Moreover, for each election,
we drop precincts with fewer than 50 total votes (which drops 0.14% of all votes) or where the
Republican vote share is 0 or 1 (which drops an additional 0.015% of votes).

To take the model to these data, we assume that s indexes precincts, so that Q(s− r) is the
designer’s vote share in a type-s precinct at aggregate shock r.41 Formally, this is equivalent
to assuming that all voters in a precinct have the same type. (As we clarify below, this does
not mean that all voters in a precinct vote the same way.) We also assume that precincts are
relatively large (in the data, the mean precinct vote count is 794 with standard deviation 1,434,
after dropping precincts with fewer than 50 total votes or a 0 or 1 vote share), and idiosyncratic
voter taste shocks are normally distributed.42 By the law of large numbers, this implies that the
designer’s vote share in a precinct n with type sn in district d and election y is given by

Q(sn − rdy) = Φ
(

sn−rdy√
γ

)
, (2)

where Φ is the standard normal distribution. To see this, recall that each voter i in precinct n
votes for the designer’s party iff sn−rdy− tiy ≥ 0, where tiy is the voter’s normally distributed
idiosyncratic taste shock, and hence votes for the designer’s party with probability Φ((sn −
rdy)/

√
γ).43 Applying the law of large numbers at the precinct level gives (2).

We emphasize that this empirical model does not allow precinct-level aggregate shocks: the
vote share Q(sn − rdy) in precinct n in district d and election y is given by (2), which is a
deterministic function of the persistent precinct type sn and the district-level aggregate shock
in election y, rdy .

To interpret the assumption that all voters in a precinct have the same type, note that a voter’s
type and taste shock enter only through their difference sn − tiy . For this discussion, let us call
this difference the voter’s “preference.” Our assumption is that voter preferences in precinct sn
are normally distributed with mean sn and variance γ. Also, while voter preferences must be
independent across voters in each district to justify (2), the correlation of each voter’s prefer-
ence across elections is arbitrary. Thus, voters in a precinct can differ in their persistent tastes
for the parties as well as in their election-specific tastes.

5.2. Descriptive Figures and Summary Statistics

We first present a histogram (Figure 5(a)) showing the number of voters in the United States
who live in a precinct with Republican vote share v, with bin breaks {0,0.05, . . . ,0.95,1},

distribution F , as uncontested districts are presumably more extreme; however, this bias is irrelevant for our main
goal of estimating γ.

41In practice, the smallest “districtable unit” is usually not a precinct but a census block, which is the smallest
geographic unit for which the US Census tabulates complete data. However, the number of voters in a precinct or
a census block are roughly similar (typically around 1,000, albeit with fairly wide variation), and Bouton, Genicot,
Castanheira, and Stashko (2023) report that less than 2% of precincts are split across proposed congressional districts
in their sample, so we believe there is little loss in proceeding as if designers assign precincts rather than census blocks
or some smaller subdivision. However, precincts sometimes are split, and if technological or political constraints
evolve to make this practice more common, our analysis would have to be redone at the level of the resulting smallest
districtable unit.

42Our estimates are not sensitive to assuming normality: because we will find that γ is very large, the taste shock
distribution is approximately uniform over the relevant range, so specifying any smooth taste shock distribution leaves
our estimates almost unchanged. For example, our point estimate of γ for the US as a whole is 0.986 with normal
taste shocks, 0.987 with logistic taste shocks, 0.989 with Laplace taste shocks, and 0.981 with uniform taste shocks.

43In this section, as in Section 4.3, we assume that Q(t) = Φ(t/
√
γ) and G(r) = Φ(r/

√
1− γ).
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(a) Precinct Vote Shares (b) District Vote Swings

FIGURE 5.—Distributions of Precinct Vote Shares and District Vote Swings

averaging over elections y ∈ {2016,2018,2020}. The histogram shows that the distribution of
vny is unimodal, with a large majority (74%) of the mass on v ∈ [0.25,0.75]. This pattern has
two simple, but important, implications for our model. First, the distribution of voter/precinct
types is far from bimodal: there is a continuum of types, with most mass “toward the middle.”
A designer choosing how to assign precincts to districts thus faces a continuum of types, as
in our model. Second, idiosyncratic uncertainty appears large relative to aggregate uncertainty.
To see this, note that as if idiosyncratic uncertainty dominates (γ → 1), Figure 5(a) would
show a normal density centered at v = 1/2, while if aggregate uncertainty dominates (γ → 0),
it would show a bimodal distribution with all mass at 0 and 1. The former case is a much
better approximation, as the distribution in Figure 5(a) is unimodal, with 74% of the mass on
v ∈ [0.25,0.75]. While we quantitatively estimate γ in the next subsection, this observation
already suggests what we will find, which is that γ is much greater than 0.5.

Next we present another histogram (Figure 5(b)), which shows the number of (district, elec-
tion) pairs where the district-wide Republican vote share deviated from its mean over the
three elections we consider by x, with bin breaks {−0.25,−0.225, . . . ,0.225,0.25}.44 This
histogram gives another way of showing that aggregate shocks are small: the distribution is
centrally unimodal, and most of the mass (59%) is on x ∈ [−0.025,0.025]. In contrast, if ag-
gregate shocks were very large, we would again have a bimodal distribution with all mass far
from 0.

5.3. Estimates for γ

We now estimate the key parameter γ under the assumption that aggregate and idiosyncratic
shocks are both normally distributed. Since districting plans in the US are drawn at the state
level, we estimate γ separately for each US state.45 We assume that aggregate shocks are jointly

44This histogram is compiled at the district level because precincts are not matched across elections.
45While our model assumes a large number of districts, we estimate γ for each state (including states with only

one congressional district) to give as complete estimates of this parameter as possible.
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normally distributed across districts and independent across elections, so that the variance of
rdy is 1−γ; the correlation between rdy and rd′y is ρ for each d ̸= d′ and y; and the correlation
between rdy and rd′y′ is 0 for each d, d′, and y ̸= y′. Recall that the results in Section 4.3
show that, with balanced voter support, PMP is optimal if γ ≤ 0.5, Y-districting is optimal if
γ ∈ (0.5,0.732), and POP is optimal if γ ≥ 0.732. Thus, a key question of interest is which of
these three regions contains our estimate of γ.

We estimate γ for each state by method of moments. Recall that vny is the Republican share
of the two-party vote in precinct n and election y. Let wny = Φ−1(vny) be the corresponding
quantile of the standard normal distribution. Let T = 3 denote the number of elections, D the
number of districts in the state, and Ndy the set of precincts in district d and election y. Next,
define

wdy =

∑
n∈Ndy

knywny∑
n∈Ndy

kny

and wd• =

∑
y

wdy

T
.

That is, wdy is the average value of wny over precincts in district d, weighted by the number
of votes in each precinct; and wd• is the average value of wdy over elections y. It can then be
shown that a consistent estimator of γ is given by

γ̂ = 1

/(
1 + 1

D(T−1)

∑
d,y

(wdy −wd•)
2

)
.

In the Online Appendix, we also construct a confidence interval for γ, as well as a point esti-
mator of the correlation among the district-level aggregate shocks, and point estimators of the
mean and standard deviation of the distribution of precinct types.

Table I displays the resulting estimates for each US state, as well as for the state average
weighed by the number of districts included in the analysis (row WS) and the US as a whole
(row US). The states are ordered by column v, the designers expected vote share in the districts
included in the estimation. Columns DT and DA are the total number of districts and the
number of districts included in the analysis.

Columns γ and γ are our point estimate and the lower bound of a 95% one-sided confidence
interval for γ. The confidence interval is wide because we only have data from three elections:
T = 3. However, it is clear that γ is far above the critical value of 0.732. The lowest point
estimate for γ for any state is 0.962 in North Carolina, and the weighted mean estimate for
γ and the estimate for γ for the US as a whole are both 0.986. Moreover, even with T = 3,
the lower bound of a 95% one-sided confidence interval is above 0.732 for all available states
except North Dakota, where the lower endpoint is 0.619. If we expand our dataset to include
the returns from the 2012 and 2014 elections (thus covering all five congressional elections
held under the 2010 districting plans), the lower endpoints of the 95% confidence interval
exceeds 0.732 for all states, including North Dakota.46 Together with the results in Section
4.3 (including Figure 2, which accounts for imbalances in voter support), this provides strong
evidence that optimal gerrymandering is given by POP (for a designer with minority support)
or NAD (for a designer with majority support) for realistic parameters. Moreover, our estimates
for γ are high enough that the optimal POP plan approximates p-segregation and the optimal

46Precinct-level returns for 2012 and 2014 have been compiled by Ansolabehere, Palmer, and Lee (2014) but are
less complete and less standardized than the Baltz et al. (2022) data we use, which only cover 2016, 2018, and 2020.
We have checked that all of our empirical results are robust to including the 2012 and 2014 data.
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NAD plan approximates uniform districting (recall Figures 1–4), and that pack-and-crack (with
minority support) or uniform districting (with majority support) is approximately optimal.

Columns v and σs are the designer’s expected vote share and the standard deviation of s.
The latter estimates are similar to those in Figure 1. However, our estimates of v and σs may
be biased by dropping uncontested elections (unlike our estimates of γ, which remain unbiased
after dropping any set of districts).47 Column σc

s is the standard deviation of s across counties
rather than precincts. We discuss county-level estimates in Section 6.2.

Columns V and V are the designer’s expected seat share under optimal unconstrained dis-
tricting and optimal pack-and-crack districting, respectively. As illustrated in Figure 4, the
shares are very similar. Column V c is the expected seat share under optimal districting where
the designer assigns counties rather than precincts: see Section 6.2.

Finally, Column H is the form of the optimal districting plan at the estimated parameters. We
estimate that if Republicans somehow found themselves in charge of districting Hawaii, they
would segregate the state. Otherwise, POP is optimal (and pack-and-crack is approximately
optimal) in states where the expected Republican vote share is less than 55%, and NAD is opti-
mal (and uniform districting is approximately optimal) in states where the expected Republican
vote share is greater than 55%. This reflects the fact that, for our estimated value of γ, the op-
timal pack-and-crack plan creates cracked districts where the designer’s expected seat share is
around 55%.

6. DISCUSSION: WHY DOES THE FORM OF GERRYMANDERING MATTER?

Gerrymandering has long been a major concern in American politics and has been tied to
several important political and legal issues. In this section, we briefly discuss potential implica-
tions of our results on the form of optimal partisan gerrymandering for some of these broader
issues. We consider three areas: implications for how regulations and restrictions on districting
affect partisan representation; implications for how gerrymandering affects political competi-
tion and polarization; and implications for detecting and measuring gerrymandering.

6.1. Effects of Districting Reforms on Seat Shares I: Majority-Minority Districts

US state and federal election laws have long recognized potential harms associated with
gerrymandering and have therefore restricted gerrymandering in various ways. At the federal
level, the key laws are the Equal Protection Clause of the Fourteenth Amendment and the Voting
Rights Act of 1965. These laws have been interpreted as not only prohibitting adverse racial
gerrymandering, but also as affirmatively requiring states to create electoral districts where
racial or ethnic minority voters form either a majority (a so-called “majority-minority district”)
or a large enough minority so as to have a strong opportunity to elect their candidate of choice,
perhaps in coalition with some majority voters (often called a “minority opportunity district”;
e.g., Canon 2022). The creation of such districts played a significant role in increasing Black
representation in state legislatures and the US Congress from the 1970’s onward, especially in
the South (Grofman and Handley 1991, Cox and Holden 2011). However, the overall partisan
impact of majority-minority and minority opportunity districts has long been hotly contested,
with some observers arguing that these districts effectively pack strong Democratic supporters
and thus resemble a component of a Republican-optimal districting plan. This issue came to

47We also estimate the correlation ρ among the district-level aggregate shocks to be 0.317 (at the country level).
Since this estimate is not close to either 0 or 1, estimating a simpler empirical model where district-level shocks are
either uncorrelated or perfectly correlated would yield biased estimates of γ.
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US DT DA γ γ v σs σc
s V V V c H

HI 2 2 0.972 0.839 0.250 0.181 0.076 0.001 0.001 0.000 Seg
NY 27 19 0.966 0.937 0.342 0.826 0.659 0.416 0.415 0.356 POP
MD 8 8 0.990 0.978 0.346 0.728 0.624 0.456 0.456 0.410 POP
RI 2 1 0.990 0.833 0.375 0.302 0.259 0.199 0.194 0.145 POP
CT 5 5 0.995 0.987 0.379 0.377 0.327 0.328 0.328 0.263 POP
ME 2 1 0.992 0.866 0.385 0.311 0.304 0.246 0.244 0.236 POP
MA 9 1 0.998 0.956 0.385 0.233 0.211 0.142 0.139 0.098 POP
DE 1 1 0.990 0.836 0.397 0.488 0.268 0.456 0.456 0.228 POP
IL 18 13 0.984 0.962 0.399 0.737 0.545 0.560 0.560 0.463 POP
NJ 12 12 0.981 0.962 0.402 0.590 0.445 0.492 0.492 0.411 POP
CA 53 35 0.992 0.987 0.412 0.483 0.337 0.508 0.508 0.382 POP
NM 3 3 0.979 0.925 0.436 0.543 0.412 0.548 0.548 0.476 POP
NH 2 2 0.997 0.960 0.463 0.263 0.256 0.575 0.575 0.568 POP
NV 4 4 0.998 0.992 0.467 0.449 0.310 0.741 0.741 0.662 POP
MN 8 8 0.987 0.973 0.470 0.436 0.342 0.626 0.626 0.569 POP
CO 7 7 0.989 0.953 0.470 0.527 0.429 0.691 0.691 0.649 POP
OR 5 4 0.987 0.961 0.471 0.498 0.377 0.662 0.662 0.603 POP
VA 11 8 0.985 0.934 0.491 0.548 0.428 0.726 0.726 0.684 POP
WA 10 5 0.987 0.960 0.496 0.375 0.264 0.689 0.689 0.624 POP
MI 14 13 0.990 0.980 0.501 0.596 0.503 0.803 0.802 0.772 POP
GA 14 7 0.985 0.959 0.509 0.718 0.525 0.821 0.820 0.781 POP
TX 36 23 0.989 0.978 0.514 0.645 0.472 0.841 0.841 0.811 POP
IA 4 4 0.986 0.949 0.519 0.372 0.270 0.763 0.763 0.726 POP
NC 13 11 0.962 0.933 0.526 0.560 0.373 0.740 0.739 0.699 POP
AZ 9 6 0.990 0.974 0.537 0.402 0.286 0.868 0.868 0.852 POP
FL 27 20 0.994 0.987 0.545 0.444 0.291 0.949 0.948 0.948 POP
OH 16 16 0.984 0.967 0.552 0.635 0.469 0.908 0.908 0.896 NAD
AK 1 1 0.996 0.922 0.554 0.396 0.298 0.987 0.987 0.983 NAD
MT 1 1 0.993 0.884 0.556 0.490 0.325 0.973 0.973 0.973 NAD
SC 7 7 0.994 0.988 0.559 0.622 0.402 0.990 0.990 0.988 NAD
AR 4 1 0.985 0.773 0.566 0.629 0.391 0.950 0.949 0.945 NAD
NE 3 2 0.990 0.945 0.575 0.446 0.297 0.981 0.981 0.979 NAD
KY 6 4 0.991 0.968 0.584 0.548 0.408 0.994 0.994 0.992 NAD
MO 8 8 0.995 0.981 0.584 0.702 0.579 1.000 1.000 1.000 NAD
KS 4 4 0.978 0.905 0.598 0.463 0.355 0.968 0.968 0.971 NAD
IN 9 8 0.983 0.963 0.608 0.524 0.351 0.991 0.991 0.990 NAD
WI 8 5 0.989 0.970 0.617 0.301 0.228 0.998 0.998 0.999 NAD
AL 7 2 0.971 0.846 0.624 0.674 0.409 0.988 0.988 0.992 NAD
WV 3 3 0.971 0.883 0.646 0.340 0.252 0.989 0.989 0.989 NAD
UT 4 4 0.989 0.947 0.647 0.585 0.472 1.000 1.000 1.000 NAD
TN 9 8 0.991 0.976 0.650 0.691 0.526 1.000 1.000 1.000 NAD
MS 4 2 0.993 0.934 0.672 0.671 0.340 1.000 1.000 1.000 NAD
ID 2 2 0.987 0.930 0.673 0.462 0.365 1.000 1.000 1.000 NAD
OK 5 4 0.983 0.922 0.685 0.454 0.318 1.000 1.000 1.000 NAD
ND 1 1 0.969 0.619 0.696 0.426 0.335 0.999 0.999 0.999 NAD
WY 1 1 0.990 0.835 0.701 0.478 0.375 1.000 1.000 1.000 NAD
LA 6 4 0.974 0.898 0.725 0.595 0.288 1.000 1.000 1.000 NAD

WS 18 13 0.986 0.959 0.497 0.561 0.415 0.755 0.754 0.709 POP
US 417 311 0.986 0.979 0.497 0.643 0.508 0.777 0.776 0.745 POP

TABLE I: Estimates
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a head following the 1994 Republican takeover of the US House, which many journalists and
political scientists blamed in part on the creation of majority-minority districts in the 1990
redistricting cycle; however, other observers have disputed this narrative (see, e.g., Cox and
Holden 2011 and references therein, Washington 2012).

Previous studies have observed that the impact of a requirement to create majority-minority
or minority opportunity districts on overall partisan representation can hinge on the form of
optimal gerrymandering. The convential view in the 1990’s (what Cox and Holden 2011 call
the “pack-and-crack consensus”) was that optimal gerrymandering packs opponents, and hence
that a requirement to create majority-minority districts that pack strong Democratic supporters
is likely to increase overall Republican representation.48 Shotts (2001) adds an important caveat
by noting that, since uniform districting is optimal for a designer with majority voter support
in the population (without aggregate uncertainty), majority-minority mandates hurt Republican
designers in strongly Republican states. More dramatically, based on the analysis of Friedman
and Holden (2008), Cox and Holden (2011) challenge the pack-and-crack consensus by arguing
that optimal districting is given by NAD, and thus packs moderates rather than opponents. Since
NAD does not create districts packed with strong Democratic supporters, Cox and Holden argue
that a requirement to create such districts precludes NAD and is therefore likely to reduce
overall Republican representation.

Our results contribute to this debate as follows. Cox and Holden’s argument that NAD is
optimal in practice rests on an implicit assumption that the low-idiosyncratic-uncertainty case
studied by Friedman and Holden (2008) is representative. For example, Cox and Holden write,
“In a world with diverse voter types, however, there is no plausible distribution of African
American voters that would make it optimal for Republican redistricting authorities to create
districts in which African Americans make up a supermajority of voters. Within the model,
packing one’s opponents is never the optimal strategy,” (p. 574). We instead show that, empiri-
cally, idiosyncratic uncertainty is much larger than aggregate uncertainty, and that this implies
that packing opponents is optimal for a designer with majority voter support, while NAD is
optimal for a designer with minority support. Thus, majority-minority mandates can increase
Republican representation in closely divided states where POP is optimal and pack-and-crack is
approximately optimal (as in the pack-and-crack consensus), but are likely to decrease Republi-
can representation in strongly Republican states where NAD is optimal and uniform districting
is approximately optimal (as argued by Shotts (2001) in a model without aggregate uncer-
tainty). Overall, by analyzing a general model that does not restrict the relative amounts of
idiosyncratic and aggregate uncertainty, we reach a conclusion similar to that of Shotts (2001)
and quite different from that of Cox and Holden (2011).

6.2. Effects of Districting Reforms on Seat Shares II: Respecting Political Subdivisions

Among the practical restrictions on districting beyond the equipopulation requirement (see
the Introduction), one that is amendable to our analysis is a requirement not to split counties
or other political subdivisions. Preserving counties or other subdivisions is one of the six tra-
ditional redistricting criteria according to the National Conference of State Legislators and is
currently required in 29 of the 50 US states.49 From the perspective of partisan gerrymander-
ing, a requirement to preserve counties constrains the designer to choose among a coarser set

48Minority opportunity districts may or may not raise similar issues, depending on the share of strong Democratic
supporters in these districts (Lublin, Handley, Brunell, and Grofman, 2020).

49The other criteria are compactness, contiguity, preservation of communities of interest, preservation of the
“cores” of previous districts, and avoiding incumbent pairing (https://www.ncsl.org/elections-and-campaigns/2020-
redistricting-criteria).
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of districting plans, where counties rather than census blocks or precincts become the object of
districting.

We can assess the impact of a requirement to preserve counties by re-running our estimation
of γ and F , taking the unit of districting as counties rather than precincts. Our estimates of
γ are similar in both cases but are slightly higher with counties, because precinct vote shares
swing slightly more from election to election than county vote shares: our mean (weighted by
the number of districts in each state) precinct-based estimate of γ is 0.986, while our weighted
mean county-based estimate is 0.987. More importantly, our estimate of the standard deviation
of F is considerably smaller with counties: the weighted mean precinct-based estimate is 0.561,
while the weighted mean county-based estimate is 0.415. This gap is the key consequence of
constraining the designer to assigning coarser units. Finally, this constraint significantly affects
the designer’s optimal expected seat share in closely divided states where POP is optimal, as
now fewer highly unfavorable units can be packed; however, it has only a small effect on the op-
timal seat share in states where the designer has strong support and NAD is optimal, as uniform
districting (which is unaffected by a requirement to preserve counties) is approximately opti-
mal in these states. In particular, our estimate of the reduction in a Republican designer’s seat
share from requiring him to preserve counties ranges from essentially 0 in strongly Republican
states to 23% in Delaware, with a weighted average across states of 4.5%.50

6.3. Effects of Gerrymandering on Political Competition and Polarization

Another major debate concerns the impact of gerrymandering on the intensity of electoral
competition (e.g., the fraction of “competitive” districts or the extent of incumbency advantage)
and political polarization. Popular discourse often blames gerrymandering for reducing com-
petition and increasing polarization. While the scholarly literature is generally skeptical of the
claim that gerrymandering plays a large role in explaining overall secular trends in competition
and polarization (e.g., Gelman and King 1994a, Abramowitz, Alexander, and Gunning 2006,
McCarty, Poole, and Rosenthal 2009, Friedman and Holden 2009), some work does find such
effects (e.g., Cottrell 2019, Kenny, McCartan, Simko, Kuriwaki, and Imai 2022).

Regardless of the size of the overall effects of gerrymandering on competition and polar-
ization, the nature of these effects depends on the form that gerrymandering takes. In par-
ticular, under POP, intra-district polarization is relatively low while inter-district polarization
is relatively high; while under NAD or PMP, intra-district polarization is high and inter-
district polarization is low. To see this, note that, with a right-wing designer, POP or pack-
and-crack creates a few strongly left-leaning districts and many slightly right-leaning districts,
with a gap between the left-leaning and right-leaning districts: formally, under POP, there is
a gap between the highest value of r∗(P ) among segregated districts and the lowest value
of r∗(P ) among paired districts (see the last three panels in Figure 1). POP also involves
relatively low intra-district polarization within each district, since the lowest voter types in
paired districts are “moderates” rather than extreme left-wingers. In contrast, NAD or PMP
creates a continuum of districts ranging from left-leaning to right-leaning—formally, the set
{r : r = r∗(P ) for some P ∈ supp(H)} is an interval (see the first three panels in Figure 1)—
with less extreme left-leaning districts than under POP. NAD or PMP also involves greater
intra-district polarization than POP, in that the maximum range of voter types that are pooled

50Our weighted mean estimate of a Republican designer’s optimal seat share is 70.9% under county-based dis-
tricting and 75.4% under precinct-based districting. A limitation of this comparison is that our assumption that the
designer assigns a continuum of units is more accurate when units are precincts rather than counties. The omitted
integer constraint would bind more harshly for county-based districting, which biases our estimates of the designer’s
loss from being restricted to assigning counties downward.
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together under PMP is greater than under POP (since this range is as large as possible under
PMP, but is strictly smaller under POP).

Our model does not encompass endogenous political responses to districting, such as effects
of districting on which politicians run for office and on what platforms. With this caveat in
mind, we can draw some tentative implications of the above features of optimal districting for
political competition and polarization. First, since the distribution of threshold shocks r∗(P )
has a gap under POP or pack-and-crack but not under NAD or PMP, POP or pack-and-crack
may lead to more polarized legislatures, where the packed districts elect left-wing represen-
tatives and the cracked districts elect right-leaning ones. Indeed, the possibility that packing
opponents can increase polarization in this manner is a long-standing concern (e.g., Cox and
Holden 2011, p. 595); Coate and Knight (2007), Besley and Preston (2007), and Bracco (2013)
develop models with this feature. In contrast, NAD or PMP may lead to less polarized legis-
latures. Second, POP or pack-and-crack may produce more “uncompetitive,” far-left districts.
Creating uncompetitive districts is usually viewed as a socially undesirable feature of a dis-
tricting plan, but see Buchler (2005) and Brunell (2008) for opposing views. Finally, lower
intra-district polarization under POP or pack-and-crack may be socially desirable if voters ben-
efit from being ideologically close to their representative, as in Besley and Preston (2007) and
Gomberg, Pancs, and Sharma (2023). These and other implications of optimal districting for
political processes and outcomes can be studied more fully in models that endogenize addi-
tional aspects of political competition. This is a promising direction for future research.

6.4. Detecting and Measuring Gerrymandering

A large literature proposes various metrics that attempt to detect and measure gerrymander-
ing. Most of these metrics rely on comparing a party’s seat share and its vote share, with a
high seat share being taken as an indicator of gerrymandering.51 However, a limitation of this
approach is that one can debate what range of seat shares is “reasonable” for a given vote share.
Indeed, the Supreme Court has objected that this class of measures bakes in some form of pro-
portionality between seat and vote shares: as Justice Roberts wrote for the Court in Rucho v.
Common Cause, “Partisan gerrymandering claims rest on an instinct that groups with a certain
level of political support should enjoy a commensurate level of political power and influence.
Such claims invariably sound in a desire for proportional representation, but the Constitution
does not require proportional representation.”

Our analysis suggest an alternative test for gerrymandering that compares vote shares across
districts, rather than comparing seat and vote shares. A novel and robust prediction of our anal-
ysis is that, in the realistic case of small aggregate uncertainty, optimal plans make favorable
districts equally strong: a designer with majority support creates equally strong districts under
NAD or uniform districting, while a designer with minority support creates some packed dis-
tricts that are lost with high probability and creates equally strong districts that are won with
high probability under POP or pack-and-crack. In contrast, there is no reason to expect favor-
able districts to be equally strong under a non-gerrymandered districting plan. Thus, a proposed
test for gerrymandering is whether a districting plan displays an unusually low variance in votes
share among districts won by the designer’s party. Such a test can be operationalized in future
work.

51Such measures include the partisan bias (King and Browning, 1987), efficiency gap (Stephanopoulos and
McGhee, 2015), mean-median gap (Wang, 2016), and declination (Warrington, 2018). An alternative approach relies
on statistical analysis of an ensemble of simulated maps (Deford, Duchin, and Solomon, 2021).
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7. CONCLUSION

This paper has developed a simple and general model of optimal partisan gerrymandering.
Our main message has four parts. First, optimal districting is “pack-and-pair”: weak districts
are segregated; strong districts are paired. Second, the optimal form of pack-and-pair depends
on the gerrymanding party’s popularity and—more subtly—on the relative amounts of aggre-
gate and idiosyncratic uncertainty facing the gerrymanderer. Packing opposing voters is opti-
mal when idiosyncratic uncertainty dominates, while packing moderate voters is optimal when
aggregate uncertainty dominates. Third, empirically, idiosyncratic uncertainty dominates, im-
plying that pack-opponents-and-pair (POP) districting is optimal for a designer with minority
support, while negative assortative districting (NAD) is optimal for a designer with majority
support. This finding also establishes that the relevant parameter range for future research on
gerrymandering (and electoral competition more generally) is that where idiosyncratic uncer-
tainty is much larger than aggregate uncertainty. Fourth, estimated aggregate uncertainty is so
small that a simple pack-and-crack plan is approximately optimal for a deisgner with minority
support, while uniform districting is approximately optimal for a designer with majority sup-
port. This last observation can help rationalize the use of simple districting plans in practice.

Methodologically, we develop and exploit a tight connection between gerrymandering and
information design. We show that a general model of partisan gerrymandering is equivalent to
a general Bayesian persuasion problem where the state of the world and the receiver’s action
are both one-dimensional and the sender’s preferences are state-independent. This common
framework nests the important prior contributions of Owen and Grofman (1988), Friedman
and Holden (2008), and Gul and Pesendorfer (2010), and facilitates a more general and real-
istic analysis that allows diverse voter types and non-linear vote swings without restricting the
relative amounts of aggregate and idiosyncratic uncertainty.

We hope our model can inform future research on various aspects of redistricting. We men-
tion a few directions for future research.

First, we have assumed that the designer maximizes his party’s expected seat share. It may
be more realistic to assume that the designer’s utility is non-linear in seat shares, for example
because of a premium on winning a majority of seats. We examined this case in an earlier ver-
sion of this paper (Kolotilin and Wolitzky, 2020). While non-linear designer utility introduces
new complications, the extreme case where the designer simply maximizes the probability of
winning a majority is straightforward: here, optimal districting maximizes seats conditional
on the threshold aggregate shock at which the designer is barely able to attain a majority, and
hence reduces to optimal districting without aggregate uncertainty.

Second, we have assumed that all voters always vote, or at least always vote at the same rate
(as is equivalent). It would be interesting to incorporate heterogeneous turnout in the analysis.
Recently, Bouton, Genicot, Castanheira, and Stashko (2023) consider voters with a binary parti-
san type (as in Owen and Grofman 1988), uniform aggregate shocks, and a continuous “turnout
type,” which captures fixed turnout heterogeneity across voters. It is promising to explore mu-
tual generalizations of our models that allow more general forms of aggregate uncertainty as
well as heterogeneous turnout. An alternative model, which captures variable turnout hetero-
geneity, would retain one-dimensional voter types but assume that voters abstain when they are
close to indifferent between the parties. It is interesting to compare these models, as in practice
turnout heterogeneity has both exogenous sources (e.g., education, race) and endogenous ones
(e.g., almost-indifferent voters turn out less).

Finally, further questions include: What does the model imply for political competition and
the resulting policy choices? What are the model’s comparative statics—for example, what
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factors determine the proportion of packed and cracked districts?52 And, what does the model
imply about how gerrymandering should be measured and regulated? A better understanding
of the form of optimal partisan gerrymandering can contribute to the study of these questions
and related ones.
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APPENDIX A: PROOFS

A.1. Duality Lemma

We start with a duality result restating Theorem 1 in Kolotilin, Corrao, and Wolitzky (2024).

LEMMA 2: There exists a bounded, measurable function λ : [s, s] → R such that, for any
optimal districting plan H, the following hold:

1. For all P ∈ supp(H), all s ∈ supp(P ), and all r ∈ [s, s], we have

G(r∗(P )) + λ(r∗(P )) (Q(s− r∗(P ))−Q(0))≥G(r) + λ(r) (Q(s− r)−Q(0)) .

2. For all P ∈ supp(H), we have

λ(r∗(P )) =
g(r∗(P ))∫

q(s− r∗(P ))dP (s)

.

3. For all non-degenerate P ∈ supp(H), λ has derivative λ′(r∗(P )) at r∗(P ) satisfying, for
all s ∈ supp(P ),

g(r∗(P ))− λ(r∗(P ))q(s− r∗(P )) + λ′(r∗(P )) (Q(s− r∗(P ))−Q(0)) = 0.

As explained in the text, λ(r∗(P )) is the multiplier on the constraint
∫
Q(s−r∗(P ))dP (s) =

Q(0). Part 2 of the lemma gives the formula for λ(r∗(P )) from the implicit function the-
orem. Part 1 says that the designer assigns a type-s voter to a district P to maximize
G(r∗(P ))+λ(r∗(P )) (Q(s− r∗(P ))−Q(0)). Part 3 says that the first-order condition of this
maximization problem with respect to r holds for all non-degenerate P ∈ supp(H) and all
s ∈ supp(P ).

A.2. Proof of Lemma 1

Lemma 1 follows from Theorem 4 in Kolotilin, Corrao, and Wolitzky (2024) for the
translation-invariant subcase of the state-independent sender case. For completeness, we prove
Lemmas 3 and 4, which immediately yield Lemma 1.

LEMMA 3: For any optimal H and any P,P ′ ∈ supp(H) such that P contains types s < s′′

and P ′ contains a type s′ ∈ (s, s′′), we have r∗(P )≥ r∗(P ′).

PROOF OF LEMMA 3: Suppose by contradiction that there exist districts P and P ′ such that
P contains s < s′′, P ′ contains s′ ∈ (s, s′′), and r = r∗(P )< r∗(P ′) = r′. Then, by part 1 of
Lemma 2, we have

G(r) + λ(r)(Q(s− r)−Q(0))≥G(r′) + λ(r′)(Q(s− r′)−Q(0)), (3)

G(r′) + λ(r′)(Q(s′ − r′)−Q(0))≥G(r) + λ(r)(Q(s′ − r)−Q(0)), and (4)
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G(r) + λ(r)(Q(s′′ − r)−Q(0))≥G(r′) + λ(r′)(Q(s′′ − r′)−Q(0)). (5)

This yields a contradiction because

0≥ (Q(s′′ − r′)−Q(s′ − r′))(Q(s′ − r)−Q(s− r))

−(Q(s′′ − r)−Q(s′ − r))(Q(s′ − r′)−Q(s− r′))

=

∫ s′′

s′

∫ s′

s

q(s̃′ − r′)q(s̃− r)ds̃ds̃′ −
∫ s′′

s′

∫ s′

s

q(s̃′ − r)q(s̃− r′)ds̃ds̃′

=

∫ s′′

s′

∫ s′

s

(q(s̃′ − r′)q(s̃− r)− q(s̃′ − r)q(s̃− r′))ds̃ds̃′ > 0,

where the first inequality holds by summing (3) multiplied by Q(s′′ − r) − Q(s′ − r), (4)
multiplied by Q(s′′ − r)−Q(s− r), and (5) multiplied by Q(s′ − r)−Q(s− r), and then
dividing by λ(r′), which is strictly positive by part 2 of Lemma 2; and the second inequality
holds because the integrand is strictly positive for r < r′ and s̃ < s̃′ by strict log-concavity of
q. Q.E.D.

LEMMA 4: For any optimal H and any P ∈ supp(H), we have | supp(P )| ≤ 2.

PROOF OF LEMMA 4: Suppose by contradiction that some district P ∈ supp(H) contains
three types s < s′ < s′′ and r∗(P ) = r. Then, by part 3 of Lemma 2, we have

g(r)− λ(r)q(s− r) + λ′(r) (Q(s− r)−Q(0)) = 0, (6)

g(r)− λ(r)q(s′ − r) + λ′(r) (Q(s′ − r)−Q(0)) = 0, and (7)

g(r)− λ(r)q(s′′ − r) + λ′(r) (Q(s′′ − r)−Q(0)) = 0. (8)

This yields a contradiction because

0 = det

g(r) q(s− r) Q(s− r)−Q(0)

g(r) q(s′ − r) Q(s′ − r)−Q(0)

g(r) q(s′′ − r)Q(s′′ − r)−Q(0)


= g(r)(q(s′ − r)− q(s− r))(Q(s′′ − r)−Q(s′ − r))

−g(r)(q(s′′ − r)− q(s′ − r))(Q(s′ − r)−Q(s− r))

= g(r)

[∫ s′

s

q′(s̃− r)ds̃

∫ s′′

s′
q(s̃′ − r)ds̃′ −

∫ s′′

s′
q′(s̃′ − r)ds̃′

∫ s′

s

q(s̃− r)ds̃

]
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>
g(r)q′(s′ − r)

q(s′ − r)

[∫ s′

s

q(s̃− r)ds̃

∫ s′′

s′
q(s̃′ − r)ds̃′ −

∫ s′′

s′
q(s̃′ − r)ds̃′

∫ s′

s

q(s̃− r)ds̃

]
= 0,

where the first equality is by (6)–(8), and the inequality is by strict log-concavity of q, which
implies that the derivative of ln q is strictly decreasing, yielding

q′(s̃− r)

q(s̃− r)
>

q′(s′ − r)

q(s′ − r)
>

q′(s̃′ − r)

q(s̃′ − r)
, for s̃ < s′ < s̃′. Q.E.D.

A.3. Characterization of Pack-and-Pair Districting

LEMMA 5: For any pack-and-pair districting plan H, there exists a bifurcation point rb ∈
[s, s], a decreasing function s1 : (rb, s] → [s, rb), and an increasing function s2 : (rb, s] →
(rb, s] satisfying s1(r) < r < s2(r), such that for each P ∈ supp(H), we have P = δr∗(P ) if
r∗(P )≤ rb and supp(P ) = {s1(r∗(P )), s2(r

∗(P ))} if r∗(P )> rb.

PROOF OF LEMMA 5: Let H be a pack-and-pair districting plan. Since H is strictly single-
dipped, the support of each P ∈ supp(H) has at most two elements and thus can be represented
as {s1(r∗(P )), s2(r

∗(P ))} with s1(r
∗(P ))≤ r∗(P )≤ s2(r

∗(P )). Moreover, for each P,P ′ ∈
supp(H) with r∗(P )< r∗(P ′), we have s2(r∗(P ))≤ s2(r

∗(P ′)), as otherwise we would have
s2(r

∗(P ′)) ∈ (s1(r
∗(P )), s2(r

∗(P ))), contradicting strict single-dippedness of H.

Assume that there exists P ∈ supp(H) such that s1(r∗(P )) < s2(r
∗(P )), as otherwise the

lemma obviously holds with rb = s. Define rb = inf{r∗(P̃ ) : P̃ ∈ supp(H), s1(r
∗(P̃ )) <

s2(r
∗(P̃ ))}, so that, for each P ∈ supp(H) with r∗(P ) < rb, we have supp(P ) = {r∗(P )}.

Since supp(H) is compact, there exists P b ∈ supp(H) with r∗(P b) = rb. It follows
that supp(P b) = {rb}, as otherwise (i.e., if s1(r

∗(P b)) < rb < s2(r
∗(P b)) voter types in

(rb, s2(r
∗(P b)) (which have strictly positive mass since f is strictly positive on [s, s]) can-

not be segregated, as this would contradict strict single-dippedness of H, and also cannot be
paired with other types, as this would contradict either strict single-dippedness of H or the
definition of rb.

Finally, we show that, for each P,P ′ ∈ supp(H) with rb < r∗(P ) < r∗(P ′), we have
s1(r

∗(P )) ≥ s1(r
∗(P ′)). Suppose by contradiction that s1(r

∗(P )) < s1(r
∗(P ′)). Since

H is a strictly single-dipped pack-and-pair districting plan, by the definition of rb, we
have s1(r

∗(P )) < r∗(P ) < s2(r
∗(P )) ≤ s1(r

∗(P ′)) < r∗(P ′) < s2(r
∗(P ′)). Define r† =

inf{r∗(P̃ ) : P̃ ∈ supp(H), s1(r
∗(P ′))≤ s1(r

∗(P̃ ))< s2(r
∗(P̃ ))≤ s2(r

∗(P ′))} ≥ s1(r
∗(P ′)).

By the same argument as in the previous paragraph, we have δr† ∈ supp(H), contradicting that
H is pack-and-pair. Q.E.D.

A.4. Auxiliary Lemmas

Lemmas 6–8 are used to prove Theorems 1 and 2.
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LEMMA 6: If for all s < r < s′ such that

G(r) + λ(r) (Q(s− r)−Q(0))≥G(s), (9)

where

λ(r) =
g(r)(Q(s′ − r))−Q(s− r))

(Q(s′ − r)−Q(0))q(s− r)− (Q(s− r)−Q(0))q(s′ − r)
, (10)

we have, for all s′′ ≥ s′,

G(r) + λ(r)(Q(s− r)−Q(0))<G(s′′) +
g(s′′)

q(0)
(Q(s− s′′)−Q(0)), (11)

then there is a unique optimal districting plan, which is pack-and-pair.

PROOF OF LEMMA 6: Suppose by contradiction that there exists an optimal non-pack-and-
pair plan H. By Lemma 1, H is strictly single-dipped. Consequently, since H is not pack-and-
pair, there exist s < r < s′ ≤ s′′ and P,P ′ ∈ supp(H) such that r∗(P ) = r, supp(P ) = {s, s′},
and supp(P ′) = {s′′}. By Lemma 2, condition (9) holds and condition (11) fails, yielding
a contradiction.53 Finally, for uniqueness, by Theorem 7 in Kolotilin, Corrao, and Wolitzky
(2024), it suffices to show that H is regular, in that for each P ∈ supp(H), there exists ε > 0

such that either (i) | supp(P̃ )|= 1 for all P̃ ∈ supp(H) satisfying r∗(P̃ ) ∈ (r∗(P )− ε, r∗(P )),
or (ii) | supp(P̃ )| = 2 for all P̃ ∈ supp(H) satisfying r∗(P̃ ) ∈ (r∗(P ) − ε, r∗(P )). But
each pack-and-pair plan H is clearly regular, with any ε > 0 for r∗(P ) ≤ rb and with any
ε ∈ (0, r∗(P )− rb) for r∗(P )> rb. Q.E.D.

LEMMA 7: If η ≥ 1 and s < r < s′ satisfy (9), with λ(r) given by (10), then r > 0.

PROOF OF LEMMA 7: If r ≤ 0, then (9) fails, because

G(r)−G(s) =

∫ r

s

g(x)dx≤ g(r)

g(0)

∫ r

s

g(x− r)dx=
g(r)

g(0)
(G(0)−G(s− r))

=
g(r)

ηq(0)
(Q(η0)−Q(η(s− r))≤ g(r)

q(0)
(Q(0)−Q(s− r))< λ(r) (Q(0)−Q(s− r)) ,

where the first inequality is by strict log-concavity of g on [s,0], the second inequality is by
η ≥ 1 and strict convexity of Q on [s− r,0], and the last inequality is by λ(r) > g(r)/q(0),
which holds because q is uniquely maximized at 0. Q.E.D.

LEMMA 8: If H is optimal and δs, δs′ ∈ supp(H) with s < s′, then s < 0.

53Intuitively, (9) says that the designer prefers not to move a few type-s voters from district P to district δs, and
(11) says that the designer strictly prefers to move a few type-s voters from district P to district δs′′ .
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PROOF: Suppose by contradiction that s≥ 0. By Lemma 2, for each r ∈ (s, s′) there exists
λ(r) such that

G(s)≥G(r) + λ(r)(Q(s− r)−Q(0)) and (12)

G(s′)≥G(r) + λ(r)(Q(s′ − r)−Q(0)). (13)

Summing (12) multiplied by Q(s′ − r)−Q(0) and (13) multiplied by Q(0)−Q(s− r) yields

(G(s′)−G(r)) (Q(0)−Q(s− r))≥ (G(r)−G(s)) (Q(s′ − r)−Q(0)) .

But this inequality cannot hold for r sufficiently close to s′, because

g(s′) (Q(0)−Q(s− s′))< (G(s′)−G(s))q(0), (14)

since G is strictly concave on [s, s′] and Q is strictly convex on [s− s′,0]. Q.E.D.

A.5. Proof of Theorem 1

If s < r < s′ satisfy (9), with λ(r) given by (10), then r > 0, by Lemma 7. Theorem 1 then
follows from Lemma 6, as (11) holds for all s′′ ≥ s′, because

G(s′′) +
g(s′′)

q(0)
(Q(s− s′′)−Q(0))−G(r)− λ(r) (Q(s− r)−Q(0))

>
g(r)

q(0)
(Q(0)−Q(s− r)) +G(s′′)−G(r)− g(s′′)

q(0)
(Q(0)−Q(s− s′′))

>
g(s′′)

q(0)
[Q(0)−Q(s− r) + q(0)(s′′ − r)− (Q(0)−Q(s− s′′))]> 0,

where the first inequality is by λ(r) > g(r)/q(0), the second inequality is by strict concavity
of G on [r, s′′], and the third inequality is by strict convexity of Q on [s− s′′,0].

A.6. Proof of Theorem 2

Part 1. Let H be an optimal strictly single-dipped plan. By Lemma 8, there do not exist s < s′

in [s, s] such that δs, δs′ ∈ supp(H). Then, by Theorem 6 in Kolotilin, Corrao, and Wolitzky
(2024), H is NAD.

Part 2. Suppose by contradiction that there exist an optimal strictly single-dipped plan H and
P ∈ supp(H) such that r∗(P ) = r and supp(P ) = {s, s′} with s < r < s′. By Lemma 2, (9)
holds with λ(r) given by (10). So, by Lemma 7, r∗(P )> 0, contradicting that r < s′ ≤ s≤ 0.

Part 3. Since f is strictly positive on [s, s] and s < s, we have s < r∗(F ) = 0< s, so segre-
gation is suboptimal by Lemma 8.

Suppose by contradiction that there exists an optimal NAD plan H. By Lemma 5, for each
P ∈ supp(H) except for δrb , we have s1(r∗(P ))< r∗(P )< s2(r

∗(P )), where s1 is decreasing
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and s2 is increasing. Note that rb < r∗(F ) = 0, because∫
Q(s− r∗(F ))dF (s) =Q(0) =

∫∫
Q(s− r∗(P ))dP (s)dH(P )

<

∫∫
Q(s− rb)dP (s)dH(P ) =

∫
Q(s− rb)dF (s),

where the first two equalities hold by the definition of r∗(F ) and r∗(P ), the inequality holds
by r∗(P ) > rb for all P ∈ supp(H) except for P = δrb , and the last equality holds by∫
PdH(P ) = F . Since f is strictly positive on [s, s], we get limr↓rb s1(r) = limr↓rb s2(r) = rb,

as otherwise voter types in (limr↓rb s1(r), limr↓rb s2(r)) are not assigned to any district. Thus,
there exists ε ∈ (0,−rb) and P ∈ supp(H) such that rb − ε < s1(r

∗(P ))< s2(r
∗(P ))< rb +

ε < 0. By Lemma 2, s= s1(r
∗(P )), r = r∗(P ), and s′ = s2(r

∗(P )) satisfy (9), with λ(r) given
by (10). Then, by Lemma 7, we have r∗(P )> 0, contradicting that r∗(P )< s2(r

∗(P ))< 0.

A.7. Proof of Theorem 3

Theorem 3 follows from Lemmas 9–13.
For each r, let R(r) be the set of all plans H that maximize the designer’s seat share when

the aggregate shock is r. Lemma 9 characterizes R(r). If r∗(F ) ≥ r, then H ∈R(r) assigns
all voters to districts that the designer wins. If r∗(F )< r, then H∈R(r) assigns all voter types
above s∗(r) to cracked districts that the designer wins with exactly 50% of the vote and packs
the remaining voters arbitrarily.

LEMMA 9: The following hold.
1. Let r∗(F )≥ r. Then H∈R(r) iff, for each P ∈ supp(H), we have r∗(P )≥ r.
2. Let r∗(F )< r. Then H∈R(r) iff, for each P ∈ supp(H), we have either r∗(P )≤ s∗(r)

and supp(P )⊂ [s, s∗(r)] or r∗(P ) = r and supp(P )⊂ [s∗(r), s].

PROOF OF LEMMA 9: Part 1. Since r∗(F )≥ r, s∗(r) = s and δF ∈R(r) is optimal. Hence,
H ∈ R(r) iff

∫
1{r ≤ r∗(P )}dH(P ) = 1. Moreover, this is equivalent to r∗(P ) ≥ r for all

P ∈ supp(H), because the set {P ∈ ∆[s, s] : r∗(P ) ≥ r} is closed by the continuity of r∗,
which follows from the continuity and strict monotonicity of Q.
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Part 2. For each plan H, we have∫
1{r ≤ r∗(P )}dH(P ) =

∫
1{EP [Q(s− r)−Q(0)]≥ 0}dH(P )

≤
∫

max

{
0,

EP [Q(s− r)]−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)

}
dH(P )

≤
∫∫

max

{
0,

Q(s− r)−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)

}
dP (s)dH(P )

=

∫
max

{
0,

Q(s− r)−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)

}
dF (s)

=

∫ s

s∗(r)

Q(s− r)−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)
dF (s) = 1− F (s∗(r)),

(15)

where the first equality is by the definition of r∗(P ), the first inequality is by pointwise domi-
nace of the integrands, the second inequality is by Jensen’s inequality, the second equality is by∫
PdH(P ) = F , and the last equality is by the definition of s∗(r). Hence, H ∈R(r) iff, for a

measure-1 set of districts P under H, we have (a) r∗(P ) ∈ [s, s∗(r)]∪{0} (as otherwise the first
inequality in (15) is strict) and (b) supp(P )⊂ [s∗(r), s] if r∗(P ) = 0 and supp(P )⊂ [s, s∗(r)]

if r∗(P ) ≤ s∗(r) (as otherwise the second inequality in (15) is strict). Finally, as above, con-
tinuity implies that that properties (a) and (b) hold for all P ∈ supp(H), rather than just for a
measure-1 set. Q.E.D.

Lemma 10 shows that pack-and-crack districting is approximately optimal. An upper bound
on the designer’s optimal expected seat share Vη can be obtained by allowing the designer to
choose Hr ∈R(r) after observing each realization r,

V η =

∫
(1− F (s∗(r)))dGη(r).

A lower bound on Vη can be obtained by restricting attention to Hr̃ ∈R(r̃) for some r̃,

V η(r̃) =

∫
(1− F (s∗(r̃)))1{r ≤ r̃}dGη(r).

LEMMA 10: For all η and all r̃, we have V η(r̃) < Vη < V η . Moreover, if η → ∞, then
V η → 1− F (s∗(0)), V η(r̃)→ 1− F (s∗(r̃)) for all r̃ > 0, and Vη → 1− F (s∗(0)).

PROOF OF LEMMA 10: Let Hη be the optimal plan and let Hr be any districting plan in
R(r). On the one hand, we have

Vη =

∫∫
1{r ≤ r∗(P )}dHη(P )dGη(r)
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<

∫∫
1{r ≤ r∗(P )}dHr(P )dGη(r) =

∫
(1− F (s∗(r)))dGη(r) = V η,

where the inequality holds weakly because
∫

1{r ≤ r∗(P )}dHη(P )≤
∫

1{r ≤ r∗(P )}dHr(P )

for each r by the definition of Hr , and it holds strictly because g(r)> 0 and R(r) ∩R(r′) is
empty for r′ > r ≥ r∗(F ), as follows from Lemma 9.

On the other hand, for any r̃, we have

Vη =

∫∫
1{r ≤ r∗(P )}dHη(P )dGη(r)

≥
∫∫

1{r ≤ r∗(P )}dHr̃(P )dGη(r)>

∫
(1− F (s∗(r̃)))1{r ≤ r̃}dGη(r) = V η(r̃),

where the first inequality holds because Hη is optimal and Hr̃ is feasible, and the second
inequality holds strictly because the designer wins even districts with voter types s < s∗(r̃)

when r ≤ s.
Suppose now that η →∞, which implies that Gη → δ0. By the implicit function theorem,

F (s∗(r)) is continuous in r, so V η → 1−F (s∗(0)). For r̃ > 0, V η(r̃)→ 1−F (s∗(r̃)), which
converges to 1− F (s∗(0)) as r̃ ↓ 0, implying that Vη → 1− F (s∗(0)). Q.E.D.

Lemma 11 shows that limit points of optimal plans Hn =Hηn , for ηn →∞, belong to P(0).

LEMMA 11: Let Hn →H as ηn →∞. Then H∈R(0).

PROOF OF LEMMA 11: Suppose by contradiction that there exists a sequence ηn →∞ such
that an optimal plan Hn converges weakly to H /∈R(0). Then we have

1− F (s∗(0)) = lim
n→∞

∫
Q(ηnr

∗(P ))dHn(P )≤
∫

1{r∗(P )≥ 0}dH(P )< 1− F (s∗(0)),

where the equality is by Lemma 10, the first inequality is by the Portmanteau theorem, and the
second inequality is by Lemma 9. Q.E.D.

Lemma 12 shows that, in the limit, all districts are equally strong when r∗(F )≥ 0.

LEMMA 12: Let r∗(F ) ≥ 0 and Hn → H as ηn → ∞. Then, for each P ∈ supp(H), we
have r∗(P ) = r∗(F ).

PROOF OF LEMMA 12: If r∗(F ) = 0, then, for each P ∈ supp(H), we have r∗(P )≥ 0 by
Lemma 9, so r∗(P ) = 0 by

∫
PdH(P ) = F . So suppose that r∗(F ) > 0. Moreover, suppose

by contradiction that there exists ε ∈ (0, r∗(F )), δ ∈ (0,1), and a sequence ηn →∞ such that∫
1{r∗(P )≤ r∗(F )− ε}dHn(P )≥ δ for all n. We obtain a contradiction for sufficiently large
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n, because∫
Q(ηnr

∗(P ))dHn(P )≤ δQ(ηn(r
∗(F )− ε)) + (1− δ)<Q(ηnr

∗(F )),

where the first inequality is by the supposition and the second inequality is by

1−Q(ηr∗(F ))

1−Q(η(r∗(F )− ε))
→ 0, as η→∞, (16)

which we prove below. Denote c = q′(r∗(F )− ε)/q(r∗(F )− ε). Since q′(0) = 0 and q is
strictly log-concave, for all η > 1, we have

0 =
q′(0)

q(0)
> c=

q′(r∗(F )− ε)

q(r∗(F )− ε)
>

q′(η(r∗(F )− ε))

q(η(r∗(F )− ε))
>

q′(x)

q(x)
, for all x > η(r∗(F )− ε).

Hence Gronwall’s inequality gives limη→∞ q(ηr∗(F ))/q(η(r∗(F )− ε)) ≤ limη→∞ ecεη = 0,
so, by L’Hopital’s rule, we have

lim
η→∞

1−Q(ηr∗(F ))

1−Q(η(r∗(F )− ε))
= lim

η→∞

q(ηr∗(F ))r∗(F )

q(η(r∗(F )− ε))(r∗(F )− ε)
= 0. Q.E.D.

Lemma 13 shows that, in the limit, types below s∗(0) are segregated and types above s∗(0)
are paired in a negatively assortative manner.

LEMMA 13: Let Hn →H as ηn →∞.
1. For any P ∈ supp(H) with r∗(P )≤ s∗(0), we have | supp(P )|= 1.
2. For any P,P ′ ∈ supp(H) with r∗(P ) = r∗(P ′)≥ 0, we have supp(P ) = {s1(P ), s2(P )}

and supp(P ′) = {s1(P ′), s2(P
′)} with s1(P )≤ s2(P ), s1(P ′)≤ s2(P

′), and (s2(P
′)−

s2(P ))(s1(P )− s1(P
′))≥ 0.

PROOF OF LEMMA 13: Denote Λn = supp(Hn). Since the set of compact subsets of a com-
pact set is compact (in the Hausdorff topology), taking a subsequence if necessary, Λn con-
verges to some compact set Λ. By Box 1.13 in Santambrogio (2015), we have supp(H)⊂ Λ.
Since Hn is strictly single-dipped by Lemma 1, we have | supp(Pn)| ≤ 2 for all Pn ∈ Λn, and
thus | supp(P )| ≤ 2 for all P ∈Λ.

Suppose part 2 fails. Then, by Lemmas 9, 11, and 12, there exist P,P ′ ∈ supp(H) such
that s1(P ′) < s1(P ) < r∗+(F ) < s2(P

′) < s2(P ). But then since Λn → Λ, there exist n and
Pn, P

′
n ∈ Λn such that supp(Pn) = {s1(Pn), s2(Pn)}, supp(P ′

n) = {s1(P ′
n), s2(P

′
n)}, and

s1(P
′
n)< s1(Pn)< r∗+(F )< s2(P

′
n)< s2(Pn), contradicting that Hn is strictly single-dipped.

Suppose part 1 fails. Then, by Lemmas 9 and 11, there exists P ∈ supp(H) such that
supp(P ) = {s, s′} with s≤ s < s′ ≤ s∗(0). Moreover, by Lemmas 9 and 11 and part 2, there
exists P ′ ∈ supp(H) such that supp(P ′) = {s∗(0), s}. But then since Λn → Λ, there exist
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n and Pn, P
′
n ∈ Λn with (s1(Pn), s2(Pn), s1(P

′
n), s2(P

′
n)) close to (s, s′, s∗(0), s). Then, by

Lemma 5, Hn cannot be pack-and-pair, contradicting Theorem 1. Q.E.D.

To complete the proof of Theorem 3, note that Lemmas 9 (for r = 0), 11, 12, and 13 show
that if a sequence of optimal plans Hη converge to H, then H must segregate types below s∗(0)
and pair types above s∗(0) in a negatively assortative manner in equally strong districts. By (1),
the unique such plan is H=H∗. Finally, since every convergent sequence Hn converges to H∗,
compactness of ∆∆[s, s] implies that Hη also converges to H∗.

A.8. Proof of Theorem 4

Theorem 4 follows from Lemmas 14–17.
Let T be the set of all plans H that maximize the designer’s seat share when each voter’s

idiosyncratic shock is 0. Lemma 14 shows that H ∈ T iff each district P ∈ supp(H) contains
50% voters with some type sP ≥ sm and 50% voters with types s≤ sm (so the designer wins
district P iff r ≤ sP ).

For P ∈∆[s, s], define P (r) =
∫

1{s≥ r}dP (s) = 1− P (r−) for all r. The designer wins
district P iff the aggregate shock r satisfies r ≤ r∗0(P ) = {max r : P (r) ≥ 1/2}. For H ∈
∆∆[s, s], define H(r) =

∫
1{r∗0(P )≥ r}dH(P ) for all r.

LEMMA 14: H∈ T iff, for each P ∈ supp(H), there exists sP ≥ sm such that P (s) = 1 for
all s≥ sP , P (s) = 1/2 for all s ∈ [sm, sP ), and P (s)≤ 1/2 for all s < sm.

PROOF OF LEMMA 14: For each r ≥ sm, we have

F (r) =

∫
P (r)dH(P ) =

∫
1{P (r)≥ 1

2
}P (r)dH(P ) +

∫
1{P (r)< 1

2
}P (r)dH(P )

≥
∫

1{P (r)≥ 1
2
} 1
2
dH(P ) =

∫
1{r∗0(P )≥ r} 1

2
dH(P ) = 1

2
H(r).

(17)

So, any feasible H satisfies H(r)≤H
∗
(r) for all r, where

H
∗
(r) =

1, if r ≤ sm,

2F (r), if r > sm.

Thus, the designer’s expected seat share for any feasible plan is
∫
H(r)dG(r)≤

∫
H

∗
(r)dG(r),

with strict inequality if H(r) < H∗(r) for some r (and thus on some interval (r′, r) with
r′ < r, by continuity of H

∗
and monotonicity and left-continuity of H), because G(r) is

strictly increasing in r. Hence, a districting plan H is optimal iff it induces H = H
∗
. In

turn, H =H
∗

iff, for each r ≥ sm, the inequality in (17) holds with equality, or equivalently,∫
1{P (r) = 1/2}dH(P ) = 2F (r) and

∫
1{P (r) = 0}dH(P ) = 1− 2F (r). Finally, this holds

for all r ≥ sm iff, for each P ∈ supp(H), there exists sP ≥ sm such that P (s) = 0 for all
s > sP , P (s) = 1/2 for all s ∈ (sm, sP ], and P (s)≥ 1/2 for all s≤ sm. Q.E.D.
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LEMMA 15: If η→ 0, then Vη → 2
∫ s

sm
G(r)dF (r).

PROOF OF LEMMA 15: Let Hη be the optimal plan and let Hr be any districting plan in
Rη(r). Then

Vη =

∫∫
1{r ≤ r∗η(P )}dHη(P )dG(r)

≤
∫∫

1{r ≤ r∗η(P )}dHr(P )dG(r) =

∫
(1− F (s∗η(r)))dG(r) = V η,

where the inequality holds because
∫

1{r ≤ r∗η(P )}dHη(P ) ≤
∫

1{r ≤ r∗η(P )}dHr(P ) for
each r by the definition of Hr .

Let H∗
q , with q ∈ (0,1/2), be NAD with a q-1 − q split in each district. Formally, H∗

q is
the unique plan H such that, for any P ∈ supp(H), we have either (a) supp(P ) = {sq} with
sq = F−1(q) or (b) supp(P ) = {s1(P ), s2(P )} such that s ≤ s1(P ) < sq < s2(P ) ≤ s, and
(1− q)F (s1(P )) = q(1− F (s2(P ))). We have

Vη =

∫
G(r∗η(P ))dHη(P )≥

∫
G(r∗η(P ))dH∗

q(P ) = V η(q),

where the inequality holds because Hη is optimal and H∗
q is feasible.

Suppose now that η → 0, which implies that Qη → δ0. For each r, 1− F (s∗η(r))→H
∗
(r),

so, by the dominated convergence theorem and integration by parts, V η →
∫
H

∗
(r)dG(r) =

2
∫ s

sm
G(r)dF (r). For q < 1/2 and s < s′, r∗η(qδs + (1 − q)δs′) → s′, so, by the dominated

convergence theorem, V η(q)→
∫ s

sq
G(r)dF (r)/(1− q), which converges to 2

∫ s

sm
G(r)dF (r)

as q ↑ 1/2. Q.E.D.

Lemma 16 shows that limit points of optimal plans Hn =Hηn , for ηn → 0, belong to T .

LEMMA 16: Let Hn →H as ηn →∞. Then H∈ T .

PROOF OF LEMMA 16: Suppose by contradiction that there exists a sequence ηn → 0 such
that Hn converges weakly to H /∈ T . Then we have

2

∫ s

sm
G(r)dF (r) = lim

n→∞

∫
G(r∗ηn(P ))dHn(P )≤

∫
H(r)dG(r)< 2

∫ s

sm
G(r)dF (r),

where the equality is by Lemma 15, the first inequality is by the Portmanteau theorem, and the
second inequality is by Lemma 14. Q.E.D.

Lemma 17 shows that, in the limit, all types are paired in a negatively assortative manner.
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LEMMA 17: Let Hn → H as ηn → 0. For any P,P ′ ∈ supp(H), we have supp(P ) =

{s1(P ), s2(P )} and supp(P ′) = {s1(P ′), s2(P
′)} with s1(P )≤ s2(P ), s1(P ′)≤ s2(P

′), and
(s2(P

′)− s2(P ))(s1(P )− s1(P
′))≥ 0.

PROOF OF LEMMA 17: Denoting Λn = supp(Hn), the same argument as in the proof of
Lemma 13 implies that there exists Λ such that, up to a subsequence, Λn → Λ, supp(H)⊂ Λ,
and | supp(P )| ≤ 2 for all P ∈ Λ.

By Lemmas 14 and 16, if the conclusion of the lemma fails, there must exist P,P ′ ∈
supp(H) such that supp(P ) = {s1(P ), s2(P )} and supp(P ′) = {s1(P ′), s2(P

′)} with
s1(P

′) < s1(P ) < sm < s2(P
′) < s2(P ). Then, since Λn → Λ, there exist n and Pn, P

′
n ∈

Λn such that supp(Pn) = {s1(Pn), s2(Pn)}, supp(P ′
n) = {s1(P ′

n), s2(P
′
n)}, and s1(P

′
n) <

s1(Pn)< sm < s2(P
′
n)< s2(Pn), contradicting that Hn is strictly single-dipped. Q.E.D.

To complete the proof of Theorem 4, note that Lemmas 14, 16, and 17 show that if a sequence
of optimal plans Hη converge to H, then H must pair all types in a negatively assortative
manner, with 50% mass on the higher type. Clearly, the unique such plan is H =H∗∗. Since
every convergent sequence Hn converges to H∗∗, compactness of ∆∆[s, s] implies that Hη

also converges to H∗∗.

A.9. Proof of Theorem 5

By Lemma 2, λ(r) has a derivative λ′(r) at each r ∈ (rb, rb + ε] satisfying

g(r)− λ(r)q(s2(r)− r) + λ′(r) (Q(s2(r)− r)−Q(0)) = 0,

g(r)− λ(r)q(s1(r)− r) + λ′(r) (Q(s1(r)− r)−Q(0)) = 0.

Solving for λ(r) and λ′(r) yields, for all r ∈ (rb, rb + ε],

λ(r) =
g(r)[Q(s2(r)− r)−Q(s1(r)− r)]

(Q(s2(r)− r)−Q(0)) q(s1(r)− r)− (Q(s1(r)− r)−Q(0)) q(s2(r)− r)
,

λ′(r) =
g(r)[q(s2(r)− r)− q(s1(r)− r)]

(Q(s2(r)− r)−Q(0)) q(s1(r)− r)− (Q(s1(r)− r)−Q(0)) q(s2(r)− r)
.

Since λ′ is the derivative of λ, we have dλ(r)/dr = λ′(r) for all r ∈ (rb, rb + ε]. Taking into
account that s1 and s2 are twice differentiable and satisfy limr↓rb s1(r) = limr↓rb s2(r) = rb,
we can apply L’Hopital’s rule to evaluate dλ(r)/dr = λ′(r) in the limit r ↓ rb to obtain

g′(rb)q(0)

(q(0))2
=

g(rb)q′(0)

(q(0))2
,

which implies that rb = 0, because G(r) = Q(ηr) for all r and q′(r) = 0 iff r = 0. Denote
limr↓rb s

′
1(r) = 1− β1 and limr↓rb s

′
2(r) = 1 + β2, where β1 ≥ 1 (because s1 is decreasing)

and β2 ≥ 0 (because s2(r)> r). Differentiating dλ(r)/dr = λ′(r) with respect to r and taking
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the limit r ↓ 0, we get

ηq′′(0)(η2 − β2β1)

q(0)
=

ηq′′(0)(β2 − β1)

2q(0)
,

and hence

2η2 = 2β2β1 + β2 − β1. (18)

Since, for small enough r > 0, type s1(r) is assigned to both district δs1(r) and district P with
r∗(P ) = r and supp(P ) = {s1(r), s2(r)}, we must have, by Lemma 2,

Q(ηs1(r)) =Q(ηr) + λ(r) (Q(s1(r)− r)−Q(0)) .

In the limit r ↓ 0, the values and the derivatives up to order 2 of both sides always coincide,
while the third derivatives coincide iff

q′′(0)η3(−β1 + 1)3 = q′′(0)η3 − 3q′′(0)η3β1 + 3q′′(0)ηβ2β
2
1 − q′′(0)ηβ3

1 ,

which simplifies to

−η2β1 + 3η2 = 3β2 − β1. (19)

Since, for small enough r > 0, type s1(r) is assigned to both district δs1(r) and district P with
r∗(P ) = r, while type s2(r) is assigned only to district P , we have

f(s1(r))s
′
1(r) (Q(s1(r)− r)−Q(0))≥ f(s2(r))s

′
2(r) (Q(s2(r)− r)−Q(0)) .

In the limit r ↓ 0, both sides are equal, and hence their derivatives must satisfy

−f(0)q(0)β1(1− β1)≥ f(0)q(0)β2(β2 + 1),

which, given that β1 + β2 > 0, simplifies to

β1 ≥ β2 + 1. (20)

Recalling that γ = η2/(1 + η2), equations (18) and (19) have two solutions

(β1, β2) =
(

3η2

(2(η2−1))
, η2

2

)
=
(

3γ

2(2γ−1)
, γ

2(1−γ)

)
and (β′

1, β
′
2) =

(
1, (2η2+1)

3

)
=
(
1, γ+1

3(1−γ)

)
,

unless γ = 1/2, in which case (18) and (19) have only one solution (β1, β2) = (1,1). The
solution (β′

1, β
′
2) never satisfies (20) and thus is discarded. Moreover, for the solution (β1, β2),

condition β1 ≥ 1 yields γ > 1/2, and condition (20) yields γ ≤
√
3− 1. Thus, for Y-districting

to be optimal, we must have γ ∈ (1/2,
√
3 − 1]. Finally, the statement in Footnote 34 holds

because

lim
r↓0

s′1(r) = 1− β1 =− 2− γ

2(2γ − 1)
< 0 and lim

r↓0
s′2(r) = 1+ β2 =

2− γ

2(1− γ)
> 0

are both strictly increasing in γ.
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APPENDIX B: ESTIMATORS

In this section, we formally define our estimators and show that they satisfy standard statis-
tical properties. Fix a US state. We assume throughout that there is a large number of voters,
so that the vote share in a precinct n with type sn in district d and election y with aggregate
shock rdy is given by vny = Φ((sn − rdy)/

√
γ). Let µs and σ2

s be the mean and variance of
the distribution of precinct types, defined by µs = EF [s] and σ2

s = V arF [s]. For convenience,
we repeat some definitions from the main text. Let wny =Φ−1(vny), T denote the number of
elections, D the number of districts, and Ndy the set of precincts in district d and election y.
Define

wdy =

∑
n∈Ndy

knywny∑
n∈Ndy

kny

, wd• =

∑
y

wdy

T
, w•y =

∑
d

wdy

D
, w•• =

∑
d

wd•

D
,

e2n =
1

DT

∑
d,y

∑
n∈Ndy

kny(wny −w•y)
2

∑
n∈Ndy

kny

,

e2d =

∑
d,y

(wdy −wd•)
2

D(T − 1)
, e2 =

∑
y

(w•y −w••)
2

T − 1
,

cov =

∑
y

∑
d

∑
d′>d

(wdy −wd•)(wd′y −wd′•)

D(D− 1)

2
(T − 1)

=
De2 − e2d
D− 1

,

where the last equality follows from

e2 =

∑
y

(∑
d

1

D
(w•y −w••)

)2

D(T − 1)

=
1

D

∑
d,y

(wdy −wd•)
2

D(T − 1)
+

D− 1

D

∑
y

∑
d

∑
d′>d

(wdy −wd•)(wd′y −wd′•)

D(D− 1)

2
(T − 1)

=
1

D
e2d +

D− 1

D
cov.

To construct our estimators, we use the following proposition.
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PROPOSITION 1: In our empirical model,

Ee2d =
1− γ

γ
, Ecov = ρ

1− γ

γ
, Ew•• =

µs√
γ
, and Ee2n =

σ2
s

γ
+ (1− ρ)

D− 1

D

1− γ

γ
,

and

e2d
d
=

1− γ

D(T − 1)γ

[
(1− ρ)χ2

(D−1)(T−1) + (1+ (D− 1)ρ)χ2
T−1

]
,

where d
= denotes equality in distribution, and χ2

(D−1)(T−1) and χ2
T−1 denote independent χ2

random variables with (D− 1)(T − 1) and T − 1 degrees of freedom, respectively.

Consider the following point estimators of γ, ρ, µs, and σs:

γ̂ =
1

1+ e2d
, ρ̂=

cov

e2d
, µ̂s =

w••√
1 + e2d

, and σ̂s =

√
e2n − D−1

D
(e2d − cov)

1 + e2d
.

By Proposition 1, 1/γ̂, ρ̂/γ̂ − ρ̂, µ̂s/
√

γ̂, and σ̂2
s/γ̂ are unbiased estimators of 1/γ, ρ/γ − ρ,

µs/
√
γ, and σ2

s/γ. Moreover, by the law of large numbers for D(T − 1)→∞, we have that γ̂,
ρ̂, µ̂s, and σ̂s are consistent estimators of γ, ρ, µs, and σs.

Proposition 1 also gives us a confidence interval for γ. Specifically, for any α ∈ (0,1), let
qα be the α-quantile for (1− ρ̂)χ2

(D−1)(T−1) + (1 + (D− 1)ρ̂)χ2
T−1. Then, a one-sided 1− α

confidence interval for γ is (γ̂α,1) where

γ̂α =
1

1+
D(T − 1)

q(α)
e2d

.

PROOF OF PROPOSITION 1: Denote

rd• =

∑
y

rdy

T
, r•y =

∑
d

rdy

D
, sdy =

∑
n∈Ndy

knysn∑
n∈Ndy

kny

, s•y =

∑
d

sdy

D
.

First, we have

Ew•• = E
1

DT

∑
d,y

∑
n∈Ndt

knt

sn − rdt√
γ∑

n∈Ndt

knt

= E
1

DT

∑
d,t

∑
n∈Ndt

knt

sn√
γ∑

n∈Ndt

knt

= E

∑
n

knt

sn√
γ∑

n

knt

=
µs√
γ
,

where the first equality is by vny = Φ((sn − rdy)/
√
γ) and the definition of vny and w••, the

second is by E[rdy] = 0, the third is by district equipopulation, and the fourth is by the definition
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of µs. Second, we have

Ee2d = E

∑
d,y

(
T − 1

T

rdy√
γ
− 1

T

∑
y′ ̸=y

rdy′
√
γ

)2

D(T − 1)
=

DT

[(
T − 1

T

)2

+
T − 1

T 2

]
1− γ

γ

D(T − 1)
=

1− γ

γ
,

where the first equality is by vny = Φ((sn − rdy)/
√
γ), the definition of wdy and wd•, and

rearrangement, the second is by V ar[rdy] = 1− γ and Cov[rdy, rdy′ ] = 0 for y ̸= y′, and the
third is by rearrangement. Third, we have

Ecov = E

∑
y

∑
d

∑
d′>d

rdy − rd•√
γ

rd′y − rd′•√
γ

D(D− 1)

2
(T − 1)

= ρ
1− γ

γ
,

where the first equality is again by vny =Φ((sn− rdy)/
√
γ) and the definition of wdy and wd•,

and the second is by Cov[rdy, rd′y] = ρ(1− γ) for d ̸= d′, Cov[rdy, rd′y′ ] = 0 for y ̸= y′, and
rearrangement. Fourth, we have

Ee2n = E
1

DT

∑
d,y

∑
n∈Ndy

kny

(sn − s•y + rdy − r•y)
2

γ∑
n∈Ndy

kny

= E

∑
n

kny

(sn − s•y)
2

γ∑
n

kny

+E

∑
d

(rdy − r•y)
2

γ

D
=

σ2
s

γ
+E

∑
d

(
D− 1

D
rdy −

1

D

∑
d′ ̸=d

rd′y

)2

γD

=
σ2
s

γ
+E

∑
d

[(
D− 1

D

)2

r2dy +
1

D2

∑
d′ ̸=d

r2d′y −
2(D− 1)

D2 rdyrd′y +
2

D2

∑
d′ ̸=d,d′′>d′

rd′yrd′′y

]
γD

=
σ2
s

γ
+

[(
D− 1

D

)2

+
D− 1

D2 − ρ
2(D− 1)

D2 + ρ
(D− 1)(D− 2)

D2

]
1− γ

γ

= σ2
s + (1− ρ)

D− 1

D

1− γ

γ
,

where the first equality is by vny = Φ((sn − rdy)/
√
γ), the definition of wny and w•y , and

rearrangement, the second is by independence across elections and district equipopulation, the
third is by the large number of voters and rearrangement of the second term, the fourth is by
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quadratic expansion, the fifth is by E[r2dy] = 1− γ and E[rdyrd′y] = ρ(1− γ) for d′ ̸= d, and
the sixth is by rearrangement.

Finally, let r = (r11, . . . , r1T , . . . , rD1, . . . , rDT )
′. Then we can write∑

d,y

(rdy − rd•)
2 = r′Ar

where

A=



T−1
T

. . . − 1
T
. . . 0 . . . 0

...
. . .

...
. . .

...
. . .

...
− 1

T
. . . T−1

T
. . . 0 . . . 0

...
. . .

...
. . .

...
. . .

...
0 . . . 0 . . . T−1

T
. . . − 1

T
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . − 1
T
. . . T−1

T


.

Note that

E[rr′]
1− γ

=Σ=



1 . . . 0 . . . ρ . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 1 . . . 0 . . . ρ
...

. . .
...

. . .
...

. . .
...

ρ . . . 0 . . . 1 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . ρ . . . 0 . . . 1


.

By the spectral theorem, there is an orthogonal matrix P (so that P ′P = P ′P = I) and a
diagonal matrix Λ with positive diagonal elements λ1, . . . , λDT such that Σ1/2AΣ1/2 = P ′ΛP .
Define u=

√
1− γPΣ−1/2r (so that r =Σ1/2P ′u/

√
1− γ). Then

r′Ar

1− γ
= u′PΣ1/2AΣ1/2P ′u= u′PP ′ΛPP ′u= u′Λu=

DT∑
i=1

λiu
2
i

where u∼N(0, I), and λ1, . . . λDT are the roots of the characteristic equation

|Σ1/2AΣ1/2 − λI|= 0 ⇐⇒ |AΣ− λI|= 0.
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Note that

AΣ=



T−1
T

. . . − 1
T

. . . ρT−1
T

. . . −ρ 1
T

...
. . .

...
. . .

...
. . .

...
− 1

T
. . . T−1

T
. . . −ρ 1

T
. . . ρT−1

T
...

. . .
...

. . .
...

. . .
...

ρT−1
T

. . . −ρ 1
T
. . . T−1

T
. . . − 1

T
...

. . .
...

. . .
...

. . .
...

−ρ 1
T
. . . ρT−1

T
. . . − 1

T
. . . T−1

T


.

After some algebra, we obtain

|AΣ− λI|= (−1)DTλD(λ− 1 + ρ)(D−1)(T−1)(λ− 1− (D− 1)ρ)T−1,

showing that r′Ar/(1− γ)
d
= (1− ρ)χ2

(D−1)(T−1) + (1+ (D− 1)ρ)χ2
T−1, and hence

e2d =
r′Ar

D(T − 1)γ

d
=

1− γ

D(T − 1)γ

[
(1− ρ)χ2

(D−1)(T−1) + (1+ (D− 1)ρ)χ2
T−1

]
. Q.E.D.
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