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Abstract

We consider auctions where buyers can acquire costly information about their

valuations and those of others, and investigate how competition between buyers

shapes their learning incentives. In equilibrium, buyers find it cost-efficient to ac-

quire some information about their competitors so as to only learn their valuations

when they have a fair chance of winning. We show that such learning incentives

make competition between buyers less effective: losing buyers often fail to learn

their valuations precisely and, as a result, compete less aggressively for the good.

This depresses revenue, which remains bounded away from what the standard

model with exogenous information predicts, even when information costs are neg-

ligible. Finally, we highlight some implications for auction design.
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1 INTRODUCTION

In many auctions, participants spend significant time and resources learning about the
goods for sale before bidding. Relevant examples are the sales of complex, high-value
assets such as companies, broadband licenses, or procurement contracts, during which
interested buyers conduct thorough due diligence. For instance, bidders in takeover
auctions get access to extensive information about the target’s operations and finances,
allowing them to assess synergies and estimate how much they value its acquisition.

Accessing and processing such information is often costly, and buyers only want
to undertake this investment if they have a decent chance of winning the auction.1

Effective auction design then needs to account for buyers’ learning incentives, and
existing literature has mostly focused on the intensive margin—that is, how much in-
formation buyers acquire about their values under various auction formats (see, e.g.,
Persico (2000); Bergemann and Välimäki (2002); Shi (2012)). Much less attention has
been paid to how auction design affects what types of information they seek.

In practice, auction participants have access to a wide range of information and
have ample flexibility as to what to learn about. Some information helps them assess
their own willingness to pay for the good while other pertains to the rival bids they
will face. Anecdotal evidence suggests that participants in high-stake auctions seek
both types of information. For instance, GTE’s bidding team prepared for the 1994
spectrum auction run by the Federal Communications Commission by assessing both
the value of each license to GTE and the level of competition in each market (Salant
(1997)). To assess competition, they looked at which bidders were eligible to bid on
which licences, estimated their budgets, and identified synergies between each license
and their rivals’ existing networks.2 This gave GTE a better sense of which licences
they could reasonably win, which were then the focus of bid preparation efforts.

Naturally, what buyers choose to learn is likely to affect how they bid, and thus
the outcome of the auction. In the above-mentioned FCC auction, the Los Angeles
license raised “little” revenue,3 perhaps because the participation of Pacific Telesis, the

1Due diligence for the acquisition of a company can take months and involves legal and accounting
fees that average to 47 basis points of the deal value (Cole et al. (2016)), in addition to consulting fees.

2Buyers have access to some information about their competitors in other settings too. For instance,
bidders in highway procurement auctions can learn about the location of their rivals’ machines and their
backlogs, and bidders in takeover auctions about their rivals’ financial constraints.

3It was sold at the price of $26 per capita, which was considered low as less profitable li-
censes were sold at higher prices, e.g., the Chicago license was sold at $31 per capita. See
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main company in California, scared away the competitors. GTE’s bidding team indeed
seemed to think they had little chance of winning that license, and so focused their
efforts elsewhere (Salant (1997)). Beyond such anecdotal evidence, we do not however
have a good theoretical understanding of what information bidders seek when given
the flexibility, nor of how it affects the performance of the auction.

This paper proposes a tractable model of multidimensional learning in second-price
auctions. We focus on the canonical auction setting with independent private values,
in which buyers’ valuations are drawn i.i.d. from some common knowledge distribu-
tion. Importantly, buyers do not know their valuations ex-ante and can acquire costly
information before bidding. The main innovation of our model is that it gives buy-
ers flexibility in what information they can seek. Specifically, buyers can acquire two
signals—one about their own valuations for the good and one about those of their
competitors—and can choose in which order to acquire them. They also have some
flexibility in choosing each signal’s informativeness and, in particular, can choose how
each signal partitions the set of possible valuations. Information is costly, and we re-
quire that the cost satisfies an appropriate notion of convexity.

Our first main result is that buyers do not converge to becoming fully informed
of their valuations in equilibrium, even as information costs become arbitrarily small
(Theorem 1). Instead, they find it cost-efficient to first assess the valuation of their
toughest competitor, and only then learn about their own, which they do only when
they have a chance of winning. As a result, their private information when entering
the auction (i.e., their types) are interdependent: not only do buyers have information
that is relevant to others, but their own expected valuations may depend on what they
learned about the competitors. We characterize equilibrium information structures
in high-stake auctions (i.e., auctions where information costs are small relative to the
value of the good) and show that buyers only learn their valuations if it falls in a similar
range as that of their toughest competitor. The information buyers acquire is then
deeply shaped by the competitive pressure they impose on each other.

We then examine how buyers’ learning incentives, in turn, affect the performance
of the second-price auction. We show that expected revenue remains bounded away
from what the standard model predicts, even as information costs vanish (Theorem 2).
Indeed, losing buyers often fail to learn their valuations precisely, and since they bid

https://www.fcc.gov/auctions-summary for the auction outcome and Klemperer (2002) for a more de-
tailed account.
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their expected valuations for the good in equilibrium, this leads to a regression to the
mean of bids. Losing bids are then less dispersed than in the standard model, which
depresses the expected second-highest bid and hence expected revenue whenever the
number of buyers N ≥ 3.4

Our main results highlight a new adverse effect of competition on revenue, and we
investigate some implications for auction design. We show that, whenever the num-
ber of bidders N is not too small, attracting an additional bidder is less valuable than
setting an optimal reserve price, suggesting that the seminal result of Bulow and Klem-
perer (1996) relies on buyers knowing their valuations fully. There are several forces
at play. First, an additional bidder does not raise revenue as much as in the standard
model, as that bidder does not learn his value fully. Second, a carefully chosen reserve
price is more valuable as losing bidders oftentimes fail to learn their valuations for the
good, leaving a larger expected gap between the highest and second-highest bids.

We then show how the seller can mitigate the revenue loss by randomizing ac-
cess to the auction. Indeed, by only allowing a randomly-chosen subset of buyers to
participate in the sale, the seller reduces buyers’ incentives to learn about their com-
petitors: even if a strong buyer is present, he might not be granted access; others then
still have a chance of winning, and hence an incentive to learn about their own valu-
ations. In high-stake auctions, this unambiguously improves expected revenue. This
result might explain why bidders in takeover auctions are often required to sign non-
disclosure agreements preventing them from revealing, among other things, their par-
ticipation in the sale. Such agreements are all the more important as buyers’ incentives
very much conflict with the seller’s on that point: high-valuation buyers benefit from
disclosing their participation and bids to others, so as to deter them from conducting
due diligence and reduce the expected price.5

Finally, we close the paper with a discussion of the model’s key assumptions, which
are the ones imposed on the process of information acquisition. We see Theorems 1 and
2 as the main results of the paper, and show that they are robust to a weakening of these
assumptions and alternative model specifications. The market design implications rely
more heavily on our assumptions, but capture practically relevant insights.

4This effect persists as information costs become arbitrarily small, thus highlighting a discontinuity
between the standard model where buyers know their valuations ex-ante (information is then effectively
free), and ours.

5Even if buyers are legally bound not to disclose their bidding intentions, they might still be able to
signal them—e.g., toeholds can sometimes signal an intention to bid aggressively in takeover auctions.
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1.1 Related Literature

First, we build on a previous paper (Gleyze and Pernoud (2022)), which investigates
whether the seller can design a mechanism under which participants only have an
incentive to learn about their own preferences. We show that it is impossible: most
selling mechanisms incentive participants to learn about others’ preferences as well,
leading their types to be endogenously interdependent. Gleyze and Pernoud (2022)
however does not characterize what an equilibrium information structure looks like—
it just shows that it has to feature some interdependencies, but not what form they
take—nor how it affects the performance of the selling mechanism. The present paper
addresses these questions in the context of the second-price auction.6

Second, our paper contributes to the literature on entry and learning costs in auc-
tions. Levin and Smith (1994) characterize the symmetric equilibrium when buyers pay
a fixed cost to learn their values before bidding in a second-price auction. They show
that equilibrium entry decisions are revenue-maximizing in the IPV setting.7 Several
papers highlight the benefits of dynamic auction formats (Compte and Jehiel (2007)),
and in particular of the Dutch auction (Miettinen (2013); Kleinberg et al. (2016)), in co-
ordinating learning across buyers, as dynamic formats endogenously reveal informa-
tion on the toughness of competition. Another strand of the literature allows buyers to
flexibly choose how much information to acquire (Hausch and Li (1993); Persico (2000);
Bergemann and Välimäki (2002); Shi (2012); Kim and Koh (2022)). Importantly, these
papers consider information acquisition about a one-dimensional random variable—
usually buyers’ own valuations or a component that is common to all buyers.

Our key contribution is to propose a model of multidimensional learning in which
buyers can separately choose how much to learn about self and others. To our knowl-
edge, the only papers that study multidimensional learning in auctions are Larson and
Sandholm (2001b,a) and Bobkova (2019). Larson and Sandholm (2001b,a) also con-
sider learning about both self and others. They show that computationally limited
agents have an incentive to learn about others in Vickrey and ascending auctions and

6We focus on the second-price auction, not only because it is a widely-used auction format but also
because it is strategy-proof : if buyers knew their valuations, they would have a dominant strategy and
would have no incentive to inquire about the competition. We can thus isolate the detrimental effect of
competition on learning incentives.

7A related literature assumes that buyers have some private information when making entry deci-
sions (Ye (2007); Quint and Hendricks (2018); Lu et al. (2021), etc.). Entry then serves as a screening
mechanism that the seller can leverage. Such considerations are absent in our paper.
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compare different models of costly deliberation. In Bobkova (2019), buyers’ valuations
are composed of a private and a common component, and buyers choose how much
to learn about each.8 She shows that buyers only seek information about their private
components in second-price auctions, which contrasts with our results.

A relatively small literature studies buyers’ incentives to learn about the compe-
tition in first-price auctions (Tian and Xiao (2007)) and auctions with interdependent
values (Kim and Koh (2020)). Information about opponents’ types is valuable as it al-
lows buyers to either shade their bids more aggressively (in the former) or alleviate
the winner’s curse (in the latter). Such incentives are absent in our setting as buyers
compete in a second-price auction and their valuations are independent and private.

Our paper also speaks to the literature highlighting the value of competition in
selling mechanisms. Bulow and Klemperer (1996) show that attracting just one more
buyer has more value than using an optimal reserve price. Relatedly, Bulow and Klem-
perer (2009) show that with costly entry, actual competition in an auction dominates
potential competition from a sequential entry mechanism.9 These results, however,
take buyers’ information as fixed. Instead, our paper asks how competition affects the
information buyers acquire and reaches opposite conclusions. Gershkov et al. (2021)
also qualify the value of competition and show that it can even hurt revenue if buyers
can invest to increase their values before bidding.

Finally, several papers study the performance of auctions when buyers are ex-ante
asymmetric (Maskin and Riley (2000); Compte and Jehiel (2002); Kim and Che (2004);
Cantillon (2008); Jehiel and Lamy (2015); Marquez (2021)). In particular, Marquez
(2021) shows that the presence of an asymmetrically strong buyer can hurt revenue.
In our paper, buyers are ex-ante identical, but we show that asymmetries in private
information arise endogenously, even in symmetric equilibria.

We end by noting that an extensive literature examines the different, though re-
lated, question of optimal information disclosure in auctions (see, e.g., Bergemann and
Pesendorfer (2007); Prummer and Nava (2023) and references therein). In our paper,
the seller has no information and does not intervene in buyers’ learning process.10

8They cannot however learn about their competitors’ values directly.
9Roberts and Sweeting (2013) extend their model with ex-ante noisy signals and asymmetries and

find that the sequential entry mechanism can dominate the auction.
10Note that the equilibrium distribution of types in our setting is highly subopimal in the eyes of the

seller since it leads to a revenue loss compared to full information.
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1.2 A Motivating Example

Two buyers compete in a second-price auction to acquire a good. Their values are
drawn i.i.d. from a finite set of possible valuations V . For the sake of this example, as-
sume that buyer j is exogenously informed of his valuation vj , and plays his dominant
strategy, such that he always truthfully bids his valuation. For simplicity, the example
focuses on the incentives of buyer i.

Buyer i does not know his valuation ex-ante but can acquire costly information
before bidding. Importantly, buyer i has flexibility as to what to learn about: he can
acquire a signal about his own valuation vi and one about his opponent’s vj . He has
full flexibility in how to design each of these two signals and can furthermore choose in
which order to acquire these signals. Information is costly and, for this example only,
we consider the entropic cost function. Informally, the cost of each signal is propor-
tional to the expected reduction in uncertainty as measured by the entropy of beliefs:

cost of a signal = λ
(

prior entropy − E[posterior entropy]
)

where λ is a scaling parameter.
We examine what information buyer i acquires as the size of information costs λ

goes to zero. From buyer i’s perspective, this is simply a decision problem: the be-
havior of buyer j is fixed, so it is as if i faced a random price vj and could learn both
about the realized price and his realized valuation for the good. For small enough in-
formation costs, buyer i must learn enough to avoid (non-trivial) mistakes. That is, i
must learn enough so that he (almost always) submits a winning bid bi > vj whenever
vi > vj and a losing bid bi < vj whenever vi < vj .11

Interestingly, many learning strategies guarantee that buyer i makes no mistakes
when bidding. For instance, buyer i can learn his valuation fully and learn nothing
about his competitor’s. That is, i can partition the state space V × V as depicted in
Figure 1 (left panel) and bid his value vi in any state (vi, vj). Another such learning
strategy is depicted in the right panel of Figure 1: i first learns whether the opponent’s
value is above or below some threshold v∗; if vj > v∗ (resp. vj ≤ v∗), he learns his value
fully if it is above v∗ (resp. below v∗) but bundles together all values below v∗ (resp.
above v∗). This is enough for i to bid optimally in the auction as well, as he learns

11Let us ignore ties for the sake of this example. The main model will add some noise to buyers’
valuations to break ties.
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Figure 1: Two learning strategies that guarantee buyer i bids optimally, leading to two
different partitions of the state space V × V .

enough to know whether or not it is optimal for him to win.
As information costs vanish, buyer i optimally chooses the cheapest information

structure that ensures he makes no mistakes in the auction. In this paper, we show
that when information costs are sufficiently convex in a signal’s informativeness, fully
learning one’s value is not cost-efficient. For instance, when there are |V | = 10 possible
valuations and they are all ex-ante equally likely, learning vi fully costs λ log 10 under
the entropic cost. The information structure depicted in the right panel of Figure 1
however only costs λ[log 2 + log 10− 0.5 log 5], which is strictly cheaper.

This example assumes that buyer j knows and bids his value to simplify the argu-
ment, but the same reasoning works in equilibrium when all buyers simultaneously
choose how to learn and bid. The added difficulty is that if i fails to learn his valu-
ation fully and j learns something about vi, then j has information that is relevant to
i. Buyers’ information—or types—is then interdependent and characterizing equilib-
rium bidding is much less straightforward. In our model, we thus add structure to the
learning process and require signals to be monotone partitions of V .12 This allows us to
characterize the equilibrium information structure as information costs vanish, which
looks like the one in Figure 1 (right).

12Note that, in this motivating example, a monotone partition is the optimal type of signal that i would
acquire about his value as information costs vanish.
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2 THE MODEL

We introduce a tractable model of multi-dimensional learning in auctions. A seller
puts a unique, indivisible good for sale through a second-price auction.13 There are N

buyers, and buyer i’s valuation for the good is denoted by νi. A buyer’s valuation is
the sum of two components νi = vi+ui, where vi ∈ V should be interpreted as the main
component—we sometimes abuse language and refer to vi as a buyer’s valuation—and
ui ∈ U as small mean-zero noise. Both components are identically and independently
distributed across buyers. Main components (vi)i are drawn i.i.d. from a finite set
V ⊂ R+ according to a probability distribution p ∈ ∆V . Noise terms (ui)i are drawn
from a compact interval U ≡ [u, u] ⊂ R according to a strictly positive and continuous
density, with E[ui] = 0. They are small, in the sense that minv′i ̸=v′′i

|v′i−v′′i | > u−u. Hence
if a buyer has a strictly greater vi than another, then he must necessarily have a strictly
greater overall valuation νi. The noise terms are only included in the model to address
technical issues arising from the discreteness of V , but serve no other purpose.14 We
take them to be sufficiently small so as not to interfere with the rest of our analysis.

Buyers have quasilinear utility functions. Buyer i’s gross payoff from the auction
in state (νj)j at bid profile (bj)j equals

U(νi, bi, b−i) ≡


νi −maxj ̸=i bj

|{j = 1, . . . N s.t. bj = bi}|
if bi = max

j
bj

0 otherwise
.

Note that we are considering a setting in which buyers’ valuations are independent
and private. Hence if buyers knew their own valuations νi, it would be a dominant
strategy for them to bid truthfully in the auction, and the seller’s expected revenue
would be the expected second-highest value.

13The intuition underlying our results seems more general and should extend to other environments—
e.g., R&D races and other types of contests, etc.

14To understand how the noise terms matter, consider what happens when there are none, and buyers
fully learn their valuations. Then equilibrium bids take values in V , and no bid is ever made strictly in
between two neighboring values. A buyer has then no incentive to learn to distinguish such values. In
equilibrium, buyers would have to randomize between bundling and not bundling neighboring values.
The noise terms can be interpreted as perturbations à la Harsanyi (1973): they allow us to dispense from
such randomization and guarantee that buyers cannot predict others’ preferences perfectly.
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Information Structures. Buyers start with no private information, but they can learn
about the realization of (ṽi)i at some cost before competing in the auction. They also
learn their own (and only their own) noise terms ũi for free at the end of the information
acquisition process.

We assume that buyers can acquire two signals, one about their own valuations ṽi

and one about others’ ṽ−i. Without loss of optimality, buyers first acquire information
about others’ valuations and, conditional on the realization of this signal, acquire in-
formation on their own. This is without loss in the sense that all our results go through
if we allow buyers to choose in which order to acquire these two signals (see Section
6 for a formal argument). To reduce the dimension of the problem, we furthermore
assume that buyers can only learn about maxj ̸=i ṽj , and not the full vector ṽ−i.15

We model information acquisition about any random variable as the choice of a
partition Π = {π1, . . . πL} of the set of possible realizations V . That is, if a buyer chooses
information partition Π, then the buyer learns to which element of the partition the
realization of the random variable belongs. If the chosen partition is Π = {V }, then
no information is acquired. If Π = {{v}v∈V }, then the partition is fully revealing. We
furthermore require that buyers choose monotone partitions, meaning that if v′, v′′ ∈ πl

with v′ < v′′, then all v ∈ (v′, v′′) also belong to the element πl of the partition.
Information is costly. Letting P denote the set of all possible monotone partitions of

V , the cost of a signal c : P×∆(V ) −→ R+ is a function of both the chosen partition and
the prior belief about the random variable of interest. Indeed, even though both ṽi and
maxj ̸=i ṽj take realizations in the same set V , they have different prior probabilities.
Thus we want to allow the same partition of V to have different costs depending on
whether it provides information about vi or maxj ̸=i vj .

Strategies and Solution Concept. Buyers have two decisions to make. First, they
decide what information to acquire. Then, conditional on their information set, they
submit a bid to the seller.

As described above, information acquisition is sequential, and an information strat-
egy consists of two parts. Each buyer i first chooses an information partition about
others Πother

i ∈ P . Then, conditional on his information set about others πother
i ∈ Πother

i ,

15This is a sufficient statistic for the highest bid faced by i in any symmetric equilibrium, which is
what matters for i’s gross payoff as that determines his allocation and the price he pays if he wins. That
said, it is not without loss, and we investigate the robustness of our results to alternative formulations
in Section 6.
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he chooses an information partition about his own valuation Πself
i : 2V −→ P . Finally,

each buyer chooses a measurable bidding strategy βi : 2V × 2V × U −→ R+, which
outputs a bid given the buyer’s overall information πi = (πother

i , πself
i , ui).

Let Σ ≡
{
(Πother

i ,Πself
i , βi) ∈ P × P2V × R2V +2V +U

+

}
be the overall set of pure strate-

gies,16 and σi ∈ ∆Σ a strategy for buyer i.
Buyer i’s ex-ante expected utility under strategy profile (σi)i writes

Eσi,σ−i

[
U(νi, βi(πi), β−i(π−i))− λ

(
c
(
Πother

i , p1:N−1

)
+ c

(
Πself

i

(
πother
i

)
, p
))]

,

where λ > 0 is a parameter that scales the cost of information, and p1:N−1 is the prior
distribution of maxj ṽj .

A Nash equilibrium is a strategy profile such that each buyer’s equilibrium strategy
σi maximizes his ex-ante expected utility given that all others follow theirs. As usual
in a second-price auction, there exist many unappealing Nash equilibria, and even
more so now that the information structure is endogenous. In particular, the concept
of Nash equilibrium imposes no discipline on which (losing) bid a buyer submits if,
at some information set, he can predict his toughest opponent’s bid and knows that
he does not want to outbid it. To rule out unrealistic equilibria, we use the following
trembling-hand-like refinement.

Definition 1. A tremble-robust symmetric equilibrium σ∗ is a Nash equilibrium in which,

(i) all buyers choose the same strategy σi = σ∗,

(ii) there exists a sequence of strictly positive numbers {ε(k)}∞k=1 converging to zero such that
σ∗ = limk−→∞ σ(k), where σ(k) is a symmetric Nash equilibrium of a perturbed game in
which, with probability ε(k), each buyer’s bid is drawn from some continuous distribution
F with support [minνi∈V×U νi,maxνi∈V×U νi] independently of his chosen strategy.

Intuitively, we require that the equilibrium remains virtually unchanged if, with
vanishing probability, buyers tremble and make a bid drawn from a full-support dis-
tribution. This refinement allows us to discipline the bids of losing buyers: if buyer i
knows that one of his opponents will bid at least 10 and that he does not want to win
at that bid, it ensures that i will bid his expected valuation instead of, e.g., 9.9. This
refinement serves no other purpose.

16Technically, a buyer could condition his bid not only on what he learned πi but also on the partitions
he chose (Πother

i ,Πself
i )—i.e., not only the the signal realizations but on the signals themselves. However,

that would never be strictly optimal as πi is a sufficient statistic for a buyer’s posterior belief.

11



Assumptions on the Cost of Information. First, we assume that the cost of a signal
only depends on the chosen partition through its effect on the buyer’s belief. Any par-
tition Π = {πl}l=1,...L induces a distribution over posterior beliefs, which puts weight
on as many posteriors as there are elements in the partition {µl}l=1,...L with17

µl(v) =


Pr(ṽ=v)∑

v′∈πl
Pr(ṽ=v′)

if v ∈ πl

0 otherwise
.

We suppose that the cost of information only depends on the chosen partition
through the extent to which it reduces the amount of uncertainty in the buyer’s belief.
Formally, there exists a measure of uncertainty H : ∆V −→ R+, which is a concave
function of a belief, such that

c(Π,prior) = H(prior)− E(H(posterior) | Π).

We furthermore assume that H is bounded and continuous. This formulation pre-
cludes that the cost of a signal about others be greater (or lower) than the cost of a
signal about self per se. We could relax this assumption, and say that the cost of a sig-
nal about others is scaled by a different parameter λother than one about self λself . All
our results would go through for λother/λself not too large. More importantly, the cost
of leaning about the competition might scale with the number of competitors N − 1,
and we discuss how that would affect our results in Section 6.

A notable example of a cost function that has such a form is the entropic cost.

Example 1. Let H be the (extended) entropy function H(p) = −
∑

v p(v) log[p(v)].
18 The cost

of an information partition equals the expected reduction in the entropy of the buyer’s belief:

c(Π,Pr(·)) =

−
∑
v

Pr(ṽ = v) log[Pr(ṽ = v)] +
∑
πl∈Π

Pr(ṽ ∈ πl)
∑
v

Pr(ṽ = v)

Pr(ṽ ∈ πl)
log

(
Pr(ṽ = v)

Pr(ṽ ∈ πl)

)
.

17In what follows, the random variable ṽ is either a buyer’s own valuation ṽi or the valuation of his
toughest opponent maxj ̸=i ṽj .

18The entropy is usually only defined for full-support beliefs. When a buyer learns v ∈ πl ̸= V , he
however puts zero probability on all realizations not in πl: his posterior does not have full support. We
extend the domain of the entropy function in the following way. For any belief p on the boundary of the
simplex, we define H(p) to be the limit of −

∑
v p̂(v) log[p̂(v)] as p̂ −→ p for some full-support p̂.
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The entropic cost has been widely used in the applied literature, in particular in models of
rational inattention. It has the advantage of being tractable and having solid information-
theoretic foundations.

The key assumption underlying our results is an assumption on the convexity of
the cost, or equivalently on the concavity of the measure of uncertainty H .

Assumption 1. The measure of uncertainty H is strongly concave: there exists m > 0 such
that, for all q, q′ ∈ ∆V and all t ∈ [0, 1],

tH(q) + (1− t)H(q′)−H(tq + (1− t)q′) ≤ −1

2
mt(1− t)||q − q′||2.

Since H is concave, the left-hand side is always weakly negative. For H to be
strongly concave, it must be sufficiently negative: the growth rate of H must have a
quadratic upper bound. This assumption ensures that the cost of a partition is suffi-
ciently convex in the fineness of the partition. In particular, it implies that it is cost-
efficient for buyers to acquire some information about the competitors (i.e., choose an
informative, though fairly coarse, partition Πother) to avoid having to become fully in-
formed about their own valuations, whenever the prior p is sufficiently uncertain, and
m is sufficiently large.

To formalize this, let Πother
v∗ ≡ {{v : v ≤ v∗}, {v : v > v∗}} be the partition that di-

vides the set of valuations V into two subsets: valuations that are below some thresh-
old v∗ and those that are above. Arguably, this is a fairly coarse partition whenever
the set of valuations V is rich. If the equilibrium is efficient, a buyer i who learns
maxj vj > v∗ has little to no incentive to learn to distinguish all valuations vi ≤ v∗

since he loses the auction at all of these. Let Πself
>v∗ ≡ {{v : v ≤ v∗}, {v}v>v∗} be

the partition that bundles all these lower valuations together. This partition is less
costly than becoming fully informed of vi, and potentially significantly so. Similarly,
when maxj vj ≤ v∗, buyer i might not want to distinguish all values vi > v∗, and let
Πself

≤v∗ ≡ {{v}v≤v∗ , {v : v > v∗}}.19 Hence even a coarse signal about others can signifi-
cantly reduce how finely a buyer should learn about his own valuation.

Lemma 1. There exists T and m such that if
∑

v[p(v)]
2 ≤ T and m ≥ m, then it is less costly

for buyers to acquire some information about others instead of becoming fully informed about

19Such partitions are sometimes called lower and upper censorship in the literature.
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themselves. Formally,

c
(
Πother

v∗ , p1:N−1

)
+ (Pr(vi ≤ v∗))N−1 c

(
Πself

≤v∗ , p
)
+
[
1− (Pr(vi ≤ v∗))N−1

]
c
(
Πself

>v∗ , p
)

< c ({{vi}vi∈V } , p) ,

for some v∗ ∈ V .

Proofs of all the results are in Appendix B. In Lemma 1,
∑

v[p(v)]
2 captures the

precision of the prior belief. Indeed, this sum is highest when the prior is deterministic
(i.e., when p(v) = 1 for some v), and is lowest under a uniform prior. To see why the
condition on the prior is necessary, take the extreme case in which only two valuations
have strictly positive prior probability: V = {v, v}. Then any information acquired
about others must fully reveal maxj vj : the only non-trivial information partition is the
fully revealing one {{v}, {v}}. There is then no scope for buyers to save on information
costs about their own values by learning a bit about others.

For the rest of the paper, we assume that the prior p is sufficiently uncertain and H

is sufficiently concave that Lemma 1 holds.

Example 1 (continued). Consider again the entropy function H(p) = −
∑

v p(v) log[p(v)].
Let N = 2 and V = { 1

K
, 2
K
, . . . , K

K
} with p(vi) = 1

K
for all vi ∈ V . The fully revealing

partition Πself = {vi}vi∈V costs

c ({vi}vi∈V , p) = H(p) = log(K).

Suppose K is even. Learning whether the competitor’s value vj is above or below v∗ = 1
2

costs

c
(
Πother

v∗ , p1:N−1

)
= log(K)− v∗

K
log(v∗)− K − v∗

K
log(K − v∗) = log(2).

When buyer i learns vj is greater (respectively, lower) than v∗ = 0.5, he only needs to learn his
valuation precisely when it is also greater (resp., lower) than v∗ = 0.5, which costs

c
(
Πself

≤v∗ , p
)
= c

(
Πself

>v∗ , p
)
= log(K)− 1

2
[log(K)− log(2)].

Hence that allows him to reduce learning costs about his value by 1
2
[log(K) − log(2)], and so

learning about the competition is cost-efficient whenever K > 8.
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3 HOW COMPETITION SHAPES BUYERS’ INFORMATION

This section investigates how the competitive pressure between buyers affects what
information they seek and the resulting equilibrium information structure. We first
consider two benchmark cases in which buyers are either exogenously informed of
their valuations or can only acquire costly information about their own valuations. We
show that these two benchmarks yield the same predictions when information costs
are small relative to the value of the good. This is, however, not the case when buyers
can also learn about their competitors.

3.1 Two Benchmark Cases

In the first benchmark we consider, buyers are exogenously informed of their valua-
tions. This case is well understood, and bidding truthfully is a dominant strategy for
buyers. Whether or not they know others’ valuations, or can acquire information about
them, is then irrelevant. We report the properties of the equilibrium for completeness.

Proposition 0. Suppose buyers know their valuations ex-ante. Then there exists a symmetric
equilibrium in which expected revenue equals the expected second-highest valuation E[ν(2)].

Now suppose buyers have no private information ex-ante and can only acquire in-
formation on their own valuations. Most papers on information acquisition in auctions
focus on this case.

Proposition 1. Suppose buyers can only learn about themselves. Then, for λ small enough,
there exists a symmetric equilibrium in which they all become fully informed about their own
valuations, and expected revenue equals the expected second-highest valuation E[ν(2)].

Hence, the two benchmarks yield similar predictions for small information costs.
The intuition is direct: the gains associated with distinguishing two realizations of ṽi
are always strictly positive, as a buyer might face a price (i.e., a highest bid) that falls
precisely between these two realizations. If information costs are small enough, buyers
must choose the fully revealing partition Πself = {{v}v∈V }.

3.2 Multi-Dimensional Learning

We now consider our main model specification, in which buyers can acquire informa-
tion on their valuations as well as others’. We show that buyers have an incentive to
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learn a bit about their competitors, so as not to waste resources learning about their
own valuations when such information makes no difference.

We start by establishing equilibrium existence.

Proposition 2. There exists a symmetric equilibrium that is robust to trembles for any cost
parameter λ.

In what follows, we use the term “equilibrium” to refer to a tremble-robust sym-
metric equilibrium.

We now show that, contrary to our benchmarks, buyers cannot all become fully
informed of their valuations in equilibrium. This is true even as the cost parameter λ
becomes arbitrarily small.

Proposition 3. Suppose buyers can learn both about themselves and others. Then there does
not exist a sequence of equilibria in which buyers become fully informed of their valuations as
the cost parameter λ goes to zero. That is, there exists ε > 0 such that, for any sequence of
equilibria {σλ}λ,

lim
λ−→0

Pr
(
Πself = {{vi}vi∈V } | σλ

)
≤ 1− ε.

The intuition is the following. If buyers learn their valuations fully, they simply bid
truthfully in equilibrium, and the good goes to the highest-valuation buyer. It is then
cost-efficient for buyers to first assess how much competitive pressure they will face
in the auction (i.e., what is the highest valuation among their competitors) and then
only learn their own valuations when it is worth, as this leads to strictly lower overall
information costs (Lemma 1). In the proof, we show that doing so does not harm their
gross payoff from the auction and must hence be a profitable deviation.

More generally, this highlights buyers’ incentive to learn about their competitors.
If they do so, then their private information (i.e., their types) when entering the auc-
tion will be interdependent. Indeed, not only will buyers have information relevant to
others, but their beliefs about their own valuations will depend on what they learned
about others. In other words, the equilibrium information structure will fail to satisfy
the standard assumption of independent private types, despite buyers’ valuations be-
ing statistically independent. This significantly complicates the analysis of equilibrium
behavior, as buyers no longer have a dominant strategy when deciding how to bid.

To illustrate this, consider a buyer i who acquired no information whatsoever and
let N = 2. If buyers were not able to acquire information about others, then bidding his
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expected valuation would be a dominant strategy for i. This is no longer the case in our
model. For instance, suppose buyer j becomes full informed about his competitor’s
valuation (i.e., Πother

j = {{v}v∈V }) and always bids just below it (i.e., βj(πj) = vi + u).
Given j’s strategy, buyer i always wants to win the auction since the price he pays
always lies strictly below his valuation: a best response is for i to bid sufficiently high
so as to be guaranteed a win. Bidding his expected valuation given his own information
set results in a strictly lower payoff for i, and so it is no longer a dominant strategy.20

Overall, buyers’ ability to learn about each other can create rich interdependencies
between their information and bids, potentially expanding widely the types of behav-
ior sustainable in equilibrium. Yet, focusing on high-stake auctions (i.e., auctions with
small cost parameter λ) enables us to characterize equilibrium information structures.21

Theorem 1. There exists λ > 0 such that, for all λ ≤ λ, there exists ε(λ) > 0 with
limλ−→0 ε(λ) = 0 such that, if an information structure has probability Pr

(
Πother,Πself | σλ

)
≥

ε(λ) in some equilibrium σλ, then it solves

min
Π̂other,Π̂self

c
(
Π̂other, p1:N−1

)
+ Eπ̂other

[
c
(
Π̂self (π̂other), p

)]
s.t.

Π̂self (π̂other) =

{{
vi | vi < min

v∈π̂other
v

}
,
{
vi

}
vi∈π̂other

,

{
vi | vi > max

v∈π̂other
v

}}
∀π̂other ∈ Π̂other.

(⋆)

In words, condition (⋆) requires that if buyer i knows his toughest competitor’s
valuation belongs to some interval πother, then buyer i learns his own valuation fully if
and only if it falls in the same interval. Acquiring more information that this does not
affect the outcome of the auction in equilibrium, and thus serves no purpose. Figure 2
illustrate condition (⋆).

There exist many information structures satisfying (⋆),22 but an equilibrium infor-
mation structure must furthermore minimize total information costs. Intuitively, there
is a certain amount of information that guarantees buyers make no mistake at the bid-

20Thus, the (more standard) refinement of weakly undominated strategy has little bite in our setting,
which is why we require robustness to trembles.

21Focusing on high-stake auctions ensures that any information that has non-trivial value must be
acquired in equilibrium, thus reducing the noise in buyers’ behaviors.

22For instance, not acquiring any information about the competition Πother = {V } and fully learning
one’s own value Πself ({V }) = {{v}v∈V }.

17



v1 v2 vk−1 vk vk vk+1 vK
maxj vj

πother

v1 v2 vk−1 vk vk+1 vk vk+1 vK
vi

Figure 2: Let V = {v1, v2, . . . , vK} and order the valuations in increasing order, i.e., vk <

vk+1. If buyer i learns that maxj vj ∈ πother ≡ {v : vk ≤ v ≤ vk} (top line), he chooses to fully
learn his valuation if it belongs to the set πother, but fails to distinguish all valuations that are
for sure lower or higher than maxj vj (bottom line).

ding stage (condition (⋆)) and buyers choose the cheapest way to achieve it. Lemma 1
then implies Πother ̸= {V }, as fully learning one’s own valuation is not cost-efficient,
and buyers acquire some information about others in equilibrium. Overall, the com-
petitive pressure that buyers impose on each other shapes the information that they
acquire in significant ways. The rest of the paper examines how that, in turn, affects
the value of competition.

4 REVENUE AND ENTRY DISTORTIONS

In this section, we analyze the impact of learning incentives on revenue and entry. We
show that the equilibrium information structure leads buyers to compete less aggres-
sively for the good, which depresses revenue and distorts entry.

4.1 Revenue Loss

Since buyers do not learn their valuations fully in equilibrium, expected revenue is
likely to be different than in our benchmark cases. Our first main result states that
revenue remains strictly lower and bounded away from the expected second-highest
valuation, even for small information costs λ.

Theorem 2. Let N ≥ 3. There exist L > 0 and λ > 0 such that, for all λ ≤ λ, the revenue
generated in any equilibrium σλ of the second-price auction is bounded away by L from the
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expected second-highest valuation:

E
[

equilibrium revenue
∣∣σλ

]
< E

[
ν(2)

]
− L.

Note that the constant L is independent of the cost parameter λ. Hence revenue is
bounded below the expected second-highest valuation, and does not converge to it as
information costs vanish. This contrasts with our above benchmarks, where revenue
converges to the expected second-highest valuation as λ goes to zero.

What is driving the loss in revenue? In equilibrium, buyers first assess the compe-
tition and only learn their own valuations if they fall in a similar range as that of their
toughest competitor. As a result, losing bidders often only learn that their valuations
are below some threshold (and, in particular, below that of their toughest competitor)
but fail to learn it exactly. Our equilibrium refinement guarantees that if losing bidders
fail to learn their valuations, they bid their expected valuations given their information
sets. This reduces the variance in losing bids and distorts the expected second-highest
bid downwards whenever N ≥ 3. Indeed, since the max is a convex function, the ex-
pected highest bid among losing bids is greater when losing bids are more dispersed.
(With only N = 2 buyers, there is only one losing bid, and dispersion plays no role.)

We emphasize that for sufficiently small information costs λ, the equilibrium allo-
cation of the good remains efficient in our model, namely the highest valuation bid-
der wins the good. Indeed, a buyer only fails to learn his valuation in equilibrium if
he is sure of losing (or winning) given what he learned about others. Hence a direct
corollary of Theorem 2 is that endogenous information acquisition does not affect total
surplus for small information costs λ, but redistributes surplus from the seller to the
buyers. It furthermore suggests that, if possible, high-valuation buyers have a strong
incentive to signal that they have a high valuation, so as to discourage others from
learning about their own and competing aggressively. This is often seen in practice.
For instance, jump bidding and toeholds are sometimes seen as signaling devices that
aim at deterring competition (Bulow et al. (1999); Betton and Eckbo (2000); Hörner and
Sahuguet (2007)).

A Uniform Example. Let V =
{

1
K
, 2
K
, . . . , K−1

K
, K
K

}
be the set of possible valuations,

and Pr(ṽi = v) = 1
K

be the prior probability of each v ∈ V . For K large enough, this
approximates a uniform distribution on [0, 1]. We set H to be the entropy function as
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in Example 1, such that H(p) = −
∑

v p(v) log(p(v)) for any belief p ∈ ∆V .
We know from our analysis that for small enough cost parameter λ, buyers only

put non-trivial weight on cost-minimizing information structures satisfying (⋆). We
find this information structure numerically,23 and depict the equilibrium information
partition about others Πother for several values of N in Figure 8 of Appendix A.1. We
then simulate equilibrium bids and compute expected revenue for vanishing λ.24 We
also compute expected revenue when buyers are fully informed of their valuations,
which equals the expected second-highest valuation.

2 4 6 8 10 12 14 16 18

0.3
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0.5

0.6

0.7

0.8
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1

Figure 3: The top (blue) line plots expected revenue in the standard model (i.e., the expected
second-highest value). The bottom (red) line plots expected revenue in our model for small λ.
For comparison, the dashed (black) line plots expected revenue in the standard model when the
seller uses a posted-price mechanism (i.e., commits to a price and, if more than one buyer is
interested, the winner is chosen uniformly at random). The difference between the blue and red
lines is the revenue loss from Theorem 1. Parameter K = 30.

Figure 3 shows how expected revenue remains bounded away from its full infor-
mation benchmark even as information costs become arbitrarily small. The revenue
loss due to endogenous information acquisition is captured by the difference between

23Though there could technically exist several cost-minimizing information structures, this never hap-
pens in our numerical example.

24In Figure 3, we fit a flexible (6th-degree) polynomial on expected revenue to smooth small irregu-
larities arising from the discreteness of the set of valuations V . Indeed, its discreteness induces slight
non-monotonicities in N that disappear as the grid of possible valuations gets finer (i.e., as K increases).
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(a) Costless Information (λ = 0) (b) Costly Information (λ > 0)

Figure 4: Distribution of surplus between the seller and buyers in our uniform example. As
before, parameter K = 30.

the top (blue) and the bottom (red) lines. To assess the magnitude of this loss, we com-
pare it to the loss in revenue associated with using a posted-price mechanism instead
of an auction in the standard model.25 In this example, the revenue loss due to endoge-
nous information acquisition is similar in magnitude to the loss associated with using a
suboptimal posted-price mechanism (difference between blue and dashed black lines).

Since the equilibrium allocation remains efficient when λ is small, the revenue loss
means that buyers get a higher surplus than in the standard model with exogenous
information. This is illustrated in Figure 4.

4.2 Entry Distortion

We now extend our baseline model to include entry decisions. After the information
acquisition stage, buyers decide whether or not to participate in the auction. If they
do, they incur an entry cost κ > 0. Formally, a buyer enters the auction and pays the
entry cost κ at information set πi if he makes a non-zero bid, that is, if βi(πi) > 0.

Entry costs are common in practice. For instance, to participate in the 1991 auction
for television franchises in the UK, TV channels had to provide a detailed listing of

25Under a posted-price mechanism, the seller chooses a (unique) price and, if several buyers express
interest in buying the good at that price, allocates the good randomly between them.
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what they would air. This resembles more a fixed entry fee than an information acqui-
sition cost. More generally, participating in an auction always entails some fixed (e.g.,
legal) costs.

Consider first what happens in the standard model where buyers know their valu-
ations ex-ante. In any equilibrium satisfying the tremble-hand-like refinement, buyers
who enter the auction bid truthfully. Buyers with higher valuations have a greater in-
centive to enter, and in equilibrium, a buyer enters if and only if his valuation is above
a threshold νi ≥ ν∗. A buyer with a valuation precisely at the threshold must be indif-
ferent between entering or not. He knows that he will win the auction only if no one
else enters, in which case he pays a price of zero. The indifference condition is then:

Pr

(
max
j ̸=i

νj < ν∗
)
ν∗ = κ.

Let Ñ0 = |{i | ν̃i ≥ ν∗}| be the (random) number of buyers who enter the auction in
that equilibrium.

If buyers can only learn about themselves, then for λ small enough, there exists an
equilibrium in which buyers learn to distinguish all valuations they can have above
ν∗, and only enter when their valuations are above ν∗. Hence the equilibrium yields
the same allocation and revenue as what the standard model predicts. On the contrary,
entry decisions are much different when buyers can also learn about their competitors’
valuations.

Proposition 4. Let N ≥ 3. There exists λ > 0 such that, for all λ ≤ λ, there exists ε(λ) > 0

with limλ−→0 ε(λ) = 0 such that, in any equilibrium σλ, the probability that at least two buyers
enter the auction is bounded above by

Pr
(
Ñλ > 1 | σλ

)
≤ Pr

(
v(1) = v(2)

)
+ ε(λ),

where Ñλ = |{i | βλ(π̃i) > 0}| is the (random) number of buyers who enter.

Proposition 4 states that several buyers enter the auction only if their valuations
fall in a similar range. In the proof, we show that two buyers i, j, with values vi < vj

cannot both enter the auction with non-vanishing probability in equilibrium. If they
were to both enter, buyer i would never win the auction as his overall valuation νi

must lie strictly below j’s. He would then want to learn j’s valuation so as not to enter
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in those states and save on the entry cost. Entry costs then reinforce the revenue loss
described in Theorem 2, as losing buyers not only fail to learn their valuations for the
good but stay out of the auction altogether. This is precisely what happened in the
1991 U.K. auction for television franchises in two regions (the Midlands and Scotland).
In each region, the incumbent firm was expected to win and ended up being the only
one putting together a complete programming plan and bidding for the license.26

A direct corollary of Proposition 4 is that, for sufficiently small entry cost κ, there is
more entry in the standard model than in ours. Indeed, for κ small enough, the entry
threshold when buyers know their valuations ν∗ is very close to the lowest possible
valuation. With probability close to one, all buyers then enter the auction. On the
contrary, the probability that two or more buyers enter the auction remains bounded
below one in our model (Proposition 4), irrespective of the size of the entry cost κ.

Observe that, once entry decisions are introduced, the standard model (in which
buyers know their own valuations ex-ante, but not that of others) yields different pre-
dictions from a model with costless information (λ = 0, such that buyers know both
their own and their toughest competitor’s valuations). Indeed, in the former, entry
decisions are characterized by the above threshold ν∗. In the latter, two buyers with
valuations vi ̸= vj cannot both enter. Unlike for revenue, there is then no discontinuity
in entry decisions between a model in which information is costly (λ > 0 but small)
and one in which it is free (λ = 0).

5 MARKET DESIGN IMPLICATIONS

So far, we have shown that losing buyers often fail to learn their valuations precisely,
which leads them to bid less aggressively and depresses expected revenue. This has
implications for market design. First, the value of an optimal reserve price often domi-
nates the value of an additional bidder. This contrasts with common wisdom inherited
from Bulow and Klemperer (1996) (thereafter, “BK”). Second, the seller gains by main-
taining uncertainty over competition. Overall, this suggests that competition is most
effective if it is carefully designed by the seller. We emphasize that the following results
provide practical insights on auction design, but rely on stricter assumptions on the en-
vironment beyond what is needed for our main results on equilibrium characterization
and revenue loss.

26See Klemperer (2002) for more details.

23



5.1 Additional Buyer vs. Reserve Price

In a seminal paper, BK show that the value of an additional bidder in an auction always
dominates the value of optimizing the reserve price. This is an important result as it
gives market designers a very simple and actionable insight: attract as many bidders
as possible.

We revisit this result in our setting with information acquisition. To do so, we let
the support of the noise terms [uN , uN ] depend on the number of buyers N .27 This will
be important for the following result and we discuss why afterwards.

Proposition 5. Suppose (uN − uN) = o(exp(−N)) as N −→ ∞. There exists N such that,
for all N ≥ N and for λ small enough, revenue with N + 1 bidders in the second-price auction
without reserve is lower than revenue with N bidders in the second-price auction with optimal
reserve.

That are several forces underlying Proposition 5. First, competition is less valuable
than in the standard model as additional buyers fail to learn their valuations fully, and
so do not add as much competitive pressure. Second, a reserve price is more valu-
able in our setting. Indeed, losing buyers often fail to learn their valuations precisely,
which leaves a larger expected gap between the highest and second-highest bid, and
hence more room for a carefully-designed reserve price to intervene. Of course, the
standard force—i.e., that higher N means higher second-order statistic on average—is
still present. The crux of the proof lies in showing that the first two dominate for N

large enough.
It is important to note that the value of both a reserve price and an additional bidder

goes to zero as N goes to infinity. In the proof, we show that the latter goes to zero at
a faster rate, such that a reserve price dominates whenever the number of buyers N is
sufficiently large. This result is not driven by higher N having a negative impact on
revenue—our examples suggest revenue is still increasing in N ,—but instead shows
that auction design has a relatively larger value when information is endogenous.

Why is the condition on the support of the noise terms needed? Think of what
happens when the number of buyers gets large. With high probability, at least two
buyers will have the highest valuation possible maxv∈V v ≡ vK . All these buyers will

27We emphasize that this does not change any of our preexisting results. So far, we have taken N
as given, so the support of the noise terms could have very well be indexed by N as well. To save on
notation, we however decided to only introduce this indexing now.
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learn their valuations fully and bid νi = vK + ui. In such cases, revenue is effectively
the same as in the standard auction model with |{i : vi = vK}| bidders and valuations
drawn from [vK + u, vK + u]. In that world, the BK result holds as an additional bidder
increases the expected highest draw of ui. This force goes against our result but does
not overturn it whenever the support of the uis shrinks fast enough with N .28 The
driving force behind our result occurs when at most one buyer has the highest possible
valuation vi = vK . In that case, losing buyers fail to learn their valuations and their
(low) bids set the price of the good. A reserve price then induces a significant increase
in revenue.

The proof of Proposition 5 requires the number of buyers N to be large enough. We
see this as a limitation on the robustness of the result in general. Our uniform example
however suggests that N does not have to be very large for Proposition 5 to apply.

Uniform Example Continued. We revisit the uniform example from Section 3.3 to
illustrate Proposition 5. The left panel of Figure 5 plots the value of an additional
bidder and the value of a reserve price in the standard model, in which buyers know
their valuations and bid truthfully. The value of an additional bidder is then always
greater than that of a reserve price (BK’s result). The opposite is true in our model
(right panel).

Not only is the optimal reserve price more valuable in our framework than in stan-
dard theory, but it also has different properties. When buyers know their valuations
ex-ante, the optimal reserve price is known to be independent of the number of par-
ticipants N in the auction (see, e.g., Myerson (1981)).29 In our framework, the optimal
reserve price converges to the highest possible valuation as the number of buyers N

grows large and, more generally, seems to be increasing in N . See Figure 9 in Appendix
A.1 for an illustration.

28This assumption does not imply that revenue in the standard model (i.e., E[ν(2:N)]) is decreasing in
N . Indeed, an additional buyer increases the expected second-highest main component E[v(2:N)] by at
least p(vK)(1− p(vK))N [vK − E(vi | vi < vK)] while the shrinking support of the noise terms induces a
loss of at most uN .

29This result technically requires buyers’ set of possible valuations to be an interval and the distri-
bution to satisfy an appropriate regulatory condition. It holds approximately when our finite set of
valuations is sufficiently fine.
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(a) Costless Information (λ = 0)
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(b) Costly Information (λ > 0)

Figure 5: The dashed lines plot the value of an additional bidder—i.e., the difference between
expected revenue under N +1 bidders and expected revenue under N bidders—as a function of
N . The solid lines plot the value of a reserve price—i.e., the difference between expected revenue
under N bidders with an optimal reserve price and without a reserve price—as a function of
N . All curves are fitted with a flexible (6th-degree) polynomial to smooth small irregularities
arising from the discreteness of the set of valuations V .

5.2 Maintaining Uncertainty over Competition

To mitigate the revenue loss, the seller needs to incentivize buyers to learn their valu-
ations for the good. In this section, we show that by inducing uncertainty on the set of
buyers allowed into the auction, the seller can induce higher information acquisition
and increase revenue.

The set of potential buyers is still exogenous and equal to N = {1, . . . N}, but the
seller can now commit to only letting some (random) subset of buyers compete in the
auction. That is, the seller can commit to only considering some of the submitted bids.
Let M̃ be the random set of buyers who get access to the auction—that is, buyers whose
bids are taken into consideration,—whose distribution is chosen by the seller. As be-
fore, buyers acquire information before bidding and, in particular, before knowing the
realization of M̃ .

Consider the following way to randomize access to the auction. With probability
1 − q < 1, all buyers get access M = {1, . . . , N}. All bids are then taken into consid-
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eration: the good goes to the highest bidder who pays the second-highest bid. With
probability q, one buyer chosen uniformly at random is denied access to the auction:
M = {1, . . . , N} \ i for some i. In such an event, the seller acts as if buyer i had not
submitted a bid. Hence, even if one learns that another buyer has a greater valuation,
there is still some strictly positive probability q/N that the other buyer’s bid will not
be accounted for. Information about one’s own valuation is then strictly beneficial: for
λ sufficiently small, buyers become fully informed.

Proposition 6. Take any ε > 0. There exists an access rule M̃ such that, for λ small enough,

E
[

equilibrium revenue
∣∣σλ

]
≥ E

[
ν(2)

]
− ε

in any equilibrium σλ. In particular, the access rule described above with q = 1− ε
E[ν(2)]

yields
such revenue.

Proposition 6 suggests that randomizing access to the auction is a powerful tool to
incentivize information acquisition. By maintaining uncertainty over the competition
that a buyer will face in the auction, the seller reduces the negative effect of competition
on learning incentives. In the proof of Proposition 6, we show that if a buyer’s toughest
competitor has a non-zero chance of being excluded from the auction, then the buyer
has a strict incentive to learn his valuation for the good. For λ sufficiently small, he
will then do so.

Even though this intuition relies on buyers only being able to learn about their
toughest competitor maxj vj—instead of all their competitors (vj)j ,—Proposition 6 does
not. Indeed, even if buyers could learn about the entire vector (vj)j , any access rule
that excludes all subsets of buyers with positive probability—instead of one buyer at a
time—would give buyers a strict incentive to learn their own valuations.

Our results can explain why sellers sometimes try to keep secret the identity of
participants in an auction. For instance, potential bidders in takeover auctions sign a
confidentiality agreement that prevents them from revealing, among other things, their
participation in the auction and the value of their bids (see Gentry and Stroup (2019)
for a description of a typical takeover auction).

Finally, we compare the value of randomizing access to that of setting an optimal
reserve price—which is sometimes a complicated endeavor when the seller has little
information about the value of the object.
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Proposition 7. Suppose (uN−uN) = o(exp(−N)) as N −→ ∞. There exists N such that, for
all N ≥ N and for λ small enough, randomizing access to the auction leads to higher revenue
than setting an optimal reserve price.

Hence, when information is endogenous and shaped by competition, randomiz-
ing access—and thus sometimes allocating the good to the wrong buyer—improves
revenue more than setting an optimal reserve price. These two allocative distortions
serve different purposes: the former incentivizes buyers to acquire more information
about their valuations for the good, while the latter reduces the rent they get from said
information. Proposition 7 then says that in our framework, there is more value in
incentivizing buyers to acquire information than in reducing their information rent.

6 DISCUSSION AND ROBUSTNESS OF THE MODEL

Key assumptions in our analysis are those imposed on the process of information ac-
quisition. Some are required for tractability, while others can be relaxed to some extent.
We now discuss these assumptions in more detail.

6.1 The Structure of the Learning Process

We model information acquisition as a two-step process, in which buyers first acquire a
signal about their competitors’ valuations and then one about their own. The following
proposition says that such ordering is without loss within the class of two-step learning
processes.

Proposition 8 (order of signals). Consider our main model specification, but suppose that
buyers can now choose in which order to acquire the two signals.30 There exists λ > 0 such
that, for all λ ≤ λ and in any equilibrium σλ, buyers choose to acquire information on others
first, and all results are unchanged.

The proof of Proposition 8 consists in showing that, in any equilibrium, buyers
choose to acquire information about the competition first. Hence imposing that partic-
ular ordering is without loss for our results.

30That is, they can choose whether to first acquire a signal about their own value vi and then one about
others maxj vj , or vice versa.
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Only looking at two-step learning processes is a stronger assumption. In general,
there is no reason why buyers would not want to undertake a more elaborate learning
process in which they go back and forth between acquiring some information about
their own values and some information about others. We show that giving buyers this
added flexibility does not change the main results of the paper: buyers learn about the
competition and equilibrium revenue remains bounded below the expected second-
highest valuation as information costs vanish.

Proposition 9 (number of signals). Consider our main model specification, but suppose that
buyers can now choose as many signals—i.e., partitions—as they wish as well as in which
order to acquire them.31 Proposition 3 and Theorem 2 hold. That is, as information costs
vanish, buyers fail to learn their valuations fully which results in a revenue loss.

If anything, this added flexibility allows buyers to even better condition how much
they learn about themselves on the competition they face. To illustrate this, consider
our uniform example with |V | = 20 possible valuations, N = 2 buyers, and entropic
cost. In our baseline model, the equilibrium information structure is as depicted in

vi

vj

vi

vj

Figure 6: Equilibrium information structure when buyers can only acquire two signals
(left panel) vs. as many signals as they wish (right panel).

Figure 6 (left panel): buyers first choose Πother = {{vi : vi ∈ [0, 1
3
]}, {vi : vi ∈ [1

3
, 2
3
]}, {vi :

vi ∈ [2
3
, 1]}} and then learn their valuation fully only if it falls into the same interval

31For instance, they can choose to first learn whether maxj vj > v∗ and then learn whether their own
value is above v∗, and then go back and learn more about the competition, etc.
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as the opponent’s. When buyers are allowed to go back and forth between learning
about self and others, the equilibrium information structure is as depicted on the right
panel and resembles a binary search: buyers first learn whether vj > 0.5 and whether
vi > 0.5, which devides the state space into four quadrants. If vj > 0.5 and vi ≤ 0.5

(upper left quadrant) or if vj ≤ 0.5 and vi > 0.5 (lower right quadrant), then they stop
acquiring information. Otherwise they keep on learning. The areas shaded in pink
are all the states of the world in which buyer i is the losing buyer and fails to learn
his valuation fully, which drive the revenue loss. If anything, the shaded area is larger
when buyers have more flexibility in how they learn.

6.2 Noisy Signals and Ex-Ante Private Information

Throughout the paper, we have modeled signals as information partitions. Partitions
are a particular type of signals in that they are “deterministic:” the signal can be par-
tially informative but it can never be “wrong.” Naturally, this is a simplifying assump-
tion, but one that is needed for tractability. With more noise in the learning process,
characterizing equilibrium bidding becomes much more challenging. Recall that in
our setting, the second-price auction is no longer strategy-proof: that is, it might not
be optimal for a buyer i to bid his expected valuation given his information set. In-
deed, other buyers might have acquired information about their competitors—which
include i himself—and so their bids might carry information relevant to i. There is no
nice structure on how a buyer should update about his value upon tying at a particular
bid—e.g., he could update positively at a some bid but negatively at another. By re-
ducing the noise in the learning process we recover tractability: if a buyer ties, he must
have a valuation close to that of his toughest opponent, and so must have learned his
valuation fully. This is also why we focus on small information cost λ.

In this section, we tweak our baseline model to allow for more general signal struc-
tures. Instead of being completely uninformed of their values at the beginning of the
game, buyers are now endowed with some private information. More precisely, they
get to observe for free the realization of a signal si where si = s when vi ≤ v∗ and si = s

when vi > v∗ for some v∗ ∈ V . In words, they initially know whether their value is
“high” (above v∗) or “low” (below v∗.) As in our baseline model, buyers can acquire
two additional signals: one about their own value and one about their competitors’.
However, we now impose that buyers can only learn about their competitors’ exoge-
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nous information, i.e, they can only learn about maxj sj and not about maxj vj . This
assumption makes all the above complications go away as it ensures that a buyer i can
only learn things about j that j already knows. We can thus allow for more general sig-
nals and we give buyers full flexibility in how to design these two signals. That is, they
can choose any distribution over posterior beliefs about others (maxj sj) and about self
(vi) that is consistent with their prior. The rest of the model is unchanged.

Theorem 3. If the prior conditional on si is sufficiently uncertain,32 then Proposition 3 and
Theorem 2 holds.

Our main results thus extend to a setting where buyers can choose noisy signals: as
information costs vanish, buyers still fail to learn their valuations fully, which results
in a revenue loss. The same intuition as in our baseline model holds: for small enough
information costs, buyers must learn enough so as not to make non-trivial mistakes at
the bidding stage. One way not to make mistakes is to learn one’s valuation fully, but
that is not cost-efficient. In equilibrium, a buyer who knows his value is above v∗ (i.e.,
a buyer with si = s) will converge to learning almost perfectly whether his toughest
opponent is weak (max sj = s), in which case he will not acquire any information about
himself. Doing so is cost-efficient whenever the remaining uncertainty that buyer i

has about his value (i.e., the uncertainty in the distribution of vi conditional on si) is
sufficiently large.

6.3 Learning about the max

A perhaps more economically substantive assumption concerns buyers’ ability to learn
about their toughest competitor’s valuation maxj vj without having to learn about each
competitor (vj)j individually. This assumption is mainly made for tractability, as it sig-
nificantly reduces the dimensionality of the problem. Combined with the assumption
on the cost of information, it however does imply that the cost of learning about the
competition does not scale with the number of competitors. This seems a good approx-
imation in settings where the number of auction participants in small or where buyers
learn about the competition in aggregate—e.g., by undertaking market research. In
other settings, however, buyers might only be able to learn about their competitors
one at a time. That is, buyers might only be able to learn about maxj vj by learning
about each vj independently.

32That is, if
∑

v≤v∗ [p(v)/(
∑

v′≤v∗ p(v′))]2 and
∑

v>v∗ [p(v)/(
∑

v′>v∗ p(v′))]2 are sufficiently small.
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We now consider this possibility, and investigate how it affects our results in the
context of our running uniform example. Suppose that a buyer i wants to learn whether
maxj vj > v∗ for some v∗. What is the cost of getting that information in this new
setting? If buyer i can only learn about his rivals simultaneously, then he must learn
whether each vj > v∗ for all j ̸= i. The cost of getting that information is then
(N − 1)c({{vj | vj ≤ v∗}, {vj | vj > v∗}}, p) since he must acquire that partition N − 1

times, once for each opponent. Now suppose that buyer i has a bit more flexibility and
can learn about his opponents sequentially. So buyer i can learn whether a particular op-
ponent l has vl > v∗, and if yes, he does not need to learn about the others. Thus learn-
ing sequentially reduces overall expected learning costs: the cost of learning whether
maxj vj > v∗ is now

[∑N−1
n=1 Pr(vj ≤ v∗)n−1

]
c({{vj | vj ≤ v∗}, {vj | vj > v∗}}, p).

We revisit our uniform example one last time and derive equilibrium revenue un-
der these two possible learning specifications. The results are depicted in Figure 7.
Focus first on the top graphs. When buyers must learn about all their opponents at the
same time, then it remains cost-efficient to acquire some information about the compe-
tition only if the number of competitors is not too large, in which case the revenue loss
persists. As N increases, inquiring about the competition becomes increasingly costly,
and above some threshold (N = 8, here) it is no longer cost-efficient to do so. If buyers
can learn about their opponents sequentially, then doing so remains cost-efficient even
for relatively large N . Hence, under such alternative modeling, Theorem 1 and 2 per-
sist for auctions of intermediate size but not necessarily for large auctions, depending
on whether buyers can learn sequentially.

Proposition 5 however seems less robust to alternative assumptions on the cost of
learning. Recall that Theorem 5 compares the value of a reserve price to the value of an
additional bidder. Now that the cost of learning about others scales with the number
of competitors, having an additional bidder in the auction might discourage bidders
from learning about the competition. This force goes against our result and was absent
in our baseline model.

7 CONCLUSION

This paper develops a tractable model of multidimensional information acquisition
in auctions, in which buyers can learn both about the strength of competition and
about their own valuations. We first characterize how the competitive pressure be-
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Figure 7: The top figures plot expected revenue in the standard model (blue) and in our model
for small λ (red). The bottom figures plot the value of an additional bidder (dashed line) and
the value of a reserve price (solid line) in our model. Both are shown for two different ways
buyers can learn about the competition and their associated costs. The left figures consider
simultaneous learning while the right figures allow for sequential learning. All curves are
fitted with a flexible (6th-degree) polynomial to smooth small irregularities arising from the
discreteness of the set of valuations V . Parameter K = 100.

tween buyers shapes the information that they seek. In our framework, buyers find
it cost-efficient to first acquire some information about their competitors so as to only
learn their valuations when they have a chance to win. Second, we show that competi-
tion between buyers is made less effective by learning incentives. Losing buyers often
fail to learn their valuations precisely and, as a result, compete less aggressively for
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the good. This depresses expected revenue. We then propose market design solutions
to mitigate these effects. Overall, we show that the seller benefits from carefully de-
signing the competition that buyers face—either via a reserve price or by maintaining
uncertainty over the set of auction participants.

Our results suggest that the interactions between information and competition can
have large, previously unexplored implications for auction design. We believe it pro-
vides yet another justification for robust mechanism design, or at least a careful con-
sideration of informational incentives in the practice of market design.
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APPENDIX A ADDITIONAL MATERIAL

A.1 Additional Details on the Uniform Example

Throughout the paper, we use a uniform example in which V =
{

1
K
, 2
K
, . . . , K−1

K
, K
K

}
and Pr(ṽi = v) = 1

K
for all v ∈ V to illustrate our results. We know from Theo-
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rem 1 that, in equilibrium, all buyers choose the cost-minimizing information structure(
Πother,Πself

)
that satisfies

Πself
(
πother

)
=

{{
vi : vi < min

v∈πother
v

}
,
{
vi

}
vi∈πother

,

{
vi : vi > max

v∈πother
v

}}
,

for all πother ∈ Πother. We find this cost-minimizing information structure numerically,
and depict Πother for several values of N in Figure 8. For instance, when N = 3, Πother

partitions the set of valuations into four intervals: buyers learn whether their toughest
competitor has a valuation below .28, between .28 and .5, between .5 and .72, or above
.72.

0 1 0 1

N = 3

.28 .5 .72

N = 5

.14 .32 .52 .74

N = 7

0 1

N = 9

0 1

Figure 8: Parameter K = 50.

We furthermore compute the optimal reserve price, both in our framework and
when buyers are exogenously informed of their valuations, and plot them in Figure 9.
In our framework, the optimal reserve price seems increasing in the number of buyers
N and we can show that it converges to the highest possible valuation as N goes to
infinity. In the standard model, the optimal reserve price is approximately constant
(the slight variations are solely driven by the finiteness of the set of valuations).

37



2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: The optimal reserve price under exogenous information (blue line) is close to being
independent of N . The fact that it varies slightly with N comes from the discreteness of V , and
disappears for K large enough. On the contrary, the optimal reserve price when information is
endogenous and shaped by competition is increasing in N . Parameter K = 50.
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APPENDIX B PROOFS

B.1 Preliminary Analysis

Proof of Lemma 1. We want to show that, for
∑

v[p(v)]
2 low enough and m large enough,

there exists v∗ ∈ V such that

c
(
Πother

v∗ , p1:N−1

)
+ (Pr(vi ≤ v∗))N−1 c

(
Πself

≤v∗ , p
)
+
[
1− (Pr(vi ≤ v∗))N−1

]
c
(
Πself

>v∗ , p
)

< c ({{vi}vi∈V } , p) .

Acquiring partition Πother
v∗ leads agent i to hold one of two possible posterior beliefs

about maxj vj . Let δv1:N−1≤v∗ denote i’s posterior about maxj vj after learning maxj vj ≤
v∗, that is

δv1:N−1≤v∗ ≡ Pr(· | max
j

vj ≤ v∗) = 1{· ≤ v∗} p1:N−1(·)
Pr(maxj vj ≤ v∗)

.

Similarly, let δv1:N−1>v∗ denote i’s posterior about maxj vj after learning maxj vj > v∗.
Using the fact that the cost of a partition equals the expected reduction in uncer-

tainty in a buyer’s beliefs, the above inequality rewrites as

H(p1:N−1)− Pr(max
j

vj ≤ v∗)H
(
δv1:N−1≤v∗

)
− Pr(max

j
vj > v∗)H

(
δv1:N−1>v∗

)
+ Pr(max

j
vj ≤ v∗)

[
H(p)− Pr (vi > v∗)H (p (· | vi > v∗))−

∑
v≤v∗

p(v)H(δv)

]

+ Pr(max
j

vj > v∗)

[
H(p)− Pr (vi ≤ v∗)H (p (· | vi ≤ v∗))−

∑
v>v∗

p(v)H(δv)

]
< H(p)−

∑
v

p(v)H(δv).

Simplifying terms, this becomes

H(p1:N−1)− Pr(max
j

vj ≤ v∗)H
(
δv1:N−1≤v∗

)
− Pr(max

j
vj > v∗)H

(
δv1:N−1>v∗

)(1)
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< Pr

(
max

j
vj ≤ v∗

)
Pr (vi > v∗)

[
H (p (· | vi > v∗))−

∑
v>v∗

p(v)

Pr(vi > v∗)
H(δv)

]
︸ ︷︷ ︸
gains from not learning vi fully when vi > v∗ but maxj vj ≤ v∗

+ Pr

(
max

j
vj > v∗

)
Pr (vi ≤ v∗)

[
H (p (· | vi ≤ v∗))−

∑
v≤v∗

p(v)

Pr(vi ≤ v∗)
H(δv)

]
︸ ︷︷ ︸
gains from not learning vi fully when vi ≤ v∗ but maxj vj > v∗

.

Intuitively, the LHS is the cost of Πother
v∗ whereas the RHS is the reduction in information

costs on self that buyer i achieves after acquiring signal Πother
v∗ about others. The former

is a fairly coarse partition—it only has two elements—and so does not grow as the prior
gets uncertain. From the assumption of strong concavity, it just have to be above

H(p1:N−1)− Pr(max
j

vj ≤ v∗)H
(
δv1:N−1≤v∗

)
− Pr(max

j
vj > v∗)H

(
δv1:N−1>v∗

)
≥ m

2
Pr(max

j
vj ≤ v∗) Pr(max

j
vj > v∗)

[∑
v≤v∗(p1:N−1(v))

2

Pr(maxj vj ≤ v∗)2
+

∑
v>v∗(p1:N−1(v))

2

Pr(maxj vj > v∗)2

]
,

but this lower bound goes to zero as
∑

v(p(v))
2 goes to zero.

On the contrary, the reduction in information costs on self grows as the prior be-
comes uncertain. To show this, we find a lower bound for the RHS of (1) using the fact
that H is strongly concave. To apply the notion of strong concavity, we need to con-
sider mixtures between two beliefs only. This can be done iteratively in the following
way:

p (· | vi ≤ v∗) =
p(v1)

Pr(vi ≤ v∗)
δv1 +

[
1− p(v1)

Pr(vi ≤ v∗)

]
δv1<vi≤v∗ ,

where δv1<vi≤v∗ =
p(v2)

Pr(v1 < vi ≤ v∗)
δv2 +

[
1− p(v2)

Pr(v1 < vi ≤ v∗)

]
δv2<vi≤v∗

and δv2<vi≤v∗ =
p(v3)

Pr(v2 < vi ≤ v∗)
δv3 +

[
1− p(v3)

Pr(v2 < vi ≤ v∗)

]
δv3<vi≤v∗ , etc.

Using the strong concavity of H iteratively, we then get

H (p (· | vj ≤ v∗))−
∑
v≤v∗

p(v)

Pr(vi ≤ v∗)
H(δv)
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≥ m

2

p(v1)

Pr(vi ≤ v∗)

[
1− p(v1)

Pr(vi ≤ v∗)

]
||δv1 − δv1<vi≤v∗||2

+
m

2

[
1− p(v1)

Pr(vi ≤ v∗)

]
p(v2)

Pr(v1 < vi ≤ v∗)

[
1− p(v2)

Pr(v1 < vi ≤ v∗)

]
||δv2 − δv2<vi≤v∗||2

+ . . .

where

||δvk − δvk<vi≤v∗||2 = 1 +
∑

vk<vi≤v∗

[
p(vi)

Pr(vk < vi ≤ v∗)

]2
.

We hence get

H (p (· | vj ≤ v∗))−
∑
v≤v∗

p(v)

Pr(vi ≤ v∗)
H(δv) ≥

m

2

∑
v≤v∗

p(v)

Pr(vi ≤ v∗)

Pr(v < vi ≤ v∗)

Pr(v ≤ vi ≤ v∗)

+
m

2

∑
v≤v∗

p(v)

Pr(vi ≤ v∗) Pr(v < vi ≤ v∗) Pr(v ≤ vi ≤ v∗)

∑
v<vi≤v∗

[p(vi)]
2.

Using the fact that Pr(v<vi≤v∗)
Pr(v≤vi≤v∗)

= Pr(v≤vi≤v∗)−p(v)
Pr(v≤vi≤v∗)

, and collecting all [p(vi)]2 terms together,
we get

H (p (· | vj ≤ v∗))−
∑
v≤v∗

p(v)

Pr(vi ≤ v∗)
H(δv) ≥

m

2
− m

2

1

Pr(vi ≤ v∗)

∑
v≤v∗

[p(v)]2.(2)

Similarly,

H (p (· | vj > v∗))−
∑
v>v∗

p(v)

Pr(vi > v∗)
H(δv) ≥

m

2
− m

2

1

Pr(vi > v∗)

∑
v>v∗

[p(v)]2.(2’)

Note that these two lower bounds increase and tend to m/2 as the prior gets more
uncertain.

We now find an upper bound for the cost of Πother
v∗ , that is for the LHS of (1). Note

that

H(p1:N−1)− Pr(max
j

vj ≤ v∗)H
(
δv1:N−1≤v∗

)
− Pr(max

j
vj > v∗)H

(
δv1:N−1>v∗

)
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= H(p1:N−1)−
∑
v

p1:N−1(v)H
(
δv1:N−1=v

)
− Pr(max

j
vj ≤ v∗)

[
H

(
δv1:N−1≤v∗

)
−

∑
v≤v∗

p1:N−1(v)

Pr(maxj vj ≤ v∗)
H(δv1:N−1=v)

]

− Pr(max
j

vj > v∗)

[
H

(
δv1:N−1>v∗

)
−

∑
v>v∗

p1:N−1(v)

Pr(maxj vj > v∗)
H(δv1:N−1=v)

]
.

Using the same steps as above, we can find bounds on the last two terms, such that

H(p1:N−1)− Pr(max
j

vj ≤ v∗)H
(
δv1:N−1≤v∗

)
− Pr(max

j
vj > v∗)H

(
δv1:N−1>v∗

)
≤ H(p1:N−1)−

∑
v

p1:N−1(v)H(δv1:N−1=v)−
m

2

[
1−

∑
v

[p1:N−1(v)]
2

]
.

Combining this bound on the LHS with the bounds (2) and (2’) on the RHS, condition
(1) holds if

H(p1:N−1)−
∑
v

p1:N−1(v)(δv1:N−1=v)−
m

2

[
1−

∑
v

[p1:N−1(v)]
2

]

<
m

2

[
Pr

(
max

j
vj ≤ v∗

)
Pr (vi > v∗) + Pr

(
max

j
vj > v∗

)
Pr (vi ≤ v∗)

]

− m

2

[
Pr

(
max

j
vj > v∗

) ∑
v≤v∗

(p(v))2 + Pr

(
max

j
vj ≤ v∗

) ∑
v>v∗

(p(v))2
]
.

Let T ≡
∑

v(p(v))
2, which lies weakly below one. No value v ∈ V can have prior

probability greater than
√
T . Hence, for small T , it is possible to find v∗ such that

Pr(maxj vj ≤ v∗) is close to 0.5. The RHS can then be arbitrarily close to m/4 for suffi-
ciently small T . Hence, for T small enough, the RHS is strictly positive and increasing
in m. Similarly, the LHS is positive but decreasing in m. For m high enough, the in-
equality must then hold strictly, establishing the claim.

Lemma 2. There exists T and m such that if
∑

v[p(v)]
2 ≤ T and m ≥ m, then the following

is true:

c
({

{v1}, {v2, . . . , v∗}, {v : v > v∗}
}
, p1:N−1

)
− c

({
{v1}, {v : v > v1}

}
, p1:N−1

)
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< Pr

(
max

j
vj > v1

)
c ({{v}v∈V }, p)

− Pr

(
v2 ≤ max

j
vj ≤ v∗

)
c ({{v}v≤v∗ , {v : v > v∗}}, p)

− Pr

(
v∗ < max

j
vj

)
c ({v : v ≤ v∗}, {{v}v>v∗}, p) ,

for some v∗ > v1.

Lemma 2 says that the cost-efficient information structure has Πother ̸= {{v1}, {v :

v > v1}}, such that buyers do not just learn whether their toughest opponent has the
smallest possible valuation v1 or not. This is important as such information structure
would not lead to a revenue loss, as losing buyers would always learn their valuations
fully.33

Proof. We rewrite the condition in terms of the measure of uncertainty H :

Pr(max
j

vj > v1)H (δ1:N−1>v1)− Pr(v1 < max
j

vj ≤ v∗)H (δv1<1:N−1≤v∗)

(3)

− Pr(max
j

vj > v∗)H (δ1:N−1>v∗)

< Pr

(
v2 ≤ max

j
vj ≤ v∗

)[
Pr(vi > v∗)H(δ>v∗) +

∑
v≤v∗

Pr(vi = v)H(δv)

]

+ Pr

(
max

j
vj > v∗

)[
Pr(vi ≤ v∗)H(δ≤v∗) +

∑
v>v∗

Pr(vi = v)H(δv)

]

− Pr

(
max

j
vj > v1

)∑
v

Pr(vi = v)H(δv).

Dividing everything by Pr(maxj vj > v1), and using the fact that H(δ≤v∗) > Pr(vi =

v1)H(δv1) + Pr(v1 < vi ≤ v∗)H(δv1<vi≤v∗), condition (3) holds if

H (δ1:N−1>v1)− Pr

(
max

j
vj ∈ (v1, v∗] | max

j
vj > v1

)
H (δv1<1:N−1≤v∗)

33Indeed, after learning maxj vj > v1, they would still choose the fully-revealing partition Πself =
{{v}v∈V }.
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− Pr

(
max

j
vj > v∗ | max

j
vj > v1

)
H (δ1:N−1>v∗)

< Pr

(
max

j
vj ∈ (v1, v∗]

∣∣∣ max
j

vj > v1
)[

Pr(vi > v∗)H(δ>v∗)−
∑
v>v∗

Pr(vi = v)H(δv)

]

+ Pr

(
max

j
vj > v∗

∣∣∣ max
j

vj > v1
)[

Pr(vi ≤ v∗)H(δ≤v∗)−
∑
v≤v∗

Pr(vi = v)H(δv)

]

for some v∗ > v1. This is exactly the same condition as in the proof of Lemma 1,
but for a redefined set of valuations V̂ = V \ v1. We then know from Lemma 1 that

for
∑

v>v1

(
p(v)

1−p(v1)

)2

small enough and m large enough, the inequality holds for some

v∗ ∈ V̂ , hence proving the claim.

B.2 Proofs of Results of Section 3

B.2.1 Proofs of Proposition 1

Proof of Proposition 1. For Proposition 1, suppose that each buyer can only learn about
himself. We look for a symmetric equilibrium in which, for λ small enough, buy-
ers become fully informed. For this to be the case, buyers must choose the partition
Π0 ≡ {{vi}vi∈V } with a probability that tends to one as λ goes to zero. We construct a
symmetric equilibrium σ that has such property.

Consider the following symmetric pure strategy profile:

• Each buyer chooses the finest partition Πself = Π0;

• Each buyer bids his valuation β(({vi}, ui)) = vi + ui.

It is a dominant strategy for a buyer who knows his value to bid his valuation for
the good β(({vi}, ui)) = vi + ui. Hence we only need to check that buyers do not want
to deviate to another information partition.

Let K ≡ |V | and order the possible valuations for the good in increasing order: V ≡
{v1, v2, . . . , vK} with v1 < v2 < · · · < vK . Any other information partition Πself ̸= Π0

must bundle at least two possible valuations together. That is, there exist vk and vk
′

that belong to the same element of the partition Πself . Such bundling reduces a buyer’s
information costs by

λ
(
c (Π0, p)− c

(
Πself , p

))
> 0.

44



We however show that such bundling must make buyer i strictly worse off in the auc-
tion, and so cannot be optimal for λ small enough.

First, we argue that Πself cannot bundle two non-neighboring values vk and vk
′

with k′ > k + 1. Recall that, by assumption, others follow their equilibrium strategy:
they become fully informed of their values and bid truthfully. Hence, with probability
p1:N−1(v

k+1), the highest bid among i’s competitors lies in [vk+1 + u, vk+1 + u]. At that
bid, i wants to lose if his value is vk and wants to win if his value is vk′ . Hence there is
a strictly positive gain for him in distinguishing vi = vk from vi = vk

′ , and for λ small
enough, he must be doing so.

Second, we argue that Πself cannot bundle two neighboring values vk and vk+1 ei-
ther. This is a bit more subtle, and would not be true absent the noise terms (ui)i in buy-
ers’ valuations. Suppose a buyer bundles {vk, vk+1}. Upon learning that vi ∈ {vk, vk+1},
it is (weakly) optimal for i to bid truthfully E[vi|vi ∈ {vk, vk+1}]+ui. Had buyer i chosen
the fully revealing partition Π0, he would have bid vk + ui when vi = vk, and vk+1 + ui

when vi = vk+1. If the highest bid among i’s competitors lies above vk+1 + ui or below
vk + ui, then this bundling does not change anything. Hence any difference in gross
payoff between these two partitions must occur when i’s toughest competitor, call him
j∗, has a value maxj νj ∈ (vk + ui, v

k+1 + ui). This requires either vj∗ = vk and uj∗ > ui,
or vj∗ = vk+1 and uj∗ < ui.

Focus on the first case, where vj∗ = vk. Fix a realization of ui, and consider what
happens when uj∗ > ui. There are two possible scenarios: either uj∗ > ui + E[vi|vi ∈
{vk, vk+1}]− vk, in which case buyer i does not win when he bids E[vi|vi ∈ {vk, vk+1}] +
ui. Learning to distinguish vk from vk+1 allows the buyer to win the auction at the latter
value, and hence induce a gain in gross payoff of

p(vk+1)
(
vk+1 + ui − vk − uj∗

)
> 0.

If uj∗ ≤ ui + E[vi|vi ∈ {vk, vk+1}] − vk, then i wins when he bids E[vi|vi ∈ {vk, vk+1}].
Learning to distinguish vk from vk+1 allows the buyer not to win the auction at the
former value, and hence induces a gain in gross payoff of

p(vk) (uj∗ − ui) > 0.

Hence, as soon as Pr(uj∗ > ui) > 0, the expected gains from distinguishing these
two values are strictly positive. This is the case whenever u > u, i.e. whenever the
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noise is not degenerate at zero.34 For λ small enough, the cost of distinguishing these
values must be strictly below the gains, and so the above strategy profile forms an
equilibrium.

B.2.2 Proofs of Proposition 2 and 3

Proof of Proposition 2. We first prove the existence of a symmetric equilibrium building
on Corollary 5.3 in Reny (1999) (Step 1). We then argue that the proof extends for the
existence of symmetric equilibria that are robust to trembles (Step 2).

Step 1. Without loss, we can restrict agents’ possible bids to belong to [0, ν] for some
ν that is greater than any possible realized valuation for the good. Agents’ pure strat-
egy sets are then compact Hausdorff spaces. Furthermore, their utility functions are
bounded, measurable, and symmetric. Corollary 5.3 in Reny (1999) then states that
there exists a symmetric mixed strategy equilibrium if (the mixed extension of) our
game is better-reply secure along the diagonal. The crux of the proof is then to show
that this condition of better-reply security holds in our setting.

Let wi(σi, σ−i) be buyer i’s ex-ante expected utility given the strategy profile, that is

wi(σi, σ−i) ≡ Eσi,σ−i

[
U(νi, βi(πi), β−i(π−i))− λ

(
c
(
Πother

i , p1:N−1

)
+ c

(
Πself

i

(
πother
i

)
, p
))]

.

Let σ∗ ∈ ∆Σ denote a (potentially mixed) strategy. By symmetry, wi(σ
∗, . . . , σ∗) is

independent of i. Let w(σ∗) ≡ wi(σ
∗, . . . , σ∗) be the diagonal payoff function, i.e., the

payoff of an agent when all agents play the same strategy σ∗ ∈ ∆Σ. The game is
diagonally better-reply secure if, whenever (σ∗, w∗) ∈ ∆Σ × R is in the closure of the
graph of its diagonal payoff function and (σ∗, . . . , σ∗) is not an equilibrium, then some
buyer i can secure a payoff strictly above w∗ along the diagonal at (σ∗, . . . , σ∗).35

We show that our game satisfies this condition. Suppose that (σ∗, . . . , σ∗) is not an

34To see what goes wrong with the above argument when there is no noise—i.e. Pr(ui = 0) = 1—
recall that buyers fully learn their values in the proposed equilibrium. Hence absent noise, other buyers’
bids only take values in V . In particular, that means a buyer never faces a bid strictly in between vk and
vk+1. There are thus no opportunity cost in bundling these values together, but only a strictly reduction
in information costs. The equilibrium would then require buyers to mix between bundling neighboring
values and not bundling them.

35Buyer i can secure a payoff strictly above w∗ along the diagonal at (σ∗, . . . , σ∗) if there exists δ > 0
and σ̄i, such that wi(σ

′, . . . , σ̄i, . . . , σ
′) ≥ w∗ + δ for all σ′ in some open neighborhood of σ∗.
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equilibrium and let (σ∗, w∗) be an element of the closure of the graph of its diagonal
payoff function. By definition, there exists a sequence of strategies σ(n) converging to
σ∗ such that limw(σ(n)) = w∗. There are two cases: either w is continuous at σ∗ or it is
not. Discontinuities in the payoff can only arise from ties at the bidding stage. Hence
the first case arises when, under σ∗, no tie occurs with strictly positive probability. In
that case, w(σ∗) = w∗. Since σ∗ is not an equilibrium, a buyer i has a deviation σ′

i

that yields wi(σ
′
i, σ

∗
−i) > w(σ∗) = w∗. Furthermore, at this deviation (σ′

i, σ
∗
−i), buyer

i’s payoff is continuous in others’ strategy σ−i. (If not, that means i ties with strictly
positive probability under σ′

i and a marginally close strategy would make him strictly
better off.) Hence i can secure a payoff within ε of wi(σ

′
i, σ

∗
−i) > w∗, as required by

better-reply security.
Now consider the second case in which w is discontinuous at σ∗. This means rele-

vant ties must occur with strictly positive probability at σ∗. Some of the buyers who tie
with positive probability under σ∗ must lose with positive probability at σ(n) for large
enough n while they would be strictly better off winning. (Indeed, they cannot all be
indifferent between winning and losing since a positive mass of them tie and they can-
not all have the same expected value conditional on winning, since their uis differ.) A
buyer i can thus deviate to some σ′

i that breaks all ties in his favor, such that wi is now
continuous in σ−i at wi(σ

′
i, σ

(n)
−i ) > wi(σ

(n)) for large n. And so i can secure a payoff
strictly above limwi(σ

(n)) = w∗. Overall, the game is then better-reply secure and must
admit a symmetric mixed-strategy equilibrium.

Step 2. We now argue that it must also admit a symmetric equilibrium that is ro-
bust to trembles. Consider a perturbed version of our game G(k) in which payoffs are
perturbed with the ε(k), with lim ε(k) = 0.36 For each k, the existence of a symmetric
mixed-strategy equilibrium (σ(k)) follows from the above argument.

We now need to show that the equilibrium of the perturbed game σ(k) converges to
some feasible strategy σ∗ ∈ ∆Σ as k grows large. This is true (at least for some subse-
quence) since the set of strategies ∆Σ to which σ(k) belongs is (sequentially) compact.
So there exists a feasible strategy σ∗ to which the equilibrium strategy σ(k) converges
to as perturbations vanish.

36That is, agents have the same strategy space but the payoff associated with a strategy profile equals
the expected payoffs if the agent’s bid coincides with the one specified by his strategy with probability
1− ε(k) and is drawn from some exogenous continuous distribution F otherwise.
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Finally, we have left to show that the strategy it converges to σ∗ forms a symmetric
equilibrium of the unperturbed game. By way of contradiction, suppose (σ∗, . . . , σ∗)

is not an equilibrium. Then, by better-reply security, an agent i can secure a payoff
strictly above limw(σ(k)) ≡ w∗ using some strategy σ′

i. However σ′
i would then also be

a profitable deviation against σ−i = σ(k) for k large enough since payoffs are continuous
in the perturbation ε(k), and so σ(k) cannot be an equilibrium of the perturbed game for
k large enough.

Proof of Proposition 3. By contradiction, suppose there exists a sequence of equilibria
{σλ}λ such that limλ−→0 Pr

(
Πself = {{vi}vi∈V } | σλ

)
= 1. That is, each buyer i might be

mixing over partitions in equilibrium, but he must put a probability that tends to one
as λ goes to zero on partition Πself = Π0.

We construct a profitable deviation. Consider an alternative strategy for buyer i,
in which he first acquires information as to whether the maximum valuation among
other bidders is above some threshold vk

∗
< vK , before learning about his own. That

is, he chooses Πother
k∗ = {{v1, . . . , vk∗}, {vk∗+1, . . . , vK}}. Then, when he learns that his

toughest competitor has a value above the threshold maxj vj > vk
∗ , buyer i chooses to

partition his set of valuations into Πself
>k∗ ≡ {{vi}vi>vk∗ , {vi : vi ≤ vk

∗}}. Intuitively, he
does not learn to distinguish all the valuations below the threshold, as he most likely
would not win at any of these. On the contrary, when he learns maxj vj ≤ vk

∗ buyer i
chooses the partition Πself

≤k∗ ≡ {{vi}vi≤vk∗ , {vi : vi > vk
∗}}.

By Lemma 1, there exists k∗ such that this alternative information strategy leads to
strictly lower information cost than becoming fully informed about oneself:

c(Π0, p)− Pr(max
j

vj > vk
∗
)c(Πself

>k∗ , p)

− Pr(max
j

vj ≤ vk
∗
)c(Πself

≤k∗ , p)− c(Πother
k∗ , pN−1) ≡ ∆c > 0.

However, there is a potential opportunity cost of doing so if partitioning partially his
set of valuations yields a lower gross payoff to i. (It has to yield a weakly lower payoff
to i as information is valuable.) We now show that this opportunity cost is zero, and
hence smaller than λ∆c.

Consider first what happens when i learns maxj vj ≤ vk
∗ . Since all agents converge

to becoming fully informed about themselves by assumption, with a probability that
tends to one they all bid at most maxj νj ≤ vk

∗
+ u < vk

∗+1 + u.
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How does partition Πself
≤k∗ compare to Π0? If buyer i has a value below the thresh-

old vk
∗ , then under both partitions he perfectly learns it and gets the same expected

payoff. So these partitions can yield different payoff only when i has a value above
the threshold. Under the former partition, i fails to distinguish his potential values,
only learns vi ∈ {v′i ∈ V | v′i > vk

∗}, and makes a bid in [vk
∗+1 + u, vK + u]. Under the

latter partition, i learns his value vi, and bids vi + ui. These partitions can then only
yield different payoffs if one of i’s competitors sometimes bids strictly above vk

∗+1 + u

despite his realized value being lower. Call that buyer j and that particular bid b∗. This
can only be optimal for j if he failed to learn his value and chose a partition about
himself that bundles his realized value vj ≤ vk

∗ with some other value(s) strictly above
vk

∗ . That is, buyer j bids b∗ at an information set πj such that minvj∈πself
j

vj ≤ vk
∗ and

maxvj∈πself
j

vj > vk
∗ .37 Such bundling can be optimal for j only if he expects no non-

vanishing cost from doing so, given others’ equilibrium strategy. In particular, buyer j
must believe that with a probability very close to one he will not face a bid in the in-
terval of values he deems possible [minvj∈πself

j
vj +u,maxvj∈πself

j
vj +u]. By assumption,

buyers almost always learn and bid their valuations, and so buyer j must have learned
that i’s valuation is even higher than maxvj∈πself

j
vj . If buyer i only learns that v′i > vk

∗ ,
he thus wants to make a bid that is weakly higher than any other bid he might face
given equilibrium strategies, including b∗. He then gets the same gross payoff as if he
had learned to distinguish these values, but at a lower information cost.

Overall, when i learns maxj vj ≤ vk
∗ , he knows for sure that if one of his competitors

bids above vk
∗+1 + u, then he wants to match that bid. Doing so does not require

learning the possible valuations he has that lie about vk
∗ . Hence the two partitions

about self, Πself
≤k∗ and Π0, yield the exact same gross expected payoff.

Now consider what happens when i learns maxj vj > vk
∗ . Buyer i then knows

with certainty that vj > vk
∗ for some j. Call him j∗. Given equilibrium strategies, that

agent j∗ converges to becoming fully informed about himself, so with a probability that
tends to one makes a bid in [vj∗ + u, vj∗ + u]. How does partition Πself

>k∗ compare to Π0?
Again, these partitions only differ when i has a value below the threshold. Under Πself

>k∗ ,
buyer i bundles all such values, and suppose that, in such a case, he bids sufficiently
low so as to never win given others’ equilibrium strategies. Under Π0 he learns his
value fully and bids vi + ui. Hence, for these two partitions to lead to different gross

37Note that our starting assumption simply requires buyers to become fully informed with a probability
close to one. So this is possible, albeit with small probability.
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expected payoffs, it has to be that with non-zero probability, the highest bid among
i’s competitors lies strictly below vk

∗
+ u, and that by choosing such finer partition i

sometimes wins.
Under what conditions can the highest-value buyer j∗, with value νj∗ > vk

∗
+ u,

bid strictly below vk
∗
+ u in equilibrium? For j∗ to find such low bid optimal, it has to

be that buyer j∗ fails to learn his value: that is, he sometimes chooses a partition Πself
j∗

that bundles vj∗ > vk
∗ with values below vk

∗ . Denote that bundle by πself
j∗ . For such

bundle to be optimal for j∗, it must be that j∗ expects no non-vanishing loss from doing
so. Since all buyers fully learn and bid their valuation with a probability close to one
by assumption, this is only the case when j∗ learned that maxj ̸=j∗ vj < minv′

j∗∈π
self
j∗

v′j∗ .
Hence j∗’s bid must lie above the valuations of all the other buyers, and none of them
has any incentive to match his bid. In particular, buyer i never wants to win against j∗’s
bid in such scenario, and choosing the finer partition cannot lead to strict gains.

B.2.3 Proof of Theorem 1

To prove Theorem 1, we find necessary conditions that must be satisfied by any in-
formation structure

(
Πother,Πself

)
∈ P × P2V that has non-vanishing weight in some

equilibrium σλ. Lemmas 3 to 5 show, in a succession of steps, that an equilibrium
information structure

(
Πother,Πself

)
must satisfy

Πself (πother) = {{vi | vi < min
v′∈πother

v′}, {vi}vi∈πother , {vi | vi > max
v′∈πother

v′}}(⋆)

for all πother ∈ Πother. In words, after learning maxj vj ∈ πother ∈ Πother, the agent bun-
dles all the values he can have that are below (resp. above) his toughest competitor’s
valuation for sure, as illustrated in Figure 2. Lemma 6 shows that an equilibrium infor-
mation structure must also minimize total information costs. We know from Lemma 1
that this precludes Πother = {V }, which completes the proof of Theorem 1.

Lemma 3. There exists λ > 0 such that, for all λ ≤ λ, there exists ε(λ) > 0 with limλ−→0 ε(λ) =

0 such that if an information structure has probability Pr
(
Πother,Πself | σλ

)
≥ ε(λ) in some

equilibrium σλ, then it must have the following form: for all πother ∈ Πother,

{vi} ∈ Πself
(
πother

)
∀vi ∈ πother, vi ̸= max

v′i∈πother
v′i.

In words, any information structure that has non-vanishing weight in equilibrium
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must satisfy the following condition: if agent i learns that his toughest competitor has
value in some interval πother ≡ [vk, vk], then i at least learns to distinguish all the values
he can have that lie in [vk, vk) as he knows competition will fall into that range.38

Proof of Lemma 3. Fix λ, and let
(
Πother,Πself

)
be an information structure that is chosen

with probability at least ε > 0 in some equilibrium. Take any πother ∈ Πother, and let
vk ≡ minv′i∈πother v′i and vk ≡ maxv′i∈πother v′i. That is, upon learning maxj vj ∈ πother,
agent i knows that his toughest competitor has vj ∈ [vk, vk].

We prove that, after learning maxj vj ∈ πother, the equilibrium partition that an
agent chooses about himself Πself

(
πother

)
cannot bundle a value v∗ ∈ πother with some

other value weakly below vk.39 By contradiction, suppose that this is not true: after
learning that maxj vj ∈ πother, an agent chooses a partition that bundles some v∗ ∈ πother

with another that is weakly below vk. That bundle can be composed of only these two
values, or can have other values in it too. Let v (resp, v) be the lowest (resp, highest)
element in that bundle, and denote that bundle by πself

v,v . Note that, without loss, v∗ > v.
There are indeed two cases: either the bundle is only composed of values in πother, in
which case v∗ can be any value in the bundle but the smallest one, or it isn’t, in which
case v < minv′i∈πother v′i ≤ v∗.

Let j∗ ∈ argmaxj vj be (any one of) agent i’s toughest competitor(s).40 At informa-
tion set

(
πother, πself

v,v , ui

)
agent i knows that his toughest competitor has maxj vj ∈ πother

and that his own value vi might also belong to that set, since πother ∩ πself
v,v ̸= ∅. By the

symmetry of the equilibrium, he hence knows that, with strictly positive probability,
j∗’s information set is also πj∗ =

(
πother, πself

v,v , uj∗

)
for some uj∗ . With non-trivial prob-

ability, this is the highest bid that agent i faces. Indeed, it is for instance the case when
all other agents choose the same information structure as i (with happens with proba-
bility εN−1) and have all value vj = v∗. For his equilibrium bid to be optimal, agent i
must then be indifferent between losing the auction and winning at his equilibrium bid

38Showing that buyer i also wants to distinguish valuation vi = vk is a bit more subtle, and we handle
that case in Lemma 4.

39This is enough to prove the result. The other alternative is that v∗ is bundled with values weakly
above vk. If v∗ = vk, this is irrelevant as Lemma 3 makes no claim about vk. The only relevant case
is then v∗ < vk. But if v∗ is bundled with values above vk then it must be bundled with vk as well.
However that implies vk is bundled with a value v∗ weakly below itself, and this is precisely what we
are proving cannot happen.

40Note that j∗ might not be the highest-value bidder if there exists another agent j with vj = vj∗ and
uj > uj∗ , but this is irrelevant for the following argument.
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(i.e., winning at a tie, such that he pays his equilibrium bid):

β
(
πother, πself

v,v , ui

)
= E

[
vi

∣∣∣ πi =
(
πother, πself

v,v , ui

)
,max

j
β(πj) = β(πi)

]
+ ui

=
v∑

vi=v

vi Pr

[
vi

∣∣∣ πi =
(
πother, πself

v,v , ui

)
,max

j
β(πj) = β(πi)

]
+ ui.

If not, then agent i would have an incentive to marginally increase or decrease his bid,
depending on whether or not he wants to win the auction at that price. Note that
β(πother, πself

v,v , ui) ∈ [v + ui, v + ui] since v (resp. v) is the lowest (resp. highest) value of

vi that agent i deems possible at information set
(
πother, πself

v,v , ui

)
.

We now show that agent i has a strict, non-vanishing incentive to learn to distin-
guish values vi = v and vi = v, and will hence do so for small enough information
costs. We know that, with a strictly positive probability that is increasing in ε and in-
dependent of λ, the highest bid made by i’s competitors when i’s information set is
πi = (πother, πself

v,v , ui) lies in [v + uj, v + uj] for some uj . There are then strictly positive
gains from unbundling values vi = v and vi = v since i wants to win against such bid
when vi = v and ui > uj∗ but wants to lose when vi = v and ui < uj∗ . (This is the same
argument as in the proof of Proposition 1.)

There is a strictly positive cost λ∆c associated with unbundling these values, as it
requires choosing a finer partition and splitting πself

v,v into at least two elements. How-
ever, for λ small enough, there exists ε(λ) such that, if ε ≥ ε(λ) then the value of
distinguishing these values more than compensates the cost. Hence there exists ε(λ)

such that, if an information structure has probability Pr
(
Πother,Πself | σλ

)
≥ ε(λ), then

it cannot make such a bundle. Furthermore, since the cost of unbundling these values
goes to zero when λ goes to zero, then ε(λ) must go to zero as well.

Lemma 4. There exists λ > 0 such that, for all λ ≤ λ, there exists ε(λ) > 0 with limλ−→0 ε(λ) =

0 such that if an information structure has probability Pr
(
Πother,Πself | σλ

)
≥ ε(λ) in some

equilibrium σλ, then it must have the following form:{
max

v′i∈πother
v′i

}
∈ Πself

(
πother

)
for all πother ∈ Πother.

Proof of Lemma 4. Suppose not: there exists ε > 0 and a sequence of equilibria {σλ}λ
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such that Pr
(
Πother,Πself | σλ

)
≥ ε for all λ and

{
maxv′i∈πother v′i

}
/∈ Πself

(
πother

)
for

some πother ∈ Πother. Let v = maxv′i∈πother v′i and v = minv′i∈πother v′i. In words, after
learning that maxj vj ∈ [v, v], agent i does not learn to distinguish vi = v.

We know from Lemma 4 that Πself
(
πother

)
cannot bundle vi = v with lower values

since an agent must learn to distinguish all values vi ∈ πother \ v. Hence v must be
bundled with even greater values, and denote this bundle by πself

≥v . Let v̂ denote the
maximum valuation in πself

≥v , which by definition satisfies v̂ > v.

Step 1. We first show that, at information set πi = (πother, πself
≥v , ui), an agent must bid

arbitrarily close to v + ui for sufficiently small λ. That is, for any η > 0 there exists λ̄

such that, for all λ ≤ λ̄, |β(πother, πself
≥v , ui) − v − ui| ≤ η. Note that, at this information

set, agent i knows that maxj vj ∈ [v, v] and vi ∈ [v, v̂]. Since the equilibrium is symmet-
ric, he also knows that, with non-vanishing probability, his toughest opponent has the
same information set and makes the same equilibrium bid as i. Indeed, this happens
whenever vi = v, maxj vj = v, and i’s toughest opponent(s) chooses the same informa-
tion structure as i. Note first that an equilibrium bid at πi = (πother, πself

≥v , ui) cannot be
bounded below the lowest possible valuation at that information set v + ui. Indeed,
since an agent sometimes ties at that bid, he could slightly increase his bid and make a
strict gain. More importantly, β(πother, πself

≥v , ui) cannot be bounded above v + ui either.
If it were the case, then the agent would have an incentive to learn whether vi = v or
vi > v, since he would not want to win against β(πother, πself

≥v , ui) in the former case. For
sufficiently small information cost λ, he would do so.

Step 2. We then show that such bid at information set πi = (πother, πself
≥v , ui) cannot

be part of an equilibrium. If it were, then an agent i would make such a bid with
probability at least ε in all states of the world consistent with information set πi. In
particular, he would make such a bid in states where his toughest opponent has value
maxj vj = v and he has value vi = v̂. But then his toughest opponent would have a
strictly positive, non-vanishing incentive to learn that his valuation is vj = v, as he then
wants to outbid i if uj > ui and to lose if uj < ui. He would do so in equilibrium, and
agent i would have a strict incentive to deviate and learn that his value is vi = v̂.

Lemma 5. There exists λ > 0 such that, for all λ ≤ λ, there exists ε(λ) > 0 with limλ−→0 ε(λ) =

0 such that if an information structure has probability Pr
(
Πother,Πself | σλ

)
≥ ε(λ) in some
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equilibrium σλ, then it must have the following form: for all πother ∈ Πother,{
vi | vi < min

v′i∈πother
v′i

}
∈ Πself

(
πother

)
and

{
vi | vi > max

v′i∈πother
v′i

}
∈ Πself

(
πother

)
.

Proof of Lemma 5. Fix λ and let
(
Πother,Πself

)
be an information partition that is chosen

with probability at least ε in equilibrium σλ. Take any πother ∈ Πother, and let vk ≡
minv′i∈πother v′i and vk ≡ maxv′i∈πother v′i. That is, upon learning maxj vj ∈ πother, buyer i

knows that his toughest competitor has vj ∈ [vk, vk].

Step 1. We prove that if i learns maxj vj ∈ πother, then i chooses a signal about himself
that bundles all the values he might have that lie for sure below his toughest competi-
tor’s valuation: {vi | vi < vk} ∈ Πself (πother). Denote by j∗ ∈ argmaxj vj (one of) i’s
toughest competitors.

By contradiction, suppose that the claim is not true, and that in equilibrium buyer
i partitions all these values into at least two elements:

v1 vk−1 vk vk+1 vk vk+1 vK
vi

πother

bids b bids b′

Since choosing such finer partition is costly, it must lead him to make better decision-
making: so he must make (at least two) different bids b and b′ depending on what he
learned, and these two bids lead to different outcomes. Hence it must be that, with
some strictly positive probability, the highest bid faced by buyer i lies in between these
two bids Pr(b ≤ maxj β(πj) ≤ b′ | maxj vj ∈ πother, vi < vk) > 0, as otherwise these two
bids would be completely equivalent.

This implies that buyer j∗, whom we know has a value vj∗ ∈ πother, must sometimes
make a bid below b′ ≤ vk−1+ui < vk+u.41 For j∗ to make such a low bid in equilibrium,
he must fail to learn that he has a high value and bundle his high value with lower
ones. Let πj∗ be the information set at which j∗ acts in such a way, with β(πj∗) ≤ b′.

41The first inequality comes from the fact that in a tremble-robust equilibrium a buyer can never make
a bid that lies outside the set of valuations he deems feasible. When i makes bid b′, he knows that his
value is at most νi ≤ vk−1 + ui. The second inequality holds by construction since the noise terms are
smaller than the size of the grid defined by V .
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We furthermore know that j∗ sometimes has this information set when he is a highest-
valuation buyer and his value vj∗ ∈ πother. Hence maxv∈πself

j∗
≥ vk.

Failing to learn his valuation is however costly for j∗ as it leads him to sometimes
lose the auction against i’s bid, despite his value being higher than i’s winning bid.
Note that j∗ cannot lose against i’s bid with non-vanishing probability, as otherwise it
would be profitable for him to learn his valuation and bid it for λ small enough. For
such bundle to be optimal for j∗, he must then expect to face a bid weakly above vj∗ +u

with a probability that tends to one as λ goes to zero. If not, then learning to distinguish
his high value from lower ones would lead to strictly positive, non-vanishing gains,
and for λ small enough he would do so. Hence there must be another buyer, call him k,
who bids weakly above vj∗ + u with non-vanishing probability in those states. Since j∗

is a highest-valuation buyer, it must be that νk ≤ νj∗ < vj∗ + u almost surely, and hence
that buyer k bids strictly above his valuation. By the symmetry of the equilibrium,
buyer k must however tie at his equilibrium bid with non-vanishing probability.42 He
then incurs a strict, non-vanishing loss when that occurs, and so such a high bid by k

cannot be sustained in equilibrium.

Step 2. Finally, we prove that if i learns maxj vj ∈ πother, then i chooses a signal about
himself that bundles all the values he might have that he knows for sure lie above his
toughest competitor’s valuation:

{
vi | vi > vk

}
∈ Πself

(
πother

)
.

By contradiction, suppose this is not the case. Following a similar logic as for Step
1, agent i can only find it worthwhile to learn to distinguish some of the values vi > vk

if he sometimes faces a bid in that interval, and sometimes loses at that bid. That means
that with positive probability, one of i’s competitors, all of whom have a value at most
vk + u, makes a bid strictly above this and wins with non-vanishing probability at that
bid. However, if they win they must be paying a price weakly higher than i’s bid,
and i’s bid must lie above vk + u. Hence making such a bid leads that agent to have
a strictly negative payoff, while he could ensure himself zero by making a lower bid.
This cannot be optimal, and hence cannot be part of an equilibrium.

Lemma 6. There exists λ > 0 such that, for all λ ≤ λ, there exists ε(λ) > 0 with limλ−→0 ε(λ) =

0 such that if an information structure has probability Pr
(
Πother,Πself | σλ

)
≥ ε(λ) in some

42If buyer k makes such a bid with non-vanishing probability then others must do as well.
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equilibrium σλ, then it must be cost-minimizing, that is:

(
Πother,Πself

)
∈ arg min

Π̂other,Π̂self

c
(
Π̂other, p1:N−1

)
+ Eπ̂other

[
c
(
Π̂self (π̂other), p

)]
s.t.

(
Π̂other, Π̂self

)
satisfies (⋆).

Proof of Lemma 6. Suppose not, such that an equilibrium puts non-vanishing probabil-
ity ε > 0 on some information structure

(
Πother,Πself

)
that is not cost-minimizing. That

is, there exists another information structure
(
Π̂other, Π̂self

)
satisfying (⋆) that is strictly

cheaper than
(
Πother,Πself

)
. Let λ∆c be the difference in information costs between

these two information structures.
Take the point of view of some agent i. For

(
Π̂other, Π̂self

)
not to be a profitable

deviation from
(
Πother,Πself

)
, it has to be that, under the former, agent i sometimes

gets a strictly lower gross payoff at the auction stage. Since
(
Π̂other, Π̂self

)
satisfies (⋆),

this can only happen when i fails to learn his valuation fully under
(
Π̂other, Π̂self

)
. That

is, it can only happen when either π̂self
i = {vi | vi > maxv′j∈π̂other

i
v′j} or π̂self

i = {vi | vi <
minv′j∈π̂other

i
v′j}.

Consider the first case, which we illustrate in the figure below. For agent i not to
get his full-information optimal payoff at (π̂other

i , π̂self
i = {vi | vi > maxv′j∈π̂other

i
v′j}),

it has to be that the highest bid i faces at this information set sometimes falls strictly
within [minvi∈π̂self

i
vi + u,maxvi∈π̂self

i
vi + u]. Call b∗ such a bid and let j∗ be an opponent

v1 vk−1 vk vk+1 vk vk+1 vK
vi

π̂other π̂self

b∗

v1 vk−1 vk vk+1 vk vk+1 vK
vi

πother

that submits it. For agent i to be strictly better off under
(
Πother,Πself

)
because of it,

it has to be that, under
(
Πother,Πself

)
, he better discriminates whether he should win

against b∗. That is, for some values of vi ∈ π̂self
i with vi < b∗, i learns his value and

bids below b∗. (In the figure, this corresponds to i learning to distinguish vi = vk+1
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from vi > vk+1 under
(
Πother,Πself

)
, as illustrated in the bottom partition.) However,

that means agent j∗ is making a strict loss winning against that bid, since we know
vj∗ ≤ maxvj∈π̂other

i
vj < vi. Since information structure

(
Πother,Πself

)
has non-vanishing

probability, agent j∗ is making a non-vanishing loss, and for small enough λ, he must
find it profitable to learn enough so as to avoid this costly mistake.

The reasoning for the second case is very similar.

Wrapping up, if an information structure has non-vanishing weight in some equi-
librium, then it must satisfy (⋆) and be cost-minimizing. The information structure
under which agents acquire no information about others and fully learn their own val-
uation does satisfy (⋆). However, it is not cost-minimizing (Lemma 1). Hence if an
information structure has non-vanishing weight, it must involve acquire some infor-
mation about maxj vj .

B.3 Proof of Results of Section 4

B.3.1 Proof of Theorem 2

We know from Theorem 1 that, for λ small enough, the only information structures
that have non-trivial probability must satisfy:

Πself (πother) =

{{
vi | vi < min

v∈πother
v

}
,
{
vi

}
vi∈πother

,

{
vi | vi > max

v∈πother
v

}}
∀πother ∈ Πother,

and must minimize total information costs. A direct implication is that buyers do ac-
quire some information about the competition Πother ̸= {V } (Lemma 1), and as a result
sometimes fail to learn their valuations precisely. The proof of Theorem 2 leverages this
to show that, in any equilibrium, expected revenue remains bounded away from the
expected second-highest valuation even as the cost parameter λ goes to zero. We first
show that, when losing buyers fail to learn their valuations, they bid their expected val-
uations given their information sets (Step 1). We then show that such behavior reduces
the second-highest bid in expectation (Step 2).

Step 1. We show that, when a buyer fails to learn his valuations fully but only learns
that he does not have the highest one—i.e., when πself

i = {vi | vi < minv′i∈πother
i

v′i},—
then he bids his expected valuations given his information set. Denote that bundle by
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πself
< . We already know that, in any tremble-robust equilibrium, a buyer cannot make

a bid that lies outside the interval of values he deems possible:

β(πother, πself
< , ui) ∈

[
min

v′i∈π
self
<

v′i + ui, max
v′i∈π

self
<

v′i + ui

]
.

Furthermore, at that information set, a buyer must lose the auction with probability
one in equilibrium. Suppose not, and let j∗ ∈ argmaxj vj be (one of) i’s toughest com-
petitors. We know buyer i’s bid must lie below j∗’s value since β(πother, πself

< , ui) <

minv′i∈πother v′i + u ≤ νj∗ . We also know that buyer i chooses this information structure
with non-vanishing probability. For i to win the auction at that information set, buyer
j∗ must fail to learn his valuation and bundle his high value in πother with some lower
ones. However such information structure cannot be optimal for j∗ when λ is small
enough as it leads him to lose against i’s bid with non-vanishing probability. Hence
it must be that at information set πi = (πother, πself

< , ui), i always loses the auction in
equilibrium.

Buyer i’s equilibrium bid is then disciplined by the trembling-hand-like refinement
that we impose. In particular, buyer i’s bid must be optimal given that each of his
competitors trembles with vanishing probability. Hence i can only win the auction
when j∗ trembles. In that scenario, none of i’s competitors’ bids reveal any information
about i’s value: all buyers j ̸= j∗ learned about their toughest competitors, which is
j∗, and j∗ is trembling so his bid is drawn at random. Given that bidding truthfully
is a weakly dominant strategy in a SPA, and that buyer i faces a distribution of bids
that has full support given j∗’s tremble, he has a strict incentive to bid his expected
valuation for the good given his information set:

β
(
πother, πself

< , ui

)
= E

[
vi

∣∣∣ vi < min
v′i∈πother

v′i

]
+ ui.

Step 2. We show that there exist L > 0 and λ > 0 such that, for all λ ≤ λ, the expected
second-highest bid is lower than E[ν(2)] − L in any equilibrium.43 Take any equilib-
rium, and denote by q(λ) the probability that a buyer chooses an information structure
satisfying (⋆). We know from Theorem 1 that limλ−→0 q(λ) = 1. We focus on the case
where all buyers choose such an information structure—the other case has vanishing

43ν(2) denotes the second highest value for every realization of (νi)i.
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probability, and induces a revenue that is bounded above by the highest possible val-
uation. We first show that, given any realized second-highest bid b(2), revenue (i.e., the
realized second-highest bid) must lie weakly below E[ν(2) | b(2)]. We then show that,
with strictly positive probability, it is bounded strictly below E[ν(2) | b(2)]− L for some
L > 0.

Note that the highest-valuation buyer wins with probability one if all buyers choose
an information structure satisfying (⋆). Let i1 be the highest-valuation buyer and ν(1) his
realized valuation. (Ties have probability zero as the distribution of ui is continuous.)
There are two cases: either the price is set by a buyer who learned his valuation fully,
or it isn’t. The first case is direct: since the second-highest bidder (call him j∗) learned
his value, he must have bid truthfully, and revenue then equals b(2) = νj∗ ≤ ν(2). In
the second case, the second-highest bidder failed to learn his value, which means that
πself
j∗ = {vj | vj ≤ v} for some v < vi1 . If j∗ wins at such bid, then all other bidders

j ̸= j∗, i1 must also have had values vj ≤ v.44 We know from Step 1 that j∗ must have
bid β(πj∗) = E[νj∗ | vj∗ ≤ v], which always lies weakly below E[ν(2) | b(2) = β(πj∗)] =

E[ν(2) | vi1 > v, vj ≤ v ∀j ̸= i1].45 Thus, when all agents choose information structures
satisfying (⋆), b(2) ≤ E[ν(2) | b(2)], and expected revenue is weakly below the expected
second-highest valuation.

We now prove that, with strictly positive non-vanishing probability, the second-
highest bid b(2) is bounded strictly below the expected second-highest valuation given
b(2). In particular, we show that this is the case when all buyers choose the same in-
formation structure and the gap between the highest and second-highest valuations is
large enough. Let V = {v1, v2, . . . , vK} with vk+1 > vk. Take any information structure
(Πother,Πself ) that has non-vanishing weight in equilibrium. Let v = min{v | ∃πother ∈
Πother s.t. v ∈ πother, vK ∈ πother} denote the smallest valuation that Πother bundles with
vK . We know from Theorem 1 and Lemma 1 that Πother ̸= {V }. Similarly, we know
from 2 that Πother ̸= {{v1}, {v2, . . . , vK}}. Hence v > v2. Consider what happens when
the highest-valuation bidder has value vi1 ≥ v while all others j ̸= i1 have value vj < v.
When all buyers choose information structure (Πother,Πself ), all buyers j ̸= i1 must
learn maxj ̸=i vj ∈ [v, vK ] since vi1 ≥ v. Furthermore, all buyers but i1 must fail to learn
their valuations precisely: πself

j = {vj | vj < v} with |πself
j | ≥ 2. The second-highest bid

44If not, they would have either learned their values and outbid j∗, or just learned that vj ≤ v′ for
some v′ > v, which would also have led them to outbid j∗.

45Indeed, the latter is the expectation of the highest value among the N − 1 ≥ 2 losing bidders, which
is weakly above the expected value of one specific losing bidder j∗.
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then equals E[vj | vj < v] + maxj ̸=i1 uj .
Overall, we get

E [ equilibrium revenue |σλ]− E[ν(2)] ≤
(
1− [q(λ)]N

) (
vK − E[ν(2)]

)
+ [q(λ)]N Pr

(
Πother,Πself | σλ

)N
Pr (vi1 ≥ v, vj < v ∀j ̸= i1)×(

E[vi | vi < v] + max
j ̸=i1

uj − E[v(2) | v(2) < v, v(1) ≥ v]− ui2

)
.

We give an upper bound for the second term. Note that E[vi | vi < v] − E[v(2) | v(2) <
v, v(1) ≥ v] is strictly negative. Indeed, it compares the expected value of a buyer
conditional on it being lower than some bound E[vi | vi < v] to the expected second-
highest value conditional on it being lower than that same bound and the highest-value
being higher than this bound E[v(2) | v(2) < v, v(1) ≥ v]. Hence the latter is just the
expected value of the best of these N − 1 draws, simply truncating the distribution at
the bound as we know that all these N − 1 draws lie below it. Since there are N ≥ 3

buyers, the latter is strictly positive whenever there is some variance in the distribution
of vi < v. This is the case as |{vi | vi < v}| ≥ 2. Hence

E[v(2) | v(2) < v, v(1) ≥ v]− E[vi | vi < v] ≡ l > 0.

Furthermore, maxj ̸=i1 uj ≥ ui2 . Then

E
[

equilibrium revenue |
(
Πother,Πself

)]
− E[ν(2)] ≤

(
1− [q(λ)]N

) (
vK − E[ν(2)]

)
− [q(λ)]N Pr

(
Πother,Πself | σλ

)N
Pr

(
v(1) ≥ v, v(2) < v

)
Pr

(
v(1) ≥ v, v(2) < v

)
l.

Since limλ−→0 q(λ) = 1, the first RHS term goes to zero as information costs vanish.
Since limλ−→0 Pr

(
Πother,Πself | σλ

)
> 0, the second does not. There exists λ such that

for all λ ≤ λ, expected revenue is bounded away from the expected second-highest
valuation.

B.3.2 Proof of Proposition 4

Take any equilibrium σλ, and fix some realization of (vi)i. We show that two bidders
i1, i2 with values vi2 < vi1 cannot both enter the auction with probability greater than
ε > 0 for all λ. Hence if two buyers enter with non-vanishing probability, they must
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have the same value. We then argue that they must be the highest-valuation buyers,
i.e., vi1 = vi2 = maxj vj .

Given an information structure
(
Πother,Πself

)
, let π(v) ∈ Πother × Πself denote the

information set at which a buyer must be in state v = (vi)i.46 Formally, we show that∑
(Πother,Πself)

Pr
[(
Πother,Πself

)
| σλ

]
Pr (β(π(v)) > 0 | σλ)

cannot be greater than ε irrespective of λ for both i1 and i2 if vi2 < vi1 . By contradiction,
suppose that it is. It must be that at some information sets πi1 , πi2 that have non-
vanishing weight given (vi)i, these two buyers make non-zero bids β(πi) > 0 for i =

i1, i2.

Step 1. We first show that i2 must know and bid his valuation at this information set:
πself
i2

= {vi2} and β(πi2) = vi2+ui2 . Suppose not: at this information set i2 does not know
his valuation fully |πself

i2
| > 1, and let v and v denote the lowest and highest values in

πi2 , respectively. For i2 to find it optimal to enter the auction and bid β(πi2) > 0,
it must be that he wins with strictly positive probability at such bid. In particular,
this implies that i1 is sometimes at an information set at which he bids lower than i2.
At information set πi2 , buyer i2 cannot rule out the possibility that some other buyer
j ̸= i1, i2 has the same value as him vj = vi2 . Indeed, πother

i2
is only informative of

maxj ̸=i2 vj ≥ vi1 > vi2 . Hence with non-vanishing probability, one of i2’s opponents
has the same information set as him πj = πi2 and makes the same equilibrium bid.
With non-vanishing probability, buyer i2 then ties to win the auction, and must then be
indifferent between winning and losing at his equilibrium bid. That equilibrium bid
must lie strictly in between v+ui and v+ui, which means that there are non-vanishing
losses associated with failing to distinguish values vi = v and vi = v. Indeed, at the
former he does not want to win at his equilibrium bid while he does want to win at the
latter. For λ small enough, it must then be optimal to learn to distinguish these values,
and it cannot be that |πself

i2
| > 1.

Step 2. We now show that in state v = (vi)i, agent i1 must be entering the auction and
outbidding i2 with probability one. Take any information set π(vi1 , v−i1) that i1 might
have in equilibrium given the realized (vi)i. By assumption, one of these information

46That is, π(v) = ({πother ∈ Πother : maxj vj ∈ πother}, {πself ∈ Πself (πother) : vi ∈ πself})
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sets is the one we started with πi1 at which he enters. At this information set, he must be
outbidding i2. Indeed we know from Step 1 that i2 is bidding vi2 +ui2 < νi1 , and that i2
wins sufficiently often at that bid to justify its entry. So there are strictly positive, non-
vanishing gains from outbidding i2, and for λ small enough, i1 must learn sufficiently
about his valuation to do so.

Suppose that at some other information set π̂(vi1 , v−i1) that has positive probability
in equilibrium, buyer i1 stays out of the auction in that state of the world, and gets zero
gross payoff. By choosing a finer information structure, buyer i1 could have entered
and gotten a strictly positive, non-vanishing gross payoff. Indeed, since i1 has a strictly
greater value than i2, i1 must have greater, and hence strictly positive, gains from en-
tering the auction. For λ small enough, that other information structure must yield an
overall strictly greater payoff, and hence represents a profitable deviation.

Step 3. We now argue that i2 cannot find it profitable to enter the auction at information
set πi2 . There are two cases: either πother

i2
is sufficiently fine that i2 can predict that i1 will

enter with probability one and bid higher than νi2 , or not. In the first case, i2 cannot
find it optimal to pay the entry fee κ. In the second, i2 could deviate to a finer πother

i2
so

as to not enter in this state of the world in which there are no gains from doing so. For
λ small enough, this strict increase in gross payoff must be lower than the cost of the
finer πother

i2
, and this deviation leads to a strictly higher overall payoff.

Taking stocks, given some realization of (vi)i, if two buyers enter with non-vanishing
probability then they must have the same value vi. We have left to argue that they must
have the highest realized value maxi vi. By contradiction, suppose not: two buyers i1

and i2 enter with non-trivial probability while some other buyers j∗ with vj∗ > vi1 = vi2

does not. First note that bidders i1 and i2 must know their valuation fully for λ small
enough and bid it, as they tie against each other with non-vanishing probability. Yet if
they find it profitable to enter and bid their values then buyer j∗ must find it strictly
profitable since he has a strictly higher valuation than them. Hence j∗ cannot stay
away from the auction in equilibrium, and if two buyers enter with non-vanishing
probability then they must have vi = maxj vj .
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B.4 Proof of Results of Section 5

B.4.1 Proof of Proposition 5

Let Πother = {{πother
l }Ll=1} be an information partition about maxj vj that has non-

vanishing probability in equilibrium. Let vkl and vkl denote the lowest and highest
values in πother

l , respectively. The equilibrium partition may depend on the number
of bidders N but we do not make that dependence explicit so as to keep the notation
uncluttered. The proof of Theorem 5 has two steps. We first show that, for N large
enough and λ small enough, buyers learn to distinguish whether or not their toughest
competitor has a value equal to vK (i.e., {vK} ∈ Πother) under any information structure
that has non-vanishing weight. Second, we show that setting a reserve price just below
that highest possible valuation yields more revenue than having an additional buyer
participate in the auction.

Step 1. Assume no reserve price. There exists N1 such that, for all N ≥ N1, there exists λ̄

such that, for all λ ≤ λ̄, buyers learn whether their toughest competitor has the highest possible
value: {vK} ∈ Πother.

By contradiction, suppose not: for arbitrarily large N , there exists an information
structure that has non-vanishing weight in equilibrium such that {vK} /∈ Πother. That
is, with non-trivial probability, buyers choose a partition about others that bundles vK

with some other possible values: {vkL , . . . , vK} ∈ Πother for some vkL < vK .
We know from Theorem 1 that an information structure that has non-vanishing

weight in equilibrium must satisfy (⋆) and minimize cost. We give an alternative infor-
mation structure under which {vK} ∈ Π̂other that is strictly cheaper than

(
Πother,Πself

)
,

which hence proves the latter cannot be sustained in equilibrium.
The cost of information partition Πother equals:

c
(
Πother, p1:N−1

)
= H (p1:N−1)−

L∑
l=1

Pr

(
max

j
vj ∈ πother

l

)
H

(
δπother

l

)
,

where δπother
l

∈ ∆V is the agent’s posterior about maxj vj given that he knows maxj vj ∈
πother
l :

δπother
l

(·) = Pr

(
·
∣∣∣ max

j
vj ∈ πother

l

)
=


p1:N−1(v)∑

v′∈πother
l

p1:N−1(v′)
if v ∈ πother

l

0 otherwise
.
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Consider an alternative information partition about others that unbundles vK from
{vkL , . . . , vK−1}, but keeps the rest of the partition the same:

Π̂other = {{vkl , . . . , vkl}l=1,...,L−1, {vkL , . . . , vK−1}, {vK}}.

Naturally this partition is finer, and hence costlier than the one we started with. Using
the same formula as above, the extra cost equals

c(Π̂other, p1:N−1)− c(Πother
λ , p1:N−1) = Pr

(
max

j
vj ≥ vkL

)
H

(
δ{vkL ,...,vK}

)
− Pr

(
vkL ≤ max

j
vj < vK

)
H

(
δ{vkL ,...,vK−1}

)
− Pr

(
max

j
vj = vK

)
H

(
δ{vK}

)
.

Note that as N goes to infinity, the second term goes to zero, as Pr
(
maxj vj < vK

)
goes to zero. Furthermore, a buyer’s posterior conditional on learning that maxj vj ∈
{vkL , . . . , vK} converges to the degenerate belief that puts probability one on the tough-
est competitor having the highest possible value δ{vK}. Indeed, as N goes to infinity,
the probability of such event goes to one. Hence, limN−→∞ δ{vkL ,...,vK} = δ{vK}. Since H

is continuous, this implies that the first and last term cancel out in the limit, and so the
overall expression goes to zero: the cost of learning whether one of the competitors has
the highest valuation possible becomes negligible.47

There is however a first-order gain in choosing this alternative partition, as it allows
the buyer to save on information cost about his own valuation. If the buyer learns that
maxj vj ∈ {vkL , . . . , vK} = πother, then we know from Theorem 1 that Πself (πother) =

{{v1, . . . , vkL−1}, {vk}k=kL,...,K
}. If the buyer learns that maxj vj ∈ {vkL , . . . , vK−1}, then

the optimal way to partition his set of valuations is the same one. If however the buyer
learns that maxj vj = vK , then he optimally chooses a coarser partition for himself:
Π̂self ({vK}) = {{v1, . . . , vK−1}, {vK}}. Hence the gain in information cost on self is

Pr

(
max

j
vj = vK

)
×

[
c
(
{{v1, . . . , vK−1}, {vK}}, p

)
− c

(
{{v1, . . . , vτL}, {vk}k=τL+1,...,K}, p

)]
.

Since Pr(maxj vj = vK) tends to one as N tends to infinity, this tends to the strictly

47Intuitively, this is due to the fact that such event is so likely that learning about its realization does
not move the buyer’s belief much.
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positive expression in parenthesis. For N large enough, the information structure
(Π̂other, Π̂self ) is strictly cheaper, and so the information structure we started with can-
not have non-trivial weight in equilibrium.

Step 2. There exists N2 such that, for all N ≥ N2, there exists λ̄ such that, for all λ ≤ λ̄,
setting a reserve price r ∈ (vK−1, vK) yields more revenue than having one more bidder in the
auction.

Consider a (somewhat extreme) reserve price that lies just below the highest possi-
ble valuation r = vK − η for η small (|uN | < η < vK − vK−1). Under such reserve price,
and for λ small enough, all buyers find it optimal to acquire no information about oth-
ers, and to only learn whether their valuations lie above or below the reserve price.
Hence they all choose

Πself = {{v1, v2, . . . , vK−1}, {vK}}.

Given a realization of (vi)i, let v1:N and v2:N be the highest and second-highest valu-
ations, respectively. As λ goes to zero, imposing a reserve price r = vK − η then yields
an expected revenue of

Revenue(r, N ) = Pr
(
v1:N = vK , v2:N < vK

)
r + Pr

(
v2:N = vK

)
E
(
ν2:N | ν2:N ≥ vK + uN

)
.

Now consider what happens in equilibrium if no reserve price is imposed, but there
are N +1 bidders participating in the auction. By Step 1, it has to be that buyers choose
to learn sufficiently finely about the competition, and in particular that, for N large
enough, they come to learn whether their toughest competitor has a value of vK . If
they learn that this is the case, they then partition their own set of valuations into
{{v1, v2, . . . , vK−1}, {vK}}. That is, they learn whether they should compete with their
toughest competitor (which only yields a non zero payoff when they also have vi = vK)
and bundle together all valuations below vK . Hence, in any equilibrium, all buyers
who learn maxj vj = vK and vi < vK bid E[vi|vi < vK ] + ui (as argued in Step 1 of proof
of Theorem 2).

Revenue with N + 1 bidders but no reserve price then equals

Revenue(0, N + 1) = Pr
(
v2:N+1 = vK

)
E
(
ν2:N+1 | ν2:N+1 ≥ vK + uN+1

)
+ Pr

(
v1:N+1 = vK , v2:N+1 < vK

) (
E
[
vi|vi < vK

]
+ E(u1:N)

)
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+ Pr
(
v1:N+1 < vK

)
E
[
eq. revenue|vi < vK ∀i = 1, . . . , N + 1

]
.

The first line captures expected revenue when both the highest- and second-highest-
valuation buyers have vi = vK . In such case they both learn their valuations fully,
and revenue simply equals the expected second-highest valuation. The second line
captures expected revenue when the highest-valuation buyer has vi = vK while the
second-highest valuation buyer has vj < vK . In such case, all losing buyers j fail
to learn their valuations and bid E

[
vi|vi < vK

]
+ uj . Finally, the third line captures

expected revenue when none of the buyers has vi = vK . The probability of such event
is vanishing at a faster rate than the others as N grows. We will thus be able to overlook
it and do not need to derive an explicit expression for revenue.

We show that, for N high enough, the above reserve price yields greater expected
revenue than having an additional bidder:

∆ ≡ Revenue(r, N ) − Revenue(0, N + 1) > 0.

This difference is at least

∆ ≥ Pr(v1:N = vK , v2:N < vK)
(
r − E[vi|vi < vK ]− uN+1

)
+
(
Pr(v2:N = vK)− Pr(v2:N+1 = vK)

)
(vK + uN)

+
(
Pr(v1:N = vK , v2:N < vK)− Pr(v1:N+1 = vK , v2:N+1 < vK)

) (
E[vi|vi < vK ] + uN+1

)
− Pr(v1:N+1 < vK)E[eq. revenue|vi < vK ∀i = 1, . . . , N + 1]

+ Pr
(
v2:N = vK

) [
E
(
u2:M |M = |{i = 1, . . . , N |vi = vK}|,M ≥ 2

)
− E

(
u2:M |M = |{i = 1, . . . , N + 1|vi = vK}|,M ≥ 2

) ]
= NpK

(
1− pK

)N−1 (
r − E[vi|vi < vK ]− uN+1

)
+ (vK + uN)

[
1−

(
1− pK

)N −NpK
(
1− pK

)N−1 − 1 +
(
1− pK

)N+1
+ (N + 1)pK

(
1− pK

)N ]
+
[
NpK

(
1− pK

)N−1 − (N + 1)pK
(
1− pK

)N] (E[vi|vi < vK ] + uN+1

)
−

(
1− pK

)N+1 E[eq. revenue|vi < vK ∀i = 1, . . . , N + 1]

+ Pr
(
v2:N = vK

)
∆N

u ,
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where

∆N
u = E

(
u2:M |M = |{i = 1, . . . , N |vi = vK}|,M ≥ 2

)
− E

(
u2:M |M = |{i = 1, . . . , N + 1|vi = vK}|,M ≥ 2

)
.

Factorizing by NpK
(
1− pK

)N−1 this simplifies to

∆

NpK (1− pK)N−1
≥ r − E[vi|vi < vK ]− uN+1 − pK(vK + uN)

+

[
pK − 1− pK

N

] [
E[vi|vi < vK ] + uN+1

]
−

(
1− pK

)2
NpK

E[eq. revenue|vi < vK ∀i = 1, . . . , N + 1]

+ Pr
(
v2:N = vK

) ∆N
u

NpK (1− pK)N−1
.

Using the fact that r = vK − η for some small η, this rewrites as

∆

NpK (1− pK)N−1
≥ (1− pK)

(
vK − E[vi|vi < vK ]

)
− η − pKuN − (1− pK)uN+1

− 1− pK

N

(
E[vi|vi < vK ] + uN+1

)
−

(
1− pK

)2
NpK

E[eq. revenue|vi < vK ∀i]

+ Pr
(
v2:N = vK

) ∆N
u

NpK (1− pK)N−1
.

First note that (1−pK)
(
vK − E[vi|vi < vK ]

)
> 0 and so must be greater than η for η small

enough. Furthermore, all terms on the second line go to zero as N goes to infinity. The
same is true of the bounds on the noise terms uN . Finally, the last term is bounded
above by uN −uN and is arbitrarily small if the noise terms have small support. Hence,
there must exist N̄2 such that, for all N ≥ N̄2, the reserve price yields greater revenue
than the extra bidder: ∆ > 0.

Intuitively, for large N , the first-order difference between a reserve price and an
additional bidder occurs when only one bidder has value vi = vK and all others have

67



values vi < vK .48 In such a case, an additional bidder only yields revenue E[vi|vi <

vK ]+maxj uj whereas a reserve price yields revenue arbitrarily close to vK +uN , which
is higher.

Combining Steps 1 and 2, for all N ≥ max{N̄1, N̄2} the claim holds, and the above
reserve price outperforms an auction with no reserve but one more bidder.

B.4.2 Proof of Proposition 6 and Proposition 7

Proof of Proposition 6. Consider the following way to randomize access to the auction:

Pr(M = N) = 1− q and Pr(M = N \ i) = q

N
for all i,

for some q ∈ (0, 1). That is, with probability 1 − q all buyers get access to the auction.
With remaining probability, one buyer chosen uniformly at random is excluded. Take
any information partition about self Πself that has non-vanishing weight in equilib-
rium. We show that, for any q > 0, there exists λ̄ such that, for all λ ≤ λ̄, buyers must
always become fully informed of their valuations: Πself = {{v}v∈V }.

By contradiction, suppose not: Πself bundles some valuations together. Take any
such bundle and let v and v be the lowest and highest element in that bundle, respec-
tively. Denote that bundle by πself

v,v and let β(πother, πself
v,v , ui) a buyer’s equilibrium bid

at that bundle. We know that β(πother, πself
v,v , ui) ∈ [v + ui, v + ui].

Consider deviating to Π̂self = {{v}v∈V }. Since that partition is finer, it is costlier and
increases buyer i’s information costs by

λ
[
c
(
Π̂self , p

)
− c

(
Πself , p

)]
> 0.

Such a finer partition must (weakly) increase buyer i’s gross payoff. We show that it
strictly increases i’s gross payoff. Whatever information i acquired about his toughest
opponent’s valuation is irrelevant with probability q/N . Indeed, with probability q/N ,
i’s toughest opponent will be excluded from the auction. In such event, buyer i is left
competing with buyers about whose valuations i has no information. In particular,
with non-trivial probability, all these buyers chose the same signal about self Πself , all

48When more than one bidders have values vi = vK , they learn their valuations fully and the second-
highest bid is ν2:N > r. The only difference in revenue between a reserve price and an additional bidder
then comes from the fact that, under the latter, the second-highest bidder has a larger draw of ui in
expectation.
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have values vj ∈ πself
v,v , and all bid β(πother, πself

v,v , uj) for some uj . But buyer i then has
a strict incentive to learn to distinguish vi = v from vi = v. Indeed, he wants to win
against β(πother, πself

v,v ,maxj uj) (at least) when vi = v and ui > maxj uj , and lose against
β(πother, πself

v,v ,maxj uj) (at least) when vi = v and ui < maxj uj .
These gains from distinguishing vi = v and vi = v are strictly positive and indepen-

dent of λ. Hence, for λ small enough, the increase in information cost must be strictly
smaller than the gains, and buyers must become fully informed about their valuations
in equilibrium: Πself = {{v}v∈V }.

In any equilibrium, fully informed buyers must bid their valuations for the good:
β((πother, {vi}, ui)) = vi + ui = νi. Expected revenue is then at least qE[ν(2)]. Given any
ε > 0, set q = 1− ε

E[ν(2)]
. For λ small enough, expected revenue from such randomized

access is at least E[ν(2)]− ε, which completes the proof.

Proof of Proposition 7. Consider the randomized access from Proposition 6. For any ε >

0, the seller can ensure himself a revenue of

E[ν(2)]− ε

for λ small enough. We compare this revenue to the one obtained when the seller sets
the optimal reserve price.

Step 1. We first show that, for N large enough and λ small enough, the optimal reserve
price r∗ must target buyers with the highest possible realization of vi, that is, r∗ =

vK + u∗ for some u∗ ∈ (uN , uN). Suppose not, and r∗ < vK + uN for all N and λ. Using
the same argument as in the proof of Theorem 5, we show that, for N large enough,
buyers only put non-vanishing weight on information structures such that {vK} ∈
Πother. In words, they find it cost-efficient to learn whether they face a competitor with
the highest possible valuation, as this event has very high probability for large N . (See
proof of Theorem 5 for more details.)

After learning that maxj vj = vK , a buyer chooses Πself ({vK}) = {{vi : vi <

vK}, {vK}} and bids E[vi | vi < vK ] + ui whenever vi < vK . A reserve price of
r < vK + uN then yields revenue strictly bounded above by(

1−
(
1− pK

)N −NpK
(
1− pK

)N−1
)
E[ν(2) | ν(2) ≥ vK + uN ]
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+NpK
(
1− pK

)N−1 E
[
max{r,E[vi | vi < vK ] + ui}

]
+
(
1− pK

)N (
vK + uN

)
.

In comparison, a reserve price to r′ = vK + uN yields an expected revenue of(
1−

(
1− pK

)N −NpK
(
1− pK

)N−1
)
E[ν(2) | ν(2) ≥ vK + uN ]

+NpK
(
1− pK

)N−1 (
vK + uN

)
.

The latter is strictly greater whenever

NpK
(
1− pK

)N−1 (
vK + uN − E

[
max{r,E[vi | vi < vK ] + ui}

])
−
(
1− pK

)N (
vK + uN

)
> 0

⇐⇒ NpK
(
vK + uN − E

[
max{r,E[vi | vi < vK ] + ui}

])
−
(
1− pK

) (
vK + uN

)
> 0.

Since
[
max{r,E[vi | vi < vK ] + ui}

]
≤ r < vK+uN , the first term is strictly positive, and

for N large enough the inequality must hold. The optimal reserve price must then lie
weakly above vK + uN .

Step 2. We now show that revenue under the optimal reserve price is lower than un-
der the above randomized access. Under the optimal reserve price, expected revenue
equals

r∗N
(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1

+
[
1−

(
1− pK Pr(ui ≥ u∗)

)N −N
(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1
]

× E[ν(2) | ν(2) ≥ r∗].

The first term arises whenever the reserve price binds, which is the case whenever only
one buyer has a valuation greater than r∗ = vK+u∗. The second term captures expected
revenue when the reserve price does not bind, that is when two or more buyers have
valuations νi = vi + ui ≥ vK + u∗.

Randomizing access yields revenue E[ν(2)]− ε. This is greater whenever[(
1− pK Pr(ui ≥ u∗)

)N
+N

(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1
]
E[ν(2) | ν(2) ≤ r∗]

−r∗N
(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1 − ε > 0.
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This rewrites as

(
1− pK Pr(ui ≥ u∗)

)N E
[
ν(2) | ν(1) ≤ r∗

]
− ε

−N
(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1 (
r∗ − E[ν(2) | ν(2) ≤ r∗, ν(1) > r∗]

)
> 0.

In words, the gain from randomizing access comes from the fact that buyers fully learn
their valuations, and that whenever none of them has a value above the reserve price,
then the seller gets a revenue equal to the second-highest value (first line). The loss
comes from states of the world in which only one buyer has a value above the reserve
price (so only one buyer has νi ≥ vK + u∗), in which case the reserve price yields
a revenue of r∗ = vK + u∗ while the randomization into entry yields a revenue of
E[ν2:N | ν2:N ≤ vK + u∗, ν1:N > vK + u∗] − ε = E[ν1:N−1 | ν1:N−1 ≤ vK + u∗] − ε (second
line). However this loss goes to zero with N at a faster rate than the gains, as the
expected highest-value below the reserve price converges to the reserve price quickly.
In particular, with probability 1− [(1−pK)/(1−pK Pr(ui ≥ u∗))]N−1, the second-highest
value is ν2:n = vK + ui for some ui < u∗. Hence the condition rewrites as

(
1− pK Pr(ui ≥ u∗)

)N E
[
ν(2) | ν(1) ≤ r∗

]
− ε

−N
(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1

[
1−

(
1− pK

1− pK Pr(ui ≥ u∗)

)N−1
]

×
(
u∗ − E[u1:M | M = |{i : vi = vK , ui < u∗}|]

)
−N

(
pK Pr(ui ≥ u∗)

) (
1− pK Pr(ui ≥ u∗)

)N−1
(

1− pK

1− pK Pr(ui ≥ u∗)

)N−1

×
(
vK + u∗ − E[ν1:N−1 | ν1:N−1 ≤ vK + uN ]

)
> 0.

Dividing everything by
(
1− pK Pr(ui ≥ u∗)

)N−1 yields

(
1− pK Pr(ui ≥ u∗)

)
E
[
ν(2) | ν(1) ≤ r∗

]
− ε

−N
(
pK Pr(ui ≥ u∗)

) [
1−

(
1− pK

1− pK Pr(ui ≥ u∗)

)N−1
]

×
(
u∗ − E[u1:M | M = |{i : vi = vK , ui < u∗}|]

)
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−N
(
pK Pr(ui ≥ u∗)

)( 1− pK

1− pK Pr(ui ≥ u∗)

)N−1

×
(
vK + u∗ − E[ν1:N−1 | ν1:N−1 ≤ vK + uN ]

)
> 0.

For ε small enough, the first term is strictly positive and remains bounded away from
zero as N grows large. The last term goes to zero as N grows large. So does the second
term if the noise terms are sufficiently small given N since it scales with u∗ − uN ≤
uN − uN . Hence there exists N̄ such that, for all N ≥ N̄ , the claim holds: the above
randomization intro entry outperforms an auction where all bids are considered but
with an optimal reserve price.

B.5 Proof of Results in Section 6

Proof of Proposition 8. We show that there cannot exist an equilibrium in which buyers
first choose to learn about their own values and then about others.

By contradiction, suppose such an equilibrium exists, and let Πself be an informa-
tion partition about self that has non-vanishing probability in equilibrium. We first
argue that, for sufficiently small information costs λ, Πself = {{v}v∈V } . Suppose not,
such that there exists πself ∈ Πself with |πself | > 1. Let v and v be the smallest and
highest values in πself , respectively. In states of the world where vj ∈ πself for all buy-
ers j, all buyers are at the same information set πself with non-vanishing probability.
Following a similar argument as in the proof of Lemma 3, they then tie for the good
with non-vanishing probability, and must be indifferent between losing and winning
at their equilibrium bid. Their equilibrium bid then lies strictly in between v + ui and
v + ui, and given that they face such bid with non-vanishing probability, they have a
strict incentive to learn to distinguish value vi = v from value vi = v. Therefore a buyer
learns his value fully Πself = {{vi}vi∈V }. We however know from Proposition 3 that
such an equilibrium cannot exist.

Proof of Proposition 9. The proof of Proposition 3 is identical. Indeed, it proceeds by
contradiction: we assume that an equilibrium in which buyers converge to fully learn-
ing their values exists and then show that they have a strict incentive to deviate to
an alternative information structure. That deviation still exists in this extended model
since we are only expanding the set of information structures available to buyers, and
so the conclusion follows directly.
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The proof of Theorem 3 extends almost verbatim as well. During the information
acquisition stage, buyers can acquire any sequence of partitions about their values and
others’. Irrespective of the exact form this process takes, their information set upon
entering the auction is fully described by an interval of values they deem possible for
themselves πself

i and an interval of values they deem possible for their toughest oppo-
nent πother

i . Take any information structure that had non-vanishing weight in equilib-
rium. The same arguments as in the proof of Lemma 3 yield that if these two inter-
vals overlap, then the belief about self must be degenerate (|πself

i | = 1). This ensures
buyers make no non-vanishing mistakes in equilibrium as they learn their valuations
fully when the auction is “close.” Furthermore, the same arguments as in the proof of
Lemma 6 yield that buyers must choose the cheapest such information structure. We
know that fully learning one’s value if not cost-efficient, so buyers must acquire some
information partition about others at some point in the learning process. In particular,
this means that if at any stage in the information acquisition process, a buyer knows for
sure that his value is above (or below) that of his toughest opponent, then it cannot be
cost-efficient for that buyer to learn more. So any non-vanishing information structure
must have losing buyers fail to learn their valuation with positive probability, and the
proof of Theorem 2 applies.

Proof of Theorem 3. The following two facts simplify the equilibrium analysis. First,
buyers must bid their expected valuation given their information set in any equilib-
rium. Indeed, doing so is a weakly dominant strategy: others’ bids no longer carry
any relevant information to them and so the standard strategy-proofness of the sec-
ond price auction applies. Furthermore, bidding truthfully is the only bidding strategy
that survives our tremble refinement. Second, it is without loss to look at pure learning
strategies. Indeed, any mixing over distribution over posterior beliefs can be replicated
by a single distribution over posterior beliefs that has the same cost. Taken together,
these two facts imply that any equilibrium can be fully described by the chosen sig-
nal about others Πother : {s, s} −→ ∆∆({s, s}) and about self Πself : [0, 1] × {s, s} −→
∆∆V .49

Take any sequence of equilibria {(Πother
λ ,Πself

λ )}λ and denote the limiting informa-
tion structure by (Πother,Πself ) ≡ limλ−→0(Π

other
λ ,Πself

λ ).
Step 1: We show that suppΠother(s) = {µ, 1} and suppΠother(s) = {0, µ}. In words,

49Recall that buyers get to observe si for free at the beginning of the game so they can condition their
learning strategy on the realization of that signal.
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a buyer who knows his value is low (si = s) will choose a signal about others that
either reveals the competition is strong for sure (posterior probability that maxj sj =

s is 1) or not. Similarly, a buyer who knows his value is high (si = s) will choose
a signal about others that either reveals the competition is weak for sure (posterior
probability that maxj sj = s is 0) or not. To that end, we first argue that the good must
be allocated to the highest valuation bidder under the limiting information structure
(Πother,Πself ). Indeed, if the equilibrium allocation were not efficient, then some buyer
would have a strict incentive to deviate: since buyers bid their expected value given
their information set, any misallocation must be driven by some buyer having failed
to learn his valuation fully. But then that buyer would be leaving money on the table,
as he would either win at a price above his value or lose against a price below his
value. In the limit, learning his value fully and avoiding this mistake must be strictly
profitable.

For the good to be efficiently allocated in the limit, it must be that maxj sj = si

Πself (s)[µ] = {δṽ}ṽ>v∗ whenever µ > 0 and Πself (s)[µ] = {δṽ}ṽ≤v∗ whenever µ < 1,
where {δṽ}ṽ denotes the “corner” distribution over posterior beliefs under which a
buyer fully learns his valuation. In words, for the good to be allocated, it must be
that a buyer with si = s fully learns his value whenever he assigns probability to the
event maxj sj = s. Similarly, it must be that a buyer with si = s fully learns his value
whenever he assigns probability to the event maxj sj = s. A direct implication is that,
if 1 /∈ suppΠother(s), then a buyer with si = s would always learn his valuation fully
at the second stage of the information acquisition process. But then learning anything
about the competition would be pointless and buyer i would simply learn nothing
about the competition and everything about his own value. However, if his prior is
sufficiently uncertain this would not be cost-efficient, and he would strictly reduce
his overall information cost by learning fully the realization of maxj sj and his value
only if maxj sj = si. (The argument for this is the same as in the proof of Proposition
3.) Thus 1 ∈ suppΠother(s). Finally, it cannot be that µ′, µ′′ ∈ suppΠother with µ′ < 1

and µ′′ < 1. Indeed, at both of these posterior buyer i would fully learn his valua-
tion. Merging these two posteriors would strictly reduce his information costs without
changing his bidding strategy, and so doing it is a profitable deviation. Overall that
means suppΠother(s) = {µ, 1} for some µ < 1. The proof of suppΠother(s) = {0, µ} is
virtually identical.
Step 2: We show that expected revenue under (Πother,Πself ) is strictly below the ex-
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pected second-highest valuation. Recall that whenever buyers learn their valuations
fully, they bid their valuations, and revenue equals to second-highest value. Hence
realized revenue can only differ from the realized second-highest value when some
losing buyer(s) failed to learn their valuation(s) fully. This can only happen when the
second-highest bid is set by a buyer i with si = s who learned that his toughest op-
ponent has maxj sj = s and, as a result, chose to learn nothing about his value. The
second-highest bid is then E[v | v ≤ v∗] + ui. Following the same argument as in the
proof of Theorem 2, that second-highest bid is strictly lower than if i had learned his
value fully and bid his value as long as N > 2.
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