
Social Choice under Gradual Learning∗

Yiman Sun† Caroline Thomas‡ Takuro Yamashita§

2 June 2023

Abstract

This paper combines dynamic mechanism design with collective experimentation. Agents

are heterogeneous in that some stand to benefit from a proposed policy reform, while others

are better off under the status quo policy. Each agent’s private information regarding her

preference type accrues only gradually, over time. A principal seeks a mechanism that max-

imises the agents’ joint welfare, while providing incentives for the agents to truthfully report

their gradually acquired, private information. The first-best policy may not be incentive com-

patible, as uninformed agents may have an incentive to prematurely vote for a policy instead

of waiting for their private signal. Under the second-best policy, the principal can incentivise

truth-telling by setting a deadline for experimentation, delaying the implementation of the

policy reform, and keeping agents in the dark regarding others’ reports.
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1 Introduction

A policy reform is proposed and an election will determine the collective’s joint decision to either

adopt the reform or to maintain the status quo. To illustrate, think of the 2016 referendum on the

withdrawal of the United Kingdom from the European Union (Brexit). Some UK citizens stand

to benefit from the reform. Others would be better off under the status quo. The implications

of the policy reform can be complex. Thus, each citizen privately learns her preference position

only gradually, over time. The government is a utilitarian social planner seeking optimally to

translate the agents’ learning into a social choice. Can it elicit the citizens’ private information?

What is the constrained optimal voting system?

The interaction takes place in continuous time. Agents’ preference types—whether they are

better off under the policy reform or the status quo—are independently and identically drawn by

nature at the outset of the game, and remain fixed thereafter. An agent’s private learning takes

the following form: at an exponentially distributed random time, she receives a private signal

that conclusively reveals her preference type. The arrival times of signals are independently and

identically distributed across the electorate. Thus, until she receives her private signal, the agent

perceives no information regarding her preference type, and her posterior equals her prior. We

assume that learning is exogenous and that there is no moral hazard.

At any point in time, the planner can abandon the status quo policy and implement the

reform, according to some decision rule. We assume that this policy switch is irreversible. At

each instant, agents cast a vote in favour of either policy, or they abstain. This is equivalent to a

direct mechanism in which, at each instant, the principal solicits reports by the agents regarding

their private information. Truthful reporting consists of abstaining until the arrival of one’s

private signal, followed by immediate, truthful reporting of the realised signal. We distinguish

two cases according to whether the history of votes is publicly observed or only observed privately

by the planner.

If all signals regarding preferences arrived publicly, the planner could implement a decision

rule that maximises joint payoffs. We show that this first-best decision rule cannot always be

implemented when signals arrive privately and the planner relies on agents’ reports. Typically,

the binding constraint will come from uninformed agents who can benefit from falsely reporting

a signal at voting histories where the planner would like these agents to keep waiting for their

signal. There are two reasons why the planner’s and agents’ incentives to wait for the agents’

signals are misaligned. First, the planner also cares about the payoff of agents who have already

cast their vote. Second, uninformed agents exert a negative externality on one another, as each

agent can end up trapped in an undesired policy by another agent’s report. In summary, our

setup is characterised by gradual, costless learning, private signals, and misaligned incentives due
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to collective decision-making.

We begin by analysing the scenario where agents make reports about their private signals in

continuous time. We derive the first-best policy, corresponding to the benchmark in which all

agents’ signals are publicly observed upon arrival. The first-best policy is a Markov policy with

respect to the state variable consisting of the number of agents who have discovered that they are

better off under the status quo policy and the number of agents who have discovered that they

are better off under the policy reform. (All remaining agents are uninformed.) Given a state, the

first-best policy is a threshold policy with respect to the belief (on being the type who favours

the status quo) of the uninformed agents who have not yet learnt their preferences. The fist-best

policy implements the reform once the number of supporters is sufficiently large compared to the

number of status-quo supporters and the number of uninformed agents.

When learning is private, so that the planner relies on the agents’ reports to implement the

first-best policy, truthful reporting may not be incentive compatible, when . In particular, an

uninformed agents may want to misreport that she has received a signal. To illustrate, consider

a two-agent example. Suppose that one agent has already voted for the status quo and that the

benefit of the policy reform is relatively high, so that the remaining uninformed agent is pivotal

under the first-best policy: as long as she abstains, the planner waits; once she reports a preference

type, the planner implements her preferred policy forever. Moreover, suppose the belief of the

uninformed agents is relatively low (below the single-agent experimentation threshold) so that

waiting for her signal is not worth her while and she prefers immediately switching to the reform.

The planner would agree with her if the other agent were also uninformed. However, because the

other agent has already made a report to support the status quo policy, the planner is biased

in favour of the status quo and wants to learn the last uninformed agent’s type before making

a final decision. Thus, the planner and the uninformed agent disagree on whether to continue

the status quo policy. If the first-best policy is implemented, the uninformed agent will simply

misreport her type and vote in favor of the reform.1

The above example illustrates that a single pivotal uninformed agent may have an incentive

to misreport. When there are multiple pivotal uninformed agents, one agent’s report imposes

a negative externality on the other agents’ learning, and produces an additional incentive to

prematurely report a preference type.

Given that the first-best policy is not incentive compatible, how can the planner induce truth-

telling? As monetary transfers are not feasible, it seems that there is not much the planner

can do. We consider two examples of our model, where we completely characterise the second

1We find that the other direction is also possible. That is, given the first-best policy, when the belief of the

uninformed agents is sufficiently high (above the single agent myopic threshold), they may prematurely vote for

the status quo.

3



best policy, i.e. the policy maximising joint payoffs subject to truthful reporting being incentive

compatible.

The first example (described above) consider the case with two agents, one of whom has already

learned that she is in favor of the status quo policy. Thus, the problem consists in incentivising

one pivotal uninformed agent. We assume reports are made publicly so that all players have

common knowledge on the history of reports. We find that the second-best mechanism distorts

the first-best using deadlines and delays. A deadline means that, at a voting history where it

would be welfare-maximising to continue experimenting with the status-quo policy, the planner

commits to switch to the reform at a pre-determined, fixed date. A delay means that, at a voting

history where it would be welfare-maximising immediately to implement the reform, the planner

remains in the status quo policy and switches to the reform after a (possibly stochastic) delay.

As the uninformed agent has an incentive to induce the reform, a deadline reduces her cost of

waiting in the status quo policy, which improves her truth-telling incentive. Moreover, delays

also reduce her misreporting incentive as she cannot induce the reform as fast as she would want.

Those two tools can be used together to make the uninformed agent indifferent between truth-

telling and misreporting at any time before the deadline. This requires delays to depend on the

reporting time. In particular, delays are monotonic in the reporting time. That is, if an agent

reports that her preference is in favor of the reform at an earlier time, then the time at which

the policy switches to the reform is also earlier. Moreover, the policy switching date after a delay

never exceeds the deadline. Those properties guarantee that an agent who has truly learned her

preference has the proper incentive to report truthfully and immediately. In this example, there

is no scope for improving welfare using private reporting (where reports are only observed by the

planner), as the fact that the planner has not yet implemented the reform allows the uninformed

agent to infer that she is, in fact, pivotal. Thus, public and private reporting coincide.

In general, private reporting provides minimal information to agents and thus minimises op-

portunities for them to misreport a signal. The planner cannot do worse with private reporting.

We consider private communication in our second example, where there are two uninformed

agents and the first-best policy is to switch to the reform as soon as one agent supports the

reform. Again, as the prior belief is low, uninformed agents want to induce the reform as soon

as possible, which conflicts with the planner’s first-best policy. We can still use the same tools—

deadlines and delays—to induce truth-telling when no one has learned any signal. However, this

is not enough to restore incentive compatibility. When a first agent votes for the reform before

the deadline, this triggers the delay. However, there is still another uninformed agent in the game,

and she, too, wants to induce the reform as soon as possible. What should the planner do to

restore the second agent’s truth-telling incentive? Although it is efficient to listen to her report to

make the final decision, listening to her report also provides an opportunity for her to manipulate
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the policy. We show that the second-best policy has to distort efficiency at three voting histories.

While both agents abstain, a deadline is set for the status quo policy. Before that deadline, when

one agent supports the reform, a delay is set to switch to the reform. The switching time is the

same as the deadline, regardless when the first agent votes for the reform. Meanwhile, during

the delay, the planner still listens to the second agent’s reports. If the second agent votes for the

status quo before the end of the delay, the status quo policy will be implemented forever. If the

second agent votes for the reform, then another delay will be imposed. Moreover, this mechanism

delivers higher joint payoffs when agents are kept in the dark about each other’s report so that

they are only indifferent in expectation between truth-telling and misreporting. Private commu-

nication here improves efficiency, since otherwise under public communication the efficiency has

to be distorted further away from the first-best policy.

Last, we also study the single election problem, where the planner has only one chance to

collect information from the agents. Given the election date, the first-best policy is static—it

maximizes the myopic social welfare by assigning different weights to different types of agents

according to their contribution to social welfare. Since an uninformed agent’s preference is not

as strong as an informed agent, the weight of the uninformed agent is small. However, unless the

prior belief equals the single-agent myopic threshold, her preference toward the two policies is

strict. Thus, under the first-best policy, the uninformed agents will exaggerate their preference

by misreporting that they are informed. In particular, supposing the prior belief is low,2 they

will misreport that they are in favor of the reform. Thus, the first-best policy is not incentive

compatible. To restore incentive compatibility, it is necessary to give the uninformed agents and

the agents who support the reform the same option in expectation, in the interim stage. We show

that the second-best policy in fact does not distinguish these two types ex-post. In other words,

preference intensities are not taken into account. Essentially, the policy is to remain in the status

quo if there is enough support. But how much support is enough is determined by the election

time. We show that more support is required if the election is held at a later date, since as time

passes, an agent who is against the status quo is more likely to be an agent who has discovered

her preference in favor of the reform, and thus should be assigned more weight. We also compare

the optimal election dates between the first-best and the second-best policies, and show that

the relative importance between pre-time-zero-learning and post-time-zero-learning determines

whether the election date in the second-best policy should be held earlier.

Literature Our paper relates to the voting literature. One strand of the literature, starting

from impossibility results of Gibbard (1973) and Satterthwaite (1975), examines preference aggre-

gation in a static setting and is concerned with the strategy-proofness of a social choice function.

2The case with a high prior belief is similar.
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While most papers require dominant strategy implementation, a small literature advocates a less

demanding requirement—ordinally Bayesian incentive compatibility (Majumdar and Sen (2004))

where the social choice function is restricted to be ordinal, or Bayesian incentive compatibil-

ity (Azrieli and Kim (2014); Kim (2017); Ehlers et al. (2020)) where the social choice function

can take cardinal information (i.e., preference intensities) into consideration. A cardinal rule

may achieve higher utilitarian social welfare than any ordinal rule with three alternatives (Kim

(2017)). However, with only two alternatives, the incentive compatible social choice function

that maximizes the social welfare is a weighted majority rule and only takes ordinal information

into account (Azrieli and Kim (2014)). This is in line with our findings in the single-election

scenario, where a voter’s problem is essentially static. Given our dynamic environment, we also

show how the assignment of voting weights depends on the election date through learning and

the implications on the optimal election date.

There is also a literature on voting with costly participation. As voting is costly, the voter

turnout rate may be a concern and compulsory voting appears to be a remedy. However, the

literature identifies, under majority rule, different reasons to support voluntary voting (Börgers

(2004)), or compulsory voting (Ghosal and Lockwood (2009)), or even subsidies and fines to en-

courage participation (Krasa and Polborn (2009)). Krishna and Morgan (2015) and Chakravarty

et al. (2018) further find that costly voting benefits utilitarian social welfare under majority rule,

as the cost can deter voters who have low preference intensities to vote so that only those high-

preference-intensities voters have an incentive to vote and they are the ones who contribute to

the social welfare the most. Voting costs would also help our incentive problem, since a direct

truthful mechanism requires the uniformed agents to abstain. We assume away such a cost and

focus on other tools to restore incentive compatibility. Finally, Grüner and Tröger (2019) also

study costly voting in a static environment and find a linear voting rule is utilitarian-optimal.

In the single-election scenario of our paper, without voting costs, we find that the first-best and

the second-best policies are both linear voting rules,3 as they can be represented by a line that

separates the state space for different policy implementations. But when agents vote in contin-

uous time, the first-best policy does not need to have this linear property, but it has a (weaker)

monotonic property. The second-best policy is more complex and depends on the general history,

rather than just the state.

Another strand of the voting literature studies information aggregation, starting from the redis-

covery of the Condorcet Jury Theorem by Black (1958) with sincere voting. A growing literature

(Feddersen and Pesendorfer (1997); Dekel and Piccione (2000); Bhattacharya (2013); Barelli et al.

(2020) for formal elections, and Battaglini (2016); Ekmekci and Lauermann (2019) for informal

elections) shows that in an environment where voters’ preferences are common or depend on

3In particular, according to Grüner and Tröger (2019), the second-best policy is a one-sided voting rule.
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some common fundamentals, such information can be aggregated asymptotically through (super-

)majority voting even when agents vote strategically. The result is referred to as Full Information

Equivalence, as (super-)majority voting produces the outcome that would be produced if all pri-

vate information were public. Ali et al. (2017) identify a failure of information aggregation in a

static and private values environment, when voters’ payoffs have certain negative correlation. In

our setup, agents’ values are private and independent, and we do not study information aggrega-

tion in large elections with a fixed voting rule. Instead, we fix the size of the electorate and seek

a welfare maximizing mechanism when voters have to learn their private values gradually. But

in the same spirit, we compare public learning and private learning, and show the efficiency loss

due to information asymmetries.

In contrast to the above static voting literature, a small literature considers a dynamic envi-

ronment where voters’ private preference may change over time. Fernandez and Rodrik (1991)

and Gersbach (1993) examine how majority voting makes a voter biased in favor of the status

quo policy, in an environment where the individual benefit of the alternative policy is uncertain

and is only revealed to voters when it is implemented or it is feasible to be implemented. The

risk that a voter is a part of the minority group explains their bias. Albrecht et al. (2010) and

Compte and Jehiel (2010) study a collective search problem by a committee with private values.

Albrecht et al. (2010) compare search by committee by (super-)majority rule to the corresponding

single-agent problem and show that each committee member is less picky and more conservative

than the single agent, due the externalities imposed by other committed members. Compte and

Jehiel (2010) analyze which member have more impact on the decision under majority rule and

the degree of randomness of the decision. Messner and Polborn (2012) and Moldovanu and Rosar

(2021) examine the option value of waiting when the reform policy is irreversible and analyze

different (super-)majority rules. Although an individual voter’s type may change over time, they

assume either such a change is independent of the voter’s past type, or the distribution of voters’

types stays constant over time. In such a stationary environment, they find some super-majority

rule is optimal. In particular, Moldovanu and Rosar (2021) show that a utilitarian planner’s opti-

mal policy can be implemented by a carefully chosen super-majority rule. In our non-stationary

environment, an uninformed agent will gradually become and stay informed about his prefer-

ence, but not vice versa. Thus, the optimal mechanism in our setting is complex and simple

mechanisms such as (super-)majority rules are sub-optimal.

A few papers go beyond (super-)majority rules. Casella (2005) considers a repeated collective

choice problem where voters’ private preference may change over time. She proposes a dynamic

voting rule where, for each election, a majority rule applies but voters are allowed to store their

vote for future use, and shows that using storable votes can achieve a more efficient outcome

than non-storable votes. This idea relates to the linking mechanism in dynamic mechanism de-
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sign without money. Chan et al. (2018) study sequential information acquisition by a committee

where, at each date, agents decide whether to adopt one of two options or to continue information

acquisition. They show that majority voting and super-majority voting have their own advan-

tages, as they assume agents are heterogeneous not only in their preferences over the options,

but also in how patient they are. Thus, they propose a two-step decision rule in which the first

step is to vote on whether to stop collecting information and the second step is to vote on which

option to adopt. Our paper also examines sequential information acquisition. Instead of studying

public learning about some common fundamentals as in their model, we consider private learning

about private values.

More closely related to our work, Strulovici (2010) also studies collective experimentation and

decision-making in an environment where agents learn their preferences gradually.4 That paper

adopts a different signal structure—it embeds the exponential bandit of Keller et al. (2005)—

the main differences being that, first, an agent can only conclusively learn that she prefers the

status quo to the reform (the complementary event cannot be learnt) and, second, an uninformed

agent’s posterior belief that the status-quo benefits her drifts down in the absence of a signal.

Nevertheless, as in our setup, an individual’s lack of control over the collective decision makes

her less keen to experiment than in the single-player benchmark. A more fundamental difference

with our paper is that Strulovici (2010) either assumes that signals are publicly observed when

comparing the social welfare induced by different voting rules, or focuses on the majority voting

rule when considering private signals. It does not address the question at the center of our paper:

what is the welfare-maximizing voting rule when signals are privately observed? Moreover, the

signal structure in Strulovici (2010) implies that at each time there are only two types of agents. In

such a setting, it can be shown that the optimal policy under public learning and private learning

coincide, as agents have the right incentive to report their types truthfully even if learning were

private, as long as the optimal policy with public learning is implemented.5 With three types

as in our setting, the optimal policy with public learning fails to be incentive compatible under

private learning, which is the central issue in our paper.

Our paper also relates to the literature of dynamic mechanism design without money. Grenadier

et al. (2015) and Guo (2016) study a dynamic delegation problem where an agent has private

information only at the start of game. When agents acquire private information over time, Guo

and Hörner (2020), Jackson and Sonnenschein (2007), and Balseiro et al. (2019) consider how a

4Callander (2011) examines the experimentation pattern in repeated elections with majority voting. As he con-

siders myopic and non-strategic voters, the problem is essentially a single-agent (the median voter) experimentation

problem.
5Given that the planner implements the optimal policy under public learning: (1) if the interests of the two

types are aligned, then it coincides with the planner’s policy; (2) if there is a conflict of interests between the two

types, then the best they can do is to report their type truthfully to make the planner side with them.
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principal, without using monetary transfers, should optimally or asymptotically optimally allocate

resources to agents repeatedly when they have private information. As the allocation problem

occurs repeatedly, the idea is to link allocations intertemporally (via a fixed quota mechanism in

Jackson and Sonnenschein (2007), and a path-dependent “quantified entitlement” mechanism in

Guo and Hörner (2020)) as a tool to elicit private information efficiently.

In contrast, Escobar and Zhang (2020), as well as our paper, study a problem where only one

single irreversible decision is to be made. They consider a dynamic delegation problem where

a principal relies on an agent’s private information to learn the profitability of an investment.

Similar to our model, the principal and the agent disagree on when to stop experimentation to

invest in the project. They find that the principal’s optimal delegation delays the investment

upon receiving conclusive good news until some deadline, in order to relax the agent’s incentive to

misreport such news. Our second-best mechanisms also feature delays in implementing the policy

toward which an uninformed agent is biased and deadlines in experimentation, which distorts the

efficient implementation of the first-best policy but induces truth-telling by the uninformed agent.

The main difference is that we consider multiple agents. The new challenge we face is that the

conflict of interest between the planner and an agent not only depends on the agent’s discovery of

his preference, but also depends on other agents’ discoveries of their preferences. This feature also

provides us an additional tool—private reporting—to elicit information. We show that efficiency

may be improved if the planner keeps an agent in dark about other agents’ reports.

The feature of delays and deadlines in our paper also appears in Damiano et al. (2012) and

Damiano et al. (2021). They study collective decision-making in a committee with two members

in a class of mechanisms called “delay mechanisms,” in which a simple majority rule determines

the collective decision if at least one member votes for his opponent’s favorite alternative, but

otherwise a costly delay is incurred before the committee vote again. They assume private

information is obtained at the beginning of the game so that the decision itself is static, but

their model resembles a war of attrition game so that a dynamic mechanism involves delays as a

collective punishment for disagreement and improves efficiency.

Finally, we apply the revelation principle in multistage games (Forges (1986); Myerson (1986);

Sugaya and Wolitzky (2020)) in our private communication scenario (i.e., agents’ reports are

only observable by the planner, not by other agents). In particular, we apply Forges (1986) and

use Bayes Nash Equilibrium as our solution concept, as there is no observable deviations in our

setting. We also study direct truthful public mechanisms, where the history of reports is made

public to all players and we require that truth-telling is a best response regardless of the prior

reports of other players. This is related to periodic ex post incentive compatibility in Bergemann
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and Välimäki (2010). It is with loss to consider public mechanisms.6 We see public mechanisms as

an important benchmark. The planner may have legal obligations to disclose voting information

as otherwise the social choice outcome is subject to endless dispute. In some situations, such

as in protests, it is also infeasible to conceal such information as “reports,” i.e., the number of

people who are on the street supporting the status quo policy or militating for a policy reform,

are public by nature. Moreover, from the point of view of exposition, we use public mechanisms

to illustrate the incentive problem first.

The paper is organised as follows. Section 2 describes the model. Section 3 describes the

first-best mechanism when agents make reports in continuous time. We derive conditions under

which the first-best is not incentive compatible. Those failure of incentive-compatibility are best

illustrated in the public communication setup. In Section 4, we derive the second-best mechanism

in an example with one pivotal voter, under public communication. We show that incentive

compatibility requires inefficient delays and deadlines. In Section 5, we derive the second-best

mechanism in an example with two pivotal voters, but this time under private communication.

Section 6 considers the problem when there is a single election. Section 7 concludes and outlines

open questions and work in progress. Appendix A contains proofs. Appendix B provides a formal

analysis in the discrete time framework for Section 5. Appendix C proves a revelation principle

relevant to our continuous-time problem.

2 The model

Time t ≥ 0 is continuous and payoffs are discounted at rate r. There is one principal, or social

planner (he), and n ≥ 2 agents (she). Each agent’s preference type θi ∈ {A,B} is independently

and identically distributed, where Pr(θi = A) = p. The “default” policy is policy A, generating

i’s (unobservable) flow payoff of α > 0 if θi = A and −1 if θi = B. At each time t, the principal

either continues policy A, or irreversibly switches to policy B. If policy B is implemented, then

i’s payoff is 0 regardless of θi.

Individual, private learning: Learning is exogenous and costless (hence, no moral hazard).

At a random time, agent i privately observes a signal that conclusively reveals θi. The agents’

signal arrival times are identically and independently distributed according to an exponential

distribution with parameter λ > 0. The absence of a signal is uninformative regarding an agent’s

type. Therefore, the agent’s posterior belief regarding her type remains constant, equals to the

prior, p, until she receives a signal. We let the random variable pit ∈ {0, p, 1} denote agent i’s

6Except for the single-election problem studied in Section 6, where agents make simultaneous and private reports

and the usual revelation principle applies.
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posterior belief at t, with pit = 1 (pit = 0) signifying that the agent has leant that her preference

type is A (B). We allow learning to start at some date −T < 0, prior to the beginning of

the game. Consequently, agents are heterogeneous at the outset of the game, with some agents

having already learnt their preference type. This assumption is pertinent in applications where

the policy reform addresses an old issue over which part of the population already has clear ideas.

Single agent benchmark: Consider an uninformed single agent who experiments with A,

i.e. who switches to B upon receiving a B signal but maintains policy A otherwise. If θi = A,

the agent never receives a B signal, so she collects a flow payoff α in perpetuity. If θi = B,

the agent collects a flow payoff of −1 under policy A until the arrival of a B signal, when she

switches to policy B and gets a continuation payoff of zero. Thus, the single agent’s payoff from

experimenting is

v?(p) := pα+ (1− p)
∫ ∞

0
e−λtλ(1− e−rt)(−1)dt = pα− (1− p)(1− g1),

where g1 := λ/(r+λ) is the expected discounted time until a signal arrives. Experimenting with

A is better than immediately switching to B if and only if v?(p) ≥ 0 or, equivalently,

(1) p ≥ 1− g1

1 + α− g1
=: p?,

where p? denotes the single agent (experimentation) threshold.

Now suppose that the agent must decide, once and for all, wether to switch to policy B or

commit to policy A. Adhering to policy A induces a payoff vM (p) := pα− (1− p), and is better

than switching to policy B if and only if vM (p) ≥ 0 or, equivalently,

(2) p ≥ 1

1 + α
=: pM ,

where pM denotes the single agent myopic threshold. Observe that v?(p) > vM (p) for every

prior p ∈ (0, 1), as being able to wait for one’s signal before committing to a policy is valuable.

Consequently, pM < p?.

Social choice: The principal seeks to optimally translate the agents’ learning into a social

choice. His goal is to maximize the expected discounted sum of the agents’ payoffs. He designs

a mechanism that specifies a decision rule mapping the agents’ reports into a social choice. We

focus on a direct mechanism where the principal asks voter i’s information, i.e. her posterior

belief, at each t ∈ T , where T denotes the set of feasible reporting times. We will consider two

possible setups. The first one is when reports are made in continuous time, so T = [0,∞). This

corresponds to protests, where agents can join a movement in support of their favoured policy
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at any point in time. The second one is when reports are made at a single election date, which

corresponds to a referendum, so T ∈ [0,∞).

We assume first all reports are public. At each date t ∈ T , agent i submits a report µit ∈ {0, p, 1}.
The principal and all agents observe the history of past and current reports, µit := (µix)x≤t,x∈T .

We also consider private reports later. That is, the history of reports is only observed by the

principal. Agents, beyond their private information, only observe the calendar time and the

history of policies, which is essentially whether the policy has been switched to B yet given that

policy B is irreversible.

A direct mechanism specifies, a date at which policy B is irreversibly implemented, as a function

of the history of reports. Formally, it is a stopping time, ξ ∈ T , with respect to the filtration

induced by the history of reports, {µit}ni=1. We say that agent i reports truthfully if µit = pit at

each t ∈ T . We study truthful direct mechanisms, where all agents reports truthfully.

Without loss of optimally, we restrict attention to decision rules that ignore an agent’s messages

subsequent to her announcing that she has observed a signal. Specifically, we restrict attention

to decision rules in the following class: Let ti := inf{t ∈ T : µit ∈ {0, 1}} denote the first date

at which agent i reports a signal. The decision rule then only conditions on the history of agent

i’s messages up to and including date ti. One implication is that (mis-)reporting a signal cannot

later be overridden with a different message.

3 Continuous-time problem and first-best mechanism

In this section, we begin by deriving the planner’s first-best policy in continuous time, assuming

the agents report their information truthfully. We then derive sufficient conditions on the pa-

rameters α and p for truth-telling not to be incentive-compatible under the planner solution. We

argue that these conditions are permissive enough to conclude that the planner solution is not

implementable for any “reasonable” parametrisation of the model. For now, we focus on setups

where there is at least one history of reports at which an uninformed agent has an incentive

to misreport a B signal, bearing in mind that there also are setups where an uninformed agent

might prefer to misreport an A signal. In addition, we momentarily abstract from pre-time-zero

learning, so that our results are applicable regardless of the duration T of the learning period. In-

deed, if for some realisation of past reports, the planner solution is not incentive compatible when

T = 0, then it will be vulnerable to misreporting when T > 0, as the realised prior learning and

induced reports at date 0 necessarily correspond to a history reached with positive probability

over the course of play in the absence of prior learning.
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3.1 The public reporting game:

At each t ≥ 0, each agent i makes a public report µit ∈ {0, p, 1} regarding her private information.

To allow agents to instantaneously react to other agents’ reports, we model the interaction as a

multistage game, as in Murto and Välimäki (2013).7 Each stage is characterised by the number

of agents having previously reported A or B signals. An agent’s strategy prescribes a date at

which she reports a signal, as a function of her private information and of the number of previous

A and B votes.

Formally, we consider a multistage game with at most n stages. For each stage k ≥ 1, let

sk ∈ [0,∞], sk ≤ sk+1, denote the date at which stage k − 1 ends and stage k begins. In

stage k ≥ 1, let (ak, bk) denote the number of agents having reported A, B signals in stages

0, . . . , k − 1, and let mk := n − ak − bk denote the associated number of undeclared agents.

Let s0 := 0 and (a0, b0,m0) := (0, 0, n). In stage k ≥ 0, a strategy for each undeclared agent

i has two elements: a stopping time σik(ak, bk) ∈ [sk,∞] with respect to the natural filtration

induced by player i’s private signal process, and the report ρik(ak, bk, p
i
σi

) ∈ {0, 1} that the agent

makes at date σik(ak, bk), with the interpretation that agent i reports being uninformed at each

t ∈ [0, σik(ak, bk)) and reports an A or B signal at date σik(ak, bk). The first date in [sk,∞] at

which at least one of the mk undeclared agents reports a signal, A or B, determines sk+1.

3.2 Planner solution

We assume that all agents report their information truthfully, and derive the policy maximising

the joint payoff. Observe that, under truthful reporting, the agent’s strategies are invariant

to other agents’ reports. Consequently the first-best policy is optimal both under public and

under private reporting. At each point in time when the principal makes a policy decision, let

a ∈ {0, 1, . . . , n} denote the number of declared A-type agents, b ∈ {0, 1, . . . , n} the number of

declared B-type agents, and m = n − a − b ≥ 0 denote the number of undeclared agents. Since

the signal arrival processes of the agents are stationary, it is without loss of generality to let the

date be t = 0.

Let V (a, b, p) denote the value function in the planner problem. For every (a, b, p), it satisfies

(3) V (a, b, p) = max{V A(a, b, p), V B(a, b, p)},

where V B(a, b, p) = 0 denotes the joint payoff from irrevocably switching to B, and

(4) V A(a, b, p) = (1− gm)u(a, b, p) + gm [p V (a+ 1, b, p) + (1− p)V (a, b+ 1, p)]

7See also Stinchcombe (1992) and Khan and Stinchcombe (2015).
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denotes the payoff from experimenting with A where u(a, b, p) := αa− b+mvM (p) denotes the

flow payoff from implementing policy A in state (a, b, p), and where gm := E[e−rτm ] = mλ
r+mλ is

the expected discounting until the date τm at which the next signal is observed by one of the m

remaining uninformed agents. Observe that gm is strictly increasing in m: with more uninformed

agents the next signal will arrive sooner.

The next lemma allows us to compare the two value functions in the second term of (4). Fix

the number m ∈ {0, . . . , n− 1} of uninformed agents. Changing the type of one informed agent

from A to B strictly decreases the joint payoff from policy A, causing a weak decrease in the

planner value function V .

Lemma 1. For every pair (a, b) such that 1 ≤ a + b ≤ n and for every p ∈ (0, 1) we have that

V A(a+ 1, b, p) > V A(a, b+ 1, p).

Next, we show that for every number m ≥ 1 of uninformed agents, the joint payoff from policy

A strictly increases with the probability p with which each of these uninformed agents is an A

type.

Lemma 2. Fix (a, b) such that a + b < n. Then V A(a, b, p) is continuous and increasing in

p ∈ [0, 1] and differentiable at almost every p ∈ [0, 1].

We are now ready to state the main result, that the planner policy can be expressed as a

threshold policy with respect to the prior belief p. That is, for every pair (a, b), there exists a

threshold belief p∗(a, b) such that V A(a, b, p) ≥ 0 if and only if p ≥ p∗(a, b). We show that p∗(a, b)

is decreasing in a and increasing in b. Intuitively, this means that the planner switches to B once

the number of declared B types is sufficiently large relative to the number of declared A types

and the number of uninformed agents.

Proposition 1. For every pair (a, b) such that a + b < n, there exists a unique p∗(a, b) ∈ [0, 1]

satisfying V A(a, b, p) ≥ 0 if and only if p ≥ p∗(a, b). If p∗(a, b) ∈ (0, 1), then (i) p∗(a, b) >

p∗(a+ 1, b), and (ii) p∗(a, b) < p∗(a, b+ 1).

Next, we state some properties of the planner solution. Consider the term u(a, b, p) in (4). It

represents the payoff from never switching to B. Since m(1+α) > 0, this payoff strictly increases

with p whenever m ≥ 1, i.e. whenever there is at least one uninformed agent. Consequently,

αa − (b + m) ≤ u(a, b, p) ≤ α(a + m) − b, where the lower (upper) bound is the payoff from

adhering to policy A forever if all m uninformed agents turn out to be B (A) types.

The next lemma shows that if αa− (b+ m) > 0 or, equivalently, if a > n/(1 + α), then there

are sufficiently many A types that committing to policy A forever is optimal. Conversely, if

α(a + m) − b < 0 or, equivalently, if b > nα/(1 + α), then there are sufficiently many B types

that switching to policy B is optimal.
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Lemma 3. (i) If a > n/(1 + α), then p∗(a, b) = 0 so that V (a, b, p) = V A(a, b, p) for every

p ∈ (0, 1). (ii) If b > nα/(1 + α), then p∗(a, b) = 1 so that V (a, b, p) = V B(a, b, p) for every

p ∈ (0, 1).

We let ā := bn/(1 + α)c and b̄ := bnα/(1 + α)c, and let Sn := {(a, b,m) ∈ N3 : a+ b+m = n}
denote the set of all possible states, and S∗n :=

{
(a, b,m) ∈ Sn|a ≤ ā, b ≤ b̄

}
denote the set of

feasible states in which there are not yet enough A or B types to conclusively determine the

optimal policy, so that the planner threshold is strictly between 0 and 1.

For each state (a, b,m) ∈ S∗n, there exists a unique “myopic” threshold belief pM (a, b) ∈ [0, 1]

such that u(a, b, pM (a, b)) = 0. Observe that we necessarily have that p∗(a, b) < pM (a, b). This

is because, for each (a, b,m) ∈ S∗n, if the prior equals p∗(a, b) and one of the uninformed agents

learns that she is an A type, then continuing to experiment with A is strictly better than switching

to B. That is, we have V A(a + 1, b, p∗(a, b)) > 0, implying that the continuation value in state

(a, b) is strictly positive. Therefore, V A(a, b, p∗(a, b)) = 0 necessitates a negative flow payoff, i.e.

u(a, b, p∗(a, b)) < 0.

Finally, we let S∗∗n ⊂ S∗n be the set of states where p > p∗(a, b), so that continuing with A is

strictly preferred under the planner policy, and S∗∗∗n ⊂ S∗∗n be the set of states in which A is

optimal and in which one more vote in favour of B makes the planner switch to B. Thus S∗∗∗n

can be thought of as the set of states in which a B vote is pivotal.

3.3 Example: Majority rule

In this example, we specialise the model as follows: α = 1, p = p∗, λ ≤ r and n < n̄(r, λ), where

n̄(r, λ) is a strictly increasing function of r and strictly decreasing function of λ, defined below

(5) n̄(r, λ) := 1− 1

vM (p?)
=

2(r + λ)

λ

Under this parametrisation, the first-best policy corresponds to the majority rule: the report

policy is implemented the first time that the number of votes in favour of the reform is no less

than the number of votes in favour of the status quo policy. It is illustrated in Figure (1). Here,

ā = b̄ = n−1
2 . Thus, in the state (ā, b̄), there is one uninformed agent, and she is pivotal. The set

of states S∗∗∗n in which a B vote is pivotal (i.e. it induces the planner to implement the reform)

has a = b+ 1.

Here is an intuition for why, under these conditions, the planner solution corresponds to the

majority rule. The formal proof is in Appendix A.6. Consider the undiscounted limit where

r → ∞. Then p? ↑ pM . Moreover, gm ↓ 0, so that V A(a, b,m, p) → u(a, b,m, p). It is then

immediate that V A(a, a, n − 2a, p) → (n − 2a)vM (p), where vM (p) denotes the myopic payoff.
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Figure 1: First best policy when n = 11, α = 1, λ = 2, r = 10, p = p?.

Since vM (p?) < 0 by the definition of p?, we have that limr→∞ V
A(a, a, n−2p, p?) < 0. Similarly,

V A(a, a − 1, n − 2a + 1, p) → 1 + (n − 2a − 1)vM (p). Since 1 + (n − 2a − 1)vM (p?) is strictly

increasing in a, a sufficient condition for limr→∞ V
A(a, a − 1, n − 2a + 1, p?) > 0 is to have

limr→∞ V
A(1, 0, n− 1, p?) > 0 or, equivalently, n < n̄(r, λ).

This parametrisation is convenient because it allows us to derive closed-form expressions for

the agents’ payoffs under the first-best policy.

Lemma 4. Suppose that S∗∗∗n is the diagonal {(a, b,m)|a = b + 1 ≤ ā}. Then, for each state

(a, b,m) ∈ S∗∗, the joint payoff under the planner policy is given by

(6) V A(a, b,m) = u(a, b,m)−
ā∑

k=a

C(a, b, k) pk−a(1− p)k−b
 n−a−b∏
j=n−2k+1

gj

u(k, k, n− 2k),

where

(7) C(a, b, k) =

(
2k − a− b− 1

k − a

)
a− b
k − b

.

To understand these expressions, observe that C(a, b, k) is the number of paths from state

(a, b,m) ∈ S∗∗n to state (k, k, n − 2k), k ∈ {a, . . . , ā} that only visit states within the planner

policy’s continuation region S∗∗n or, equivalently, that never visit the diagonal {(a, b)|a = b ≤ ā}
that forms the boundary of the stopping region (except when reaching the state (k, k)). Observe

that C(a, a− 1, k) =
(2(k−a)
k−a

)
1

k−a+1 is the (k − a)th Catalan number.8

8The nth Catalan number, Cn :=
(

2n
n

)
1

n+1
, is the number of lattice paths in Z2 from (0, 0) to (n, n) that are

monotonic, i.e. with steps (1,0) and (0,1), such that the path never rises above the line y = x. See Stanley (2015).
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3.4 Failures of Incentive Compatibility

We begin by describing the reporting game induced by the planner policy. Lemma 5 shows that,

in a state where there is a unique uninformed agent who is pivotal, that uninformed agent has an

incentive to misreport a B signal whenever the prior p lies below the single agent experimentation

threshold p?. Incentives to misreport under the planner policy can also arise in states with more

than one uninformed agent.

3.4.1 A pivotal event

Suppose that there are n ≥ 2 agent. Fix α > 0 such that n
1+α is not an integer. (This condition

is generically satisfied.) Then, ā+ b̄ = n− 1. Thus, in state (ā, b̄), there is only one uninformed

agent. Moreover, that agent is pivotal under the planner policy, as her reporting an A signal

makes it socially optimal to stick with policy A forever (u(ā+ 1, b̄, p) > 0), while her reporting a

B signal makes it socially optimal to switch to policy B (u(ā, b̄+ 1, p) < 0).

We now argue that truth-telling is optimal for the pivotal uninformed agent if and only if the

prior p is no lower than the single agent threshold, p?. Because, under the planner policy, the

pivotal uninformed agent’s report determines the planner’s policy choice, she effectively faces the

single-agent experimentation problem. Her payoff from reporting truthfully equals the single-

agent payoff from experimenting with A, v?(p). This is weakly preferred to misreporting B if

and only if v?(p) ≥ 0 or, equivalently, p ≥ p?. (It is strictly preferred to misreporting A, since

the induced, myopic payoff, vM (p), is strictly below the payoff from reporting truthfully.)

We now consider p∗(ā, b̄), the threshold belief above which it is optimal for the planner to

continue with policy A in state (ā, b̄). The planner’s payoff from doing so is given by (4) and can

be rewritten as

V A(ā, b̄, p) =
(
αā− b̄

)
(1− (1− p) g1) + v?(p).

The second is the pivotal uninformed agent’s payoff. The first term reflects the uninformed

agent’s externality on the remaining agents: the planner will maintain policy A forever, unless

the uninformed agent receives a B signal, which happens with probability 1−p after an expected

discounted duration g1. If αā − b̄ > 0, the externality is positive, and the planner has a greater

incentive to continue experimenting with A than the single agent, who does not internalise his

positive effect on social welfare. We then have p∗(ā, b̄) < p?. Indeed, it is easy to see that

(8) p∗(ā, b̄) :=
(1− g1 − (1− g1)(αā− b̄)
1 + α− g1 + g1(αā− b̄)

strictly decreases with αā − b̄, and coincides with the single-agent threshold p? if and only of

αā− b̄ = 0.
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Suppose p∗(ā, b̄) < p?. Then, for p ∈ (p∗(ā, b̄), p?) there exists a conflict of interest between

the planner and the uninformed agent: the planner wants to experiment with A until the unin-

formed agent reports her signal. However, the uninformed agent prefers misreporting a B signal

immediately. For every g1 ∈ (0, 1), the condition p∗(ā, b̄) < p? holds if and only if α > b̄
ā . The

next lemma summarises the above arguments.

Lemma 5. For every α > b̄
ā and p ∈ (p∗(ā, b̄), p?), the planner solution is not incentive compatible

in state (ā, b̄), as the pivotal uninformed agent has an incentive to misreport a B signal.

Observe that the right-hand side, b̄/ā, also depend on α. The next lemma expresses this

condition in terms of the primitive, α.

Lemma 6. Fix n ≥ 2. Then p∗(ā, b̄) < p? if and only if α ∈
(
n−(k+1)

k , n−kk

)
, k ∈ {1, 2, . . . , n−1}.

The proof can be summarised as follows. Fix an integer k ∈ {1, 2, . . . , n − 1}, and recall that

we exclude the values α ∈ {n−kk }
n−1
k=1 , as these are the non-generic values at which the thresholds

n
1+α and nα

1+α from Lemma 3 are integers. For α ∈
(
n−(k+1)
k+1 , n−kk

)
we have b n

1+αc =: ā = k and

b nα1+αc =: b̄ = n− (k+1). Consequently, the externality imposed by the pivotal uninformed agent

is positive if and only if αā− b̄ > 0 or, equivalently, α > n−(k+1)
k .

3.4.2 Majority rule

Consider the parametrisation of Section (3.3). We begin by giving expressions for an agent’s

payoff udner the planner policy. We then show that the IC constraint is violated in every state

in S∗∗∗n , i.e. in every state where one B report induces the planner to implement the reform.

Informed agents: We begin by considering an agent, i, who has already observed (and truth-

fully reported) her preference type. She cannot make an additional report, so whether and when

the planner switches to B depends entirely on the reports of the m remaining uninformed agents.

Let v(θi) = 1{θi = A} − 1{θi = B} denote type θi’s flow payoff under policy A.

Lemma 7. Suppose that S∗∗∗n is the diagonal {(a, b,m)|a = b + 1 ≤ ā}. Then, for each state

(a, b,m) ∈ S∗∗, type θi’s payoff under the planner policy, assuming all remaining m uninformed

agents report truthfully, is given by

(9) uθ
i
(a, b,m, p) = v(θi)

(
1−E

[
e−rτ(a,b,m,p)

])
,

where

(10) E
[
e−rτ(a,b,m,p)

]
=

ā∑
k=a

C(a, b, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj

18



is the expected discount factor applied to the continuation payoff from switching to policy B. The

expectation is taken over the random variable, τ(a, b,m, p), denoting the time at which the planner

switches to B when the initial state is (a, b,m).

Recall that C(a, b, k), defined in (7), is the number of distinct paths from state (a, b,m) to state

(k, k, n− 2k) that do not cross into the stopping region S∗n \S∗∗n (except at the last step, to reach

state (k, k, n− 2k)). Equation (9) then says that an uninformed agent i collects a flow payoff of

v(θi) from policy A up until the date τ(a, b,m, p) (possibly infinite) at which the planner switches

to policy B. For every state (a, b,m) ∈ S∗n \ S∗∗n in the stopping region, uθ
i
(a, b,m, p) = 0.

Uninformed agents: Next, we consider an uninformed agent, say i, who has not yet learnt

her type. She has not yet made a report, so whether and when the planner switches to B depends

on her report and that of the m− 1 other remaining uninformed agents.

Lemma 8. Suppose that S∗∗∗n is the diagonal {(a, b,m)|a = b + 1 ≤ ā}. Then, for each state

(a, b,m) ∈ S∗∗, uninformed agent i’s payoff under the planner policy, assuming all remaining m

uninformed agents, including agent i, report truthfully, is

(11) ui(a, b,m, p) = p
(

1−E
[
e−rτ(a,b,m,p)|θi = A

])
+(1−p) (−1)

(
1−E

[
e−rτ(a,b,m,p)|θi = B

])
,

where

(12) E
[
e−rτ(a,b,m,p)|θi = A

]
=

ā∑
k=a

C(a, b, k)
1

m
[k − a+ (n− 2k)p] pk−a−1(1− p)k−b

m∏
j=n−2k+1

gj

and

(13)

E
[
e−rτ(a,b,m,p)|θi = B

]
=

ā∑
k=a

C(a, b, k)
1

m
[k − b+ (n− 2k)(1− p)] pk−a(1− p)k−b−1

m∏
j=n−2k+1

gj .

Here, E[e−rτ(a,b,m,p)|θi = A] denotes the expectation taken over the random time τ(a, b,m, p)

at which the planner switches to B when the initial state is (a, b,m), conditional on uninformed

agent i’s type being, in fact, A, and where C(a, b,m) is given in (7). This expectation differs

from the unconditional expectation in (10), as it accounts for the fact that any B signal cannot

have come from agent i, as i’s signal would surely be A. Observe that

pE
[
e−rτ(a,b,m,p)|θi = A

]
+ (1− p)E

[
e−rτ(a,b,m,p)|θi = B

]
= E

[
e−rτ(a,b,m,p)

]
.

Equation (11) says that if the uninformed agent i has in fact type θi = A (θi = B), then she

will expect to collect a payoff of 1 (−1) until the date τ(a, b,m, p) ∈ [0,∞] at which the planner

switches to policy B, where agent i’s expectation over τ(a, b,m, p) takes account of the fact that

she herself can only report an A (B) signal. For every state (a, b,m) ∈ S∗n \ S∗∗n (in the stopping

region), ui(a, b,m, p) = 0.
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Failure of IC: We focus on the IC constraint that says that an uninformed agent prefers

reporting truthfully to misreporting B news. In state (a, b,m) ∈ S∗∗∗n , misreporting B news

induces the planner to switch to B, and the agent’s payoff is zero. Therefore, the IC constraint

is

(14) ui(a, b,m, p) ≥ 0.

The next lemma shows that this IC constraint is violated for every state in S∗∗∗n , where one

more B vote induces the planner so switch to policy B.

Lemma 9. For each (a, b,m) ∈ S∗∗∗n and p = p?, the IC constraint (14) is violated. Moreover,

the payoff ui(a, a− 1, n− 2a+ 1, p) from reporting truthfully increases with a.

The proof shows that, in state (ā, ā − 1), two agents are pivotal and have a strict incentive

to misreport B news. Indeed, the agents import a negative externality on each other, as the

first agent to report might trap the other agent in an undesired state. Consequently, their payoff

ui(ā, ā−1, p) is strictly less than the single agent experimentation payoff v?(p), which equals zero

at p = p?. The payoff ui(a, a− 1, n− 2a+ 1, p) decreases with the number of uninformed agents,

as the externality just described becomes more acute.

4 Second-best mechanism under public communication

In this section, we derive the second-best mechanism with two agents under public communica-

tion. That is, the mechanism maximising the ex-ante expected sum of agents’ payoffs, subject

to the constraint that it is optimal for each agent to report her private information truthfully at

every date t ≥ 0.

We focus on the setup where α < 1. In this case, ā = 1 and b̄ = 0, so that, under the first-best

policy, it is optimal to switch to B immediately as soon as there is any B report, and it is better

to stay in A forever in case both agents report A. Moreover, we assume that, as a result of

pre-time-zero learning, one agent, the “expert”, has already learnt that her type is A, whereas

the other agent, the “novice”, has not yet observed a signal, and we assume that both agents

have reported their private information truthfully in stage 0. That is, we focus our analysis on

stage 1 of the game, in the state (a, b) = (1, 0) where the novice is pivotal. Since α ∈ (0, 1)

and n = 2 satisfy the conditions of Lemma 6, we have that p∗(1, 0) < p?. We choose a prior

p ∈ (p∗(1, 0), p?), so that there is a conflict of interest between the planner and the pivotal novice:

the planner wants to wait for the novice’s signal before committing to a policy, whereas the novice

strictly prefers switching to policy B immediately. The first-best policy is illustrated in Figure

2. Observe that this is a special case of our “majority rule” parametrisation.
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A brief aside on mechanisms with private reports: the pivotal novice’s incentive problem is

relevant also in the first-best mechanism with private communication (i.e., voters’ reports are

private, and a voter is only informed as to whether the policy has switched to B or not yet),

because a novice voter at time 0 knows that the only case where the principal can stay in A at

time 0 is when the other voter reports an A signal.

ab 0 1 2

0

1

2

B B B

A B

A

Figure 2: First-best policy. Truthful reporting is not incentive compatible in state (1, 0).

We now derive the optimal mechanism which is public, direct, incentive compatible in state

(1, 0). A mechanism, F , consists of three cdfs: FA, FB and FN , where FA(t′; t) (FB(t′; t)) denotes

the cdf of switching to policy B by time t′ in case the novice reports A (B) at time t, conditional

on policy A being in place at time t, and FN (t′) denotes the cdf of switching to policy B by time

t′ in case the novice has been reporting no signal until then.

First, we describe the principal’s problem. To lighten notation, we set r = 1. Let A(t) :=

1−
∫∞
t′=t e

−(t′−t)dFA(t′; t) and B(t) := 1−
∫∞
t′=t e

−(t′−t)dFB(t′; t). This corresponds to the expected

continuation payoff of a voter with flow payoff 1 in policy A (and 0 in policy B), conditional on

policy A being in place at time t and on the voter reporting either A or B at time t.

The principal objective is a constant plus:

2αp(1− q)
∫ ∞
t=0

λe−λt[(

∫ t

τN=0
(1− e−τN )dFN (τN ) + (1− FN (t))A(t)]dt

−(1− p)(1− α)(1− q)
∫ ∞
t=0

λe−λt[(

∫ t

τN=0
(1− e−τN )dFN (τN ) + (1− FN (t))B(t)]dt

−(1− p)(1− α)qB(0),

where q := (1− e−λT ) is the probability of the novice observing a signal by time 0.

Among the novice’s incentive compatibility constraints, we focus on the ones ensuring an un-

informed novice does not benefit from misreporting a B signal. We later verify that, under the

second-best mechanism, the novice has no incentives to otherwise misreport. For each τ :

pα

∫ ∞
t=τ

λe−λ(t−τ)[(

∫ t

τN=τ
(1− e−(τN−τ))

dFN (τN )

1− FN (τ)
+

1− FN (t)

1− FN (τ)
A(t)]dt

−(1− p)
∫ ∞
t=τ

λe−λ(t−τ)[(

∫ t

τN=τ
(1− e−(τN−τ))

dFN (τN )

1− FN (τ)
+

1− FN (t)

1− FN (τ)
B(t)]dt

≥ (pα− (1− p)) 1

1− FN (τ)
B(0),
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or equivalently:

pα

∫ ∞
t=τ

λe−λ(t−τ)[(

∫ t

τN=τ
(1− e−(τN−τ))dFN (τN ) + (1− FN (t))A(t)]dt

−(1− p)
∫ ∞
t=τ

λe−λ(t−τ)[(

∫ t

τN=τ
(1− e−(τN−τ))dFN (τN ) + (1− FN (t))B(t)]dt

+(1− p− pα)B(0) ≥ 0.

The following proposition describes the second-best mechanism. It makes the novice indifferent,

at each t, between reporting truthfully and misreporting a B signal by delaying the resulting

switch to policy B.

Proposition 2. The solution to the principal’s problem has a critical time t∗ such that

(i) F ∗N (t) = 0 for t < t∗, and F ∗N (t) = 1 for t > t∗;

(ii) F ∗B is such that there is finite delay for t < t∗, and no delay for t > t∗;

(iii) F ∗A(t′; t) = 0 for all (t’,t). (B is never implemented after A news.)

The proof verifies that above mechanism solves the principal’s constrained problem. Delaying

the switch to B after an A signal increases the principal’s objective while simultaneously relaxing

the novice’s IC constraint at each τ ≥ 0. Therefore, it is optimal to set A(t) = 1. Conversely,

F ∗B satisfies the IC with equality. Finally, we show that the Lagrangian associated with the

problem is linear in F ∗N (t) for each t, and that the coefficient φ(t) on F ∗N (t) is positive for large

t, establishing that F ∗N (t) = 1 is optimal for t > t∗ (possibly t∗ = 0). If φ(t) has multiple roots,

we use fact that F ∗N (t) must be non-decreasing to conclude that F ∗N (t) = 0 for t < t∗.

The optimal plan above can be interpreted both as a deterministic delay policy, where the

switching date τB(t) induced by the novice reporting a B signal at date t satisfies τB(t) ≤ t∗.

Or, it can be implemented as a stochastic policy, where the novice reporting a B signal at date

t induces a switch to B at t with probability σB(t) and a switch at t∗ with complementary

probability.

Thus, the solution features two kinds of distortions to the first-best policy. In state (1, 0), the

first-best policy remains in policy A—it is efficient for the planner to continue experimenting on

the remaining uninformed agent’s type. However, the second-best policy sets a deadline t∗ for

experimentation. As the planner and the uninformed agent have a conflict of interests on whether

continue experimentation, setting a deadline is a compromise and it increases the agent’s truth-

telling incentive. In state (1, 1), the first-best policy switches to policy B immediately. However,

the planner scarifies the efficiency by delaying the policy switch. Although this is inefficient for

both the planner and the B-type agent, it reduces the uninformed agent’s incentive to misreport

B. Combining the deadline and the delays in those two states, it makes the uninformed agent
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always indifferent between truthful reporting and misreporting. Moreover, it can be shown that

although the policy switch has a delay, but the switching time is increasing in the reporting

time and is always before the deadline. Thus, the B-type agent also has the right incentive to

immediately make a B report.

We consider public reports in this section and start our analysis under the assumption that

the state (1, 0) is common knowledge. As the uncertainty comes only from one single uninformed

agent, public communication and private communication coincide. We can show further that this

policy remains optimal when the state at time 0 is uncertain. In particular, in states where no A

reports are made, the planner switches to policy B immediately. Thus, in this special case with

two agents, there is no advantage to use private communication, as the uninformed agent can

infer the current state when she is still in the game.

5 Second-best mechanism under private communication

In this section, we derive the second-best mechanism in an example with two pivotal voters. This

time, we allow private communication. Observe that this example also fits into our “majority

rule” parametrisation. As in the previous sections, we present the problem and results in the

continuous-time framework. This is mainly to keep the continuity with the previous sections, but

its cost is that we can only treat the problem in an informal and heuristic manner. In Appendix

B, we (formally) prove the corresponding claim in the discrete-time analog of the model. In this

sense, one may think of the material in the main text as the “continuous-time limit” of what we

have with discrete time.

5.1 Environment and Notation

We assume that there are two uninformed voters i = 1, 2. The principal’s flow payoff at time t is

denoted by w(at, bt) = αat− bt− (1− p− pα)(2−at− bt) +αP , where at (bt) denotes the number

of voters who have become A (B) type by time t, and αP may be interpreted as representing

the principal’s own preference (e.g., his “bias” toward one policy; the cost of staying in A or

switching to B; the payoffs of those who are already informed and hence have reported before

the game starts9).

Assumption 1. Assume that α < 1, λ < r
2

1−α
1+α , and that p is less than the single-agent experi-

mentation threshold (i.e., pα− (1− p) r
r+λ < 0).

Also, the parameters are such that the first-best mechanism looks as follows, as a function of

(at, bt).

9Observe that this example corresponds to the majority rule setup from Section 3.3 for n = 3.

23



bt = 0 bt = 1 bt = 2

at = 0 A B B

at = 1 A A

at = 2 A

The principal’s second-best problem is given as follows:

max
q

∫ ∞
t=0

e−rt
[
E(a≤t,b≤t)[qt(a≤t, b≤t)w(at, bt)]

]
sub. to ICNt , ∀t

where qt(a≤t, b≤t) denotes the probability that we stay in policy A at time t, if the history of

reports have been (a≤t, b≤t) = ((aτ )τ≤t, (bτ )τ≤t) by then; and ICNt stands for an uninformed

voter’s incentive compatibility constraint at time t, more explicitly given below. Although not

explicitly written, a feasible plan q must satisfy the natural monotonicity requirement: If t < t′

and (a≤t′ , b≤t′) = ((a≤t, (aτ )τ∈(t,t′], b≤t, (bτ )τ∈(t,t′]), then qt(a≤t, b≤t) ≥ qt′(a≤t′ , b≤t′) due to the

irreversibility of switching to policy B.

The uninformed voter’s incentive compatibility at time t, ICNt , is as follows:

En−1
(a≤t,b≤t)

[V N
t (a≤t, b≤t)− V B

t (a≤t, (b<t, bt + 1))
pα− (1− p)

(−1)
] ≥ 0,

where V i
t (a≤t, b≤t) is type i’s continuation payoff from t on given the number of A and B reports

by time t (including his own), (a≤t, b≤t). Given that he is uninformed, under his truth-telling,

(a≤t, b≤t) follow the probability distribution of the other voters’ types, and thus, En−1 represents

an expectation operator with respect to n− 1(= 1) random variables. If at time t he misreports

being a B-type, then his continuation payoff is as if he indeed were a B-type at t, V B
t (a≤t, (b<t, bt+

1)), times pα−(1−p)
(−1) (= 1 − p − pα), reflecting the fact that the uninformed type’s flow payoff is

pα− (1− p), while the B type’s is −1.

To the extent that we only consider a particular kind of incentive compatibility (and ignore the

others, e.g., the informed type’s “hiding” it and pretending to be yet uninformed), this problem

should be interpreted as a relaxed problem. The ignored constraints are verified later.

5.2 Second-best mechanism

Here, we describe the form of the second-best mechanism. The second-best mechanism has the

following feature: There exists t∗ such that

1. For any t < t∗: (i) unless (at, bt) = (0, 2), stay in A; (ii) if (at, bt) = (0, 2), then either delay

or probabilistic switch to B.
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2. At t = t∗: (i) if at = 0, then immediately switch to B; (ii) otherwise, stay in A.

So far, this may be seen as the description of a class of mechanisms in the sense that I do not

fully specify what happens at t < t∗ if (at, bt) = (0, 2). Our main claim is that there is at least

one mechanism in this class that satisfies all the ICNt for t < t∗ with equality, and that is the

second-best mechanism.

Again, the formal argument based on the discrete-time framework is in the appendix. Here, we

informally explain the existence part: there exists a mechanism in the above class that satisfies

all the ICNt for t < t∗ with equality. It is based on the following three observations.

• Observation 1: Consider an (extreme) version of the above mechanism where we stay at

policy A for sure if (at, bt) = (0, 2) at any t < t∗ (and switch to policy B at t = t∗). This

mechanism is feasible and satisfies all ICNt with t < t∗ with strict inequality.

This observation is straightforward. In the above mechanism, the policy is A until t = t∗

with probability one. At t = t∗, the policy switches to B if and only if no voter reports A

by then. Thus, it is strictly optimal for the uninformed voter to be truthful: Even if he

misreports B at t < t∗, he has no influence on his continuation payoff, while he loses strictly

in case he finds (after misreporting) that he is actually A type.

• Observation 2: Consider another (extreme) version of the above mechanism where we im-

mediately switch to B for sure if (at, bt) = (0, 2) at any t < t∗. This mechanism violates the

uninformed voter’s IC, at any t < t∗.

The argument is slightly more complicated. First, from an uninformed voter’s viewpoint,

at any t < t∗, there are three possible cases (given that he is uninformed): (at, bt) =

(0, 0), (at, bt) = (1, 0), (at, bt) = (0, 1). If (at, bt) = (1, 0), he is completely indifferent

between truth-telling and misreporting. If (at, bt) = (0, 1), then he is strictly better off

by misreporting B because p is less than the single-agent experimentation threshold. If

(at, bt) = (0, 0), then again, he is strictly better off by misreporting B for small enough λ.10

Intuitively, this is because, with λ small, the t∗ in the optimal mechanism must be large (see

Equation (B.49) in Appendix B for the exact expression; it can be seen there that, as λ→ 0,

we have t∗ →∞). Given very large t∗, for small t, it is as if an uninformed agent is in the

situation where switching to B can happen only if both report B, in which case his incentive

of misreporting B is very strong; for large t (i.e., t much closer to t∗), an uninformed agent

10More specifically, λ < r
2

1−α
1+α

.
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must assign almost probability 0 to (at, bt) = (0, 0), and hence the incentive given the other

case (at, bt) = (0, 1) dominates. In either case, he prefers misreporting.

• Observation 3: Therefore, “by continuity”, there exists a way to specify qt((0, t1t2)t) for

each t1, t2 < t∗ so that all the ICs are to be binding.

This is quite informal, but again, the actual claim and proofs are in the appendix in the

discrete-time setting.

Here, we do not go into the verification part, which shows that the above mechanism is indeed

a second-best mechanism. Instead, we informally explain how the proof works in the appendix.

Our proof idea is based on a Lagrangian (weak) duality argument. Consider the Lagrangian of

our problem that has the ICNt of all t in the objective with some non-negative multipliers. It is

easy to show that the value of the Lagrangian is always weakly higher than the objective of the

original problem given any feasible (i.e., incentive compatible) mechanism. More importantly, it

also implies that, if we can find the pair of a non-negative multiplier vector and a mechanism

such that (i) that mechanism is optimal in the Lagrangian problem with that multiplier vector,

and moreover, (ii) under that mechanism, the value of the Lagrangian coincides with the value

of the original objective (which essentially means that the complementary slackness is satisfied),

then that mechanism is a second-best mechanism.

Guessing the “right” multiplier vector is relatively straightforward, if we recall the shape of the

candidate second-best mechanism: It is associated with some interior probabilities of switching

in case two voters report B types. In the Lagrangian problem, this interiority is essentially

equivalent to the principal’s indifference,11 which completely determines the possible Lagrange

multiplier. Once the multiplier is given, we can also verify that the above mechanism satisfies

properties (i) and (ii) above, which completes the proof.

5.3 Second-best mechanism, and its implementation

We close this section by discussing how this mechanism can be implemented from a more realistic

perspective. Three components are crucial: (i) Until t∗, the policy stays in A unless there is a

strong opposition; (ii) Until t∗, information should be hidden; (iii) Once time t∗ arrives, the

policy stays in A (forever) if and only if at most one voter reports A type. Although the literal

implementation may be “an election every moment in time”, it is obviously difficult to implement

in practice. Another potential way to implement it may be a combination of “petitions” and

“referendum”. First, the principal may commit to have a single election (“referendum”), at

11Of course, the principal is not indifferent in terms of the original objective, though.
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the latest at time t∗. By then, the voters can express their opinions (“petitions”) via private

communication with the principal: If there are enough petitions collected for switching to policy

B (two in our case), then the principal holds a referendum after some time (“delay”, as specified in

the second-best policy). The voting outcome will be to switch to B, so we switch to B. However, if

not enough petitions are collected by t∗, then the principal holds the referendum at that moment.

Then we stay in A if and only if there is at least one vote for staying.

6 Single election

In this section, we consider a simple benchmark where the planner holds a single election at one

date. The planner has the same objective, i.e., maximising the ex-ante expected social payoff.

However, he has only one chance to collect information from agents and makes a collective decision

based on that information.

Such a scenario can be thought of a “referendum”, as referendums are often held once or a

very few times. We consider such a model, since elections are not free in real life. It can be very

costly to organize an election. Thus, this section studies the scenario when it is only affordable

for the planner to hold one election.

6.1 First-best policy

We first consider the first-best benchmark where agents report their information truthfully but

the planner holds only one election at a date he commits to.

Given the election date t, the planner’s problem is whether to switch to policy B once and

for all. It is immediate that the planner optimally switches to policy B if and only if that is

myopically optimal, i.e., when u(at, bt, p) < 0.

Thus, the planner’s problem is reduced to find a date tU ∈ [0,∞]12 that maximises the ex-ante

expected social payoff from holding the election and making a myopically optimal decision on the

election date t:

E
[
(αxA − (n− xA))(1− e−rt 1{u(at,bt,p)<0})

]
,

where xA is the number of agents, informed or not, for whom θi = A.

The benefit of delaying the election is that the planner’s information is improved, since it gives

the agents more time to learn their types. However, delaying the election is costly if policy B

is actually socially optimal. It is clear that it is optimal to have an election at some finite date,

which depends on the pre-learning period T .

12The case tU = ∞ corresponds to the principal committing to policy A at date 0, without ever holding an

election.
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Is the above first-best policy incentive compatible if the agents must report their private types?

According to the policy, voting for A (B) increases the expected probability of implementing

policy A (B) thereafter. At the election date, types A and B are clearly better off voting for

A and B respectively. The violation of IC comes from the uninformed types. If the prior belief

p < pM (p > pM ), it is a strictly dominant strategy to vote for B (A), as the uninformed types

is also strictly biased to policy B (A). If p = pM , novices are indifferent between reporting A, B

or p, so the first-best can be achieved. Thus, the first-best is achievable if and only if p = pM .

6.2 Second-best policy

The IC failure described in the previous section arises at every date t ≥ 0 at which the election

could be held if the prior belief is not pM . We assume p < pM in this section.13

Let us fix the election date t. A policy Dt is a mapping Sn → [0, 1]. Dt(a, b,m) denote the

probability that the principal continues with policy A upon having observed a and b reports for

A and B types respectively, and m = n− a− b reports for the uninformed type (i.e. reports that

pit = p), which can be interpreted as “abstentions”. Let πtn(a, b,m) denote the planner’s belief

(before receiving any reports) that, at date t, among all n agents, a (b) have observed A (B)

news, and that the remaining m agents are uninformed, where (a, b,m) ∈ Sn. Thus, the planner

chooses Dt to maximise the expected social payoff

(15)
∑

(a,b,m)∈Sn

πtn(a, b,m)Dt(a, b,m)u(a, b, p),

subject to the truth-telling constraints for all agents.

Let πtn−1(a, b,m) denote agent i’s belief that, at date t, among the other n − 1 agents, a

(b) agents have observed A (B) news, and that the remaining m agents are uninformed, where

(a, b,m) ∈ Sn−1. Because agents are symmetric ex ante, πtn−1(a, b,m) does not depend on the

identity of the particular agent. Moreover, it is also the planner’s belief.

Suppose all other agents report truthfully, given the policy Dt, the agent with belief q ∈ {0, p, 1}
makes a report µ ∈ {0, p, 1} so as to maximise her expected payoff∑

(a,b,m)∈Sn−1

πtn−1(a, b,m)Dt(a+ 1{µ=1}, b+ 1{µ=0},m+ 1{µ=p}) v(q),

where v(q) = αq − (1 − q) is the agent’s expected payoff from policy A thereafter if her belief

is q ∈ {0, p, 1}. A-type agents have a positive payoff v(1) = α from policy A and will choose a

report that maximises the expected probability of continuing policy A. B-type and the uninformed

13The other case p > pM is symmetric.
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agents have negative payoffs v(0) = −1 and v(p) < 0 from policy A respectively, and will choose

a report that minimises the expected probability of continuing policy A.

The interests of B-type and the uninformed agents are perfectly aligned. Thus, incentive

compatibility requires that truthful reporting gives both B-type and the uninformed agents the

same expected probability of continuing policy A, that is

(16)
∑

(a,b,m)∈Sn−1

πtn−1(a, b,m)
[
Dt(a, b+ 1,m)−Dt(a, b,m+ 1)

]
= 0.

The constraint (16) means that the policy Dt does not distinguish reports from B-type and the

uninformed agents in expectation, if all remaining agents report truthfully. It is an ex ante

constraint at the reporting stage when agents have no information on other agents beyond their

prior information. Thus, the expectation is taking over all possible realizations of other agents’

types. It does not mean that the policy Dt does not distinguish reports from B-type and the

uninformed agents at the ex post stage for a particular realization of a state (a, b,m) ∈ Sn.

However, our next result show that, there actually exists an optimal policy in which the reports

from B-type and the uninformed agents are not distinguished even at the ex post stage.

Proposition 3. Assume p < pM . For a fixed election date t, there exists a solution Dt to the

planner’s problem such that Dt(a, b,m) = Dt(a, b′,m′) for any (a, b,m), (a, b′,m′) ∈ Sn. More-

over, there exists a threshold āt ∈ {1, 2, · · · , ā+1} that is increasing in t, such that Dt(a, b,m) = 1

if a ≥ āt and Dt(a, b,m) = 0 if a < āt.

Incentive compatibility requires that the optimal policy does not distinguish B-types and the

uninformed agents ex ante. Optimality further implies that ex post the policy does not need to

make such a distinction either. Therefore, the planner only makes efficient use of the information

about A-types and disregards the preference intensities of B-types and the uninformed agents.

This result is similar to Azrieli and Kim (2014), who show that the optimal policy is a weighted

majority rule and only cardinal information needs to be taken into account. Comparing to their

static model, our dynamic setting further allows us to examine how the voting rule is determined

by the election date.

As the optimal policy depends only on the number of A-type agents, there exists a threshold

number āt of A-type agents, above which the optimal policy will continue with policy A. The

optimal policy treats the B-type and the uninformed agents equally as agents who are against

policy A. Although the belief (on being type A) of an uninformed agent is constant over time,

the belief of an average agent who is against policy A decreases over time. This is because

conditional on being an agent who is against policy A, she is more likely to be a B-type agent

as time passes. This means that the threshold number āt is increasing over time. In terms of

29



a weighted majority rule, A-type agents have decreasing weights over time, while B-type agents

and the uninformed agents have the same and increasing weights over time. If the election is

held on a later date, B-types and the uninformed agents have more power over A-types in the

election, and it is optimal to continue policy A only if more A-votes have been casted.

6.3 First-best and second-best election dates

The second-best optimal policy does not elicit all private information. Does that mean the

planner will have an early election, comparing to the first-best benchmark, as less information is

aggregated and waiting is costly? This section we use a simplified model to show that this is not

true in general.

Consider the following model where the single election has to be held at either t = 0 or t = 1.

The benefit of delaying the election is that the planner will have better information, but the cost

is that he may be stuck with the potentially suboptimal policy too long.

In the first-best benchmark, the planner knows the state st ∈ Sn at the election date t ∈ {0, 1},
but in the second-best scenario, he only has corser information ŝt ∈ Ŝn := {(a, ac) ∈ N2 : a+ac =

n}, i.e., the number of agents at who are in favor of policy A and the number of agents act who

are against policy A.

For the first-best policy, on the election date t ∈ {0, 1}, the planner optimally continues with

policy A with probability one if the expected payoff from policy A, conditional on the state st,

is positive, i.e., E[αxA − (n− xA)|st] > 0; we denote this event as AF (t). In the complementary

event, i.e., E[αxA− (n−xA)|st] ≤ 0, denote it as BF (t), the planner optimally switches to policy

B with probability one. However, for the second-best policy, the planner only knows ŝt ∈ Ŝn on

the election date t. He optimally continues with policy A with probability one if conditional on

ŝt, it is optimal to do so, i.e., E[αxA− (n−xA)|ŝt] > 0; we denote this event as AS(t). Similarly,

in the complementary event, i.e., E[αxA − (n − xA)|ŝt] ≤ 0, denote it as BS(t), the planner

optimally switches to policy B with probability one.

In the first-best benchmark, the expected payoff of having the election at time 0 is

E

[
(αxA − (n− xA))1AF (0)

]
,

and the expected payoff of having the election at time 1 is

(1− δ)E [(αxA − (n− xA))] + δE
[
(αxA − (n− xA))1AF (1)

]
,

where δ = e−r is the discounting factor from 0 to 1.

When the policy only uses information about the number of A-type agents, the expected payoffs

of having the election at time 0 and at time 1 have similar expressions, with AF (0) and AF (1)

replaced by AS(0) and AS(1).
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We show that the planner’s optimal election date, in both the first-best and the second-best

policies, depends on how patient he is. In both scenarios, the later the election is held, the better

the information the planner acquires, which also incurs a higher delaying cost. Thus, a planner

will optimally hold the election on date 1 if and only if he is patient enough.

Proposition 4. Assume p < pM and the choice set of the election date is {0, 1}. There exists

thresholds δF , δS ∈ (0, 1) such that the planner’s optimal election date is 1 in the first (second)

best policy if and only if his discount factor δ > δF (δ > δS).

An interesting question is whether the election is held earlier in the second-best policy, compar-

ing to the first-best benchmark. A straightforward argument that supports an early election is

that learning obtains less information in the second-best scenario, however, it does not take into

account that the information learnt at time 0 (from the pre-learning period) in the second-best

scenario is also less than that in the first-best scenario.

Thus, which election should be held earlier in the two scenarios depends on the relative impor-

tance of learning, which is evaluated as the incremental value from learning, before time 0, call

it “pre-learning”, and in between time 0 and 1, call it “post-learning”, in each scenario.

When pre-learning dominates, for example when the issue is old or when the learning rate is

fast, the planner already has much information by time 0 in both the first-best and the second-

best scenarios. However, the planner acquires much more information in the first-best scenario

than he does in the second-best scenario. Thus, post-learning, although is less important, enables

the planner to acquire more incremental value in the second-best scenario than it does in the

first-best scenario. Therefore, the planner’s optimal election date in the second-best scenario is

later than the optimal election date in the first-best scenario.

When post-learning dominates, e.g. when the issue is new or when the learning rate is slow,

the planner does not have much information by time 0 in both the first-best and the second-best

scenarios. In this case, the incremental value from post-learning is much higher in the first-best

scenario, compared to the second-best scenario. Therefore, the planner’s optimal election date in

the second-best scenario is earlier than the optimal election date in the first-best scenario.

Figure (3a) and Figure (3b) illustrate the dependence of the thresholds of the discounting factor

on the length of the pre-learning period T and on the learning rate λ. In both the first-best and

the second-best scenarios, a very impatient planner with a small discounting factor will optimally

hold the election on date 0, and a very patient planner with a large discounting factor will

optimally hold the election on date 1. However, there exists an interval of the discounting factors

between the two curves such that the optimal election dates are different in the two scenarios.

When the issue is new (a small T ) or the learning rate is slow (a small λ), there exists an interval

of the discounting factors between which the optimal election date in the first-best scenario is
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Figure 3: The thresholds of the discounting factor: n = 100, α = 1, p = 0.49

date 1 and the optimal election date in the second-best scenario is date 0. Thus, the insufficient

information elicitation due to the incentive problem makes the planner hold an earlier election.

However, when the issue is old (a large T ) or the learning rate is fast (a large λ), there exists

an interval of the discounting factors between which the optimal election date in the first-best

scenario is date 0 and the optimal election date in the second-best scenario is date 1. In this

case, the insufficient information elicitation due to the incentive problem delays the election.

7 Conclusion and open questions

We consider the problem of a planner seeking a welfare-maximising social choice rule in a setting

where agents have heterogeneous preferences, and where their private information regarding their

preferences accrues gradually, over time. We have shown that, regardless whether the principal

solicits reports continually, or once, the first-best mechanism is not incentive-compatible. We

have also provided a set of tools, including deadlines, delays and private communication, to

restore the incentive compatibility in an efficient way.

A number of open questions remain and are the object of ongoing work. First, what is the

second-best mechanism in continuous time when there are more than three voters? Additional

difficulties arise as not only pivotal agents have incentives to misreport. Thus, agents’ incentive

constraints are linked in non-trivial ways.

Second, private communication in general also affects an agent’ belief about the history of

reports in a non-trivial way. This is, on one hand, interesting as it may further help reduce the

incentive issue, but on the other hand, challenging for the analysis as the belief about the history

affects the agents’ incentive and the optimal design of the mechanism, which in turn determines

that belief.
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A Appendix

A.1 Deriving the expression (4) for V A

The above expression for V A can be derived as follows. Suppose that k of the uninformed agents are in fact

A-types, and the remaining m− k are B-types. The probability of this event is
(
m
k

)
pk(1− p)m−k. In this case, the

joint expected payoff is

(A.17)

∫ ∞
0

e−(kλA+(m−k)λB)t
[
kλA

[
(1− e−rt) [α(a+ k)− (b+m− k)] + e−rtV (a+ 1, b, p)

]
+ (m− k)λB

[
(1− e−rt) [α(a+ k)− (b+m− k)] + e−rtV (a, b+ 1, p)

] ]
dt,

which can be understood as follows. If the first signal comes from one of the k uninformed A-types at date t, then

the number of declared A-types increases by 1 and the number of uninformed agents decreases by one. The policy

A is implemented until t, resulting in a payoff of 1 for all a+ k A-types, regardless of whether they have yet learnt

their type. The payoff in case the first signal comes from on of the m − k uninformed B-types (second line of

(A.17)) is derived in the same way. Rearranging,∫ ∞
0

e−(kλA+(m−k)λB)t
[

[kλA + (m− k)λB ] (1− e−rt) [α(a+ k)− (b+m− k)]

+ e−rt [kλA V (a+ 1, b, p) + (m− k)λB V (a, b+ 1, p)]
]
dt,

and using λA = λB gives∫ ∞
0

e−mλt
[
mλ (1− e−rt) [α(a+ k)− (b+m− k)] + e−rtλ [k V (a+ 1, b, p) + (m− k)V (a, b+ 1, p)]

]
dt,

which yields

r

r +mλ
[α(a+ k)− (b+m− k)] +

λ

r +mλ
[k V (a+ 1, b, p) + (m− k)V (a, b+ 1, p)]

Thus, we have that

V A(a, b,m, p) =

m∑
k=0

{(
m

k

)
pk(1− p)m−k

[
r

r +mλ
[α(a+ k)− (b+m− k)]

+
λ

r +mλ
[k V (a+ 1, b, p) + (m− k)V (a, b+ 1, p)]

]}

=
r

r +mλ

m∑
k=0

(
m

k

)
pk(1− p)m−k [α(a+ k)− (b+m− k)]

+
λ

r +mλ
V (a+ 1, b, p)

m∑
k=0

(
m

k

)
pk(1− p)m−kk

+
λ

r +mλ
V (a, b+ 1, p)

m∑
k=0

(
m

k

)
pk(1− p)m−k(m− k)

=
r

r +mλ
[α(a+mp)− (b+m(1− p))]

+
λ

r +mλ
V (a+ 1, b, p)mp

+
λ

r +mλ
V (a, b+ 1, p)m(1− p).

Simplifying the latter yields (4).
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A.2 Proof of Lemma 1

We prove this result by induction. Fix k such that k+ 1 ≤ n and consider pairs (ã, b̃) such that ã+ b̃+ 1 = k+ 1.

The induction hypothesis is

(A.18) V A(ã+ 1, b̃, p) > V A(ã, b̃+ 1, p).

Now consider pairs (a, b) such that a+ b+ 1 = k. Using (4) yields

V A(a+ 1, b, p)− V A(a, b+ 1, p) = (1− gm−1) [α+ 1]

+ gm−1

[
[p V (a+ 2, b, p) + (1− p)V (a+ 1, b+ 1, p)]

− [p V (a+ 1, b+ 1, p) + (1− p)V (a, b+ 2, p)]
]

Since a+ b+ 2 = k + 1, the induction hypothesis (A.18) implies that V (a+ 2, b, p) ≥ V (a+ 1, b+ 1, p) so that

p V (a+ 2, b, p) + (1− p)V (a+ 1, b+ 1, p) ≥ V (a+ 1, b+ 1, p);

the induction hypothesis also implies that V (a, b+ 2, p) ≤ V (a+ 1, b+ 1, p) so that

p V (a+ 1, b+ 1, p) + (1− p)V (a, b+ 2, p) ≤ V (a+ 1, b+ 1, p).

It follows that

(A.19) V A(a+ 1, b, p)− V A(a, b+ 1, p) ≥ (1− gm−1) [α+ 1] > 0,

completing the induction step.

Finally, consider pairs (ã, b̃) such that ã + b̃ + 1 = n. By (3) we have that V (ã + 1, b̃, p) = (α(ã + 1) − b̃) ∨ 0

and V (ã, b̃ + 1, p) = (αã − (b̃ + 1)) ∨ 0. Since α(ã + 1) − b̃ − (αã − (b̃ + 1)) = α + 1 > 0, it follows that

V (ã+ 1, b̃, p) ≥ V (ã, b̃+ 1, p) for every p ∈ [0, 1], establishing the induction hypothesis (A.18) for k + 1 = n.

A.3 Proof of Lemma 2

Proof. We prove the lemma by induction. Fix k such that k+1 < n and consider pairs (ã, b̃) such that ã+ b̃ = k+1.

The induction hypothesis is that V A(ã, b̃, p) is continuous in p and differentiable almost everywhere on [0, 1], with

(A.20)
d

dp
V A(ã, b̃, p) > 0.

Now consider pairs (a, b) such that a + b = k. Observe that d
dp
u(a, b, p) = m(α + 1) > 0. We distinguish

three cases, according to whether continuation values are positive. Recall that, by Lemma 1, V A(a + 1, b, p) >

V A(a, b+ 1, p) for every p ∈ [0, 1].

Case 1: p is such that V A(a + 1, b, p) ≤ 0. Lemma 1 implies that V A(a, b + 1, p) < 0. By (4), we then have

that V A(a, b, p) = (1 − gm)u(a, b, p), which is continuous, differentiable and strictly increasing at every p ∈ [0, 1],

completing the induction step.

Case 2: p is such that V A(a+ 1, b, p) > 0 but such that V A(a, b+ 1, p) ≤ 0. Then (4) becomes

(A.21) V A(a, b, p) = (1− gm)u(a, b, p) + gm p V
A(a+ 1, b, p).

Differentiating the second term with respect to p, we find that

d

dp

(
p V A(a+ 1, b, p)

)
= V A(a+ 1, b, p) + p

d

dp
V A(a+ 1, b, p).
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On the right-hand side, the first term is positive by assumption while the second term is positive under the induction

hypothesis. Equation (A.21) therefore implies that V A(a, b, p) is a convex combination of two functions that are

continuous and increasing at every p ∈ [0, 1], and differentiable at almost every p ∈ [0, 1], completing the induction

step.

Case 3: p is such that V A(a, b+ 1, p) > 0. Lemma 1 implies that V A(a+ 1, b, p) > 0. Then (4) becomes

(A.22) V A(a, b, p) = (1− gm)u(a, b, p) + gm
[
p V A(a+ 1, b, p) + (1− p)V A(a, b+ 1, p)

]
.

Differentiating the second term with respect to p, we find that

d

dp

(
p V A(a+ 1, b, p) + (1− p)V A(a, b+ 1, p)

)
= V A(a+ 1, b, p)− V A(a, b+ 1, p)

+p
d

dp
V A(a+ 1, b, p) + (1− p) d

dp
V A(a, b+ 1, p).

On the right-hand side, the first line is positive by Lemma 1 while the second line is positive under the induction

hypothesis. Equation (A.23) therefore implies that V A(a, b, p) is a convex combination of two functions that are

continuous and increasing at every p ∈ [0, 1], and differentiable at almost every p ∈ [0, 1], completing the induction

step.

Finally, consider pairs (ã, b̃) such that ã+ b̃ = n− 1. By (3) we have that V (ã+ 1, b̃, p) = (α(ã+ 1)− b̃)∨ 0 and

V (ã, b̃+ 1, p) = (αã− (b̃+ 1)) ∨ 0, both constant and continuous in p. From (4) it is immediate that V A(ã, b̃, p) is

continuous and differentiable almost everywhere in [0, 1]. Differentiating gives

(A.23)
d

dp
V A(ã, b̃, p) = (1− gm)

d

dp
u(ã, b̃, p) + gm

[
V (ã+ 1, b̃, p)− V (ã, b̃+ 1, p)

]
> 0,

where the inequality follows from V (ã+ 1, b̃, p) ≥ V (ã, b̃+ 1, p) and d
dp
u(a, b, p) = m(α+ 1) > 0. This establishes

the induction hypothesis for k + 1 = n− 1.

A.4 Proof of Proposition 1

First, observe that, for every pair (a, b) such that a+ b < n, by Lemma 2, V A(a, b, p) crosses zero at most once on

(0, 1). Consequently, there exists a unique p∗(a, b) ∈ [0, 1] satisfying V A(a, b, p) ≥ 0 if and only if p ≥ p∗(a, b). We

now show that the statements (i) and (ii) hold.

(i) Assume by way of contradiction that p∗(a, b) ≤ p∗(a+1, b). Then V A(a+1, b, p∗(a, b)) ≤ 0. Moreover, Lemma

(1) gives V A(a, b + 1, p∗(a, b)) < V A(a + 1, b, p∗(a, b)), implying that V A(a, b + 1, p∗(a, b)) < 0. Consequently, (4)

gives V A(a, b, p∗(a, b)) = (1− gm)u(a, b, p∗(a, b)), so that V A(a, b, p∗(a, b)) = 0 if and only if p∗(a, b) = b+m−aα
m(1+α)

=
n−a(1+α)

(n−a−b)(1+α)
, where the last expression is obtained by substituting m = n− a− b.

Suppose first that n−a(1+α)
(n−a−b)(1+α)

≤ 0 or, equivalently, that αa − (n − a) ≥ 0. Observe that the left hand-side in

the last inequality is u(a, b, 0). Since u(a, b, p) is strictly increasing in p, we therefore have that V A(a, b, p) > 0 for

every p ∈ (0, 1). A contradiction.

Suppose next that n−a(1+α)
(n−a−b)(1+α)

≥ 1 or, equivalently, (n−b)α−b ≤ 0. Observe that the left hand-side in the last

inequality is u(a, b, 1). Since u(a, b, p) is strictly increasing in p, we therefore have that V A(a, b, p) < 0 for every

p ∈ (0, 1). A contradiction.

Finally, suppose that n−a(1+α)
(n−a−b)(1+α)

∈ (0, 1) or, equivalently, that n− a(1 + α) > 0 and nα− b(1 + α) > 0. Then

p∗(a, b)− p∗(a+ 1, b) =
nα− b(1 + α)

(n− a− b)(n− (a+ 1)− b)(1 + α)
> 0,

a contradiction.
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(ii) Assume by way of contradiction that p∗(a, b) ≥ p∗(a, b+1). Together with (i), this implies that if A is optimal

in state (a, b, p), it remains optimal in all following states. Consequently, the payoff from A in state (a, b, p) is

u(a, b, p), and we have that V A(a, b, p∗(a, b)) = 0 if and only if p∗(a, b) = b+m−aα
m(1+α)

= n−a(1+α)
(n−a−b)(1+α)

. For parameters

such that n−a(1+α)
(n−a−b)(1+α)

/∈ (0, 1), the arguments from (i) establish the contradiction.

Now suppose that n−a(1+α)
(n−a−b)(1+α)

∈ (0, 1) or, equivalently, that n− a(1 + α) > 0 and nα− b(1 + α) > 0. Then

p∗(a, b)− p∗(a, b+ 1) =
a(1 + α)− n

(n− a− b)(n− (a+ 1)− b)(1 + α)
< 0,

a contradiction.

A.5 Proof of Lemma 3

(i) Switching to B immediately and never switching to B are both feasible policies for the planner. Therefore,

V (a, b, p) ≥ u(a, b, p) ∨ 0. For a > n/(1 + α) we have u(a, b, p) > 0, establishing the claim.

(ii) We prove this claim by induction. Fix k such that k + 1 ≤ n and consider pairs (ã, b̃) such that ã + b̃ =

k + 1. The induction hypothesis is that V A(ã, b̃, p) < 0 for every p ∈ [0, 1]. Now consider pairs (a, b) such

that a + b = k. Under the induction hypothesis, V (a + 1, b, p) = V (a, b + 1, p) = 0. Thus, (4) gives that

V A(a, b, p) = (1− gm)u(a, b, p). For b > αn/(1 +α) we have u(a, b, p) < 0, completing the induction step. Finally,

consider pairs (ã, b̃) such that ã + b̃ = n. By (4), we have that V A(a, b, p) = u(a, b, p) < 0, where the inequality

follows from b > αn/(1 + α). This establishes the induction hypothesis for k + 1 = n.

A.6 Claim in Section 3.3

The next lemma verifies that, indeed, S∗∗∗n corresponds to the diagonal {(a, b)|b = a− 1 ≤ ā− 1}. We verify that,

under our assumptions, we indeed have that V A(a, b,m, p?) > 0 whenever (a, b) ∈ S∗∗∗n or, equivalently, whenever

b = a− 1, a ∈ {1, . . . , ā}, and that V A(a, a,m, p?) ≤ 0, a ∈ {0, . . . , ā}.

Lemma A.10. Fix λ, r, and let n ≤ n̄(λ, r). Assume that S∗∗∗n = {(a, b)|b = a − 1 ≤ ā − 1}. Then, (i)

V A(a, a− 1, n− 2a+ 1, p?) > 0 for every a ∈ {1, . . . , ā}, and (ii) V A(a, a, n− 2a, p?) ≤ 0 for every a ∈ {0, . . . , ā}.

Proof. (i) Fix λ, r, and let n ≤ n̄(λ, r). Observe that,

n ≤ n̄(λ, r)

⇔ n ≤ 1− 1

vM (p?)

⇔ 1 + (n− 1)vM (p?) ≥ 0

⇔ u(1, 0, n− 1, p?) ≥ 0

where the first equivalence follows from (5), the second uses vM (p?) < 0, and the third just applies the definition

of u(1, 0, n− 1, p?). Moreover, observe that for every a ∈ {1, . . . , ā− 1},

u(a, a− 1, n− 2a+ 1, p?) = 1 + (n− 2a+ 1)vM (p?) ≥ 1 + (n− 1)vM (p?) = u(1, 0, n− 1, p?),

where the inequality follows from vM (p?) < 0. Consequently we have that

(A.24) n ≤ n̄(λ, r) ⇒ u(a, a− 1, n− 2a+ 1, p?) ≥ 0, ∀a ∈ {1, . . . , ā− 1}.
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We now verify that V A(a, a− 1, n− 2a+ 1, p?) > 0, a ∈ {1, . . . , ā− 1}. By (6) we have that

V A(a, a− 1, n− 2a+ 1, p) = u(a, a− 1, n− 2a+ 1, p)

−
ā∑
k=a

(
2k − 2a

k − a

)
1

k − a+ 1
pk−a(1− p)k−a+1

 n−2a+1∏
j=n−2k+1

gj

u(k, k, n− 2k, p).

For p < pM we have that u(k, k, n − 2k, p) = (n − 2k)vM (p) < 0. Consequently, V A(a, a − 1, n − 2a + 1, p) >

u(a, a− 1, n− 2a+ 1, p) for every p < pM . In particular,

V A(a, a− 1, n− 2a+ 1, p?) > u(a, a− 1, n− 2a+ 1, p?) ≥ 0,

where the second inequality follows from n ≤ n̄(λ, r), as shown in (A.24). This establishes the claim.

(ii) Next, we verify that V A(a, a, n− 2a, p?) ≤ 0 for every a ∈ {0, . . . , ā}. Given that S∗∗∗n = {(a, b)|b = a− 1 ≤
ā − 1}, we have that (a, a + 1) /∈ S∗∗ and that, consequently, V (a, a + 1, n − 2a − 1, p) < 0. Hence, the recursion

(4) for V A under the planner solution gives that

V A(a, a, n− 2a, p) = (1− gn−2a)u(a, a, n− 2a, p) + gn−2a p V
A(a+ 1, a, n− 2a− 1, p).

Consequently, we have that V A(a, a, n− 2a, p) ≤ 0 if and only if

V A(a+ 1, a, n− 2a− 1, p) ≤ −1− gn−2a

gn−2ap
u(a, a, n− 2a, p)

⇔ V A(a+ 1, a, n− 2a− 1, p) ≤ −1− gn−2a

gn−2a

(n− 2a) vM (p)

p

⇔ V A(a+ 1, a, n− 2a− 1, p) ≤ − r

(n− 2a)λ

(n− 2a) (2p− 1)

p

⇔ V A(a+ 1, a, n− 2a− 1, p) ≤ r

λ

1− 2p

p
(A.25)

By Lemma 2, V A(a, b,m, p) is a weakly increasing function of p for every (a, b) ∈ S∗∗n . Using (6), we have that

V A(a+ 1, a, n− 2a− 1, 0) = u(a+ 1, a, n− 2a− 1, 0) = 1 + (n− 2a− 1)(−1) = −(n− 2a) < 0,

where the inequality holds for every a ∈ {0, . . . , ā}, and that

V A(a+ 1, a, n− 2a− 1, pM ) = 1 + (n− 2a− 1)vM (pM )

−
ā∑

k=a+1

(
2k − 2a− 2

k − a− 1

)
1

k − a pk−a−1(1− p)k−a
 n−2a−1∏
j=n−2k+1

gj

 (n− 2k)vM (pM )

= 1.

By the intermediate value theorem, we therefore have that V A(a+ 1, a, n− 2a− 1, p?) ≤ 1. Conversely, the right

hand side of (A.25) equals 1 when p = p?. Consequently, (A.25) holds when p = p?, establishing the claim.

A.7 Proof of Lemma 4

Proof. In this proof, we use the shorthand (a, b) for state (a, b,m). We verify that the expression in (6) satisfies

the recursion (4) for the value function. We first consider states (a, b) ∈ S∗∗∗n . Here, we have V (a, b + 1) = 0 and

V (a+ 1, b) = V A(a+ 1, b). Therefore, (4) gives

V A(a, b) = (1− gm)u(a, b) + gm p V
A(a+ 1, b).
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Substituting (6) for V A(a+ 1, b),

V A(a, b) = (1− gm)u(a, b) + gm p u(a+ 1, b)− gm p
ā∑

k=a+1

C(a+ 1, b, k) pk−a−1(1− p)k−b
 m−1∏
j=n−2k+1

gj

u(k, k).

Next, we use u(a, b) = pu(a+1, b)+(1−p)u(a, b+1) and the fact that a = b+1 for every (a, b) ∈ S∗∗∗n to substitute

for u(a+ 1, b). We then distribute gm p into the sum. Thus,

V A(a, b) = u(a, b)− gm (1− p)u(a, a)−
ā∑

k=a+1

C(a+ 1, b, k) pk−a(1− p)k−b
 m∏
j=n−2k+1

gj

u(k, k).

Next, observe that for (a, b) ∈ S∗∗∗n we have a = b+ 1. Therefore,

(a+ 1− b)(k − a)

(k − b)(2k − a− b− 1)
=

2(k − a)

(k − b)(2k − 2a)
=

1

k − b =
a− b
k − b ,

where we substituted a = b+ 1 at the first and last equality. Consequently,

C(a+ 1, b, k) =
(2k − a− b− 2)!

(k − a− 1)!(k − b− 1)!

a+ 1− b
k − b

=
(2k − a− b− 1)!

(k − a)!(k − b− 1)!

(a+ 1− b)(k − a)

(k − b)(2k − a− b− 1)

=

(
2k − a− b− 1

k − a

)
a− b
k − b

= C(a, b, k).(A.26)

The intuition for this result is that, for each state (a, b) ∈ S∗∗∗n , the first signal being B results in the planner

switching to policy B. Consequently, every path from (a, b) to (k, k), k ∈ {a, . . . , ā}, that only visits states in the

continuation region S∗∗n must start with an A signal, and therefore necessarily visits the state (a+ 1, b). It follows

that the number of paths from (a, b) to (k, k) equals the number of paths from (a+ 1, b) to (k, k).

Thus,

V A(a, b) = u(a, b)− gm (1− p)u(a, a)−
ā∑

k=a+1

C(a, b, k) pk−a(1− p)k−b
 m∏
j=n−2k+1

gj

u(k, k).

Finally, evaluating the summand at the second line for k = a gives

(1− p)k−b
(

m∏
j=n−2a+1

gj

)
u(a, a) = gm (1− p)u(a, a),

where we substituted a = b+ 1 to get m = n− a− b = n− 2a+ 1. We therefore obtain the expression in (6) for

V A(a, b). This verifies that the expression in (6) for V A(a, b) satisfies the recursion in (4) in states (a, b) ∈ S∗∗∗n .

Next, we consider states (a, b) ∈ S∗∗n \S∗∗∗n . Here, we have V (a, b+1) = V A(a, b+1) and V (a+1, b) = V A(a+1, b).

Therefore, (4) gives

V A(a, b) = (1− gm)u(a, b) + gm
[
p V A(a+ 1, b) + (1− p)V A(a, b+ 1)

]
.

Substituting (6) for V A(a+ 1, b) and V A(a, b+ 1),

V A(a, b) = (1− gm)u(a, b) + gm (p u(a+ 1, b) + (1− p)u(a, b+ 1))

− gm p
ā∑

k=a+1

C(a+ 1, b, k) pk−a−1(1− p)k−b
 m−1∏
j=n−2k+1

gj

u(k, k)

− gm (1− p)
ā∑
k=a

C(a, b+ 1, k) pk−a(1− p)k−b−1

 m−1∏
j=n−2k+1

gj

u(k, k).
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We use u(a, b) = pu(a+ 1, b) + (1− p)u(a, b+ 1) at the first line, and distribute the terms gm p and gm(1− p) into

the sums to get

V A(a, b) = u(a, b)−
ā∑

k=a+1

C(a+ 1, b, k) pk−a(1− p)k−b
 n−a−b∏
j=n−2k+1

gj

u(k, k)

−
ā∑
k=a

C(a, b+ 1, k) pk−a(1− p)k−b
 n−a−b∏
j=n−2k+1

gj

u(k, k).

Observe that

C(a+ 1, b, k) + C(a, b+ 1, k) =

(
2k − a− b− 2

k − a− 1

)
a+ 1− b
k − b +

(
2k − a− b− 2

k − a

)
a− b− 1

k − b− 1

=
(2k − a− b− 2)!

(k − a− 1)!(k − b− 1)!

a+ 1− b
k − b +

(2k − a− b− 2)!

(k − a)!(k − b− 2)!

a− b− 1

k − b− 1

=
(2k − a− b− 2)!

(k − a− 1)!(k − b− 1)!

(
a+ 1− b
k − b +

a− b− 1

k − a

)
=

(2k − a− b− 2)!

(k − a− 1)!(k − b− 1)!

(a− b)(2k − a− b− 1)

(k − a)(k − b)

=

(
2k − a− b− 1

k − a

)
a− b
k − b

= C(a, b, k).(A.27)

Therefore,

V A(a, b) = u(a, b) −
ā∑

k=a+1

C(a, b, k) pk−a(1− p)k−b
 n−a−b∏
j=n−2k+1

gj

u(k, k)

−

C(a, b+ 1, k) pk−a(1− p)k−b
 n−a−b∏
j=n−2k+1

gj

u(k, k)


k=a

,

where (7) gives C(a, b + 1, a) = 1 = C(a, b, a). Hence, the expression above simplifies to the expression in (6)

for V A(a, b). This verifies that the expression in (6) for V A(a, b) satisfies the recursion in (4) in states (a, b) ∈
S∗∗n \ S∗∗∗n .

A.8 Proof of Lemma 6

By Lemma (5), p∗(ā, b̄) < p? if and only if αā − b̄ > 0. First, consider α < 1
n−1

. Here, α is so small that policy

B is optimal unless all agents prefer A (ā = n − 1) or, equivalently, policy B is optimal if there is at least one

agent who prefers B (b̄ = 0). Since αā − b̄ = α(n − 1) > 0, we have that p∗(ā, b̄) < p?, establishing the “if” part

of the claim for k = n− 1. Conversely, suppose that α > n− 1. Here, α is so large that policy A is optimal if at

least one agent prefers A (ā = 0) or, equivalently, policy A is optimal unless all agents prefer B (b̄ = n− 1) Since

αā − b̄ = −(n − 1) < 0, we have that p∗(ā, b̄) > p?, establishing the “only if” claim for α > n − 1. Finally, fix an

integer k ∈ {1, 2, . . . , n− 1} and let α ∈
(
n−(k+1)
k+1

, n−k
k

)
. Then ā = k and b̄ = n− (k− 1). Thus, αā− b̄ > 0 if and

only if α > n−(k+1)
k

.

A.9 Proof of Lemma 7

Proof. To prove this result, we first derive the recursion satisfied by uθ
i

(a, b,m, p). We then verify that the

expression in (9) satisfies this recursion. The first part of the proof follows the same steps as the derivation of the
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recursion (4) for V A in the planner problem. The second part of the proof follows the same steps as the proof of

Lemma 6.

Suppose that k of the novices are in fact A-types, and the remaining m− k are B-types. The probability of this

event is
(
m
k

)
pk(1− p)m−k. In this case, agent i’s expected payoff is∫ ∞

0

e−mλt
[
kλ
[
(1− e−rt)v(θi) + e−rtuθ

i

(a+ 1, b,m− 1, p)
]

+ (m− k)λ
[
(1− e−rt)v(θi) + e−rtuθ

i

(a, b+ 1,m− 1, p)
] ]
dt,

which can be understood as follows. If the first piece of news comes from one of the k uninformed A-types at date

t, then the number of declared A-types increases by 1 and the number of novices decreases by one. The policy A

is implemented until t, resulting in a flow payoff of v(θi). The payoff in case the first piece of news comes from on

of the m− k uninformed B-types is derived in the same way. Rearranging gives∫ ∞
0

e−mλt
[
mλ (1− e−rt)v(θi) + e−rtλ

[
k uθ

i

(a+ 1, b,m− 1, p) + (m− k) uθ
i

(a, b+ 1,m− 1, p)
] ]
dt,

which yields

r

r +mλ
v(θi) +

λ

r +mλ

[
k uθ

i

(a+ 1, b,m− 1, p) + (m− k) uθ
i

(a, b+ 1,m− 1, p)
]

Thus, we have that

uθ
i

(a, b,m, p) =

m∑
k=0

{(
m

k

)
pk(1− p)m−k

[
r

r +mλ
v(θi)

+
λ

r +mλ

[
k uθ

i

(a+ 1, b,m− 1, p) + (m− k) uθ
i

(a, b+ 1,m− 1, p)
] ]}

=
r

r +mλ

m∑
k=0

(
m

k

)
pk(1− p)m−kv(θi)

+
λ

r +mλ
uθ
i

(a+ 1, b,m− 1, p)

m∑
k=0

(
m

k

)
pk(1− p)m−kk

+
λ

r +mλ
uθ
i

(a, b+ 1,m− 1, p)

m∑
k=0

(
m

k

)
pk(1− p)m−k(m− k)

=
r

r +mλ
v(θi)

+
λ

r +mλ
uθ
i

(a+ 1, b,m− 1, p)mp

+
λ

r +mλ
uθ
i

(a, b+ 1,m− 1, p)m(1− p).

Simplifying the latter yields the following recursion for uθ
i

:

(A.28) uθ
i

(a, b,m, p) = (1− gm) v(θi) + gm
[
p uθ

i

(a+ 1, b,m− 1, p) + (1− p) uθ
i

(a, b+ 1,m− 1, p)
]
.

The next step consists in verifying that the expression in (9) satisfies the recursion above. We first consider

states (a, b) ∈ S∗∗∗n . Here, we have uθ
i

(a, b+ 1,m− 1, p) = 0. Therefore, (A.28) gives

uθ
i

(a, b,m, p) = (1− gm) v(θi) + gm p u
θi(a+ 1, b,m− 1, p).

Substituting (9) for uθ
i

(a+ 1, b,m− 1, p) gives

uθ
i

(a, b,m, p) = (1− gm) v(θi) + gm p v(θi)− gm p v(θi)

ā∑
k=a+1

C(a+ 1, b, k) pk−a−1(1− p)k−b
m−1∏

j=n−2k+1

gj .
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Factoring v(θi) and distributing gm p into the sum gives

uθ
i

(a, b,m, p) = v(θi)

1− gm(1− p)−
ā∑

k=a+1

C(a+ 1, b, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj

 .
Since (a, b) ∈ S∗∗∗n , we use Using (A.26) to substitute for C(a+1,b,k) and obtain

(A.29) uθ
i

(a, b,m, p) = v(θi)

1− gm(1− p)−
ā∑

k=a+1

C(a, b, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj


Finally, evaluating the summand for k = a gives

C(a, b, a) (1− p)a−b
m∏

j=n−2a+1

gj = gm (1− p)

where (7) gives C(a, b, a) = 1 and we substitute a = b+ 1 to get m = n− a− b = n− 2a+ 1. We conclude that the

expression in (A.29) is equivalent to the expression in (9). This verifies that the expression in (9) for uθ
i

(a, b, n, p)

satisfies the recursion in (A.28) in states (a, b) ∈ S∗∗∗n .

Next, we consider states (a, b) ∈ S∗∗n \ S∗∗∗n . Here, we have that uθ
i

(a+ 1, b,m− 1, p) and uθ
i

(a, b+ 1,m− 1, p)

are given by (9). Substituting in (A.28) gives

uθ
i

(a, b,m, p) = (1− gm) v(θi) + gm
[
p v(θi) + (1− p) v(θi)

]
− gm p v(θi)

ā∑
k=a+1

C(a+ 1, b, k) pk−a−1(1− p)k−b
m−1∏

j=n−2k+1

gj

− gm (1− p) v(θi)

ā∑
k=a

C(a, b+ 1, k) pk−a(1− p)k−b−1
m−1∏

j=n−2k+1

gj .

Factoring v(θi) and distributing gm p and gm (1− p) into the sum gives

uθ
i

(a, b,m, p) = v(θi)

1−
ā∑

k=a+1

C(a+ 1, b, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj

−
ā∑
k=a

C(a, b+ 1, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj

 .
Using (A.27) gives that

uθ
i

(a, b,m, p) = v(θi)

1−
ā∑

k=a+1

C(a, b, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj

−

[
C(a, b+ 1, k) pk−a(1− p)k−b

m∏
j=n−2k+1

gj

]
k=a

 .
Finally, (7) gives C(a, b + 1, a) = 1 = C(a, b, a), so the expression above simplifies to the expression in (9). This

verifies that the expression in (9) for uθ
i

(a, b,m, p) satisfies the recursion in (A.28) in states (a, b) ∈ S∗∗n \S∗∗∗n .

A.10 Proof of Lemma 8

Proof. To prove equation (11), we first derive the recursion satisfied by ui(a, b,m, p). We then verify that the

expression in (11) satisfies this recursion. The first part of the proof follows the same steps as the derivation of the
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recursion for V A in the planner problem, and we do not repeat the detail here. The second part of the proof is in

the spirit of the proof of Lemma 6.

First, we have that the payoff ui(a, b,m, p) of an uninformed agent i under the planner policy, assuming all m

uninformed agents, including agent i, report truthfully, satisfies the recursion

(A.30) ui(a, b,m, p) = (1− gm) vM (p) +
λ

r +mλ

[
(m− 1)

(
p ui(a+ 1, b,m− 1, p) + (1− p) ui(a, b+ 1,m− 1, p)

)
+ p uA(a+ 1, b,m− 1, p) + (1− p) uB(a, b+ 1,m− 1, p)

]
,

where vM (p) = p− (1− p) is the single agent myopic payoff, and uA and uB are defined in (9). The recursion can

be understood as follows. In state (a, b,m), the next piece of news arrives at rate gm. With probability (m− 1)/m

it comes from on of the m− 1 uninformed agents other than agent i, so agent i remains uninformed and the state

changes to account for the new pieces of news. With probability 1/m, the next piece of news comes from agent i,

so her continuation payoff uθ
i

now accounts for the fact that agent i has learnt (and truthfully reported) her type.

Next, we show that the expression in (11) satisfies this recursion. Our approach is separately to derive the

coefficients in ui, which we rewrite as

(A.31) ui(a, b,m, p) = p a(a, b,m, p) + (1− p) (−1) b(a, b,m, p),

and we let

(A.32) c(a, b,m, p) := 1−
ā∑
k=a

C(a, b, k) pk−a(1− p)k−b
 n−a−b∏
j=n−2k+1

gj

 ,

so that (9) gives uθ
i

(a, b,m, p) = v(θi) c(a, b,m, p). Substituting (A.31) and (A.32) into (A.30) yields the following

recursions for the coefficients a and b:

(A.33) a(a, b,m, p) =
1

m

[
m(1− gm) + gm (m− 1) [p a(a+ 1, b,m− 1, p) + (1− p) a(a, b+ 1,m− 1, p)]

+ gm c(a+ 1, b,m− 1, p)
]
,

(A.34) b(a, b,m, p) =
1

m

[
m(1− gm) + gm (m− 1) [p b(a+ 1, b,m− 1, p) + (1− p) b(a, b+ 1,m− 1, p)]

+ gm c(a, b+ 1,m− 1, p)
]
.

Observe that

(A.35) p a(a, b,m, p) + (1− p) b(a, b,m, p) = c(a, b,m, p).
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Indeed, substituting (A.33) and (A.34) into the left hand side of (A.35) gives

[p a + (1− p) b](a, b,m, p) = p
1

m

[
m(1− gm) + gm (m− 1) [p a(a+ 1, b,m− 1, p) + (1− p) a(a, b+ 1,m− 1, p)]

+gm c(a+ 1, b,m− 1, p)
]

+(1− p) 1

m

[
m(1− gm) + gm (m− 1) [p b(a+ 1, b,m− 1, p) + (1− p) b(a, b+ 1,m− 1, p)]

+gm c(a, b+ 1,m− 1, p)
]

= (1− gm)

+p
1

m
gm (m− 1) [p a(a+ 1, b,m− 1, p) + (1− p) b(a+ 1, b,m− 1, p)]

+(1− p) 1

m
gm (m− 1) [p a(a, b+ 1,m− 1, p) + (1− p) b(a, b+ 1,m− 1, p)]

+p
1

m
gm c(a+ 1, b,m− 1, p) + (1− p) 1

m
gm c(a, b+ 1,m− 1, p)

= (1− gm)

+p
1

m
gm (m− 1)c(a+ 1, b,m− 1, p)

+(1− p) 1

m
gm (m− 1)c(a, b+ 1,m− 1, p)

+p
1

m
gm c(a+ 1, b,m− 1, p) + (1− p) 1

m
gm c(a, b+ 1,m− 1, p)

= (1− gm) + gm [p c(a+ 1, b,m− 1, p) + (1− p) c(a, b+ 1,m− 1, p)]

= c(a, b,m, p),

where the last equality is obtained by substituting uθ
i

(a, b,m, p) = v(θi) c(a, b,m, p) into (A.28), yielding

v(θi) c(a, b,m, p) = (1− gm) v(θi) + gm
[
p v(θi) c(a+ 1, b,m− 1, p) + (1− p) v(θi) c(a, b+ 1,m− 1, p)

]
= v(θi)

[
(1− gm) + gm [p c(a+ 1, b,m− 1, p) + (1− p) c(a, b+ 1,m− 1, p)]

]
.

We therefore proceed by showing that 1 − E[e−rτ(a,b,m,p)|θi = A], where the expression for the conditional

expectation is given in (12), satisfies the recursion (A.33). We then use (A.35) to obtain the expression in (13) for

E[e−rτ(a,b,m,p)|θi = B].

Substituting 1−E[e−rτ(a,b,m,p)|θi = A] for a(a, b,m, p) and 1−E[e−rτ(a,b,m,p)] for c(a, b,m, p) in (A.33) gives

a(a, b,m, p) =
1

m

[
m(1− gm) + gm (m− 1) p

(
1−E[e−rτ(a+1,b,m−1,p)|θi = A]

)
+ gm (m− 1) (1− p)

(
1−E[e−rτ(a,b+1,m−1,p)|θi = A]

)
+ gm

(
1−E[e−rτ(a+1,b,m−1,p)]

) ]
which simplifies to

a(a, b,m, p) =
1

m

[
m− gm (m− 1)

(
pE[e−rτ(a+1,b,m−1,p)|θi = A] + (1− p)E[e−rτ(a,b+1,m−1,p)|θi = A]

)
− gmE[e−rτ(a+1,b,m−1,p)]

]
Substituting the expression in (12) for the conditional expectations and the experssion in (10) for the unconditional
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expectation gives

a(a, b,m, p) =
1

m

[
m

− gm (m− 1)p

ā∑
k=a+1

C(a+ 1, b, k)
1

m− 1
[k − a− 1 + (n− 2k)p] pk−a−2(1− p)k−b

m−1∏
j=n−2k+1

gj

− gm (m− 1)(1− p)
ā∑
k=a

C(a, b+ 1, k)
1

m− 1
[k − a+ (n− 2k)p] pk−a−1(1− p)k−b−1

m−1∏
j=n−2k+1

gj

− gm
ā∑

k=a+1

C(a+ 1, b, k) pk−a−1(1− p)k−b
m−1∏

j=n−2k+1

gj
]
.

Distributing the factors in gm into the sums and isolating the summand for k = a in the second sum, while

observing that, by (7), C(a, b+ 1, a) = 1, gives

a(a, b,m, p) = 1− 1

m

ā∑
k=a+1

C(a+ 1, b, k) [k − a− 1 + (n− 2k)p] pk−a−1(1− p)k−b
m∏

j=n−2k+1

gj

− 1

m
(n− 2a)(1− p)a−b

m∏
j=n−2a+1

gj

− 1

m

ā∑
k=a+1

C(a, b+ 1, k) [k − a+ (n− 2k)p] pk−a−1(1− p)k−b
m∏

j=n−2k+1

gj

− 1

m

ā∑
k=a+1

C(a+ 1, b, k) pk−a−1(1− p)k−b
m∏

j=n−2k+1

gj .

Assembling the three sums and simplifying the resulting summand gives

a(a, b,m, p) = 1− 1

m
(n− 2a)(1− p)a−b

m∏
j=n−2a+1

gj

− 1

m

ā∑
k=a+1

{
C(a+ 1, b, k) + C(a, b+ 1, k)

}
[k − a+ (n− 2k)p] pk−a−1(1− p)k−b

m∏
j=n−2k+1

gj .

Using (A.27) to substitute for the term in braces gives

a(a, b,m, p) = 1− 1

m
(n− 2a)(1− p)a−b

m∏
j=n−2a+1

gj

− 1

m

ā∑
k=a+1

C(a, b, k) [k − a+ (n− 2k)p] pk−a−1(1− p)k−b
m∏

j=n−2k+1

gj .

Finally, observe that the summand at the second line evaluated at k = a equals (n− 2a)(1− p)a−b
∏m
j=n−2a+1 gj ,

so that we indeed have that

(A.36) a(a, b,m, p) = 1− 1

m

ā∑
k=a

C(a, b, k) [k − a+ (n− 2k)p] pk−a−1(1− p)k−b
m∏

j=n−2k+1

gj ,

which confirms that a(a, b,m, p) = 1−E[e−rτ(a,b,m,p)|θi = A] with the conditional expectation given in (12).

Finally, we obtain that b(a, b,m, p) = 1 − E[e−rτ(a,b,m,p)|θi = B] by substituting (A.36) for a and (A.32) for c

into (A.35), and obtaining the expression in (13) for the conditional expectation.
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A.11 Proof of Lemma 9

Proof. The proof explores the relationship between the single agent’s payoff and the planner (joint) payoff. First,

we verify that the planner payoff in (6), the joint payoff of agents in this society, indeed aggregates the single-agent

payoffs under the planner solution, (9) and (11). That is,

(A.37) V A(a, b,m, p) = a uA(a, b,m, p) + b uB(a, b,m, p) +m ui(a, b,m, p).

Indeed, substituting (9) and (11) in the right-hand side above gives

[a uA + b uB +m ui](a, b,m, p) = (a− b)
(

1−E
[
e−rτ(a,b,m,p)])

+m
[
p
(

1−E
[
e−rτ(a,b,m,p)|θi = A

])
− (1− p)

(
1−E

[
e−rτ(a,b,m,p)|θi = B

])]
= a− b+m(p− (1− p))− (a− b)E

[
e−rτ(a,b,m,p)]

−mpE
[
e−rτ(a,b,m,p)|θi = A

]
+m (1− p)E

[
e−rτ(a,b,m,p)|θi = B

]
= u(a, b,m)− (a− b)

ā∑
k=a

C(a, b, k) pk−a(1− p)k−b
m∏

j=n−2k+1

gj

−
ā∑
k=a

C(a, b, k) [k − a+ (n− 2k)p] pk−a(1− p)k−b
m∏

j=n−2k+1

gj

+

ā∑
k=a

C(a, b, k) [k − b+ (n− 2k)(1− p)] pk−a(1− p)k−b
m∏

j=n−2k+1

gj

= u(a, b,m)−
ā∑
k=a

C(a, b, k) [(n− 2k)(p− (1− p))] pk−a(1− p)k−b
m∏

j=n−2k+1

gj

where, at the third equality, we substitute (10), (12) and (13) and simplify, and where using u(k, k, n − 2k) =

(n− 2k)(p− (1− p)) establishes that the last expression equals (6).

A.12 Proof of Proposition 2

We use a “guess and verify” approach. Consider the Lagrangian where the IC for t = 0 has multiplier M(≥ 0) and

the IC for t > 0 has multiplier µ(t)(≥ 0):

L(F ;M,µ) = Obj(F ) +M IC0(F ) +

∫
τ>0

µ(τ) ICτ (F ).

Observe that:

Obj(F ) ≤ L(F ;M,µ) ≤ max
F

L(F ;M,µ)

given any feasible plan F , and thus, if (under certain parametric condition) we could find multipliers (M∗, µ∗) such

that maxF L(F ;M,µ) = Obj(F ∗) for some feasible plan F ∗, then it must be that F ∗ is the optimal policy (under

that parametric condition). Moreover,

F ∗ = arg max
F

L(F ;M,µ)

M∗ IC0(F ∗) +

∫
τ>0

µ∗(τ) ICτ (F ∗) = 0.

We consider the following guess of the optimal plan F ∗:

• FA is such that A(t) = 1 for all t;
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• FB is such that B(t) is interior for t < t∗, and B(t) = 0 for t > t∗;

• FN (t) = 0 for t < t∗, and FN (t) = 1 for t > t∗.

The associated multipliers (M∗, µ∗) are such that the slope for each B(t) is zero:

M =
q(1− p)(1− α)

1− p− pα

µ(t)eλt =
λ(1− p)

1− p− pα ((1− α)(1− q) +M +

∫ t

τ=0

µ(τ)eλτ ).

Seeing the system of the second equations for t > 0 as a differential equation for G(t) =
∫ t
τ=0

µ(τ)eλτdτ and

solving it (with initial condition G(0) = 0), we obtain:

G(t) = ((1− α)(1− q) +M) exp(
λ(1− p)

1− p− pαt),

and thus,

µ(t)eλt = ((1− α)(1− q) +M)
λ(1− p)

1− p− pα exp(
λ(1− p)

1− p− pαt).

We now verify that our guess is correct under certain parametric condition. First, the optimality of setting

A(t) = 1 for all t is immediate from the Lagrangian. The optimality of B(t) is also fine, because the multipliers

are such that any choice of B(t) is optimal. Later, B(t) is to be chosen so that all the incentive compatibility

conditions are binding with equality.

Finally, we verify that there exists t∗ such that it is optimal to set FN (t) = 0 for t < t∗ and FN (t) = 1 for t > t∗.

The Lagrangian is linear in each FN (t), whose coefficient is proportional to:

φ(t) := (2αp− (1− p)(1− α))(1− q)[λ(1− e−t)− e−t]− 2αp(1− q)λ

−M [λ((1− p− pα)(1− e−t)− pα)− (1− p− pα)e−t]

−(1− p− pα)

∫ t

τ=0

µ(τ)eλτ [λ(1− e−(t−τ))− e−(t−τ)].

Observe: ∫ t

τ=0

µ(τ)eλτ [λ(1− e−(t−τ))− e−(t−τ)]

=
λ

λ(1− p) + 1− p− pα [(λ+ 1)(1− p)e−t − pα exp(
λ(1− p)

1− p− pαt)],

and thus, the coefficient of FN (t) further simplifies to:

φ(t) = −λ((1− p)(1− α)−Mαp)

+
λpα(1− p− pα)

λ(1− p) + 1− p− pα exp(
λ(1− p)

1− p− pαt)

−(λ+ 1)[2αp(1− q)− (1− p)(1− α) +
λ(1− p)(1− p− pα)

1− p− pα+ λ(1− p) ]e−t.

It is obvious that φ(t) > 0 for large enough t. If φ(t) crosses with the horizontal axis only once (“single-crossing”),

then there must exist t∗ such that FN (t) = 0 for t < t∗ and FN (t) = 1 for t > t∗ (possibly t∗ = 0).14

Finally, we set B(t) to satisfy the incentive compatibility constraints with equality. First, we can set B(t) = 0

for all t > t∗. For t < t∗, by IC:

(1− p− pα)B(t) = (1− p)
∫ t∗

τ=t

B(τ)dτ + (1− p)e−λ(t∗−t)(1− e−(t∗−t))− pα(1− e−(t∗−t)(λ+1))

= (1− p)
∫ t∗

τ=t

B(τ)dτ + (1− p)e−λ(t∗−t) − pα− (1− p− pα)e−(λ+1)(t∗−t).

14In case it crosses with the horizontal axis multiple times, a possible idea may be to use the fact that FN must

be non-decreasing.
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Solving this differential equation, we can obtain a closed-form expression for B(t).

Finally, we verify that truthful reporting is optimal for the novice upon observing either signal, A or B. A novice

getting a B signal at t < t∗ strictly prefers reporting B at t, thereby receiving a continuation payoff of −B(t), to

• reporting A at s ∈ [t, t∗], which yields a continuation payoff of −(1 − e−(s−t)) − e−(s−t)A(s) = −1, but we

have B(t) ≤ 1 by definition;

• reporting N on [t, t∗], which results in a switch to B at date t∗ yielding a continuation payoff of −(1 −
e−(t∗−t)), which is no greater than −B(t) = −

∫ t∗
t

(1− e−(s−t))dFB(s, t), since FB induces a switch prior to

t∗ with positive probability;

• reporting B at s ∈ (t, t∗], which yields a continuation payoff of −(1− e−(s−t))− e−(s−t)B(s), which, again,

is no greater than −B(t), since FB induces a switch on (t, s) with positive probability

A novice getting an A signal at t < t∗ strictly prefers reporting A at t, thereby receiving a continuation payoff of

α, to

• reporting B at s ∈ [t, t∗], which yields a continuation payoff of α(1 − e−(s−t)) + αe−(s−t)B(s) ≤ α, where

the inequality follows from B(t) ≤ 1;

• reporting N on [t, t∗], yielding a continuation payoff of α(1− e−(t∗−t)) < α.

• reporting A at s ∈ (t, t∗], yielding a continuation payoff of α(1− e−(s−t)) + αe−(s−t)A(s) = α.

A.13 Proof of Proposition 3

We first show that there exists an optimal solution Dt to the planner’s relaxed problem with only constraint (16),

in which Dt(a, b+ 1,m) = Dt(a, b,m+ 1) for every (a, b,m) ∈ Sn−1. Then we verify that other constraints.

The relaxed problem, i.e., maximising (15) with the constraint (16) and the feasibility constraint Dt(a, b,m) ∈
[0, 1] for any (a, b,m) ∈ Sn, is a linear programming problem, in which the objective function is bounded and a

feasible solution exists. Thus, an optimal solution exists.

Let us pick one optimal solution Dt and denote the number of states in Sn−1 in which Dt(a, b + 1,m) 6=
Dt(a, b,m+ 1) to be d ≥ 0, where (a, b,m) ∈ Sn−1. We call such a state a disagreement state. Note that d is finite,

since the number of total states is finite. If d = 0, we have our result.

If d ≥ 1, we now show we can find another optimal solution in which the number l′ of the disagreement states is

at most l− 1, i.e., l′ ≤ l− 1. Let s1 = (a1, b1,m1) ∈ Sn−1 be a disagreement state. IC constraint (16) implies that

it cannot be the only disagreement state, since they must balance out in expectation. Let s2 = (a2, b2,m2) ∈ Sn−1

be the paired disagreement state. Without loss of generality, assume 0 ≤ Dt(a1, b1,m1 +1) < Dt(a1, b1 +1,m1) ≤ 1

and 0 ≤ Dt(a2, b2 + 1,m2) < Dt(a2, b2,m2 + 1) ≤ 1. Let γ 6= 0 be the Lagrange multiplier for the constraint (16).

Since the optimal policy Dt satisfies 0 ≤ Dt(a1, b1,m1 + 1) < Dt(a1, b1 + 1,m1) ≤ 1, the first order conditions

on the state (a1, b1,m1 + 1) and (a1, b1 + 1,m1) of the Lagrange function satisfy

(A.38) πtn−1(a1, b1,m1)
[
qt(m)u(a1, b1, p)− γ

]
≤ 0,

and

(A.39) πtn−1(a1, b1,m1)
[
qt(b)u(a1, b1 + 1, p) + γ

]
≥ 0,

where qt(m) = πtn(a1, b1,m1 + 1)/πtn−1(a1, b1,m1) and qt(b) = πtn(a1, b1 + 1,m1)/πtn−1(a1, b1,m1) are the prob-

abilities that an agent has observed no news and B-news by time t, respectively. Because the news process is

independent across agents, qt(m) and qt(b) do not depend on the state (a1, b1,m1) ∈ Sn−1. Thus,

(A.40) qt(b)u(a1, b1 + 1, p) + γ ≥ 0 ≥ qt(m)u(a1, b1, p)− γ.
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Similarly, since the optimal policy Dt satisfies 0 ≤ Dt(a2, b2 + 1,m2) < Dt(a2, b2,m2 + 1) ≤ 1, the first order

conditions on the state (a2, b2 + 1,m2) and (a2, b2,m2 + 1) of the Lagrange function satisfy

(A.41) πtn−1(a2, b2,m2)
[
qt(b)u(a2, b2 + 1, p) + γ

]
≤ 0,

(A.42) πtn−1(a2, b2,m2)
[
qt(m)u(a2, b2, p)− γ

]
≥ 0,

which implies

(A.43) qt(m)u(a2, b2, p)− γ ≥ 0 ≥ qt(b)u(a2, b2 + 1, p) + γ.

Inequalities (A.40) and (A.43) together, we have

(A.44) qt(b)u(a1, b1 + 1, p) + γ ≥ 0 ≥ qt(b)u(a2, b2 + 1, p) + γ,

(A.45) qt(m)u(a2, b2, p)− γ ≥ 0 ≥ qt(m)u(a1, b1, p)− γ.

Equivalently, we have

(A.46) u(a1, b1 + 1, p) ≥ u(a2, b2 + 1, p),

(A.47) u(a2, b2, p) ≥ u(a1, b1, p).

Note that u(a, b+ 1, p) = u(a, b, p)− (1 +α)p, thus (A.46) implies that u(a1, b1, p) ≥ u(a2, b2, p). With (A.47), this

means that u(a1, b1, p) = u(a2, b2, p) and u(a1, b1 + 1, p) = u(a2, b2 + 1, p). Thus, they imply (A.44) and (A.45)

hold with equalities, which in turn imply that (A.38), (A.39), (A.41) and (A.42) hold with equalities.

The first order conditions all hold with equalities in this linear programming problem. This means that the

complementary slackness conditions behind the inequalities are slack and do not restrict the optimal solution on

those relevant states to the boundary of [0, 1]. Thus, we are free to modify the policy on those states within the

feasible region, without affecting its optimality.

Let ∆1 = Dt(a1, b1 + 1,m1) − Dt(a1, b1,m1 + 1) ∈ (0, 1] and ∆2 = Dt(a2, b2 + 1,m2) − Dt(a2, b2,m2 + 1) ∈
[−1, 0). Without loss, assume that πtn−1(a1, b1,m1)∆1 + πtn−1(a2, b2,m2)∆2 ≥ 0. Consider a new policy D̂t, in

which the policy on all other states coincides with Dt, expect on states (a1, b1 + 1,m1), (a1, b1,m1 + 1), (a2, b2 +

1,m2), (a2, b2,m2 + 1) ∈ Sn. If D̂t is feasible, it is also optimal. To be feasible, all we need is that D̂t ∈ [0, 1] on

those relevant states. Note that (16) implies

πtn−1(a1, b1,m1)∆1 + πtn−1(a2, b2,m2)∆2

= πtn−1(a1, b1,m1)
[
D̂t(a1, b1 + 1,m1)− D̂t(a1, b1,m1 + 1)

]
+ πtn−1(a2, b2,m2)

[
D̂t(a2, b2 + 1,m2)− D̂t(a2, b2,m2 + 1)

]
.

If πtn−1(a1, b1,m1)∆1+πtn−1(a2, b2,m2)∆2 = 0, we make a feasible modification D̂t = 1 on (a1, b1+1,m1), (a1, b1,m1+

1), (a2, b2 + 1,m2), (a2, b2,m2 + 1) ∈ Sn so that the number of the disagreement states on Sn−1 in the new policy

is l′ = l − 2. If πtn−1(a1, b1,m1)∆1 + πtn−1(a2, b2,m2)∆2 > 0, then ∆1 +
πtn−1(a2,b2,m2)

πtn−1(a1,b1,m1)
∆2 ∈ (0, 1). It is easy to

see that the following modification is feasible: D̂t(a1, b1 + 1,m1) = D̂t(a2, b2 + 1,m2) = D̂t(a2, b2,m2 + 1) = 1 and
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D̂t(a1, b1,m1 + 1) = 1 − ∆1 − πtn−1(a2,b2,m2)

πtn−1(a1,b1,m1)
∆2 ∈ (0, 1). The the number of the disagreement states on Sn−1 in

the new policy is l′ = l − 1.

Continuing this process, we can find an optimal policy in which the number of the disagreement states on Sn−1

is zero. Thus, there exists an optimal solution to the relaxed problem in which for every (a, b,m) ∈ Sn−1, Dt(a, b+

1,m) = Dt(a, b,m+1). Thus, for any fixed a ∈ {0, 1, · · · , n}, Dt(a, b,m) = Dt(a, b′,m′), where (a, b,m), (a, b′,m′) ∈
Sn. That is, the optimal policy Dt depends only on the number of reports on A-news. Let us write it as Dt(a),

for a ∈ {0, 1, · · · , n}. Thus, the planner’s objective can be written as

n∑
a=0

Dt(a)
∑

{(b,m):(a,b,m)∈Sn}

πtn(a, b,m)u(a, b, p).

Obviously, it is optimal that Dt(a) = 1 (Dt(a) = 0) if the expected payoff conditional on a is positive (negative), i.e.,∑
{(b,m):(a,b,m)∈Sn} π

t
n(a, b,m)u(a, b, p) > 0 (< 0), for any given a. Let pt = pe−λ(t+T )

pe−λ(t+T )+1−p denote the posterior

belief on the agent being type A but having not observed A-news by time t. Note that pt < p and it is strictly

decreasing in t.We can calculate the expected payoff conditional on a:∑
{(b,m):(a,b,m)∈Sn} π

t
n(a, b,m)u(a, b, p)∑

{(b,m):(a,b,m)∈Sn} π
t
n(a, b,m)

= αa+ [αpt − (1− pt)] (n− a),

which is strictly increasing in both a and pt. This policy means that there exists a threshold āt, which is increasing

in t, such that Dt(a) = 1 if and only if a ≥ āt. Moreover, āt ≥ 1 as pt < p < pM , and āt ≤ ā+ 1 as the expected

payoff is positive when a = ā+ 1 even if pt = 0.

Finally, the above solution satisfies all other IC constraints that are excluded from the relaxed problem, as

reporting A-news strictly increases the probability that the total number of A-reports exceeds āt.

A.14 Proof of Proposition 4

In both scenarios, note that for ι ∈ {F,B},

(A.48) E [(αxA − (n− xA))] < E
[
(αxA − (n− xA))1Aι(0)

]
< E

[
(αxA − (n− xA))1Aι(1)

]
.

The first inequality comes from that

E [(αxA − (n− xA))]−E
[
(αxA − (n− xA))1Aι(0)

]
= E

[
(αxA − (n− xA))1Bι(0)

]
< 0,

by the definition of the event Bι(0).

The second inequality comes from that

E
[
(αxA − (n− xA))1Aι(0)

]
−E

[
(αxA − (n− xA))1Aι(1)

]
=E

[
(αxA − (n− xA)) (1Aι(0)∩Aι(1) + 1Aι(0)∩Bι(1))

]
−E

[
(αxA − (n− xA)) (1Aι(1)∩Aι(0) + 1Aι(1)∩Bι(0)

]
=E

[
(αxA − (n− xA))1Aι(0)∩Bι(1)

]
−E

[
(αxA − (n− xA))1Aι(1)∩Bι(0)

]
=E [(αxA − (n− xA)) |Bι(1)]P [Aι(0) ∩Bι(1)]−E [(αxA − (n− xA)) |Aι(1)]P [Aι(1) ∩Bι(0)] < 0.

The last inequality is due to the definition of the events Bι(1) and Aι(1). The last equality is due to the fact that

the conditional expected payoff conditional on information on both date 0 and 1 is the same to the conditional

expected payoff conditional on information only on date 1.

The difference of the expected payoffs between holding the election on date 0 and that on date 1 in scenario

ι ∈ {F,B} is

E
[
(αxA − (n− xA))1Aι(0)

]
−E [(αxA − (n− xA))]

−δ
[
E
[
(αxA − (n− xA))1Aι(1)

]
−E [(αxA − (n− xA))]

]
.
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Define

δι =
E
[
(αxA − (n− xA))1Aι(0)

]
−E [(αxA − (n− xA))]

E
[
(αxA − (n− xA))1Aι(1)

]
−E [(αxA − (n− xA))]

.

It is immediate that δι ∈ (0, 1) due to A.48 and our results follow.

B Second-best mechanism in the discrete-time framework

Although the continuous-time framework considered in the main text has the advantage of simplicity and clarity

in presentation, its formal treatment could be much trickier. In fact, we do not show that the “second-best

mechanism” considered in the main text is optimal within the continuous-time framework. What we show here is

that the same kind of mechanism is indeed optimal in the discrete-time framework, and as the time length shrinks

to zero, it becomes closer and closer to the one described in the main text. That is the sense that we (informally)

argue that that is the second-best mechanism “in continuous time”.

B.1 Problem and Lagrangian

The discrete-time version of the problem shares the same notation as in the main text, except that the time

t ∈ {0, 1, . . .}. The discount factor is δ ∈ (0, 1), and the probability that an uninformed voter learns that he is A

(resp. B) type is Λp (resp. Λ(1 − p)) at any given t, where Λ ∈ (0, 1). In order to make the discrete-time model

closer to the continuous-time counterpart, we may let δ = e−r∆, Λ = e−λ∆ and let ∆ → 0, as standard. For the

rest of the material, we keep the notation δ and Λ to simplify the notation.

Assumption 2. Assume p is less than the single-agent experimentation threshold (i.e., p < 1

1+α+ Λδα
1−δ

).

Also, the parameters are such that the first-best mechanism looks as follows, as a function of (at, bt).

bt = 0 bt = 1 bt = 2

at = 0 A B B

at = 1 A A

at = 2 A

The principal’s second-best problem is given as follows:

max
q

∞∑
t=0

δtE(a≤t,b≤t)[qt(a≤t, b≤t)w(at, bt)]

sub. to qt−1(a≤t−1, b≤t−1) ≥ qt(a≤t−1, at, b≤t−1, bt), ∀t

ICNt , ∀t,

where q−1(·) = 1 by convention.

The uninformed voter’s incentive compatibility at time t, ICNt , is the same as in the main text:

En−1
(a≤t,b≤t)

[V Nt (a≤t, b≤t)− V Bt (a≤t, (b<t, bt + 1))
pα− (1− p)

(−1)
] ≥ 0,

but it is rewritten in the discrete-time framework without “dt”:

Lemma B.11.

En−1
(a≤t,b≤t)

[V Nt (a≤t, b≤t)− V Bt (a≤t, (b<t, bt + 1))
pα− (1− p)

(−1)
] ≥ 0

⇔ E(a≤t,b≤t)[V
N
t (a≤t, b≤t)(2− at − bt)− V Bt (a≤t, b≤t)

bt − bt−1

Λp

pα− (1− p)
−1

] ≥ 0.
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Proof. For the first term, we use:

En−1
(a≤t,b≤t)

[V Nt (a≤t, b≤t)]− E(a≤t,b≤t)[V
N
t (a≤t, b≤t)

2− at − bt
n(1− Λ)

]

=
(n− 1)!(Λp)

∑
s≤t as(Λ(1− p))

∑
s≤t bs

a0!b0! . . . at!bt!(n− 1−
∑
s≤t(as + bs))!

(1− Λ)n−1−
∑
s≤t(t+1−s)(as+bs)

− n!(Λp)
∑
s≤t as(Λ(1− p))

∑
s≤t bs

a0!b0! . . . at!bt!(n−
∑
s≤t(as + bs))!

(1− Λ)n−1−
∑
s≤t(t+1−s)(as+bs) 2− at − bt

n
= 0,

(recalling n = 2); and similarly for the second term.

Now we are ready to provide the Lagrangian:

L(η(·); q(·)(·)) =

∞∑
t=0

δtE(a≤t,b≤t)

[
qt(a≤t, b≤t)w(at, bt)

+ηt

{
V Nt (a≤t, b≤t)(2− at − bt)− V Bt (a≤t, b≤t)

bt − bt−1

Λp

pα− (1− p)
−1

}]
,

where η(·) and q(·)(·) are any non-negative vectors (including those which are infeasible in the primal problem). As

in the main text, we ignore the monotonicity constraint. We have the following result, which corresponds to the

(weak) duality result for Lagrangian.

Lemma B.12. If there exist non-negative multiplier vector η∗(·), and an incentive compatible mechanism q∗(·)(·)
such that (i)

L(q∗(·)(·); η∗(·)) ≥ L(q(·)(·); η∗(·))

for any non-negative q(·)(·), and (ii) the value of the primal problem given mechanism q∗(·)(·) coincides with

L(q∗(·)(·), η∗(·)), then q∗(·)(·) solves the primal problem, that is, is a second-best mechanism.

Proof. Suppose that the hypothesis in the statement is satisfied.

Let W (q(·)(·)) denote the value of the primal objective (i.e., the principal’s ex ante expected payoff) given any

incentive compatible mechanism q(·)(·). It is immediate that, for any non-negative multiplier vector η(·), we have:

L(η(·); q(·)(·)) ≥W (q(·)(·)).

Therefore, for any incentive compatible mechanism q(·)(·), we have:

W (q∗(·)(·)) = L(η∗(·); q
∗
(·)(·))

≥ L(η∗(·); q(·)(·))

≥ W (q(·)(·)),

meaning that q∗(·)(·) is optimal in the primal problem.

B.2 Candidate solution

The form of the candidate solution is similar as in the main text: There exists t∗ such that

1. For any t < t∗: (i) unless (at, bt) = (0, 2), stay in A; (ii) if (at, bt) = (0, 2), then either delay or probabilistic

switch to B.

2. At t = t∗: (i) if at = 0, then immediately switch to B; (ii) otherwise, stay in A.
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As before, this may be seen as a class of mechanisms. As in Observation 1 and 2 of the main text, the extreme

versions of the mechanism in this class either makes all the IC constraints (for t < t∗) slack or all violated.

Observation 3 claims (informally in the main text) that, as a consequence, we should be able to find a mechanism

in this class that satisfies all the IC constraints with equality (for t < t∗). The first part of the following theorem

formalizes those observations, and the second part is about its optimality.

Theorem 1. There exists a mechanism in the above class such that all the IC constraints for t < t∗ hold with

equality. Moreover, it is a second-best mechanism.

The rest of this section provides the proof. First, we show the existence part. To show this, first, we make two

observations that correspond to Observations 1 and 2 in the main text.

Lemma B.13. The version of the mechanism in the above class such that qt((φ, t1t2)t) = 1 for all t1, t2 < t∗

satisfies all the IC constraints (possibly with strict inequalities).

We omit the proof as it is straightforward.

Lemma B.14. The version of the mechanism in the above class such that qt((φ, t1t2)t) = 0 for all t1, t2 < t∗

violates all the IC constraints.

Proof. By direct computation of

En−1
a≤t,b≤t

[V Nt (a≤t, b≤t)− V Bt (a≤t, b<t, bt + 1)
pα− (1− p)

−1
].

To conclude the existence part, we now obtain an analog of Observation 3: Consider the extreme version of the

mechanism considered in Observation 1 (i.e., the version with qt((φ, t1t2)t) = 1 for all t1, t2 < t∗), where all the IC

constraints are satisfied, possibly with strict inequalities.

Consider the period t = t∗ − 1. We decrease qt∗−1((φ, t1t2)t∗−1) gradually, uniformly across all t1, t2 ≤ t∗ − 1,

until ICNt∗−1 holds with equality. This operation also affects ICNt for t < t∗ − 1, but never violates ICNt : Indeed,

the first term of the left-hand side of ICNt (i.e., the expected continuation value of truth-telling N) comprises (i)

the flow payoff of time t (pα− 1− p) and (ii) the (discounted) expected continuation payoff from t+ 1 on, which

comprises (ii-A) the case where this uninformed voter becomes A type at t+ 1, (ii-B) the case where he becomes

B type at t+ 1, and (ii-N) the other case. If misreporting B at t, his payoff would comprise (i’) the flow payoff of

time t, pα − 1 − p (recall qt(·) = 1 for t < t∗ − 1 at this point) and (ii’) the (discounted) expected continuation

payoff from t+ 1 on, which comprises (ii’-A) the case where this uninformed voter becomes A type at t+ 1, (ii’-B)

the case where he becomes B type at t + 1, and (ii’-N) the other case. (i) and (i’) attain the same payoff, so do

(ii-B) and (ii’-B) (because qt∗−1((φ, t1t2)t∗−1) does not depend on t1, t2). (ii-A) clearly attains higher payoff than

(ii’-A). Finally, (ii-N) attains higher payoff than (ii’-N) as long as ICNt+1 holds (weakly or strictly).

Apply the same procedure inductively: For any given t < t∗− 1, suppose that all ICNt′ hold with equality for all

t′ = t+ 1, . . . t∗ − 1, with qt′((φ, t1t2)t′) invariant in t1, t2. By the same logic as above, we can gradually decrease

qt((φ, t1t2)t) uniformly across all t1, t2 ≤ t until ICNt holds with equality. This operation does not violate ICNt′′ for

t′′ < t by the same logic above, and it does not affect ICNt′ for t′ > t at all because qt((φ, t1t2)t) does not matter

for ICNt′ .

Next, we verify that this mechanism is indeed second-best. Based on the previous weak-duality lemma, our

task is to identify the right Lagrange multiplier and an incentive compatible mechanism that is optimal in the

Lagrangian problem, with the same value as in the previous expression.
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Because our candidate optimal mechanism requires interior qt((φ, t1t2)t) for t1, t2 < t∗. Because the Lagrangian

is linear in qt((φ, t1t2)t), that would be only possible if its slope is zero. This leads to our guess of the multipliers:

• For s < t∗: η̃s = 2−αP
2

γ(1 + γ)t where γ = Λ(1−p)
(1−Λ)(1−p−pα)

(> 0).

• For s > t∗: η̃s = 0.

• t∗ is such that:

(B.49) (1 + γ)t
∗

=
αP p(1 + α)

(2− αP )(1− p− pα)

Hence,
∫
s≤t η̃sds = 2−αP

2
((1 + γ)t − 1) for t < t∗, and

∫
s≤t η̃sds = 2−αP

2
((1 + γ)t

∗
− 1) for t > t∗.

Note that, then: If t1 < t∗,

−
∫
s≤t1

η̃sds+ η̃t1
1− p− pα
λ(1− p) =

2− αP
2

.

Therefore, the principal is indifferent for any qt((φ, t1t2)t) if t1, t2 < t∗.

Once the multipliers are given as above, the rest of the first-order conditions are obtained accordingly. This part

is basically the same as in the text, so we omit it for brevity, but it confirms that our guess is indeed correct in

that the above candidate policy is a second-best mechanism.

Finally, we verify the other ignored incentive constraints. First, in this mechanism, a voter with A type does not

have any incentive to misreport his type, because doing so can only (weakly) decrease the probability of staying in

policy A. A voter with B type does not have any incentive to misreport his type either, because doing so can only

(weakly) increase the probability of staying in policy A. Therefore, this mechanism is incentive compatible for any

type, and at any point in time.

C Revelation Principle in Continuous-time Mechanism Design

In this section, we show a revelation-principle result in a continuous-time dynamic mechanism design environment.

The key assumption is that each agent never learns a deviation of other agents, and in this sense, there is no

“off-path” information set.15 Hence, we consider (ex ante) Nash equilibrium as a natural solution concept, and

show that, for any Nash equilibrium outcome given any (indirect) mechanism, there exists a direct mechanism

where everyone’s truth-telling is a Nash equilibrium.

Although the result is based on a relatively standard argument, it seems that there has not been any formal

revelation-principle result in continuous-time environments. In what follows, we consider a general continuous-

time mechanism design environment (which includes our main environment as a special case), hoping that this

section can be read independently by readers who are interested in the revelation principle in other continuous-time

environments.

C.1 Model and Result

There exist I agents. The time is continuous t ∈ [0,∞). It is useful to imagine that each agent i’s private

information is drawn all at time 0, θi = (θit)t ∈ Θi =
∏
t Θit, although his choice at each t can only depend on

15Except for trivial cases where he himself deviates, which is well-treated in our analysis.
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θti = (θis)s≤t. Each Θit is a Polish space with Borel σ-algebra and θ = (θi)i is a stochastic process following a

probability measure F .16

The principal makes a sequence of social choices, a = (at)t ∈ A =
∏
tAt, where A is a measurable space. Each

agent i’s (ex post) payoff in the game is given by a measurable function ui(θi, a).

Formally, at the beginning of the game, the principal commits to a mechanism, comprising (i) a collection of

message spaces, Mit for each i, t, each of which is a measurable space, and (ii) a collection of social choice rules,

αt((m
t
i)i) ∈ At for each t, (mt

i)i, where mt
i = (mis)s≤t, and each αt is a measurable mapping. We discuss its

interpretation in the next paragraph. After observing the mechanism, each agent chooses a plan of the play, which

is denoted by a collection of measurable mappings σit(θ
t
i) ∈ Mit for each t, θti . Let σi denote this collection, i.e.,

σi = (σit(θ
t
i))t,θti .

17

Informally, one can interpret that the above notation reflects the following timing of the game: At each time

t, first, agent i observes a new piece of his private information θit ∈ Θit, and then he privately sends a message

mit ∈Mit to the principal. Next, the principal makes a social decision of that period as a function of the collected

messages up to t (and of the past social choices, which is irrelevant here because αs, s < t, are all deterministic):

αt((m
t
i)i) ∈ At. Then the game proceeds to the “next instance of time”.

Given α and σ = (σi)i, together with F , a joint probability measure for (θ, a) is induced, and hence i’s expected

payoff:

E[ui(θ, a)|α, σ].

Definition 1. A profile of the player’s plans of the play, σ = (σi), is a Nash equilibrium given α, if for all i and

any plan of the play of i, σ′i, we have:

E[ui(θ, a)|α, σ] ≥ E[ui(θ, a)|α, σ′i, σ−i].

Definition 2. 1. A mechanism is direct if each Mit = Θit.

2. A plan of the play of agent i, σi, is truth-telling if σit(θ
t
i) = θit for all t, θti = (θis)s≤t.

3. A direct mechanism, represented by α, is incentive compatible if every agent’s truth-telling is a Nash equi-

librium given α.

Theorem 2. Fix α and σ so that σ is a Nash equilibrium given α. Then, there exists a direct mechanism α∗ such

that (i) truth-telling σ∗ is a Nash equilibrium (i.e., α∗ is incentive compatible) and (ii) (α, σ;F ) and (α∗, σ∗;F )

induce the same joint distribution for (θ, a).

Proof. Define α∗ so that:

α∗t ((θ
t
i)i) = αt((σit(θ

t
i))i),

for each t and (θti)i. Then (ii) is immediate.

To show (i), consider a deviation of agent i in the direct mechanism α∗. Any possible deviation is identified

by a measurable mapping ηi : Θi → Θi, where its i-th component is denoted by ηit(θ
t
i) ∈ Θit, interpreted as i’s

(mis)reported type at t given his true type realization up to t (i.e., θti), reflecting the restriction that i’s choice

16Thus, σ-algebra over Θi is given by any finite cylinders. For a countable Cartesian product of measurable

spaces, we always consider product σ-algebra.
17Implicitly, I assume the least informed setting for the agents: he does not observe anything except for his type

realization. To show the revelation principle, this seems the easiest situation.
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at time t can only depend on θti (not entire θi). Let ηti(θ
t
i) = (ηis(θ

s
i ))s≤t. The joint distribution for (θ, a) given

(α∗, τi, σ
∗
−i;F ) is the same as that given (α, σ′i, σ−i;F ), where σ′i = (σ′it)t with:

σ′it(θ
t
i) = σit(η

t
i(θ

t
i)),

for each t. However, because σ is a Nash equilibrium given α, it is not profitable for i to deviate from σi to σ′i.

Therefore, it is not profitable for i to deviate from truth-telling to τi.
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Murto, P. and J. Välimäki (2013). Delay and information aggregation in stopping games with private information.

Journal of Economic Theory 148 (6), 2404–2435.

Myerson, R. B. (1986). Multistage games with communication. Econometrica: Journal of the Econometric Society ,

323–358.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems

for voting procedures and social welfare functions. Journal of economic theory 10 (2), 187–217.

Stanley, R. P. (2015). Catalan numbers. Cambridge University Press.

Stinchcombe, M. B. (1992). Maximal strategy sets for continuous-time game theory. Journal of Economic The-

ory 56 (2), 235–265.

Strulovici, B. (2010). Learning while voting: Determinants of collective experimentation. Econometrica 78 (3),

933–971.

Sugaya, T. and A. Wolitzky (2020, 08). The Revelation Principle in Multistage Games. The Review of Economic

Studies.

57


	Introduction
	The model
	Continuous-time problem and first-best mechanism
	The public reporting game:
	Planner solution
	Example: Majority rule
	Failures of Incentive Compatibility
	A pivotal event
	Majority rule


	Second-best mechanism under public communication
	Second-best mechanism under private communication
	Environment and Notation
	Second-best mechanism
	Second-best mechanism, and its implementation

	Single election
	First-best policy
	Second-best policy
	First-best and second-best election dates

	Conclusion and open questions
	Appendix
	Deriving the expression (4) for VA
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Lemma 3
	Claim in Section 3.3
	Proof of Lemma 4
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Second-best mechanism in the discrete-time framework
	Problem and Lagrangian
	Candidate solution

	Revelation Principle in Continuous-time Mechanism Design
	Model and Result


