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1 Introduction

With the growing availability of data, functional data analysis has been increasingly applied

across various fields, including chemometrics, climate science, and economics. In this paper,

we consider a linear functional regression with scalar response Y and functional predictor

X:

Y =

∫ 1

0

β(s)X(s)ds+ ε, E[εX] = 0. (1)

The main goal is the estimation of the functional slope β and the prediction of the

response Y . Both X and β belong to an infinite dimensional Hilbert space and the high

dimensionality of the parameter β leads to an ill-posed inverse problem. To estimate the

slope coefficient β consistently, one needs to use either a dimension-reduction device or

regularization. The most popular approach has been the functional principal component

analysis (PCA); see Cardot et al. (1999), Ramsay and Silverman (2002), Cai and Hall

(2006), and Hall and Horowitz (2007). The PCA approach consists of approximating β by

the first principal components (PC) corresponding to the eigenfunctions of the covariance

operator of X. As noted by Jolliffe (1982), this approach will work best if the response

variable Y is correlated with the first PCs.

In this paper, we propose to estimate the slope function by partial least squares (PLS).

This method uses components that are linear transformations of the regressors X chosen

to maximize the correlation with the response Y . As a result, the number of components

required to obtain a good prediction is generally smaller than the number of PCs. It was

initially developed to estimate regressions with many regressors, see Wold et al. (1984) and

Helland (1988), and has recently been adapted to functional regression by Delaigle and Hall

(2012). As the estimator is nonlinear in the response variable and computed iteratively,

analyzingf its properties is much more challenging. To establish our theoretical results, we
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rely on the inverse problem literature and exploit the close connection between PLS and

conjugate gradient as presented in Engl et al. (1996), Hanke (1995), and Blanchard and

Krämer (2016).

Our paper makes several original contributions. First, we establish the convergence

rate of our estimator and the prediction error under a source condition that relates β

and the spectral decomposition of the covariance operator. Our results do not require

specifying the distance between the adjacent eigenvalues as commonly done in PCA, see for

instance Hall and Horowitz (2007), and hold even in the presence of repeated eigenvalues.

Second, we derive the lower bound on the minimax convergence rate and show that our

estimator is (nearly) minimax optimal. Given the optimal convergence rate depends on the

degree of ill-posedness of the problem which is typically unknown, we propose an adaptive

early stopping method for selecting the number of PLS components. We show that this

data-driven selection yields an estimator that is rate optimal with high probability. We

also characterize how the selected number of components changes with the sample size in

various scenarios. A theoretical comparison shows that the bias of the PLS estimator is

smaller than or equal to that of the PCA estimator for the same number of components.

Moreover, simulations show that the PLS estimator gives a smaller prediction error than

PCA in various settings and that the PLS estimator combined with the adaptive stopping

rule gives reliable estimates. An efficient algorithm to compute the estimator iteratively is

provided.

To illustrate the practical relevance of our results, we apply our method to climate

science. Using a fine-grained county-level dataset of US crop yields and temperature,

recorded over 70 years, we estimate the impact of temperature on crop yields. We find that

the critical temperature after which the annual crop yields start declining is around 30◦C

3



which is similar to Schlenker and Roberts (2009) who rely on highly-parameterized least-

squares estimators. We obtain additional insights by comparing how the temperature effect

curves change over time. Interestingly, we find that the detrimental temperature effects

on corn and soybean yields have decreased over time which is attributed to the adaptive

actions taken by farmers, including the use of resilient crops and efficient irrigation systems.

The literature on functional regression is vast. Besides PCA already mentioned, another

popular approach consists of using a predetermined basis to approximate the slope function

β, including highly parametrized step functions or polynomials. Other papers propose a

penalized estimator using Tikhonov regularization, see Florens and Van Bellegem (2015), or

using a roughness penalty or similarly a penalty in terms of a norm in a reproducing kernel

Hilbert space; see Cardot et al. (2003), Li and Hsing (2007), Yuan and Cai (2010). Reiss

and Ogden (2007) combine the projection on the first principal component and a roughness

penalty. Finally, in an independent work, Gupta et al. (2023) propose an estimator that

belongs to a reproducing kernel Hilbert space generated by a specified kernel and uses

a conjugate gradient to regularize the solution. While their method is similar to ours,

our results are not directly comparable. Their main result is the convergence rate of an

estimator in reproducing kernel Hilbert space, established under assumptions that differ

from ours. In particular, they assume a polynomial decay rate of the eigenvalues of certain

operators, while we do not need to specify any decay rate for eigenvalues in our work. Their

source condition is also different from ours and it is not clear which one is the weakest.

The rest of the paper is organized as follows. Section 2 introduces the functional re-

gression and the PLS estimator. Section 3 establishes the theoretical properties including

the convergence rate of estimation and prediction errors, the minimax lower bound, the

adaptivity of an early stopping rule, and the bias comparison to PCA. Section 4 presents
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a Monte Carlo study. Section 5 describes an empirical application of our estimator to the

nonlinear temperature effects in agriculture, and Section 6 concludes. An online appendix

contains all the proofs and additional simulation results.

2 Model and estimator

2.1 Functional Linear Regression

Throughout the paper, we consider a generalized version of the functional linear regression

model

Y = ⟨β,X⟩+ ε, E[εX] = 0,

where (Y,X) ∈ R × H, β ∈ H is the unknown functional slope coefficient, and (H, ⟨., .⟩)

is a separable Hilbert space with the induced norm ∥.∥ =
√
⟨., .⟩. The model in equation

(1) corresponds to the Hilbert space of square integrable functions, H = L2[0, 1], with the

norm induced by the inner product ⟨f, g⟩ =
∫ 1

0
f(s)g(s); see also Cai and Hall (2006), Cai

and Yuan (2012), Cardot et al. (1999), Cardot et al. (2003), Cardot and Johannes (2010),

Comte and Johannes (2012), Crambes et al. (2009), Delaigle and Hall (2012), Hall and

Horowitz (2007), among many other important contributions.

For simplicity we assume that E[X] = 0. The covariance restriction E[εX] = 0 implies

that the slope coefficient β ∈ H solves the moment condition

r := E[Y X] = E[(X ⊗X)β] =: Kβ, (2)

where r ∈ H and K : H → H is a compact covariance operator with summable eigenvalues

whenever E∥X∥2 < ∞. It is well-known that the inverse operator K−1 is discontinuous and

solving the equationKβ = r for β is an ill-posed inverse problem; see Carrasco et al. (2007),
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Engl et al. (1996), Hoffmann and Reiss (2008), Klemelä and Mammen (2010), Nemirovski

(1986).

Roughly speaking, there are two popular strategies to regularize such problems:

(a) replace K−1 with a continuous operator Rα(K) for some function Rα : R+ → R+

satisfying limα→0+ Rα(λ) = λ−1.

(b) solve the problem in a finite-dimensional subspace Hm ⊂ H, spanned by some basis

vectors h1, h2, . . . , hm ∈ H.

Examples of (a) include the Tikhonov regularization when Rα(λ) = (α+λ)−1, the spec-

tral cut-off when Rα(λ) = λ−11λ≥α and the Landweber iterations; see Carrasco et al. (2007),

Cavalier (2011), Engl et al. (1996) for more details. On the other hand, the estimators in

group (b), often solve the empirical least-squares problem

min
b∈Hm

∥y − Tnb∥2n, (3)

where ∥v∥2n = v⊤v/n, v ∈ Rn and we put y = (Y1, . . . , Yn)
⊤ and

Tn : H → Rn

b 7→ (⟨X1, b⟩, . . . , ⟨Xn, b⟩)⊤

for an i.i.d. sample (Yi, Xi)
n
i=1. The basis (hj)

m
j=1 spanning Hm can be either fixed (e.g.

Fourier, polynomials, splines, wavelets) or adaptively constructed from the data.

The data-driven bases are especially attractive since they can adapt to the features of

the population represented by the data and can approximate the slope parameter β ∈ H

more efficiently; see Delaigle and Hall (2012). The principal component analysis (PCA)1

and the partial least-squares (PLS) are two widely used methods to construct adaptive bases

1Using the PCA basis is also related to the spectral cut-off method described in (a).
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in practice. The PCA basis is constructed by identifying the directions in H where X varies

the most while the PLS basis is constructed in a supervised way taking into account the

response variable as well. While the first m elements of the PCA basis h1, . . . , hm usually

capture most of the variation of X, these are not necessarily the most important vectors

for approximating β or predicting the response variable Y . It is easy to find empirical

examples, where some of the last few low-variance components are important; see Jolliffe

(1982) who documented the issue on datasets used in economics, climate science, chemical

engineering, and meteorology.

2.2 PLS estimator

The PLS estimator constructs a data-driven basis iteratively maximizing the covariance

with the response variable Y ; see Blazère et al. (2014a); Delaigle and Hall (2012); Preda

and Saporta (2005); Reiss and Ogden (2007); Wold et al. (1984) for theoretical analysis

and Carrasco and Rossi (2016); Kelly and Pruitt (2015) for applications in economics and

finance. The iterative nature of the estimator makes it difficult to analyze its statistical

properties. This prompted Delaigle and Hall (2012) to formulate an alternative functional

PLS solving the problem in equation (3) over the so-called Krylov subspace

Hm = span
{
r̂, K̂r̂, K̂2r̂, . . . , K̂m−1r̂

}
,

where

r̂ =
1

n

n∑
i=1

YiXi and K̂ =
1

n

n∑
i=1

Xi ⊗Xi

are the estimators of r and K; see also Helland (1988); Phatak and de Hoog (2002) for the

link between PLS and Krylov subspaces.

While the functional PLS estimator is popular in practice due to its efficient representa-

tion of the data, to the best of our knowledge, it is still unknown whether it is the minimax
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optimal estimator. In this paper, we study a version of the PLS estimator with m ≥ 1

components, denoted β̂m, characterized as a solution to the least-squares problem

min
b∈Hm

∥T ∗
n(y − Tnb)∥2

over the Krylov subspace Hm. The least-squares objective function is weighted by the

adjoint operator of Tn

T ∗
n : Rn → H

ϕ = (ϕ1, . . . , ϕn)
⊤ 7→ 1

n

n∑
i=1

Xiϕi

and corresponds to minimizing the first-order conditions to the problem in equation (3),

often called the normal equations. Equivalently, β̂m fits the empirical counterpart to the

equation (2)

min
b∈Hm

∥∥∥r̂ − K̂b
∥∥∥2 (4)

as it is easy to see that r̂ = T ∗
ny and K̂ = T ∗

nTn. Importantly, the PLS estimator formalized

in equation (4) corresponds to the conjugate gradient method with a self-adjoint operator

K̂, cf. Hestenes and Stiefel (1952), known for its excellent regularization properties; see also

Blanchard and Krämer (2016); Engl et al. (1996); Hanke (1995); Nemirovski (1986).2 We

provide a more detailed comparison between the two PLS estimators in the Supplementary

Material, Section S.1. A related formulation of the PLS in reproducing kernel Hilbert

spaces (RKHS) was recently studied in an independent work of Gupta et al. (2023) who

focus on the estimation error only and impose assumptions different from ours. Our work

can be seen as using a kernel naturally adapted to the data which is unknown in practice.

The estimator is uniquely defined for every m ≤ n∗, where n∗ is the number of distinct

non-zero eigenvalues of K̂; see Proposition 1 in the Supplementary Material. It is also

2The method of conjugate gradients is one of the most efficient algorithms for solving high-dimensional

systems of linear equations; see also (Nocedal and Wright, 1999, Chapter 5) and references therein.

8



easy to see that for every m ≥ 1,3 we have β̂m = P̂m(K̂)r̂ for a polynomial P̂m(K̂) =∑m
j=1 ajK̂

j−1 with coefficients a := (a1, . . . , am)
⊤ solving the system of m linear equations

Ka = r,

where K := ⟨K̂j r̂, K̂kr̂⟩1≤j,k≤m and r := ⟨K̂j r̂, r̂⟩1≤j≤m. From the practical point of view,

it is more efficient to use an iterative conjugate gradient algorithm that bypasses the (po-

tentially unstable) matrix inversion with an iterative multiplication by the operator K̂; see

Algorithm 1 in section 4.

3 Theoretical Properties

In this section, we will show that the functional PLS estimator achieves the (nearly) optimal

convergence rate on a class of ellipsoids. We consider an early stopping rule for the estimator

and show that it adapts to the complexity of the ellipsoid. Lastly, we study how rapidly, the

number of selected components increases with the sample size and make some comparisons

to the PCA estimator.

3.1 Optimal Convergence Rates

Since the operators K : H → H and K̂ : H → H are self-adjoint and compact, by the

spectral theorem

K =
∞∑
j=1

λjvj ⊗ vj and K̂ =
n∑

j=1

λ̂j v̂j ⊗ v̂j,

where λ1 ≥ λ2 ≥ · · · ≥ 0 and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 are the eigenvalues of K and K̂ and

(vj)
∞
j=1 and (v̂j)

n
j=1 are the corresponding eigenvectors; see Kress (1999), Theorem 15.16.

3We also define P̂0 = 0 and β̂0 = 0.

9



Note that the sample covariance operator K̂ is a finite-rank operator with at most n∗ ≤ n

distinct non-zero eigenvalues.

For any bounded and measurable function ϕ : R+ → R+, we define functions of opera-

tors through their spectral decompositions:

ϕ(K) :=
∞∑
j=1

ϕ(λj)vj ⊗ vj and ϕ(K̂) :=
n∗∑
j=1

ϕ(λ̂j)v̂j ⊗ v̂j.

These definitions are commonly used in the inverse problems literature; see Engl et al.

(1996).

The following inequalities for the operator norm will be often used:

∥ϕ(K)∥op ≤ sup
λ∈[0,λ1]

|ϕ(λ)| and ∥ϕ(K̂)∥op ≤ sup
λ∈[0,λ̂1]

|ϕ(λ)|, (5)

where ∥A∥op = sup∥x∥=1 ∥Ax∥.

We shall introduce several relatively mild assumptions on the distribution of the data

next.

Assumption 1. (Xi, Yi)
n
i=1 are i.i.d. copies of (X, Y ) with E[X] = 0, E∥X∥4 < ∞, and

E[ε2|X] ≤ σ2 < ∞.

Assumption 1 imposes mild restrictions on the data-generating process. Note that

E∥X∥4 < ∞ is satisfied when X is a Gaussian process in H. It implies that K is a nuclear

operator and, hence, compact.

Assumption 2. The operator K : H → H does not have zero eigenvalues.

Assumption 2 ensures that the slope parameter β is identified. If this assumption is

violated, the focus would shift to the identified component of β within the orthogonal

complement of the null space of K; see Babii and Florens (2017) and Engl et al. (1996).
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Assumption 3. For some µ,R,C > 0, the slope parameter β and the operator K belong

to the class

S(µ,R,C) =

{
β ∈ H, K : H → H :

∞∑
j=1

⟨β, vj⟩2

λ2µ
j

≤ R2,
∞∑
j=1

λj ≤ C

}
.

Assumption 3 describes the complexity of the ill-posed inverse problem in terms of the

smoothness of β and the smoothing properties of the operator K. The parameter µ is

known as the degree of ill-posedness. It restricts the rate of decline of the generalized

Fourier coefficients ⟨β, vj⟩j≥1 relatively to the eigenvalues of K. A larger value of µ means

that it is easier to estimate the slope coefficient β; see also Carrasco et al. (2007). Recall

also that the summability of eigenvalues holds whenever E∥X∥2 < ∞.

Consider now the so-called residual polynomial Q̂m(λ) = 1−λP̂m(λ), deriving its name

from the identity r̂−K̂β̂m = Q̂m(K̂)r̂. It is known that the polynomial, Q̂m, has m distinct

real roots, denoted θ̂1 > θ̂2 > · · · > θ̂m > 0. The sum of inverse of these roots,

|Q̂′
m(0)| =

m∑
j=1

1

θ̂j
,

plays an important role in the analysis of the conjugate gradient regularization; see Lemma 4

in the Supplementary Material.

Our first result characterizes the convergence rate of the estimation and prediction

errors of the PLS estimator.

Theorem 1. Suppose that Assumptions 1, 2, and 3 are satisfied. Then for every s ∈ [0, 1],

we have

∥∥∥Ks(β̂m − β)
∥∥∥2 = OP

(
|Q̂′

m(0)|2(1−s)n−1 + |Q̂′
m(0)|−2(µ+s) + |Q̂′

m(0)|−2sn−µ∧1
)
,

provided that |Q̂′
m(0)| = OP (n

1/2).
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Note that the last condition in Theorem 1 imposes that the number of components m

does not increase too fast with the sample size and is not binding. In fact, it is optimal to

have |Q̂′
m(0)| ∼ n

1
2(µ+1) , in which case we obtain the following convergence rate

∥∥∥Ks(β̂m − β)
∥∥∥2 = OP

(
n−µ+s

µ+1

)
.

When s = 0, this shows that the convergence rate of PLS in the Hilbert space norm is

of order n− µ
µ+1 . On the other hand, when s = 1/2, we obtain the convergence rate of the

out-of-sample prediction error, since

EX⟨X, β̂m − β⟩2 =
∥∥∥K1/2(β̂m − β)

∥∥∥2 ,
where EX is taken with respect to X, independent of (Yi, Xi)

n
i=1.

The following result shows that no estimator can achieve a faster than n−µ+s
µ+1 log−b n

rate on the class S(µ,R,C).

Theorem 2. For every s ∈ [0, 1/2], there exists A < ∞ such that

lim inf
n→∞

inf
β̂

sup
(β,K)∈S(µ,R,C)

Pr
(∥∥∥Ks(β̂ − β)

∥∥∥ ≥ An− µ+s
2(µ+1) log−b/2 n

)
> 0,

where b > 2(µ+ s) and the infimum is over all estimators.

Therefore, we conclude that the PLS estimator β̂m achieves the (nearly) optimal con-

vergence rate on S(µ,R,C), simultaneously for the estimation (s = 0) and prediction

(s = 1/2) errors.4

3.2 Adaptive PLS estimator

Next, we look at the adaptive PLS estimator, where the number of components is selected

using the data-driven rule described in the following assumption.

4It is possible to avoid the 1/ log n factor by considering the larger class of Hilbert–Schmidt operators.
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Assumption 4. We select m̂ such that

min

{
m ≥ 0 :

∥∥∥r̂ − K̂β̂m

∥∥∥ ≤ τσ

√
2E∥X∥2

δn

}
.

for a sufficiently large τ > 1 and some δ ∈ (0, 1).

Assumption 4 states that the PLS iterations stop at the first value m̂ for which the norm

of the fitted “moment” is smaller than a certain threshold; see Supplementary Material,

Section S.4 for a practical implementation of this early stopping rule. Note that the number

of iterations is finite since m̂ ≤ n∗, where n∗ is the number of distinct non-zero eigenvalues

of K̂; see Proposition 1 in the Supplementary Material. In fact, the norm of “residual” is

zero for m ≥ n∗ in which case we have perfect overfitting.

The following result shows that the data-driven rule in Assumption 4 is adaptive to the

unknown degree of ill-posedness µ > 0.5

Theorem 3. Suppose that Assumptions 1, 2, 3, and 4 hold with δ ≥ 1/n. Then

∥∥∥Ks(β̂m̂ − β)
∥∥∥2 = O

(
(δn)−

µ+s
µ+1

)
with probability at least 1− δ for every s ∈ [0, 1].

Taking δn = 1/ log n in Assumption 4, we obtain from Theorem 3 the convergence rate

of the estimation and prediction errors of PLS with the early stopping rule:

∥∥∥Ks(β̂m̂ − β)
∥∥∥2 = OP

((
log n

n

)µ+s
µ+1

)
.

Therefore, the adaptive PLS achieves the (nearly) optimal convergence rate simultaneously

for the estimation and prediction errors without knowing the degree of ill-posedness µ > 0.

5See also Cai and Yuan (2012); Comte and Johannes (2012) for adaptivity results in the functional

linear regression model and Blanchard et al. (2018) for the analysis of early stopping rule in abstract

inverse problems.
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3.3 Number of Selected Components

In this section, we look at how rapidly the number of components selected by the early

stopping rule in Assumption 4 increases with the sample size. First, we consider a somewhat

conservative bound that does not impose any assumptions on the spectrum of the operator

K.

Theorem 4. Suppose that Assumptions 1, 2, 3, and 4 are satisfied with δ ≥ 1/n and

µ ≥ 1. Then with probability at least 1− δ

m̂ = O
(
(nδ)

1
4(µ+1)

)
.

Taking δ = 1/ log n, we obtain from Theorem 4 that m̂ = OP

(
(n/ log n)

1
4(µ+1)

)
. Next,

we consider sharper estimates under additional assumptions imposed on the spectrum of

the operator K.

Theorem 5. Suppose that Assumptions 1, 2, 3, and 4 are satisfied with δ ≥ e/n and µ ≥ 1.

Then with probability at least 1− δ

(i) If λj = O(j−2κ) for some κ > 0, then

m̂ = O
(
(nδ)

1
4(κ+1)(µ+1)

)
.

(ii) If λj = O(qj) for some q ∈ (0, 1), then

m̂ = O (log(nδ)) .

Theorem 5 shows that if the eigenvalues decline polynomially fast, then the selected

number of components is m̂ = OP (n/ log n)
1

4(κ+1)(µ+1) while in the case of the geometric de-

cline, the number of selected components increases slowly with the sample size. Therefore,

the adaptive stopping rule will select a smaller number of components if the eigenvalues of

the operator K decline faster and vice versa.
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3.4 Comparison to PCA

In this section, we shed some light on the behavior of functional PLS relative to PCA.

We will show that for the same fixed number of components m, PLS fits the empirical

moment better than PCA, hence, it may require a smaller number of components to obtain

a comparable fit. We also show that the regularization bias part of the estimation and

prediction risk of PLS is smaller than the one of the PCA. Therefore, the adaptive PLS

basis is better suited for approximating the slope coefficient.

In what follows, we will use

β̂PLS
m =

n∗∑
j=1

P̂m(λ̂j)⟨r̂, v̂j⟩v̂j and β̂PCA
m =

m∑
j=1

1

λ̂j

⟨r̂, v̂j⟩v̂j

to denote the functional PLS and PCA estimators. Note that the PLS estimator uses

supervised regularization P̂m while for the PCA estimator the regularization is fixed to

select the terms related to the inverse of the largest m eigenvalues of K̂. We will also use

βPLS
m =

∞∑
j=1

Pm(λj)⟨r, vj⟩vj and βPCA
m =

m∑
j=1

λ−1
j ⟨r, vj⟩vj

to denote the population counterparts.

Theorem 6. If n∗ = n, then for every m ≤ n∗,

∥∥∥r̂ − K̂β̂PLS
m

∥∥∥ ≤
∥∥∥r̂ − K̂β̂PCA

m

∥∥∥ .
and ∥∥Ks(βPLS

m − β)
∥∥ ≤

∥∥Ks(βPCA
m − β)

∥∥ , ∀s ∈ [0, 1].

The first part of Theorem 6 shows that the PLS estimator fits the data better than

PCA for the same number of components 1 ≤ m ≤ n∗. This is the functional version of

a result of Jong (1993); see also Phatak and de Hoog (2002) and Blazère et al. (2014b).
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For the second part of Theorem 6, it is worth recalling that the estimation and prediction

errors in Theorem 1 can be decomposed as

Ks
(
β̂PLS
m − β

)
= Ks

(
β̂PLS
m − βPLS

m

)
+Ks

(
βPLS
m − β

)
, s ∈ {0, 1/2},

where the second term is the so-called regularization bias. This shows that the PLS basis

is more adapted for approximating the slope β than the PCA basis.

4 Monte Carlo Experiments

In this section, we set up several Monte Carlo experiments to evaluate the finite sample

performance of the PLS estimator.

We simulate the i.i.d. samples (Yi, Xi)
n
i=1 as follows

Yi =

∫ 1

0

Xi(s)β(s)ds+ εi, εi ∼i.i.d. N(0, 1),

where the predictors belong to the Hilbert space of square-integrable functions with respect

to the Lebesgue measure, denoted H = L2[0, 1]. The functional predictor is generated as

Xi(s) =
100∑
j=1

√
λjujvj(s), uj ∼i.i.d. N(0, 1).

The slope parameter β ∈ L2[0, 1] and the spectrum of the operator (λj, vj)j≥1 correspond

to one of the following four models:

• Model 1: β(s) =
∑100

j=1 βjvj(s) with βj = 4(−1)j+1j−1, v1(s) = 1, vj(s) =
√
2 cos((j−

1)πs), and λj = j−1.1.

• Model 2: same as Model 1, but with βj = 4 for j = 1, . . . , 10.

• Model 3: same as Model 1, but with βj = 4(−1)j+1j−1/4.
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• Model 4: same as Model 1, but with λj = 2−rj with rj = ⌈0.1j⌉,∀j ≥ 1, where

x 7→ ⌈x⌉ is the ceiling function.

Note that the first few high-variance principal components terms are sufficient to capture

most of nonlinearities in Model 1. Therefore, this design favors strongly PCA. On the

other hand, the low-variance components are important for predicting Y in Model 2, cf.

Jolliffe (1982). With Model 3, we would like to see how the methods perform when the

Fourier coefficients are not square-summable. Lastly, Model 4 is an example of severely

ill-posed problem with repeated eigenvalues. We compute the PLS estimator using the

Algorithm 1 which is numerically equivalent to the estimator in equation (4); see Hanke

(1995), Algorithm 2.1 and Proposition 2.1. It bypasses the operator inversion with an

iterative multiplication by K̂ and is designed to solve high-dimensional linear systems,

K̂β̂ = r̂, with a symmetric matrix K̂.

Algorithm 1: PLS algorithm for solving K̂β̂ = r̂.

Result: β̂m

Initialisation: β̂0 = 0, d0 = e0 = r̂ − K̂β̂0;

for j = 0, 1, . . . ,m− 1 do

1. Compute the step size: αj =
⟨ej ,K̂ej⟩
∥K̂dj∥2

;

2. Update the slope coefficient: β̂j+1 = β̂j + αjdj;

3. Update the fitted moment: ej+1 = ej − αjK̂dj;

4. Compute the step size for the conjugate direction update: γj+1 =
⟨ej+1,K̂ej+1⟩

⟨ej ,K̂ej⟩
;

5. Update the conjugate direction vector: dj+1 = ej+1 + γj+1dj;

end

The integrals in inner products and the operator K are discretized using a simple

approximation with Riemann sum on a grid of T = 100 equidistant points in [0, 1].6 The

6We also tried to use larger values of T and did not find that finer approximations change substantially
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experiments feature 5, 000 replications, where samples of size n = 1, 000 are generated

in each replication. For each experiment, the mean-squared prediction error (MSPE) is

computed as

MSPE(β̂m) =
1

n

n∑
i=1

(Yi − ⟨Xi, β̂m⟩)2,

where β̂m is obtained from an auxiliary sample of size n, independent of (Yi, Xi)
n
i=1.

Figure 1 displays the MSPE using the first m = 1, 2, . . . , 15 components using PLS

(orange circles) or PCA (blue crosses). The PLS estimator achieves lower value of MSPE

with a smaller number of components, so it offers a more parsimonious representation of

the data than PCA across all four models.

We report the exact values of simulated MSPE with highlighted lowest values in Table 1.

These results confirm that the PLS estimator achieves the lowest value of MSPE across

all designs and it usually does so with a smaller number of components. We find that

for prediction, the optimal number of PCA components is (25, 36, 100, 35) while PLS only

requires (5, 7, 13, 4) components for Models 1 to 4 respectively. For Model 3, the prediction

error of PCA continues to decrease up to m = 100 components.7

Next, we look at the mean integrated squared error (MISE) computed as

MISE(β̂m) = E

∫ 1

0

|β̂m(s)− β(s)|2ds,

where the expectation is approximated with the simulations. The results in Table 2 show

that PLS achieves smaller MISE with a smaller number of functional components. The

optimal number of the PCA components is (34, 34, 100, 35) while PLS requires (4, 6, 13, 3)

components only for Models 1-4 respectively. The optimal number of components for

prediction (MSPE) and estimation (MISE) are similar which is in line with our theoretical

results reported in the paper.
7For readability, we report results for the first 10 functional components in the paper.
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Table 1: Mean-Squared Prediction Error (MSPE) of PLS and PCA using the first m

components, calculated from 1, 000 samples of size n = 1, 000. The number of components

corresponding to the lowest MSPE is highlighted.

Model 1 Model 2 Model 3 Model 4

m PCA PLS PCA PLS PCA PLS PCA PLS

1 4.7903 2.5062 33.0712 17.608 53.2982 32.4159 13.6365 1.3056

2 2.4651 1.2715 23.7662 5.6453 40.1718 15.4156 11.232 1.0648

3 1.7703 1.079 17.3605 2.0454 32.7232 7.8054 9.4952 1.0413

4 1.4757 1.0379 13.0917 1.2169 27.5816 4.246 8.0192 1.0402

5 1.3217 1.0321 9.6292 1.0708 23.8259 2.5921 6.7641 1.0440

6 1.2314 1.0390 7.1322 1.0480 20.8922 1.8100 5.5612 1.0473

7 1.1746 1.0528 5.0317 1.0475 18.5005 1.4363 4.4428 1.0529

8 1.1370 1.0697 3.4932 1.0576 16.5333 1.2557 3.3814 1.0572

9 1.1107 1.0846 2.2835 1.0717 14.8621 1.1686 2.3566 1.0606

10 1.0913 1.0953 1.5098 1.0859 13.4207 1.1286 1.3763 1.0655
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Figure 1: Mean-Squared Prediction Error (MSPE) of PLS (orange circles) and PCA (blue

crosses) using the first m components, calculated from 5, 000 samples of size n = 1, 000.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

results. The resulting MISE are substantially lower for PLS across the four models. This

suggests that the PLS basis is more suitable for estimating the slope coefficient β.

Tables 3 and 4 display the bias and the variance MISE components. We can see that the

remarkable MISE performance of PLS is driven by substantially smaller bias for the same

number of functional components. On the other hand, the variance of PCA can sometimes

be smaller than that of PLS. This aligns with the result of Theorem 6 confirming that the

PLS basis approximates the slope coefficient β better compared to the PCA basis.
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Table 2: Mean Integrated Squared Error (MISE) of PLS and PCA using the first m com-

ponents, calculated from 5, 000 samples of size n = 1, 000. The number of components

corresponding to the lowest MISE is highlighted.

Model 1 Model 2 Model 3 Model 4

m PCA PLS PCA PLS PCA PLS PCA PLS

1 12.9386 6.8200 158.2132 99.8625 546.089 448.6095 24.9864 1.2872

2 8.0895 2.5672 138.6779 38.3661 518.7172 319.7507 20.7245 0.6244

3 5.8387 1.2160 117.8103 11.1731 494.3239 209.6672 17.5198 0.4894

4 4.5358 0.8009 98.8206 3.5350 471.3402 130.3394 14.7569 0.4906

5 3.6653 0.8669 79.1779 1.9680 449.7725 79.2572 12.3737 0.5809

6 3.0475 1.3308 61.9748 1.7267 429.3939 47.8975 10.075 0.6867

7 2.5884 2.2507 45.0136 1.9509 409.7226 29.2685 7.9137 0.9227

8 2.239 3.5537 30.7397 2.7170 390.9891 18.478 5.8557 1.1535

9 1.9602 4.9199 18.0959 3.8499 372.7052 12.4587 3.8655 1.3964

10 1.7321 6.0644 9.2499 5.1692 355.2951 9.3763 1.9564 1.8625
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Table 3: Squared Bias part of MISE using the first m components, calculated from 5, 000

samples of size n = 1, 000. The number of components corresponding to the lowest MISE

is highlighted.

Model 1 Model 2 Model 3 Model 4

m PCA PLS PCA PLS PCA PLS PCA PLS

1 12.8396 6.7512 158.042 99.6102 545.8576 447.9841 21.0837 0.7598

2 7.9718 2.4527 138.2143 37.4805 517.7943 318.1858 15.2567 0.4077

3 5.6967 1.0159 116.6897 9.8767 492.4548 206.5991 11.5159 0.2703

4 4.3522 0.4349 96.8103 2.122 468.6711 125.7045 8.6575 0.2079

5 3.4581 0.1802 76.2421 0.5579 445.8752 73.4402 6.4482 0.1539

6 2.8112 0.0689 57.8386 0.2224 424.042 41.6481 4.5399 0.1287

7 2.3325 0.0259 40.135 0.0889 402.9084 22.8554 3.1748 0.099

8 1.9664 0.0118 25.1972 0.0288 382.3052 12.0892 2.165 0.0833

9 1.6725 0.0059 12.3835 0.0105 363.0781 6.1220 1.5032 0.0715

10 1.4353 0.0031 4.3479 0.0045 343.7048 2.9256 1.2050 0.0566
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Table 4: Variance part of MISE using the first m components, calculated from 5, 000

samples of size n = 1, 000. The number of components corresponding to the lowest MISE

is highlighted.

Model 1 Model 2 Model 3 Model 4

m PCA PLS PCA PLS PCA PLS PCA PLS

1 0.1026 0.0827 0.1724 0.2736 0.2483 0.4112 3.837 0.5221

2 0.1486 0.1211 0.5518 0.8766 0.7678 1.5063 5.3783 0.2154

3 0.1766 0.1990 1.1741 1.3028 1.5379 3.1381 5.9298 0.2180

4 0.1995 0.3670 1.9509 1.4047 2.4680 4.7544 6.0901 0.2815

5 0.2219 0.6883 2.9034 1.4026 3.6991 5.8475 5.9311 0.4254

6 0.2385 1.2648 3.8637 1.4977 5.0667 6.3634 5.4788 0.5571

7 0.2572 2.2256 4.8643 1.855 6.5964 6.4811 4.7681 0.8252

8 0.2701 3.5472 5.5178 2.6769 8.1606 6.4353 3.7528 1.0727

9 0.2860 4.9168 5.7629 3.8224 9.8113 6.412 2.4025 1.3285

10 0.2981 6.0604 4.9463 5.143 11.7207 6.5094 0.7433 1.8125
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Lastly, Figure 2 reports the mean of the PLS estimator β̂m (dashed red) with the MISE-

optimal number of functional components, m, as well as the true slope coefficient (solid

black). Remarkably, PLS requires a relatively small number of components to recover ac-

curately the shape of various functions, including those with sharp changes and complex

nonlinearities. This is especially important for our empirical application, where the tem-

perature effects on crop yields are believed to exhibit sharp changes for extreme values; see

Section 5.

The simulation results also underscore the importance of early stopping for the PLS

since there is overfitting for excessively largem. In the Supplementary Material, Section S.4,

we report additional simulation results that show that our early stopping rule produces

reliable estimates. To conclude, the results of the experiments confirm our theoretical

results and illustrate that the supervised PLS bases are well-suited for representing the

slope parameter β and for predicting the response variable Y .

5 Nonlinear Temperature Effects in US Agriculture

The global surface temperature has increased by 1.1°C above pre-industrial levels and could

increase up to 3.6°C to 4.5°C by the end of the century if current CO2 emissions rise steadily

according to the latest studies; see IPCC (2021). The global warming will likely lead to more

frequent and severe heatwaves, altered precipitation patterns, and intensified droughts.

Of all major sectors, agriculture is arguably the most sensitive to climate change. While

constituting a modest share of developed economies, it is vital for food security. Indeed, the

intensified droughts could cause food shortages which in turn may potentially exacerbate

mass migration and violent conflicts. Some have argued that the current climates are

already warmer than is optimal for agriculture in many parts of Asia, Africa, and Latin
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Figure 2: Average PLS estimator with the MISE-optimal number of functional components

and the pointwise 90% confidence band, calculated from 5, 000 samples of size n = 1, 000.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4
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America; see Nordhaus (2013).

Determining the precise functional form of the relationship between crop yields and

temperature has attracted lots of attention recently; see Schlenker and Roberts (2006,

2009).8 We argue that the methodology used to estimate such nonlinear temperature

effects can be understood as a functional linear regression,9 where the outcome Y is the

log yield of a crop, measured in bushels per acre, and the functional regressor (X(s))s∈[0,40]

is a temperature curve, representing the crop exposure to temperatures between 0°C to

40°C during the growing season, measured in degree days, reflecting how much the crop is

exposed to particular temperatures.

We focus on corn and soybeans which are the two major crops grown in the US. The

dataset is comprised of fine-scale county-level crop yields and weather outcomes, spanning

US counties east of the 100 degree meridian from 1950 to 2020.10 We use the same set of

controls as in Schlenker and Roberts (2009), namely (precipitation,precipitation2,t, t2), the

county dummies, and the interaction between (t, t2) and state dummies. The crop yields Y

and the temperature curve X are regressed on these controls to obtain the residuals which

are subsequently used for the functional data analysis.

The slope coefficient is then estimated using: 1) our functional PLS estimator; and 2)

a highly parameterized least-squares estimator with a step function approximation as in

Schlenker and Roberts (2009). The latter fits a separate temperature effect for each 3°C

bin from 0°C to 40°C, hence, it involves 13 parameters. On the other hand, our optimal

8The influential study of Schlenker and Roberts (2009) has more than 4,000 Google Scholar citations

at the time of writing.
9A similar methodology is also used to quantify the nonlinear temperature effects on mortality in public

health studies; see Gasparrini et al. (2015).
10The dataset is publicly available at the time of writing at www.wolfram-schlenker.info/

replicationFiles/SchlenkerRoberts2009.zip.

26



stopping rule finds m̂ = 4 functional PLS components both for corn and soybeans; see

Appendix Section S.4 for more details on the implementation of the early stopping rule.

Figure 3: Nonlinear relationship between temperature and crop yields fitted using func-

tional PLS (red curve) and step function approximation (black dash).
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(a) Impact of Temperature on Corn Yield
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(b) Impact of Temperature on Soybean Yield

Figure 3 displays the estimated functional slope coefficient β corresponding to our func-

tional PLS (red cure) and step function approximation (black dash) for corn and soybeans.

We find that the critical temperature after which the crop yields start declining is around

29-30°C which is similar to findings reported in Schlenker and Roberts (2009).

Lastly, we look at how the nonlinear temperature effects have changed over time. Fig-

ure 4 reports the estimated functional slope coefficient splitting the data into three sub-

samples: 1950-1973 (blue dot), 1974-1997 (red dash), and 1998-2020 (green curve). The

results indicate that the negative temperature effects were larger during 1950-1973 com-

pared to the most recent 22 years, especially for the extreme temperatures. The mitigation

of extreme temperature effects may come from two sources: the adaptation and the CO2

fertilization. The CO2 fertilization effects observed in our sample are likely to be small; see
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Figure 4: Adaptation effects in nonlinear relationship between temperature and crop yields.
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(a) Impact of Temperature on Corn Yield
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(b) Impact of Temperature on Soybeans Yield

Nordhaus (2013) who argues that doubling the atmospheric concentration of CO2 would

increase crop yields by 10-15% only. In contrast, the adaptation effect is likely to dominate

over time. It can be attributed to the actions taken by farmers, such as adjusting the

sowing and harvesting dates to maximize yields, using more resilient crops, or building effi-

cient irrigation systems. Our results, therefore, suggest some evidence of adaptation in US

agriculture which has also been reported in Burke and Emerick (2016) using the aggregate

linear regression analysis without accounting for nonlinearities.

6 Conclusions

This paper proposes a new formulation of the functional PLS estimator related to the

conjugate gradient method applied to an ill-posed inverse problem with a self-adjoint oper-

ator. We provide the first optimality result for functional PLS and consider a rate-adaptive

data-driven early stopping rule to select the optimal number of functional components. The
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estimator has good estimation and prediction properties for a smaller number of principal

components than PCA and the data-driven early stopping rule performs well in simulations.

We find in an empirical application that the nonlinear temperature effects on crop yields

have slightly decreased since 1950, especially for extreme temperatures. This provides some

additional evidence of the adaptation of US agriculture to climate change.
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