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Abstract

We consider the functional linear regression model with a scalar response and a
Hilbert space-valued predictor, a well-known ill-posed inverse problem. We propose
a new formulation of the functional partial least-squares (PLS) estimator related to
the conjugate gradient method. We provide the first optimality result for functional
PLS showing that the estimator achieves the (nearly) optimal convergence rate on a
class of ellipsoids and propose a data-driven early stopping rule that adapts to the
unknown degree of ill-posedness. We find in simulations that our estimator performs
favorably compared to the principal component regression estimator and requires a
smaller number of functional components. Using our estimator, we study the non-
linear temperature effect on corn and soybean yields and find some evidence of the
adaptation of US agriculture to climate change.
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1 Introduction

With the growing availability of data, functional data analysis has been increasingly applied
across various fields, including chemometrics, climate science, and economics. In this paper,
we consider a linear functional regression with scalar response Y and functional predictor
X:

Y = /0 B(s)X(s)ds + ¢, E[cX] = 0. (1)

The main goal is the estimation of the functional slope § and the prediction of the
response Y. Both X and S belong to an infinite dimensional Hilbert space and the high
dimensionality of the parameter [ leads to an ill-posed inverse problem. To estimate the
slope coefficient [ consistently, one needs to use either a dimension-reduction device or
regularization. The most popular approach has been the functional principal component
analysis (PCA); see Cardot et al. (1999), Ramsay and Silverman (2002), Cai and Hall
(2006), and Hall and Horowitz (2007). The PCA approach consists of approximating (3 by
the first principal components (PC) corresponding to the eigenfunctions of the covariance
operator of X. As noted by Jolliffe (1982), this approach will work best if the response
variable Y is correlated with the first PCs.

In this paper, we propose to estimate the slope function by partial least squares (PLS).
This method uses components that are linear transformations of the regressors X chosen
to maximize the correlation with the response Y. As a result, the number of components
required to obtain a good prediction is generally smaller than the number of PCs. It was
initially developed to estimate regressions with many regressors, see Wold et al. (1984) and
Helland (1988), and has recently been adapted to functional regression by Delaigle and Hall
(2012). As the estimator is nonlinear in the response variable and computed iteratively,

analyzingf its properties is much more challenging. To establish our theoretical results, we



rely on the inverse problem literature and exploit the close connection between PLS and
conjugate gradient as presented in Engl et al. (1996), Hanke (1995), and Blanchard and
Kréamer (2016).

Our paper makes several original contributions. First, we establish the convergence
rate of our estimator and the prediction error under a source condition that relates
and the spectral decomposition of the covariance operator. Our results do not require
specifying the distance between the adjacent eigenvalues as commonly done in PCA, see for
instance Hall and Horowitz (2007), and hold even in the presence of repeated eigenvalues.
Second, we derive the lower bound on the minimax convergence rate and show that our
estimator is (nearly) minimax optimal. Given the optimal convergence rate depends on the
degree of ill-posedness of the problem which is typically unknown, we propose an adaptive
early stopping method for selecting the number of PLS components. We show that this
data-driven selection yields an estimator that is rate optimal with high probability. We
also characterize how the selected number of components changes with the sample size in
various scenarios. A theoretical comparison shows that the bias of the PLS estimator is
smaller than or equal to that of the PCA estimator for the same number of components.
Moreover, simulations show that the PLS estimator gives a smaller prediction error than
PCA in various settings and that the PLS estimator combined with the adaptive stopping
rule gives reliable estimates. An efficient algorithm to compute the estimator iteratively is
provided.

To illustrate the practical relevance of our results, we apply our method to climate
science. Using a fine-grained county-level dataset of US crop yields and temperature,
recorded over 70 years, we estimate the impact of temperature on crop yields. We find that

the critical temperature after which the annual crop yields start declining is around 30°C



which is similar to Schlenker and Roberts (2009) who rely on highly-parameterized least-
squares estimators. We obtain additional insights by comparing how the temperature effect
curves change over time. Interestingly, we find that the detrimental temperature effects
on corn and soybean yields have decreased over time which is attributed to the adaptive
actions taken by farmers, including the use of resilient crops and efficient irrigation systems.
The literature on functional regression is vast. Besides PCA already mentioned, another
popular approach consists of using a predetermined basis to approximate the slope function
B, including highly parametrized step functions or polynomials. Other papers propose a
penalized estimator using Tikhonov regularization, see Florens and Van Bellegem (2015), or
using a roughness penalty or similarly a penalty in terms of a norm in a reproducing kernel
Hilbert space; see Cardot et al. (2003), Li and Hsing (2007), Yuan and Cai (2010). Reiss
and Ogden (2007) combine the projection on the first principal component and a roughness
penalty. Finally, in an independent work, Gupta et al. (2023) propose an estimator that
belongs to a reproducing kernel Hilbert space generated by a specified kernel and uses
a conjugate gradient to regularize the solution. While their method is similar to ours,
our results are not directly comparable. Their main result is the convergence rate of an
estimator in reproducing kernel Hilbert space, established under assumptions that differ
from ours. In particular, they assume a polynomial decay rate of the eigenvalues of certain
operators, while we do not need to specify any decay rate for eigenvalues in our work. Their
source condition is also different from ours and it is not clear which one is the weakest.
The rest of the paper is organized as follows. Section 2 introduces the functional re-
gression and the PLS estimator. Section 3 establishes the theoretical properties including
the convergence rate of estimation and prediction errors, the minimax lower bound, the

adaptivity of an early stopping rule, and the bias comparison to PCA. Section 4 presents



a Monte Carlo study. Section 5 describes an empirical application of our estimator to the
nonlinear temperature effects in agriculture, and Section 6 concludes. An online appendix

contains all the proofs and additional simulation results.

2 Model and estimator

2.1 Functional Linear Regression

Throughout the paper, we consider a generalized version of the functional linear regression
model

Y =(3,X)+¢e, E[X]=0,

where (Y, X) € R x H, 8 € H is the unknown functional slope coefficient, and (H, (., .))
is a separable Hilbert space with the induced norm ||.|| = \/{.,.). The model in equation
(1) corresponds to the Hilbert space of square integrable functions, H = L?[0, 1], with the
norm induced by the inner product (f,g) = fol f(s)g(s); see also Cai and Hall (2006), Cai
and Yuan (2012), Cardot et al. (1999), Cardot et al. (2003), Cardot and Johannes (2010),
Comte and Johannes (2012), Crambes et al. (2009), Delaigle and Hall (2012), Hall and
Horowitz (2007), among many other important contributions.

For simplicity we assume that E[X] = 0. The covariance restriction E[eX]| = 0 implies

that the slope coefficient § € H solves the moment condition
r:=E[YX]=E[(X® X)s] = K§, (2)

where r € H and K : H — H is a compact covariance operator with summable eigenvalues
whenever E|| X ||? < oo. It is well-known that the inverse operator K ! is discontinuous and

solving the equation K = r for § is an ill-posed inverse problem; see Carrasco et al. (2007),



Engl et al. (1996), Hoffmann and Reiss (2008), Klemeld and Mammen (2010), Nemirovski
(1986).

Roughly speaking, there are two popular strategies to regularize such problems:

(a) replace K~! with a continuous operator R,(K) for some function R, : R, — R,

satisfying limg_,g+ Ro(A) = A75

(b) solve the problem in a finite-dimensional subspace H,,, C H, spanned by some basis

vectors hi, ho, ..., h,, € H.

Examples of (a) include the Tikhonov regularization when R,()\) = (a+A)~!, the spec-
tral cut-off when R,(\) = A7'1,5, and the Landweber iterations; see Carrasco et al. (2007),
Cavalier (2011), Engl et al. (1996) for more details. On the other hand, the estimators in

group (b), often solve the empirical least-squares problem
mi —T,b| 3
o |y [ (3)

where ||v|> = vTv/n,v € R" and we put y = (Y3,...,Y,)" and

T,:H—R"
b ((X1,0),..., (X, 0))7
for an ii.d. sample (V;, X;)i_,. The basis (h;)72, spanning H,, can be either fixed (e.g.
Fourier, polynomials, splines, wavelets) or adaptively constructed from the data.
The data-driven bases are especially attractive since they can adapt to the features of
the population represented by the data and can approximate the slope parameter § € H

more efficiently; see Delaigle and Hall (2012). The principal component analysis (PCA)?

and the partial least-squares (PLS) are two widely used methods to construct adaptive bases

1Using the PCA basis is also related to the spectral cut-off method described in (a).



in practice. The PCA basis is constructed by identifying the directions in H where X varies
the most while the PLS basis is constructed in a supervised way taking into account the
response variable as well. While the first m elements of the PCA basis hq, ..., h,, usually
capture most of the variation of X, these are not necessarily the most important vectors
for approximating [ or predicting the response variable Y. It is easy to find empirical
examples, where some of the last few low-variance components are important; see Jolliffe
(1982) who documented the issue on datasets used in economics, climate science, chemical

engineering, and meteorology.

2.2 PLS estimator

The PLS estimator constructs a data-driven basis iteratively maximizing the covariance
with the response variable Y'; see Blazere et al. (2014a); Delaigle and Hall (2012); Preda
and Saporta (2005); Reiss and Ogden (2007); Wold et al. (1984) for theoretical analysis
and Carrasco and Rossi (2016); Kelly and Pruitt (2015) for applications in economics and
finance. The iterative nature of the estimator makes it difficult to analyze its statistical
properties. This prompted Delaigle and Hall (2012) to formulate an alternative functional

PLS solving the problem in equation (3) over the so-called Krylov subspace
H,,, = span {f, Kf’, KQf, ceey km_lf} )

where

. zn:YX A k=2 zn:X ® X

r=- i an = — i i

o o
are the estimators of r and K; see also Helland (1988); Phatak and de Hoog (2002) for the
link between PLS and Krylov subspaces.
While the functional PLS estimator is popular in practice due to its efficient representa-

tion of the data, to the best of our knowledge, it is still unknown whether it is the minimax
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optimal estimator. In this paper, we study a version of the PLS estimator with m > 1

components, denoted Bm, characterized as a solution to the least-squares problem

: * - 2
min |70y — Tub)|

over the Krylov subspace H,,. The least-squares objective function is weighted by the
adjoint operator of T,,
Tr:R"— H
6= ) o 23 X,
AR n n — 1Y

and corresponds to minimizing the first-order conditions to the problem in equation (3),
often called the normal equations. Equivalently, Bm fits the empirical counterpart to the
equation (2)

min
bEH,,

~ 2
f—Kd’ (4)

as it is easy to see that 7 = 7'y and K=T ~T,. Importantly, the PLS estimator formalized
in equation (4) corresponds to the conjugate gradient method with a self-adjoint operator
K , cf. Hestenes and Stiefel (1952), known for its excellent regularization properties; see also
Blanchard and Kramer (2016); Engl et al. (1996); Hanke (1995); Nemirovski (1986).2 We
provide a more detailed comparison between the two PLS estimators in the Supplementary
Material, Section S.1. A related formulation of the PLS in reproducing kernel Hilbert
spaces (RKHS) was recently studied in an independent work of Gupta et al. (2023) who
focus on the estimation error only and impose assumptions different from ours. Our work
can be seen as using a kernel naturally adapted to the data which is unknown in practice.
The estimator is uniquely defined for every m < n,, where n, is the number of distinct

non-zero eigenvalues of K : see Proposition 1 in the Supplementary Material. It is also

2The method of conjugate gradients is one of the most efficient algorithms for solving high-dimensional

systems of linear equations; see also (Nocedal and Wright, 1999, Chapter 5) and references therein.



casy to see that for every m > 1, we have [, = Pm(f()f for a polynomial pm(f() =

> e a; K7~ with coefficients a := (ay, ..., a,,) " solving the system of m linear equations

Ka=r,

where K := (K7, K*7)1<j p<m and r := (K77, #)1<j<,,. From the practical point of view,
it is more efficient to use an iterative conjugate gradient algorithm that bypasses the (po-
tentially unstable) matrix inversion with an iterative multiplication by the operator K ; see

Algorithm 1 in section 4.

3 Theoretical Properties

In this section, we will show that the functional PLS estimator achieves the (nearly) optimal
convergence rate on a class of ellipsoids. We consider an early stopping rule for the estimator
and show that it adapts to the complexity of the ellipsoid. Lastly, we study how rapidly, the
number of selected components increases with the sample size and make some comparisons

to the PCA estimator.

3.1 Optimal Convergence Rates

Since the operators K : H — H and K :H — H are self-adjoint and compact, by the
spectral theorem
K:Z)\jUj(ng and K:ZS\j@j(@@j,
j=1 j=1
where Ay > Ay > --- >0 and 5\1 > ;\2 > > an > 0 are the eigenvalues of K and K and

(v;)32; and (9;)7_; are the corresponding eigenvectors; see Kress (1999), Theorem 15.16.

3We also define Py = 0 and BO =0.



Note that the sample covariance operator K is a finite-rank operator with at most n, < n
distinct non-zero eigenvalues.
For any bounded and measurable function ¢ : R, — R, , we define functions of opera-

tors through their spectral decompositions:

o) M

P(K) = Z oMo @v;  and  (K) =Y b(N)i; @ b,

These definitions are commonly used in the inverse problems literature; see Engl et al.
(1996).

The following inequalities for the operator norm will be often used:

~

[o(EK)[lop < sup [¢(A)]  and  [[¢(K)[lop < sup [d(A)], (5)
AE[0,M1] AE[0,A1]

where [|A[[op = supy, =, [[Az].
We shall introduce several relatively mild assumptions on the distribution of the data

next.

Assumption 1. (X;,Y;)", are i.i.d. copies of (X,Y) with E[X] = 0, E[|X||* < oo, and

E[?X] < 0% < .

Assumption 1 imposes mild restrictions on the data-generating process. Note that
E| X||* < oo is satisfied when X is a Gaussian process in H. It implies that K is a nuclear

operator and, hence, compact.
Assumption 2. The operator K : H — H does not have zero eigenvalues.

Assumption 2 ensures that the slope parameter S is identified. If this assumption is
violated, the focus would shift to the identified component of g within the orthogonal

complement of the null space of K; see Babii and Florens (2017) and Engl et al. (1996).
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Assumption 3. For some pu, R,C > 0, the slope parameter 8 and the operator K belong

to the class

o0 ‘2 o0
S(M,R,C):{BeH,K:H%H: Zwi;’f < R, ijgc}.

j=1 J J=1
Assumption 3 describes the complexity of the ill-posed inverse problem in terms of the
smoothness of 5 and the smoothing properties of the operator K. The parameter pu is
known as the degree of ill-posedness. It restricts the rate of decline of the generalized
Fourier coefficients (f3, v;),>1 relatively to the eigenvalues of K. A larger value of  means
that it is easier to estimate the slope coefficient (; see also Carrasco et al. (2007). Recall

also that the summability of eigenvalues holds whenever E|| X||? < oo.
Consider now the so-called residual polynomial Q,,,(\) = 1 — AP,,()), deriving its name

from the identity 7 — K 3, = Qm(f( )7. It is known that the polynomial, Qum, has m distinct

real roots, denoted 91 > ég > e > ém > (. The sum of inverse of these roots,

plays an important role in the analysis of the conjugate gradient regularization; see Lemma 4
in the Supplementary Material.
Our first result characterizes the convergence rate of the estimation and prediction

errors of the PLS estimator.

Theorem 1. Suppose that Assumptions 1, 2, and 3 are satisfied. Then for every s € [0, 1],
we have

2

| 58— )

=0Op (l@;n(O)F(l*S)n’l + \QA;@(O)\J(““) + |Q;n(0)|725n’“/\1> :

provided that |Q’, (0)| = Op(n'/?).

11



Note that the last condition in Theorem 1 imposes that the number of components m
does not increase too fast with the sample size and is not binding. In fact, it is optimal to

~ 1
have |Q’.(0)| ~ n%eF0 | in which case we obtain the following convergence rate

pts

[ = = 0n (75%)

When s = 0, this shows that the convergence rate of PLS in the Hilbert space norm is
of order n~#1. On the other hand, when s = 1/2, we obtain the convergence rate of the
out-of-sample prediction error, since

2

?

Bx (X, B = 8)° = |K2(Bn = )

where Ex is taken with respect to X, independent of (Y;, X;)7 .
n+s

The following result shows that no estimator can achieve a faster than n” »+1 log ™’ n

rate on the class S(u, R, C).

Theorem 2. For every s € [0,1/2], there exists A < oo such that

lim inf inf sup Pr (HKS(B — B)H > An~ 3D log /2 n) >0,
n—oo o (B,K)ES(u,R,C)

where b > 2(u + s) and the infimum is over all estimators.

Therefore, we conclude that the PLS estimator 3, achieves the (nearly) optimal con-
vergence rate on S(u, R,C'), simultaneously for the estimation (s = 0) and prediction

(s = 1/2) errors.?

3.2 Adaptive PLS estimator

Next, we look at the adaptive PLS estimator, where the number of components is selected

using the data-driven rule described in the following assumption.

41t is possible to avoid the 1/logn factor by considering the larger class of Hilbert—Schmidt operators.
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Assumption 4. We select m such that

. SE[X|
P K| <70 M}

i >0:
mm{m_ 5

for a sufficiently large T > 1 and some § € (0,1).

Assumption 4 states that the PLS iterations stop at the first value m for which the norm
of the fitted “moment” is smaller than a certain threshold; see Supplementary Material,
Section S.4 for a practical implementation of this early stopping rule. Note that the number
of iterations is finite since m < n,, where n, is the number of distinct non-zero eigenvalues
of K; see Proposition 1 in the Supplementary Material. In fact, the norm of “residual” is
zero for m > n, in which case we have perfect overfitting.

The following result shows that the data-driven rule in Assumption 4 is adaptive to the

unknown degree of ill-posedness p > 0.°
Theorem 3. Suppose that Assumptions 1, 2, 3, and 4 hold with 6 > 1/n. Then

|53~ )] = 0 (19m)55)

with probability at least 1 — § for every s € [0, 1].

Taking 0, = 1/logn in Assumption 4, we obtain from Theorem 3 the convergence rate

of the estimation and prediction errors of PLS with the early stopping rule:

2 o B2
:op<(0g”) )
n

Therefore, the adaptive PLS achieves the (nearly) optimal convergence rate simultaneously

|58 - )

for the estimation and prediction errors without knowing the degree of ill-posedness p > 0.

°See also Cai and Yuan (2012); Comte and Johannes (2012) for adaptivity results in the functional
linear regression model and Blanchard et al. (2018) for the analysis of early stopping rule in abstract

inverse problems.
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3.3 Number of Selected Components

In this section, we look at how rapidly the number of components selected by the early
stopping rule in Assumption 4 increases with the sample size. First, we consider a somewhat
conservative bound that does not impose any assumptions on the spectrum of the operator

K.

Theorem 4. Suppose that Assumptions 1, 2, 3, and 4 are satisfied with 6 > 1/n and
1> 1. Then with probability at least 1 — d
m=0 ((n(S) 4<u1+1)> :

1
Taking 6 = 1/logn, we obtain from Theorem 4 that m = Op <(n/ log n)4<u+1>>. Next,
we consider sharper estimates under additional assumptions imposed on the spectrum of

the operator K.

Theorem 5. Suppose that Assumptions 1, 2, 3, and 4 are satisfied with § > e/n and p > 1.

Then with probability at least 1 — 9
(i) If \j = O(572%) for some k > 0, then

i = O ((né) )

(ii) If \; = O(¢?) for some q € (0,1), then

m = O (log(nd)) .

Theorem 5 shows that if the eigenvalues decline polynomially fast, then the selected
number of components is m = Op(n/ log n)m while in the case of the geometric de-
cline, the number of selected components increases slowly with the sample size. Therefore,
the adaptive stopping rule will select a smaller number of components if the eigenvalues of

the operator K decline faster and vice versa.
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3.4 Comparison to PCA

In this section, we shed some light on the behavior of functional PLS relative to PCA.
We will show that for the same fixed number of components m, PLS fits the empirical
moment better than PCA, hence, it may require a smaller number of components to obtain
a comparable fit. We also show that the regularization bias part of the estimation and
prediction risk of PLS is smaller than the one of the PCA. Therefore, the adaptive PLS
basis is better suited for approximating the slope coefficient.

In what follows, we will use

R m 1
BPLS P )\ and PCA —
Z z:: Aj
to denote the functional PLS and PCA estimators. Note that the PLS estimator uses

supervised regularization P,, while for the PCA estimator the regularization is fixed to

select the terms related to the inverse of the largest m eigenvalues of K. We will also use

BPLS — Z P (Aj)(r,vj)v and preA — Z )\j_l<7‘, Vj)V;
=1

to denote the population counterparts.

Theorem 6. If n, =n, then for every m < n,,

P RB,QLS( <

P KA

and

| KB5S — B)|| < || K= (8B5S - B)

: Vs € [0,1].

The first part of Theorem 6 shows that the PLS estimator fits the data better than
PCA for the same number of components 1 < m < n,. This is the functional version of

a result of Jong (1993); see also Phatak and de Hoog (2002) and Blazere et al. (2014b).
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For the second part of Theorem 6, it is worth recalling that the estimation and prediction

errors in Theorem 1 can be decomposed as

K (305 = 8) = Ko (805 — g01%) + K (85 - 8) . s e {0,1/2),

where the second term is the so-called regularization bias. This shows that the PLS basis

is more adapted for approximating the slope # than the PCA basis.

4 Monte Carlo Experiments

In this section, we set up several Monte Carlo experiments to evaluate the finite sample
performance of the PLS estimator.

We simulate the i.i.d. samples (Y;, X;)", as follows
1
Y, = / Xi(s)B(s)ds + &, &i ~iia. N(0,1),
0

where the predictors belong to the Hilbert space of square-integrable functions with respect

to the Lebesgue measure, denoted H = L?[0, 1]. The functional predictor is generated as

100
Xi(s) = Z VAju0(8), u; ~iia. N(0,1).
j=1

The slope parameter 3 € L?[0, 1] and the spectrum of the operator (\;,v;);>1 correspond

to one of the following four models:

o Model 1: B(s) = 321% Bv;(s) with 8; = 4(—1)7+1571 vy(s) = 1, v;(s) = v/2 cos((j—

Jj=1

7s), and \; = 5~
e Model 2: same as Model 1, but with 3; =4 for j =1,...,10.

e Model 3: same as Model 1, but with 3; = 4(—1)7*1j-1/4,

16



e Model 4: same as Model 1, but with \; = 277 with r; = [0.15],Vj > 1, where

x +— [z] is the ceiling function.

Note that the first few high-variance principal components terms are sufficient to capture

most of nonlinearities in Model 1. Therefore, this design favors strongly PCA. On the

other hand, the low-variance components are important for predicting Y in Model 2, cf.

Jolliffe (1982). With Model 3, we would like to see how the methods perform when the

Fourier coefficients are not square-summable. Lastly, Model 4 is an example of severely

ill-posed problem with repeated eigenvalues. We compute the PLS estimator using the

Algorithm 1 which is numerically equivalent to the estimator in equation (4); see Hanke

(1995), Algorithm 2.1 and Proposition 2.1. It bypasses the operator inversion with an

iterative multiplication by K and is designed to solve high-dimensional linear systems,

K B = 7, with a symmetric matrix K.

~

Algorithm 1: PLS algorithm for solving K B=r.

Result: Bm

Initialisation: BO =0,dy=ey=7— KBO;

for j=0,1,...,m—1do

end

1.

. Compute the step size for the conjugate direction update: v;;1 =

(ejf(ej).

Compute the step size: o = TR
J

. Update the slope coefficient: Bj+1 = Bj + ady;

. Update the fitted moment: e;; = ¢; — ajf(dj;

(ej1.Kej41)
(e, Kej)

. Update the conjugate direction vector: d;i1 = €41 + v;+1d;;

The integrals in inner products and the operator K are discretized using a simple

approximation with Riemann sum on a grid of 7' = 100 equidistant points in [0,1].6 The

SWe also tried to use larger values of T and did not find that finer approximations change substantially
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experiments feature 5,000 replications, where samples of size n = 1,000 are generated
in each replication. For each experiment, the mean-squared prediction error (MSPE) is

computed as
MSPE(fn) = = > (Y = (Xi, Bm))?,

where f,, is obtained from an auxiliary sample of size n, independent of (Y;, X;)7,.

Figure 1 displays the MSPE using the first m = 1,2,...,15 components using PLS
(orange circles) or PCA (blue crosses). The PLS estimator achieves lower value of MSPE
with a smaller number of components, so it offers a more parsimonious representation of
the data than PCA across all four models.

We report the exact values of simulated MSPE with highlighted lowest values in Table 1.
These results confirm that the PLS estimator achieves the lowest value of MSPE across
all designs and it usually does so with a smaller number of components. We find that
for prediction, the optimal number of PCA components is (25,36, 100, 35) while PLS only
requires (5,7,13,4) components for Models 1 to 4 respectively. For Model 3, the prediction
error of PCA continues to decrease up to m = 100 components.”

Next, we look at the mean integrated squared error (MISE) computed as

MISE(3) =B 1Bn(s) = Bls) s,

where the expectation is approximated with the simulations. The results in Table 2 show
that PLS achieves smaller MISE with a smaller number of functional components. The
optimal number of the PCA components is (34,34, 100, 35) while PLS requires (4,6, 13, 3)
components only for Models 1-4 respectively. The optimal number of components for

prediction (MSPE) and estimation (MISE) are similar which is in line with our theoretical

results reported in the paper.

"For readability, we report results for the first 10 functional components in the paper.
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Table 1: Mean-Squared Prediction Error (MSPE) of PLS and PCA using the first m
components, calculated from 1,000 samples of size n = 1,000. The number of components

corresponding to the lowest MSPE is highlighted.

Model 1 Model 2 Model 3 Model 4

m  PCA PLS PCA PLS PCA PLS PCA PLS

1 47903 25062 | 33.0712 17.608 | 53.2982 32.4159 | 13.6365 1.3056
2 24651 1.2715 | 23.7662 5.6453 | 40.1718 15.4156 | 11.232  1.0648
3 17703  1.079 | 17.3605 2.0454 | 32.7232 7.8054 | 9.4952 1.0413
4 1.4757 1.0379 | 13.0917 1.2169 | 27.5816  4.246 8.0192 1.0402
5 1.3217 1.0321 | 9.6292 1.0708 | 23.8259 2.5921 | 6.7641  1.0440
6 12314 1.0390 | 7.1322 1.0480 | 20.8922 1.8100 | 5.5612  1.0473
7 11746 1.0528 | 5.0317 1.0475 | 18.5005 1.4363 | 4.4428  1.0529
8§ 1.1370 1.0697 | 3.4932 1.0576 | 16.5333 1.2557 | 3.3814  1.0572

9 1.1107 1.0846 | 2.2835 1.0717 | 14.8621 1.1686 | 2.3566  1.0606

10 1.0913 1.0953 | 1.5098  1.0859 | 13.4207 1.1286 | 1.3763  1.0655
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Figure 1: Mean-Squared Prediction Error (MSPE) of PLS (orange circles) and PCA (blue

crosses) using the first m components, calculated from 5,000 samples of size n = 1, 000.
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results. The resulting MISE are substantially lower for PLS across the four models. This

suggests that the PLS basis is more suitable for estimating the slope coefficient f3.

Tables 3 and 4 display the bias and the variance MISE components. We can see that the

remarkable MISE performance of PLS is driven by substantially smaller bias for the same

number of functional components. On the other hand, the variance of PCA can sometimes

be smaller than that of PLS. This aligns with the result of Theorem 6 confirming that the

PLS basis approximates the slope coefficient S better compared to the PCA basis.
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Table 2: Mean Integrated Squared Error (MISE) of PLS and PCA using the first m com-
ponents, calculated from 5,000 samples of size n = 1,000. The number of components

corresponding to the lowest MISE is highlighted.

Model 1 Model 2 Model 3 Model 4

m  PCA PLS PCA PLS PCA PLS PCA PLS

1 129386 6.8200 | 158.2132 99.8625 | 546.089  448.6095 | 24.9864 1.2872
2 8.0895 25672 | 138.6779 38.3661 | 518.7172 319.7507 | 20.7245  0.6244
3 5.8387 1.2160 | 117.8103 11.1731 | 494.3239 209.6672 | 17.5198 0.4894
4 4.5358 0.8009 | 98.8206  3.5350 | 471.3402 130.3394 | 14.7569  0.4906
5 3.6653 0.8669 | 79.1779  1.9680 | 449.7725 79.2572 | 12.3737  0.5809
6 3.0475 1.3308 | 61.9748 1.7267 | 429.3939 47.8975 | 10.075  0.6867
7 25884  2.2507 | 45.0136  1.9509 | 409.7226 29.2685 | 7.9137  0.9227
8 2239  3.5537 | 30.7397  2.7170 | 390.9891  18.478 | 5.8557  1.1535

9 1.9602 49199 | 18.0959  3.8499 | 372.7052 12.4587 | 3.8655  1.3964

10 1.7321 6.0644 | 9.2499  5.1692 | 355.2951 9.3763 | 1.9564 1.8625
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Table 3: Squared Bias part of MISE using the first m components, calculated from 5,000
samples of size n = 1,000. The number of components corresponding to the lowest MISE

is highlighted.

Model 1 Model 2 Model 3 Model 4

m  PCA PLS PCA PLS PCA PLS PCA PLS

1 128396 6.7512 | 158.042 99.6102 | 545.8576 447.9841 | 21.0837 0.7598
2 79718 24527 | 138.2143 37.4805 | 517.7943 318.1858 | 15.2567  0.4077
3 95.6967 1.0159 | 116.6897 9.8767 | 492.4548 206.5991 | 11.5159 0.2703
4 43522 0.4349 | 96.8103  2.122 | 468.6711 125.7045 | 8.6575  0.2079
5 3.4581 0.1802 | 76.2421  0.5579 | 445.8752 73.4402 | 6.4482  0.1539
6 2.8112 0.0689 | 57.8386 0.2224 | 424.042  41.6481 | 4.5399  0.1287
723325 0.0259 | 40.135  0.0889 | 402.9084 22.8554 | 3.1748  0.099

8§ 1.9664 0.0118 | 25.1972  0.0288 | 382.3052 12.0892 | 2.165  0.0833

9 1.6725 0.0059 | 12.3835 0.0105 | 363.0781  6.1220 | 1.5032  0.0715

10 1.4353 0.0031 | 4.3479  0.0045 | 343.7048 2.9256 | 1.2050 0.0566
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Table 4: Variance part of MISE using the first m components, calculated from 5,000
samples of size n = 1,000. The number of components corresponding to the lowest MISE

is highlighted.

Model 1 Model 2 Model 3 Model 4

m  PCA PLS PCA PLS PCA PLS PCA PLS

1 0.1026 0.0827 | 0.1724 0.2736 | 0.2483 0.4112 | 3.837 0.5221

2 0.148 0.1211 | 0.5518 0.8766 | 0.7678  1.5063 | 5.3783 0.2154

3 0.1766 0.1990 | 1.1741 1.3028 | 1.5379  3.1381 | 5.9298 0.2180

4 0.1995 0.3670 | 1.9509 1.4047 | 2.4680 4.7544 | 6.0901 0.2815

5 0.2219 0.6883 | 2.9034 1.4026 | 3.6991 5.8475 | 5.9311 0.4254

6 0.2385 1.2648 | 3.8637 1.4977 | 5.0667 6.3634 | 5.4788 0.5571

7 0.2572 2.2256 | 4.8643 1.855 | 6.5964 6.4811 | 4.7681 0.8252

8 0.2701 3.5472 | 55178 2.6769 | 8.1606 6.4353 | 3.7528 1.0727

9 0.28060 4.9168 | 5.7629 3.8224 | 9.8113  6.412 | 2.4025 1.3285

10 0.2981 6.0604 | 4.9463 5.143 | 11.7207 6.5094 | 0.7433 1.8125
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Lastly, Figure 2 reports the mean of the PLS estimator Bm (dashed red) with the MISE-
optimal number of functional components, m, as well as the true slope coefficient (solid
black). Remarkably, PLS requires a relatively small number of components to recover ac-
curately the shape of various functions, including those with sharp changes and complex
nonlinearities. This is especially important for our empirical application, where the tem-
perature effects on crop yields are believed to exhibit sharp changes for extreme values; see
Section 5.

The simulation results also underscore the importance of early stopping for the PLS
since there is overfitting for excessively large m. In the Supplementary Material, Section S.4,
we report additional simulation results that show that our early stopping rule produces
reliable estimates. To conclude, the results of the experiments confirm our theoretical
results and illustrate that the supervised PLS bases are well-suited for representing the

slope parameter § and for predicting the response variable Y.

5 Nonlinear Temperature Effects in US Agriculture

The global surface temperature has increased by 1.1°C above pre-industrial levels and could
increase up to 3.6°C to 4.5°C by the end of the century if current C'O;y emissions rise steadily
according to the latest studies; see IPCC (2021). The global warming will likely lead to more
frequent and severe heatwaves, altered precipitation patterns, and intensified droughts.
Of all major sectors, agriculture is arguably the most sensitive to climate change. While
constituting a modest share of developed economies, it is vital for food security. Indeed, the
intensified droughts could cause food shortages which in turn may potentially exacerbate
mass migration and violent conflicts. Some have argued that the current climates are

already warmer than is optimal for agriculture in many parts of Asia, Africa, and Latin
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Figure 2: Average PLS estimator with the MISE-optimal number of functional components

and the pointwise 90% confidence band, calculated from 5,000 samples of size n = 1, 000.
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America; see Nordhaus (2013).

Determining the precise functional form of the relationship between crop yields and
temperature has attracted lots of attention recently; see Schlenker and Roberts (2006,
2009).8 We argue that the methodology used to estimate such nonlinear temperature
effects can be understood as a functional linear regression,” where the outcome Y is the
log yield of a crop, measured in bushels per acre, and the functional regressor (X(s))seo,40]
is a temperature curve, representing the crop exposure to temperatures between 0°C to
40°C during the growing season, measured in degree days, reflecting how much the crop is
exposed to particular temperatures.

We focus on corn and soybeans which are the two major crops grown in the US. The
dataset is comprised of fine-scale county-level crop yields and weather outcomes, spanning
US counties east of the 100 degree meridian from 1950 to 2020.1° We use the same set of
controls as in Schlenker and Roberts (2009), namely (precipitation,precipitation?® t, %), the
county dummies, and the interaction between (¢, t?) and state dummies. The crop yields YV’
and the temperature curve X are regressed on these controls to obtain the residuals which
are subsequently used for the functional data analysis.

The slope coeflicient is then estimated using: 1) our functional PLS estimator; and 2)
a highly parameterized least-squares estimator with a step function approximation as in
Schlenker and Roberts (2009). The latter fits a separate temperature effect for each 3°C

bin from 0°C to 40°C, hence, it involves 13 parameters. On the other hand, our optimal

8The influential study of Schlenker and Roberts (2009) has more than 4,000 Google Scholar citations

at the time of writing.

9A similar methodology is also used to quantify the nonlinear temperature effects on mortality in public

health studies; see Gasparrini et al. (2015).

0The dataset is publicly available at the time of writing at www.wolfram-schlenker.info/

replicationFiles/SchlenkerRoberts2009.zip.
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stopping rule finds m = 4 functional PLS components both for corn and soybeans; see

Appendix Section S.4 for more details on the implementation of the early stopping rule.

Figure 3: Nonlinear relationship between temperature and crop yields fitted using func-

tional PLS (red curve) and step function approximation (black dash).
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Figure 3 displays the estimated functional slope coefficient 3 corresponding to our func-
tional PLS (red cure) and step function approximation (black dash) for corn and soybeans.
We find that the critical temperature after which the crop yields start declining is around
29-30°C which is similar to findings reported in Schlenker and Roberts (2009).

Lastly, we look at how the nonlinear temperature effects have changed over time. Fig-
ure 4 reports the estimated functional slope coefficient splitting the data into three sub-
samples: 1950-1973 (blue dot), 1974-1997 (red dash), and 1998-2020 (green curve). The
results indicate that the negative temperature effects were larger during 1950-1973 com-
pared to the most recent 22 years, especially for the extreme temperatures. The mitigation
of extreme temperature effects may come from two sources: the adaptation and the C'O,

fertilization. The C'Os fertilization effects observed in our sample are likely to be small; see
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Figure 4: Adaptation effects in nonlinear relationship between temperature and crop yields.
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Nordhaus (2013) who argues that doubling the atmospheric concentration of C'Oy would
increase crop yields by 10-15% only. In contrast, the adaptation effect is likely to dominate
over time. It can be attributed to the actions taken by farmers, such as adjusting the
sowing and harvesting dates to maximize yields, using more resilient crops, or building effi-
cient irrigation systems. Our results, therefore, suggest some evidence of adaptation in US
agriculture which has also been reported in Burke and Emerick (2016) using the aggregate

linear regression analysis without accounting for nonlinearities.

6 Conclusions

This paper proposes a new formulation of the functional PLS estimator related to the
conjugate gradient method applied to an ill-posed inverse problem with a self-adjoint oper-
ator. We provide the first optimality result for functional PLS and consider a rate-adaptive

data-driven early stopping rule to select the optimal number of functional components. The
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estimator has good estimation and prediction properties for a smaller number of principal
components than PCA and the data-driven early stopping rule performs well in simulations.
We find in an empirical application that the nonlinear temperature effects on crop yields
have slightly decreased since 1950, especially for extreme temperatures. This provides some

additional evidence of the adaptation of US agriculture to climate change.
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