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Multivariate linear regression and randomization-based inference are two essential meth-
ods in statistics and econometrics. Nevertheless, the problem of producing a randomized test
for the value of a single regression coefficient that is exactly valid when errors are exchange-
able, and which is asymptotically valid for the best linear predictor, has remained elusive.
In this paper, we produce a test that is exactly valid with exchangeable errors and which
allows for general covariate designs; covariates may be continuous as well as discrete and
may be correlated. The test is asymptotically valid when the errors are not exchangeable, in
particular in the presence of conditional heteroskedasticity.
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1. INTRODUCTION

Consider the linear regression model

Yi = β0 +Xi1β1 + · · ·+Xipβp + εi, i= 1, . . . ., n, (1)

where {Yi,Xi, εi}ni=1is drawn from an unknown distribution Pn. For ease of exposition, we
will consider the vector representation of the bivariate model,

Y = 1nβ0 +X1β1 +X2β2 + ε, (2)

where 1n is a n × 1 vector of 1’s, Xj = (X1j , . . . ,Xnj)
T , j = 1,2, and ε = (ε1, . . . , εn).

All results and manipulations can be done with minor modifications for matrices of general
dimensions. In particular, the reader may think of X2 as being in Rp−1 throughout without any
formal incongruities, and all technical results are proved for that case.

Our interest lies in testing the value of the first slope coefficient, i.e., in testing the null,

H0 : β1 = β0
1 . (3)

Importantly, inverting such a test produces a marginally valid confidence interval for β1. Of
course, the first covariate is chosen without loss of generality since the order of the covaraites
does not impact the value of their estimate.

The standard, perhaps ubiquitous, approach for testing (3) is to use the classical t-test (Stu-
dent, 1908, Wooldridge, 2010). This test is asymptotically valid under standard conditions on
the first and second moments. In the event that the errors are independent and identically dis-
tributed Gaussian random variables, the t-test will be exact in the sense that its probability
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of false rejection in finite samples will not exceed the user-prescribed, nominal probability
α ∈ [0,1]. In fact, the t-test will have probability of rejection exactly α under the null; we say
that it has exact nominal size.

Another classical approach to testing is randomization. Indeed, in applications such as one-
or two-sample tests for the mean, or tests of economic inequality (Dufour et al., 2019), and
many others (Romano, 1990, Lehmann and Romano, 2005), randomization-based approaches
deliver exact tests without making assumptions about the specific distribution of the data. To
the extent that such tests have large-sample performance comparable to that of standard tests
under comparable assumptions, they may consist in a desirable alternative given their different,
sometimes better adapted small-sample properties and weaker assumptions.

The question of producing an exactly valid, randomization-based test for (3) that is asymp-
totically valid under general conditions thus arises very naturally.

However, and rather remarkably, Lei and Bickel (2021) provide an extensive literature review
substantiating the claim that, for null hypotheses such as (3) , “there is no test that is exact under
reasonably general assumptions”. Their notion of “general assumptions” rules out covariate
designs where all nuisance covariates are discrete. They presumably rule out max-p procedures
as too conservative,1 or are restricting themselves to tests of exact nominal size.

To the best of my knowledge, Lei and Bickel (2021) produce the first such exact test for
general linear hypotheses in the linear model (1). They use a construction that cleverly builds
the required invariances into the test statistic.

Wen et al. (2022) later produced another such test which is better adapted to high-
dimensional regression and which, although it does not have nominal size—i.e., it rejects under
the null hypothesis with probability lower than the nominal level α— in some cases displays
better power properties.

To the best of my knowledge, Wen et al. (2022) are the first to use the idea of somehow
explicitly “orthogonalizing” permuted nuisance regressors. This idea, while it is instantiated
quite differently here, plays a prominent role in the proposed method.

While these procedures closed an important mathematical statistics question, neither of these
are shown to be even asymptotically valid when exchangeability does not avail, for instance
under heteroskedasticity —indeed, they are not, see Section 3. This is critical for applications
since in practice we typically cannot assume that the conditional expectation is linear, but are
content with estimating its best approximation, the best linear predictor E∗ [Yi |Xi ] = XT

i β,
Xi = (1,Xi1, . . . ,Xip), with errors εi = Yi − E∗ [Yi |Xi ] satisfying orthogonality conditions
E [εi] = 0 and E [εi ·Xij ] = 0, j = 1, . . . , p. It is then a rather cavalier assumption to make
about Pn that the thus produced errors retain no dependence with the covariates. Heterogeneous
treatment effects, for instance, bring about heteroskedasticity (Breusch and Pagan, 1979). To
be sure, this is an assumption we have to make to produce exactly valid tests, but it is not an
assumption we have to make in order to produce asymptotically valid tests—considering, for
instance, the classical heteroskedasticity robust t-test.

As it pertains to producing such an asymptotically robust randomization test, the case in
which the tested covariate is independent of other covariates is covered in DiCiccio and
Romano (2017) and substantially generalized in Young (2023) who also provides improved
asymptotic robustness guarantees.

To the best of my knowledge, the first and only exactly valid procedure allowing for depen-
dent covariates that is also asymptotically valid for the best linear predictor under heteroskedas-

1Given a procedure producing a p-value p (β1, β2, . . . , βp) for null hypotheses on the full vector (β1, β2, . . . , βp),
we speak of maxβ2,...,βp p (β1, β2, . . . , βp) as the max-p statistic, a conservative yet valid p-value corresponding
to the projection method.
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ticity was produced by D’Haultfœuille and Tuvaandorj (2024). Their work builds on the stu-
dentization strategy of DiCiccio and Romano (2017) and others cited therein. Their method
applies to the case in which all nuisance covariates are discrete and each support point of the
nuisance covariates vector is sampled an asymptotically growing number of times. They state
that “constructing a permutation test for subvectors that is both exact under independence and
asymptotically heteroskedasticity-robust for any design” is yet unresolved.

We propose the following test statistic, which will be shown to produce a randomized test
that is exact when errors are exchangeable, and to be asymptotically valid for the best linear
predictor, allowing in particular for conditional heteroskedasticity. Let Gn be a group of linear
transformations (e.g., any subgroup of the group of permutations) of {1, . . . , n} onto itself.
Define, for each g ∈Gn, the statistic

tg
(
β0
1

)
=

X̄T
1

(
Y−X1β

0
1

)
g

σ̂g

, (4)

where

σ̂2
g =

1

n

n∑
i=1

X̄2
i1ε̂

2
g(i), (5)

X̄1 = QX1, Q is the orthogonal projection onto the orthogonal complement of the span
of {gX2}g∈Gn

, and the residuals ε̂i obtain from the regression of Y on an intercept term,
{gX1}g∈Gn

and {gX2}g∈Gn
. As detailed in Section 2, we suggest to use a group of non-

overlapping block permutations as the set of group actions Gn.2
To the best of my knowledge, the randomization test using the above statistic is the first

exact randomization test of nominal size3 for (3) that is asymptotically valid under conditional
heteroskedasticity.

From a practical standpoint, the most natural alternative to the suggested procedure is the
classical t-test. The proposed test is exactly valid under strictly weaker assumptions than the
classical t-test. Indeed, as illustrated with power plots in Section 3, while the classical t-test
may outperform the suggested procedure in small samples with normally distributed errors, it
is invalid in small samples with non-normally —in particular, skewed— distributed errors and
in samples of any size with conditionally heteroskedastic errors. The proposed test, on the other
hand, is exactly valid with any exchangeable errors, and asymptotically valid with conditionally
heteroskedastic errors. The classical heteroskedasticity-robust t-test is observed to be invalid in
small samples, even with Gaussian data, while the proposed procedure, which remains exactly
valid with exchangeable data, furthermore appears to approach its power in large-samples,
suggesting it can be a competitive choice if the data analysts wants a heteroskedasticity-robust
test.

Finally, the more general case of testing a general linear hypothesis Rβ = 0 for any given full
rank matrix R, which Lei and Bickel (2021) show is tantamount to testing a that a subvector
of β is equal to zero, can be handled by an immediate extension of the results herein and using
the quadratic form analog of (4).

2Keeping with the literature, we use the group action notation g such that its explicit form is clear from context. In
particular, gZ may read as applying a n× n permutation matrix g to the n× 1 vector Z, and that is equal to Zg =
(Zg(1), . . . ,Zg(n))

T where g reads as a function from and to {1, . . . , n} corresponding to the same permutation.
3Or, to put it more transparently, the first test statistic that is “inherently” invariant with respect to the nuisance

coefficient β2. Because it takes a worst case over nuisance parameters, we do not consider the max-p statistic to
be “inherently” invariant. We consider this a reasonable criteria since it excludes procedures that are intrinsically
conservative.
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The remainder of this paper is divided as follows. In Section 2, I develop the proposed test in
more detail. In Section 3, I characterize the power properties, in small and large samples, of the
proposed test as compared with some available alternatives. Section 4 discusses and concludes.

2. METHODOLOGY

Consider the proposed statistic (4) with explicit parametrization,

tg
(
β0
1

)
= t
(
β0
1 :X1,X2, g

(
Y−X1β

0
1

))
,

where we emphasize its arguments and that the group action is only applied to the “short resid-
uals” Y−X1β

0
1 .

We recall the standard mechanics of the construction of a randomization test. Suppose M =
|Gn|, the cardinality of Gn. Let W = (X1,X2,Y−X1β

0
1) and use the shorthand gW =

(X1,X2, g (Y−X1β
0
1)). For every W ∈ supp (W), let

t(1) (W)≤ t(2) (W)≤ · · · ≤ t(M) (W)

be the ordered values of t(β0
1 : gW) as g varies over Gn and write t(i) in lieu of t(i) (W), for

any given i, when no confusion arise. Given a nominal level α, let k be defined as

k =M − ⌊Mα⌋ ,

where ⌊Mα⌋ denotes the largest integer less than or equal to Mα.
Let t̂ := t(β0

1 :W) be the realized test statistic, and define the test function4

ϕ (W) =


1, t̂ > t(k)

a, t̂= t(k)

0, t̂ < t(k)
,

with a= (Mα−M+)/M0, where M+ and M (0) are the number of values t(j), j = 1, ...,M ,
that are greater than t(k) and equal to t(k), respectively.

Intuitively, if the distribution of the test statistic is invariant under group actions g ∈ Gn,
then the empirical distribution {t(β0

1 : gW)}g∈Gn
may be used as a randomization distribution

with respect to which the quantile of the observed test statistic t̂ is a valid p-value.

2.1. Exact validity

Consider the model (2). The strong null we are willing to make in order to obtain exact
validity is that the errors are exchangeable. We are not, however, willing to assume that the
tested and nuisance covariates are exchangeable with respect to each other.

ASSUMPTION 2—Strong Null: For any g ∈Gn,

(X1,X2,ε)∼ (X1,X2, gε) .

4In practice, one may use the slightly conservative but simpler nonrandomized test with k = ⌈(1− α)M⌉ and

ϕ (W) =

{
1, t̂ > t(k)

0, t̂≤ t(k)
.



AN EXACT t-TEST 5

Note that the symbol “∼” used in A∼B denotes that A and B have the same distribution.
When Assumption 2 is satisfied for a given Pn and a choice of Gn, the proposed procedure is
exactly valid.

THEOREM 1—Validity of Exact t-Test: Suppose Assumption 2 holds and Y−X1β
0
1 is not

in the column span of {g (X1,X2)}g∈Gn
. Then, under the strong null,

EP [ϕ (Y,X1,X2)] = α. (6)

PROOF OF THEOREM 1: We omit the subscript and use G=Gn for ease of notation. First,
observe that, under the null and invoking Lemma A.1 , the numerator rewrites as

XT
1

(
Qg
(
Y−X1β

0
1

))
=XT

1

(
gQ
(
Y−X1β

0
1

))
=XT

1 Q (gε) , (7)

which is a function of (X1,X2, gε) alone.
Second, let Q̂ be the orthogonal projection onto C⊥

(
1n,{gX1}g∈G ,{gX2}g∈G

)
, the

orthogonal complement of the span of 1n, {gX1}g∈G and {gX2}g∈G. Consider the per-
muted fitted residuals ε̂(g) ≡ ε̂ (X1,X2, g (Y−X1β

0
1)), the residuals from the regression of

g (Y−X1β
0
1) onto 1n, {gX1}g∈G and {gX2}g∈G. Observe that ε̂(g) rewrites as

Q̂g
(
Y−X1β

0
1

)
= gQ̂

(
Y−X1β

0
1

)
= gQ̂ε= Q̂gε, (8)

where the first and third equality invoke Lemma A.1. In particular, Q̂ε= ε̂(id) and we deduce
that gε̂(id)≡ (ε̂g(1), . . . , ε̂g(n)) is equal to ε̂(g) which is a function of (X1,X2, gε) alone.

Standard arguments then apply to establish (6). Specifically, consider the explicit parametriza-
tion of the test

ϕ
(
W,{gW′}g∈G

)
=


1, t̂ (W)> t(k) (W′)

a, t̂ (W) = t(k) (W′)

0, t̂ (W)< t(k) (W′)

,

where t̂ (W) = t (β0
1 :W) and t(k) (W′) is the kth order statistic of {t(β0

1 : gW
′)}g∈G. In

particular, ϕ (W) = ϕ
(
W,{gW}g∈G

)
.

By construction,∑
g∈G

ϕ (gW) =
∑
g∈G

ϕ
(
gW,{g′gW}g′∈G

)
=
∑
g∈G

ϕ
(
gW,{gW}g∈G

)
=Mα,

where the second equality holds because G is a group. Therefore,

Mα=E

[∑
g∈G

ϕ (gW)

]
=
∑
g∈G

E [ϕ (gW)] .

Because ϕ (gW) is only a function of gW through t (β0
1 : gW) and {t (β0

1 : g
′gW)}g′∈G, each

of which have the same distribution for every g ∈G, it obtains that

Mα=
∑
g∈G

E [ϕ (W)] =ME [ϕ (W)] .

Q.E.D.
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REMARK 1: We relied on the operator commutativity

gQ=Qg, (9)

guaranteed by Lemma A.1, in order to establish (7) and (8). Alternatively, we may for instance
have observed that, by construction, Q (gX2 )= 0 , for any g ∈ Gn. This is in line with the
intuition behind the construction of the test statistic. Invariance of the test statistic with respect
to β2 comes from orthogonalizing away not just X2, but from orthogonalizing away gX2 for
all g ∈Gn.

The assumption on the kernel of {g (X1,X2)}g∈Gn
insures the denominator is not zero

and the test statistic is well defined. It can be verified in practice and will typically hold with
probability one.

The choice of Gn, of course, is critical. The group of linear transformations must satisfy
three criteria.

First, it must be large—and thus granular—enough to produce accurate p-values and not
forego “too much” statistical power.

Second, it must be small enough to leave explanatory variation in QX1 so that the test retains
statistical power. For instance, if Gn were the set of all permutations from {1, . . . , n} onto
itself, then many typical data generating processes for X2—e.g., continuous—would tend to
produce X2 ∈ Rn such that rank

(
(gX2)g∈Gn

)
= n, meaning QX1 = 0n, and the test would

have no power whatsoever.
Third, it must be structured enough that a central limit theorem for the randomization distri-

bution can be worked out.
We suggest to pick Gn to be the set of non-overlapping block permutations. For instance,

for n= 9 and number of blocks nblocks = 3, some g ∈Gn gives

g (1,2,3,4,5,6,7,8,9) = (4,5,6,7,8,9,1,2,3) .

With respect to our first criteria, this choice seems satisfying. Indeed, when using this group
in the univariate case, the loss of power from decreased block size is not traded off for an
increase in power from retaining more explanatory variation in QX1, and is thus isolated. We
find in simulations a very moderate loss in power from using blocks. See Appendix A.1 for
details and an illustration.

With respect to our second criteria, theory avails that allows us to quantify the dimension of
the space that is annihilated by applying the orthogonal projection Q corresponding to a certain
Gn. We collect such a theorem.

THEOREM 2: If n≥ n2
blocks, then

max
X∈Rn

rank (GX) = nblocks · (nblocks − 2) + 2,

where GX=
(
g(1)X, . . . , g(M)X

)
.

Remarkably, the block structure makes it such that the column rank of GX increases much
slower than the number of columns of GX. This is nicely illustrated in Table I.

The proof of Theorem A.1 for the general case of a matrix argument X ∈ Rn×p is given
in Appendix A.2, and may be of independent interest as a nice interplay of linear algebra and
combinatorics.
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TABLE I

nblocks 2 3 4 5 6 7 8 9 10

Number of columns 2 6 24 130 720 5,040 40,320 362,880 3,628,800
Rank 2 5 10 17 26 37 50 65 82

Note: Number of columns and maximal rank for a matrix whose columns are g(1)X, . . . , g(M)X, allowing a conformable n.

Theorem 2 conveys in a principled way why the method can work in the first place. Indeed,
while the number of columns of the matrix

(
g(1)X, . . . , g(M)X

)
increases exponentially fast in

the number of blocks, its rank, and thus that of the kernel of Q, increases like a second-order
polynomial.

Note that Theorem 2 is not only presented as theory to justify and motivate our choice of
group actions. It is important in the construction of the test statistic because it facilitates the
construction of Q. It is furthermore important for theory, and is indeed relied upon in the proof
of Theorem A.3 below.

2.2. Large-sample validity

Exact validity of the proposed test was established in Theorem 1, under a strong null implied,
for instance, by correct specification of the conditional expectation as being linear and the
observations being independently and identically distributed. Exact validity also obtained for
the tests proposed by Lei and Bickel (2021), D’Haultfœuille and Tuvaandorj (2024), Brown
and Maritz (1982) and Wen et al. (2022). However, this can be appreciated as an answer to a
mathematical statistics question, or as an “additional property” for a test that ought to be valid
in a weaker sense under assumptions more typically encountered by data analysts.

Here, the analogy with the classical t-test is instructive. While the exact validity —and piv-
otality— of the t-test when data is normally distributed is both an edifying mathematical fact
and somewhat of a reassurance when, in practice, the data analyst is confronted with a small
sample believed to be approximately normally distributed, it is the much more general validity
of the test in large samples that makes it such a ubiquitous tool.

Specifically, while the proposed test is exactly valid for the best linear predictor when the
errors are exchangeable, assumptions made directly about the errors produced as the difference
between observations Y and the best linear approximation to a nonlinear conditional expec-
tation may be hard to assess—or to entertain seriously. The generic case allows dependence
between X and ε.

As per the classical t-test, while the exact validity of the permutation test under exchange-
ability of the blocks of errors—which is already weaker than requiring their being indepen-
dently and identically normally distributed—is an attractive property, asymptotic validity un-
der weaker assumptions—comparable to those required for asymptotic validity of the t-test—is
crucial for the practical relevance of the method.

Moving from analogy to comparison, it is interesting to consider that, power concerns
notwithstanding, the proposed exact test is asymptotically robust to heteroskedasticity, while
the classical t-test is not. On the other hand, the heteroskedasticity robust t-test asymptotically
delivers its eponymous robustness but is not exactly valid in small samples, even with indepen-
dent Gaussian errors, while the proposed test is both asymptotically heteroskedasticity-robust
and exactly valid in small samples with exchangeable errors, Gaussian or not.

Thus motivated, we produce theory guaranteeing that our exactly valid procedure remains
at least asymptotically valid when the strong null fails, for instance under conditional het-
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eroskedasticity. Remark that, amongst the aforementioned exact tests for individual regression
coefficients, only D’Haultfœuille and Tuvaandorj (2024) produced a provably asymptotically
heteroskedasticity robust procedure, in the case of discrete control variables X2.

The key to producing the asymptotically robust randomized test is to studentize. This idea
was first put forward by Neuhaus (1993) and was used in a similar context by D’Haultfœuille
and Tuvaandorj (2024) and DiCiccio and Romano (2017); these also provide a more complete
and historical set of references pertaining to studentizing. A randomization test is asymptot-
ically valid if the randomization distribution of its test statistic coincides, in arbitrarily large
samples, with its resampling distribution. The randomized test then inherits, in such large sam-
ples, the validity of the resampling procedure. In standard settings, the resampling and per-
mutational limit distributions of a test statistic are normal, but their variances may disagree.
However, if there exists a variance estimate that converges to the correct, possibly different
asymptotic variances in each asymptotic regime, then by studentizing the test statistic with
that variance estimate, both limits of the studentized test statistic will be standard normal and
asymptotic validity will obtain.

Specifically, in our notation, the numerator of (4) converges in distribution to N
(
0,E

[
ε2 · X̄∗2

1

])
,

where X̄∗
1 is population analog of the entries of X̄1. Under a permutational central limit

theorem, the permutations "enforce" independence and the numerator of (4) converges in
distribution to N

(
0,E [ε2] ·E

[
X̄∗2

1

])
. However, the variance estimate σ̂2

g converges to
E
[
ε2 · X̄∗2

1

]
for g = id under the standard frequentist central limit theorem, and converges to

E [ε2] ·E
[
X̄∗2

1

]
under the permutational central limit theorem. Consequently, the studentized

statistic (4) converges to a standard normal under both regimes. The randomization procedures
thus matches the resampling procedure and inherits its validity.

We collect key assumptions.

ASSUMPTIONS M—Moments:
M.1 E [εi] = 0 and E [εiXi] = 0, ∀ i,
M.2 E

[
X4

i,j

]
,E [Y 4

i ]<∞, ∀ i, j.

Assumption M.1 defines the best linear predictor, while M.2 requires bounds on moments
which may be considered as standard, see for instance DiCiccio and Romano (2017).

ASSUMPTIONS S—Spectral Conditions: For
−→
X ∈ Rn×−→p a full rank matrix such that

−→p = rank(GX−1) where GX−1 =
(
g(1)X2, g

(2)X2, . . . , g
(M)Xp

)
, and X̌ ∈Rn×p̌ a full rank

matrix such that p̌= rank(GX) where GX=
(
g(1)X1, ..., g

(M)X1, g
(1)X2, . . . , g

(M)Xp

)
, the

maximal eigenvalues of the inverse Gram matrices satisfy λmax

((−→
XT−→

X
n

)−1
)
=OP (−→p ) and

λmax

((
X̌T X̌

n

)−1
)
=OP (−→p ).

Assumption S is analogous to assumptions made in the “large number of moments” literature,
see for instance Koenker and Machado (1999). They are required to insure that the residuals
have standard behavior even though the number of regressors may be growing. See further
discussion below.

ASSUMPTIONS D—Design: Xij ,∀ i, j, are uniformly bounded in probability.

Assumptions D restricts the support of the design matrix and, heuristically speaking, requires
that arbitrarily large values of the covariates occur with arbitrarily small probability.
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We can now produce the main theorem which states that even if the strong null does not hold,
if the weak null consisting of the null hypothesis of interest (3) and assumptions including M,
S and D hold, then the test ϕ is asymptotically valid.

THEOREM 3: Suppose (Yi,Xi)∼P independently, and that Assumptions M, S and D hold.
Suppose that S holds and n8

blocks/n→ 0. Further suppose that ε2i = oP (n), uniformly, and that
nblocks/b

ζ →∞, for some 0< ζ < 1. Then, under the null hypothesis H0, we have that

EP [ϕ (Y,X1,X2)]→ α,

where (Y,X1,X2) ∈Rn×(2+p).

PROOF OF THEOREM 3: Let Jtid,n (·) be the sampling distribution of tid (β0
1), whose de-

pendence on n is implicit. By Theorem A.2, we have that

lim
n→∞

sup
s∈R

|Jtid,n (s)−Φ(s)|= 0,

where Φ(·) is the standard normal cumulative distribution function.
Let R̂tg,n be the permutation distribution of tg (β0

1). By Theorem A.4, we have that

R̂tg,n (s)
P→Φ(s) ,

for all points of continuity of s.
Invoking Lemma 11.2.1 of Lehmann and Romano (2005), as they do in their Theorem 15.2.3,

we find that since Φ(·) is everywhere strictly increasing and continuous,

R̂−1
tg,n

(1− α)
P→Φ−1 (1− α) .

Because tid is asymptotically normal, it follows by Slutsky’s Theorem that

EP [ϕ (Y,X1,X2)] =P
(
tid (β

0
1)> R̂−1

tg,n (1− α)
)
+ o (1)→P (Z >Φ−1 (1− α)) = α,

where Z denotes a standard normal random variable.
In particular, by comparing the realized test statistic to the quantiles of the randomization

distribution, the randomization test asymptotically accepts or rejects according to the standard
resampling test.

Q.E.D.

The requirement that the blocks don’t grow too fast in the sense that nblocks/b
ζ →∞ is a

rather innocuous technicality since ζ can be taken as small as desired. Likewise, we find that
requiring ε2i = oP (n) uniformly is not restrictive, it is for instance satisfied and easy to verify
in the case of normal random variables.

Assumption S is certainly stronger than required. Simulation studies and intuition suggest
the rate OP (1) for the maximal eigenvalues. However, to the best of my knowledge, we do
not have the random matrix theory required in order to derive this rate in terms of simple
conditions on X. I therefore opted for a conservative but noncontroversial low-level condition.
One implication of the conservative rate on the maximal eigenvalue is a stronger requirement
on the growth rate of the number of blocks.

Indeed, the requirement that n8
blocks/n→ 0 is very strong, but must be qualified. First, the re-

quirement that the blocks be very small and "grow slowly" does not hinder power, as discussed
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FIGURE 1.—Comparison of classical t-tests with proposed exact t-test when errors are normally distributed. The
proposed exact t-test is in black bold, the classical t-test in gray, and the classical robust t-test in dashed grey.
Left-hand side plot is for n= 25 and nblocks = 5 and the right-hand side plot is for n= 1000 and nblocks = 10.

above and in Appendix A. In a sense, the practically constraining regularity condition is that
they grow at all. Second, simulations suggest that the true required rate is much lower. Theory
is also suggestive. Even under Assumption S, if one assumes that the errors have conditional
mean zero –even allowing for heteroskedasticity– then standard arguments such as those used
in Donald and Newey (1994) apply and require n4

blocks/n→ 0.

3. SIMULATIONS AND APPLICATIONS

Because the key property of the proposed test is its validity, both exactly in small sample
under the strong null and asymptotically under the weak null, the objective of this section
is not so much to provide a thorough characterization of power properties across a vast and
exotic array of data generating processes but rather to qualitatively suggest that the proposed
test has reasonable power even though validity has been extended. In order to do that with
simple yet compelling illustrations, we focus on ex ante expected data generating processes to
impress upon the reader that the simulation designs were not cherry picked. Specifically, we
consider standard normal errors for the “Gaussian” design, Gamma variables with shape and
rate parameter equal to 0.01 and 1 and rescaled to have variance 1 for the “skewed” design, the
“exponential” design corresponds to error distributed according to an exponential distribution
with parameter 1, and normal errors with variance σ2

ϵ (X)∝
√
|X1| for the “heteroskedastic”

design.
Unless otherwise specified, the covariates (Xi1,Xi2) are drawn from a bivariate normal with

marginal variances 1 and covariance 0.15.
We can see from Figure 1 that, as expected, the classical t-tests apparently dominates the

proposed test in small samples with Gaussian data. However, the performance of the proposed
test appears to be competitive asymptotically. This is quantified in Table II, which documents
the seeming convergence of the power of the classical t-test and proposed test with Gaussian
errors. The same convergence is observed for the heteroskedasticity robust t-test and the pro-
posed test.
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TABLE II

RELATIVE POWER OF PROPOSED TEST ALONG A PITMAN SEQUENCE.

n 25 50 100 1000

nblocks 5 5 5 10

rel. to t-test, Gaussian errors 0.37 0.82 0.99 0.99
rel. to robust t-test, heteroskedastic errors 0.88 0.93 0.91 0.97

Note: The rejection probability of the proposed exact test divided by the rejection probability of the standard t-test. The tested null is
β0
1 = β1 +

√
25/n. Errors are standard normal. Note that the power of the heteroskedasticity robust procedures (second row) may not be

meaningful for n ≤ 100 because these procedures are only asymptotically valid.

TABLE III

ASSESSING VALIDITY

n nblocks Error distribution t-test robust t-test exact robust t-test

25 5 Gaussian 0.10 0.16 0.10
skewed 0.14 0.05 0.10
heteroskedastic 0.14 0.03 0.09

250 10 Gaussian 0.10 0.11 0.10
skewed 0.10 0.11 0.10
heteroskedastic 0.17 0.11 0.10

Note: n = 250 and nblocks = 10.

TABLE IV

ASSESSING POWER

β0
1 − β1 Error distribution t-test robust t-test exact robust t-test

0.1 Gaussian 0.62 0.62 0.45
skewed 0.76 0.81 0.70
heteroskedastic * 0.51 0.41

0.2 Gaussian 0.97 0.97 0.84
skewed 0.94 0.94 0.87
heteroskedastic * 0.94 0.79

Note: n = 250 and nblocks = 10.

Tables II, III and IV may be considered together. Table IV suggests that while n = 25 is
too small a sample, in our specific but realistic simulation design, for the hetereoskedasticity-
robust methods to be valid, n = 250 suffices. It also reminds us that the classical t-test is not
valid, even asymptotically, under heteroskedasticity. Table IV suggests that, while both the
hetereoskedasticity-robust t-test and the proposed procedure are valid for n= 250, the robust
t-test seems to have better power. In yet larger samples, as detailed in Table II, specifically
n= 1000, they are however observed to have comparable power.

This paints a nice picture for the proposed test. The classical t-test is exact under Gaus-
sian errors but invalid, even asymptotically, under heteroskedasticity. The heteroskedasticity
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FIGURE 2.—Comparison of exact t-test with alternative methods in small sample. The bold black line corresponds
to the proposed test, the blue dashed line corresponds to RPT, and the green dot dashed line corresponds to CPT.
The left-hand side plot corresponds to Gaussian errors, the middle plot corresponds to exponential errors, and the
right-hand side corresponds to the “skewed” design. Throughout, n= 25 and nblocks = 5.

TABLE V

ASSESSING POWER AND VALIDITY

β0
1 − β1 Error distribution exact robust t-test CPT RPT

0 Gaussian 0.10 0.10 0.04
Exp 0.10 0.08 0.03
Gamma 0.10 0.08 0.03
heteroskedastic 0.09 0.19 0.02

1 Gaussian 0.54 0.51 0.88
Exp 0.80 0.97 0.92
Gamma 0.91 0.89 0.87

Note: n = 25 and nblocks = 5.

robust t-test is invalid in small samples, even with Gaussian errors. The proposed test is valid
both in small samples with exchangeable data—e.g., iid Gaussian— and asymptotically under
heteroskedasticity. Yet, it displays competitive power properties.

In Figure 2 and in the last three columns of Table V, we see that neither the proposed proce-
dure, the circular permutation test (CPT) of Lei and Bickel (2021), nor the residual permutation
test (RPT) of Wen et al. (2022) dominates or is dominated by the others.

In the first three columns of Table V, we see that all exact tests are indeed valid in small
samples with exchangeable errors. None of the tests are exactly valid with heteroskedastic
errors. In Table V, only CPT is observed to over-reject, but all three tests can be made to over-
reject under heteroskedasticity. Simulations not presented here confirm that the CPT and RPT
procedures –as well as the unstudentized exact t-test– remain invalid even when n is large.

Remark that the CPT procedure has exact nominal size, the mild undercoverage is at-
tributable to the small number of permutations and ensuing coarseness of the randomization
distribution in this very small sample.

As illustrated in the left-hand side of Figure 3, the test loses power when the correla-
tion between the tested and nuisance covariate increases. This is to be expected, since we
explicitly orthogonalize nuisance covariates when producing X̄1, whose explanatory varia-
tion—specifically, covariation with X1— gives power to the test. This can be compared with
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FIGURE 3.—Power of robust exact t-test for different correlations between covariates. The left figure plots the
power curve for ρ= Cov (X1,X2) at values ρ= 0,0.25,0.5,0.75. Errors are Gaussian, n= 25 and nblocks = 5.
The right figure plots the power curve in the Gaussian design for p=2 and p=35 covariates, n= 50 and nblocks = 5.
The proposed test is in black and the standard t-test is in blue, power is lesser when p is greater.

TABLE VI

REANALYZING EXAMPLE 4.3 OF WOOLDRIDGE (2020).

β̂ randomized p-val t-test p-val robust t p-val

HS 0.412 (0.057, 0.596) 0.065 (0.257, 0.566) 0.000 (0.247, 0.577) 0.000
ACT 0.015 (0.005, 0.04) 0.048 (-0.003, 0.032) 0.164 (-0.004, 0.033) 0.196
skip -0.083 (-0.123, -0.005) 0.067 (-0.126,-0.04) 0.002 (-0.128, -0.039) 0.002

Note: Critical level for confidence intervals is α = 0.1, n = 140 and nblocks = 5.

the standard t-test which likewise forgoes power when the tested covariate is correlated with
nuisance covariates. We do observe that the loss of power is moderate for reasonable correla-
tions, even up to ρ= 0.5, but is quite large for ρ= 0.75.

The right-hand side of Figure 3 illustrates how including more nuisance regressors brings
about a decrease in power of the proposed test commensurate to that observed with the classical
t-test.

Simulations and power plots are convenient for the analysis of power, but must be comple-
mented with examples. We consider two examples from the econometrics textbook Wooldridge
(2020).

We may be interested in determinants of college GPA, and to that effect carry out regression
analysis of college GPA on a measure of high school GPA, a measure of ACT scores, and a
measure the extent to which the student skipped classes. These estimates and their confidence
intervals are presented in Table VI.

We see that the confidence interval on the effect of high school GPA produced by the classical
t-tests are about half the width of that produced by our method, and they decidedly reject the
null hypothesis that the coefficient is 0, while we do not reject at confidence level α = 0.1.
For the coefficient on ACT scores however, the intervals are of comparable length, and only
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TABLE VII

REANALYZING EXAMPLE 15.5 OF WOOLDRIDGE (2020).

β̂educ randomized p-val classical p-val HCO p-val

0.063 (0.011, 0.141) 0.09 (0.008, 0.117) 0.06 (0.004, 0.121) 0.08

Note: Critical level for confidence intervals is α = 0.1, n = 424 and nblocks = 8.

the proposed method rejects the null hypothesis that the coefficient is 0. For the coefficient on
skipping classes, the confidence intervals produced by all compared methods are very similar.

Our method naturally extends to regression analysis with instrumental variables. Wooldridge
(2020) reanalyzes Mroz (1987). He analyzes how Y = log(wage) is affected by X1 =
education, instrumenting with (Z1,Z2) = (mother education, father education), controlling
for X2 = experience and its square. Because there are two instruments, the natural test statistic
is

tg
(
β0
1

)
= Tg

(
β0
1

)T
Σ̂−1

g Tg

(
β0
1

)
where Tg (β

0
1) = (gZ)T Q (Y−X1β

0
1) and Σ̂g =

1
n

∑n

i=1 Z̄g(i)Z̄
T
g(i)ε̂

2
i .

Remark the distinction with the instrumental variables analysis of Imbens and Rosenbaum
(2005). They produce a Fisher test using the instrument assignment as a source of randomiza-
tion and thus provide inference that is valid for the fixed, observed sample. In contrast, we rely
on invariance under the null to produce inference that is valid unconditionally on the observed
sample.

The confidence intervals produced by the proposed method are presented in Table VII. They
are tangibly but not dramatically wider than those produced by the standard inference methods
for two-stage least-squares. This may be found, on a case-by-case basis, to be a reasonable loss
in power to trade off against greater validity. Treatment effect heterogeneity, which brings about
heteroskedasticity, may be such a motivation. Further note that the method is robust to weak
identification of the tested coefficient. Of course, the method is also amenable to the projection
method if robustness to weak identification of some nuisance coefficients is required.

4. CONCLUSION

The proposed test is presented as an alternative to the classical t-test. While the classical t-
test is exactly valid when errors are independent and identically distributed Gaussian but invalid
under conditional heteroskedasticity, even asymptotically, the heteroskedasticity robust t-test is
not exactly valid in small samples, even with Gaussian errors. Meanwhile, the proposed test is
both exactly valid with exchangeable errors, which is a weaker requirement than independent
Gaussian errors, and is asymptotically valid under misspecification of linearity and conditional
heteroskedasticity. While we may not expect the proposed test to have better power than the t-
test when it is valid, the good power properties exhibited above suggest that it may nevertheless
be an attractive alternative if the data analyst is concerned about validity.

The power of the proposed procedure is comparable to that of the general exact methods of
Lei and Bickel (2021) and Wen et al. (2022), but these are not asymptotically valid under condi-
tional heteroskedasticity. In the special case of all discrete nuisance covariates, we recommend
using the tailor made method of D’Haultfœuille and Tuvaandorj (2024).

We picked the group Gn so to satisfy the three criteria discussed in Section 2. One could
push the inquiry and try to select a different group Gn out of power considerations, or to adapt
to specificities of the problem at hand and its design matrix.
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An important topic of future research is to find, if it exists, a test for individual linear quantile
regression coefficients that is exactly valid under a strong null requiring not much more than
correct specification of the regression function and that is asymptotically valid under misspec-
ification. This is particularly important since the regression rankscore test (Gutenbrunner and
Jurecková, 1992, Koenker, 1994, 2005) was originally motivated as a regression extension of
classical rank tests.

An immediate benefit of the presented and cited results is that they may allow conclu-
sions drawn in –conditional– Fisher type tests, such as in Berry and Fowler (2018) or Im-
bens and Rosenbaum (2005), to be extended to population parameters by interpreting them as
–unconditional– randomization tests.

More generally, the connections between Fisher tests and randomization tests constitute, in
my opinion, a fascinating territory for research. For instance, the same way "robust" randomiza-
tion tests are asymptotically valid under a "weak null" guaranteeing robustness to failure of the
"strong null", or randomization hypothesis, exact randomization tests may themselves provide
a more robust interpretation for Fisher tests. For instance, if an experimenter ran a Fisher test
but "forgot" the treatment assignment mechanism, and one of the possible mechanisms consti-
tutes uniform assignment over a group support, then implementing the Fisher test according to
that mechanism will guarantee unconditional validity even if the treatment assignment is incor-
rect, and conditional validity therefore does not obtain. I believe many more such connections
exist.

APPENDIX A: IMPACT ON POWER OF USING BLOCK PERMUTATIONS IN THE
UNIVARIATE REGRESSION MODEL

The univariate case is

Y = β01n +Xβ1 + ε,

where X ∈Rn is the univariate regressor.
The test statistic is

tg
(
β0
1

)
=

1√
n
(gX)T

(
Y−Xβ0

1

)
.

The key is that this framework allows us to investigate the loss of power, or lack thereof, from
using a smaller group in a way that is “isolated”. Indeed, in a general set-up, smaller groups
also increase power through a different channel, i.e., they conserve more explanatory variation
in QX1. But in the univariate setting, there are no covariates to orthogonalize. Consequently,
potential loss of power from using fewer blocks in not counterbalanced by a gain of power due
to weaker orthogonalization of nuisance covariates, and can be studied on its own.

APPENDIX B: MATHEMATICAL APPENDIX

B.1. Mathematical Appendix

LEMMA A.1: Let Gn be a group of non-overlapping block permutation from {1, . . . , n} onto
itself. Let Z= (Z1, . . . ,Zp) ∈Rn×p be a given matrix. Let Q be the orthogonal projection onto
C⊥
(
g(1)Z1, . . . , g

(M)Z1, g
(1)Z2, . . . , g

(M)Zp

)
. Then, for any X ∈Rn,

gQX=QgX, ∀ g ∈Gn. (10)

PROOF OF LEMMA A.1: Denote, for short, the column space
C (GZ) = C

(
g(1)Z1, . . . , g

(M)Z1, g
(1)Z2, . . . , g

(M)Zp

)
and its orthogonal complement C⊥ (GZ).
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TABLE A.I

PROBABILITY OF REJECTION OF THE NULL AT NOMINAL LEVEL α= 0.1

Block size 1 10 20 50 1 10 20 50 1 10 20 50

n= 100 0.1 0.1 0.1 0 0.23 0.23 0.20 0 1 1 1 0
n= 200 0.1 0.1 0.1 0.1 0.38 0.38 0.36 0.29 1 1 1 1
n= 400 0.1 0.1 0.1 0.1 0.69 0.67 0.66 0.65 1 1 1 1
n= 800 0.1 0.1 0.1 0.1 0.88 0.88 0.87 0.88 1 1 1 1

Note: Columns are block size. Errors of the posited nulls are β1 − β0
1 = 0 (left), β1 − β0

1 = 0.1 (center), β1 − β0
1 = 1 (right).

Observe that Q= I −M, where M is the orthogonal projection onto C (GZ). Because (10)
holds if and only if gMX=MgX, it suffices to show the latter.

For any X ∈Rn, we may produce the decomposition

X= u+ v, u ∈ C (GZ) , v ∈ C⊥ (GZ) .

We collect two observations. First, observe that u ∈ C (GZ) implies that
u=

∑p

j=1

∑M

i=1 ai,jg
(i)Zj , for some real numbers ai,j , j = 1, . . . , p, i= 1, . . . ,M . Hence, for

any g ∈Gn,

gu= g

p∑
j=1

M∑
i=1

ai,jg
(i)Zj =

p∑
j=1

M∑
i=1

ai,jgg
(i)︸︷︷︸

∈Gn

Zj ∈ C (GZ) .

Second, observe that v ∈ C⊥ (GZ) can (for a general v) equivalently be stated as v ⊥
g(1)Z1, . . . , g

(M)Z1, g
(1)Z2, . . . , g

(M)Zp. Hence,

(gv)T
(
g(i)Zj

)
= vT

g−1g(i)︸ ︷︷ ︸
∈Gn

Zj

= 0,

for any i and j. Which is to say, gv ∈ C⊥ (GZ).
This means that

gMX= gM (u+ v) = g (Mu+Mv) = gMu= gu,

and

MgX=Mg (u+ v) =Mgu+Mgv
(a)
= Mgu

(b)
= gu,

where (2) holds because of the second observation, and (b) holds because of the first observa-
tion. Q.E.D.

THEOREM A.1—General Case: If n≥ p · n2
blocks, then

max
X∈Rn×p

rank (GX) = p · (nblocks · (nblocks − 2) + 2) ,

where GX=
(
g(1)X, . . . , g(M)X

)
.

We present the proof of Theorem A.1 in two parts. As a Lemma, and to simplify the exposi-
tion of the general case, we first prove the case with p= 1.
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PROOF OF THEOREM A.1, THE p= 1 CASE: We can provide a proof by induction. For any
admissible n and nblocks, designate the blocks of the n-tuple X by A,B, · · · ∈ Rb, where A=
(X1, . . . ,Xb)

T , B = (Xb+1, . . . ,X2b), and so on.
In the base case with nblocks = 2, we have

Gb·2X=

((
A
B

)
,

(
B
A

))
,

which obviously has maxX∈Rn rank (Gb·2X) = 2.
Now consider any given number of blocks nblocks. Consider splitting all possible block per-

mutations into sets according to their first block. Specifically, consider
A
B
...
Y
Z

 ,


A
B
...
Z
Y

 , . . . ,


A
Z
...
...
B


︸ ︷︷ ︸

S1

,


B
A
...
Y
Z

 ,


B
A
...
Z
Y

 , . . . ,


B
Z
...
...
A


︸ ︷︷ ︸

S2

, . . . ,


Z
A
...
W
Y

 ,


Z
A
...
Y
W

 , . . . ,


Z
Y
...
...
A


︸ ︷︷ ︸

Snblocks

,

where the set S1 has block A in the first block of rows, and lists all permutations of the other
blocks B, . . . ,Z over all its vector. The set S2 has block B in its first block of rows and lists
all permutations of the other blocks A,C, . . . ,Z over all its vectors, and so on. To be sure, Z is
the nth

blocks block, not necessarily the 26th block.
For exposition purposes, consider the following reordering of the columns of GX,


A
B
...
Y
Z

 ,


A
B
...
Z
Y

 , . . . ,


A
Z
...
...
B


︸ ︷︷ ︸

S1

,


B
A
...
Y
Z

 ,


B
C
A
...
...

 , . . . ,


B
C
...
...
A

 , . . . ,


B
Y
...
...
C


︸ ︷︷ ︸

S2

, . . . ,


Z
A
...
W
Y

 ,


Z
A
...
Y
W

 , . . . ,


Z
Y
...
...
A


︸ ︷︷ ︸

Snblocks

,

where we reordered the columns of the set S2 to emphasize that we can have the first nblocks−1
vectors of S2 figuring block A in the second, third,..., and nth

blocks block of rows, respectively.
By inductive hypothesis, the rank of S1 attains (nblocks − 1) · (nblocks − 3)+2. Now the key

is that, since n≥ n2
blocks, which is to say, b≥ nblocks, we can always pick an X such the block

A cannot be produced as a linear combination of the nblocks−1 blocks B,C . . . ,Z . Appending
one-by-one to S1 vectors for which A shows up in a block of in a block of rows for the first time,
we must each time increase the rank by 1. Hence, appending S2 -and thus its first nblocks − 1
vectors in the reordering above—to S1, we must increase the rank by at least nblocks − 1. By
the same logic, considering the first block of rows, appending one-by-one to (S1,S2) the sets
S3, . . . ,Snblocks

must increase the rank by at least 1 each time. Therefore,

max
X∈Rn

rank (GX)≥ (nblocks − 1) · (nblocks − 3) + 2+ nblocks − 1 + nblocks − 2

= nblocks · (nblocks − 2) + 2.

To complete the argument, it suffices to show that any column other than the ones invoked
above to lower bound the rank—in fact, any column—can be produced as a linear combination
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of the said used columns. Specifically, it suffices to show that
A
B
...
Y
Z

 ,


A
B
...
Z
Y

 , . . . ,


A
Z
...
...
B


︸ ︷︷ ︸

S1

,


B
A
...
Y
Z

 ,


B
C
A
...
...

 , . . . ,


B
C
...
...
A


︸ ︷︷ ︸

nblocks−1 vectors from S2

,


C
A
B
...
Z


︸ ︷︷ ︸

1 vector from S3

. . . ,


Z
A
B
...
Z


︸ ︷︷ ︸

1 vector from Snblocks

,

span all columns of GX. Note that the columns of S1 are not linearly independent—-we could
instead extract the first (nblocks − 1) · (nblocks − 3) columns in this ordering, they are linearly
independent—but we know the rank of the set.

As a first step, we show that all columns in the second set S2 are in the span of S1 and the
nblocks − 1 vectors selected from S2. Pick any vector from S2 ; it has block B in the first block
of rows. Without loss of generality, say A is in the second block of entries. I.e., the vector has
form 

B
A
A3

...
Anblocks

 , (11)

for some A3, . . . ,Anblocks
. In the vectors selected from S2, we have

B
A
A′

3
...

A′
nblocks

 , (12)

for some A′
3, . . . ,A

′
nblocks

. Remark that {A3, . . . ,Anblocks
}=

{
A′

3, . . . ,A
′
nblocks

}
= {C, . . . ,Z}.

Further remark that, in S1, we have the vectors


A
B
A3

...
Anblocks

 ,


A
B
A′

3
...

A′
nblocks

 ,

which span the difference 
0b
0b

A3 −A′
3

...
Anblocks

−A′
nblocks

 .

Adding this vector to (12) produces (11).
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Now consider any column from the third to nth
blocks set. Without loss of generality, take it

from the third set S3. The vector has the form
C
A2

A3

...
Anblocks

 (13)

for some A2,A3, . . . ,Anblocks
. In the candidate spanning set, we have the vector

C
A′

2

A′
3

...
A′

nblocks

 (14)

for some A′
2,A

′
3, . . . ,A

′
nblocks

. Remark that {A2,A3, . . . ,Anblocks
}= {A′

2,A
′
3, . . . ,Anblocks

}=
{B,D, . . . ,Z}. Without loss of generality, let A2 =A and A3 =B. I.e., we are trying to pro-
duce 

C
A
B
...

Anblocks

 (15)

form the candidate spanning set.
We need to consider cases. First, consider the case in which A′

2 =A. We can produce
0
0

B −A′
3

...
Anblocks

−A′
nblocks


from set S1, add it to (14), and produce (15).

Second, consider the case in which A′
3 =A. From set S1, you can produce the vector

0
C −A′

2

B −C
A4 −A′

4
...
...

Anblocks
−A′

nblocks


. (16)
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From set S2, you can produce the vector


0

A−C
C −A

...
0′

 . (17)

Adding (16) and (17) to (14), we produce (15).
Finally, consider the third case in which A′

j =A, j ∈ {4, . . . , nblocks}. Without loss of gen-
erality, suppose A′

4 =A. From set S1, you can produce the vector



0
C −A′

2

B −A′
3

A4 −C
A5 −A′

5
...

Anblokcs
−A′

nblokcs


. (18)

From the set S2, you can produce the vector



0
A−C

0
C −A′

4

0
...
0


=



0
A−C

0
C −A

0
...
0


. (19)

Adding (18) and (19) to (14), we produce (15).
Q.E.D.

We now prove the general case for p < n.

PROOF OF THEOREM A.1, THE p < n CASE: We can provide a proof by induction. For any
admissible n and nblocks For each j = 1, . . . , p, designate the blocks of the n-tuple Xj by
Aj ,Bj , · · · ∈Rb, where A= (X1,j , . . . ,Xb,j)

T , B = (Xb+1,j , . . . ,X2b,j), and so on.
In the base case with nblocks = 2, we have

Gn·2X=

((
A1

B1

)
,

(
B1

A1

)
,

(
A2

B2

)
, · · · ,

(
Bp

A1p

))
,

which obviously has maxX∈Rn rank (Gn·2X) = 2p.
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Now consider any given number of blocks nblocks. For each j = 1, . . . , p, consider splitting all
possible block permutations of Xj into sets according to their first block. Specifically, consider


Aj

Bj

...
Yj

Zj

 ,


Aj

Bj

...
Zj

Yj

 , . . . ,


Aj

Zj

...

...
Bj


︸ ︷︷ ︸

S1,j

,


Bj

Aj

...
Yj

Zj

 ,


Bj

Aj

...
Zj

Yj

 , . . . ,


Bj

Zj

...

...
Aj


︸ ︷︷ ︸

S2,j

, . . . ,


Zj

Aj

...
Wj

Yj

 ,


Zj

Aj

...
Yj

Wj

 , . . . ,


Zj

Yj

...

...
Aj


︸ ︷︷ ︸

Snblocks,j

,

where the set S1,j has block Aj in the first block of rows, and lists all permutations of the other
blocks Bj , . . . ,Zj over all its vector. The set S2,j has block Bj in its first block of rows and
lists all permutations of the other blocks Aj ,Cj , . . . ,Zj over all its vectors, and so on. To be
sure, Zj is the nth

blocks block, not necessarily the 26th block.
For exposition purposes, consider the following reordering of the columns of GXj , for each

j = 1, . . . , p, as


Aj

Bj

...
Yj

Zj

 ,


Aj

Bj

...
Zj

Yj

 , . . . ,


Aj

Zj

...

...
Bj


︸ ︷︷ ︸

S1,j

,


Bj

Aj

...
Y
Z

 ,


Bj

Cj

Aj

...

...

 , . . . ,


Bj

Cj

...

...
Aj

 , . . . ,


Bj

Yj

...

...
Cj


︸ ︷︷ ︸

S2,j

, . . . ,


Zj

Aj

...
Wj

Yj

 ,


Zj

Aj

...
Yj

Wj

 , . . . ,


Zj

Yj

...

...
Aj


︸ ︷︷ ︸

Snblocks,j

,

where we reordered the columns of each set S2,j to emphasize that we can have the first
nblocks − 1 vectors of each S2,j figuring block Aj in the second, third,..., and nth

blocks block
of rows, respectively.

Consider

S1 := S1,1 ∪ S1,2 ∪ · · · ∪ S1,p.

Because n≥ n2
blocks · p, we have that b≥ nblocks · p and thus, for any j, Aj does not obtain as

a linear combination of vectors in {Al}l̸=j

⋃
{Bj ,Cj , . . .}pj=1

and thus, invoking the induction
hypothesis, we see that

rank (S1) = rank (S1,1) + rank (S1,2) + · · ·+ rank(S1,p)

= p · ((nblocks − 1) · (nblocks − 3) + 2)

In the argument below, we invoke vectors and subvectors of X being linearly independent
if the cardinality of the set they make up is less than the dimensionality of the vectors or
subvectors. Repeatedly invoking should not raise concerns about existence; an X whose entries
are drawn from a distribution that is uniformly continuous with respect to Lebesgue measure
will satisfy all of these this with probability one.

Now consider adding the first column of the reordered set S2,1. A1 does not appear in the
second block of rows of any columns of S1 and A1 cannot be produced as a linear combination
of the second block of rows for any columns in S1 since there are p · (nblocks − 1) distinct
blocks in the second block of rows, and b > p · (nblocks − 1). Appending the first column of the
reordered set S2,1 must this increase the maximum rank by 1.
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Let S denote S1 appended with the first column of the reordered set S2,1. Now consider
adding the second column of the reordered set S2,1 to S . A1 does not appear in the third block
of rows of any columns of S with and A1 cannot be produced as a linear combination of the
second block of rows for any columns in S1 since there are p · (nblocks − 1) distinct blocks in
the second block of rows, and b > p · (nblocks − 1).

The same argument holds analogously for the 3rd to nth
blocks vector of the reordered set S2,1.

Hence, appending S2,1 to S1 must increase the rank by nblocks − 1. In fact, the same argument
holds for the first—or any—vector of S3,1,...,Snblocks,1. Hence, appending S3,1∪· · ·∪Snblocks,1

to S must increase the rank by nblocks − 2. This establishes the lower bound

rank (GX)≥ p · ((nblocks − 1) · (nblocks − 3) + 2) + p · (nblocks − 1 + nblocks − 2)

= p · (nblocks · (nblocks − 2) + 2) .

To see that the bound may be attained, apply the argument of the p = 1 proof to show
that within each subset Siblocks,j , iblocks = 1, . . . , nblocks, we can generate the full set from
(nblocks − 1) · (nblocks − 3) + 2 linearly independent column vectors identified above to lower
bound its rank. Q.E.D.

B.2. Large Sample Theory

The model is

Y = 1nβ0 +X1β1 +X2β2 + · · ·+Xpβp + ε.

Let X̄1 = QX1, Q is the orthogonal projection onto the orthogonal complement of the span
of {gX2, . . . , gXp}g∈Gn

, and the residuals ε̂i obtain from the regression of Y on an intercept
term, {gX1}g∈Gn

and {gX2, . . . , gXp}g∈Gn
.

For the resampling asymptotic theory, we are interested in the statistic

tid
(
β0
1

)
=

XT
1 Q
(
Y−X1β

0
1

)
σ̂id

=
(QX1)

T
(
Y−X1β

0
1

)
σ̂id

, (20)

where

σ̂2
id =

1

n

n∑
i=1

X̄2
i1ε̂

2
i , (21)

with X̄1 =QX1.
Recall that we use C (A) to designate the space span by the columns of a matrix A.

THEOREM A.2: Let Jtid,n (·) be the sampling distribution of tid (β0
1). Suppose (Yi,Xi)∼P

independently, and that Assumptions M, S and D hold. Suppose that n8
blocks/n → 0. Then,

under the null hypothesis (3),

lim
n→∞

sup
s∈R

|Jtid,n (s)−Φ(s)|= 0,

where Φ(·) is the standard normal cumulative distribution function.

PROOF OF THEOREM A.2: Let X̄∗
i1 be the population analog of X̄i1. The numerator of (4)

satisfies
1√
n
X̄T

1 ε
d→N

(
0,E

(
X̄∗2

i1 ε
2
i

))
. (22)
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To see this explicitly, construct a full rank matrix
−→
X ∈Rn×−→p satisfying C

(−→
X
)
= C (GX−1),

where GX−1 =
(
g(1)X2, ..., g

(M)X2, g
(1)X3, . . . , g

(M)Xp

)
. Assume without loss of general-

ity that the maximum rank is attained and −→p = (p− 1) (nblocks · (nblocks − 2) + 2).
Let X̄1 = (I −M)X1 =:X1−

−→
Xγ̂, where M is the orthogonal projection onto C

(−→
X
)

. Let

X̄∗
1 =X1−E∗

[
X1|

−→
X
]
, where E∗

[
X1|

−→
X
]
=:

−→
Xγ stands for the best linear predictor of X1

given
−→
X.5 Note that the numerator of (4) satisfies

1√
n
X̄T

1 ε=
1√
n
X̄∗T

1 ε− 1√
n
X̄∗T

1 Mε.

The first term satisfies
1√
n
X̄∗T

1 ε
d→N

(
0,E

(
X̄∗2

1 ε2
))

, (23)

by Assumption M.
The second term has order of magnitude at most OP (−→p 2/

√
n) because

1√
n

∣∣∣∣∣X̄∗
1
T−→X√
n

(−→
XT−→X
n

)−1 −→
XTε√

n

∣∣∣∣∣≤ 1√
n

∥∥∥∥∥X̄∗
1
T−→X√
n

∥∥∥∥∥
2

λmax

((−→
XT−→X
n

)−1)∥∥∥∥∥
−→
XTε√

n

∥∥∥∥∥
2

,

(24)

where λmax

((−→
XT−→

X
n

)−1
)

= OP (−→p ),
∥∥∥X̄∗

1
T
−→
X/

√
n
∥∥∥
2
= OP

(√−→p
)

, and
∥∥∥−→XTε/

√
n
∥∥∥
2
=

OP

(√−→p
)

.

The rate on the norm
∥∥∥X̄∗

1
T
−→
X/

√
n
∥∥∥
2

obtains by Markov inequality because

P

(∥∥∥∥∥X̄∗
1
T−→X√
n

∥∥∥∥∥
2

2

/−→p ≥ a

)
≤

−→p∑
j=1

E

[(
X̄∗

1
T−→Xj√
n

)2]
a−→p

≤C

E

[(
X̄∗

1
TX2√
n

)2
]

a
, (25)

where C = max
{
1,E

[
X̄∗2

i1

]
E [X2

i2]/E
[
X̄∗2

i1 X
2
i2

]}
, and the moment on the right-hand side

term converges by Assumption M and the von Bahr Theorem (Von Bahr, 1965, see also Theo-
rem 6.3, DasGupta, 2008). The analogous argument holds for the norm

∥∥∥−→XTε/
√
n
∥∥∥
2
.

Taken together, we obtain (22). By Polya’s lemma, the convergence is uniform.
Hence, by Slutsky’s theorem, it suffices to show that σ̂2 converges in probability to σ2 =

E
(
X̄∗2

1i ε
2
i

)
. Consider the decomposition

σ̂2 − σ2 =
1

n

n∑
i=1

X̄2
i1ε̂

2
i −E

(
X̄∗2

i1 ε
2
i

)
5The vector best linear predictor is well defined and in this specific case, even though rows of

−→
X are not indepen-

dent, we have
(
E∗

[
X1|

−→
X
])

i
=E∗ [X1|X2]i =E∗ [Xi,1|Xi,2].
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=
1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

) (
ε̂2i − ε2i

)
+

1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

)
ε2i

+
1

n

n∑
i=1

X̄∗2
i1

(
ε̂2i − ε2i

)
+

1

n

n∑
i=1

X̄∗2
i1 ε

2
i −E

(
X̄∗2

i1 ε
2
i

)
.

The first term satisfies

1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

) (
ε̂2i − ε2i

)
≤

√√√√ 1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

)2 ·
√√√√ 1

n

n∑
i=1

(ε̂2i − ε2i )
2.

Notice that

1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

)2
=

1

n

n∑
i=1

X̄4
i1 − 2

1

n

n∑
i=1

X̄∗2
i1 X̄

2
i1 +

1

n

n∑
i=1

X̄∗4
i1

≤ 1

n

n∑
i=1

X̄4
i1 − 2

√√√√ 1

n

n∑
i=1

X̄∗4
i1

√√√√ 1

n

n∑
i=1

X̄4
i1 +

1

n

n∑
i=1

X̄∗4
i1

P→ 0,

by M.2 and the law of large numbers. Specifically, 1
n

∑n

i=1 X̄
4
i1

P→ E
[
X̄∗4

i1

]
by M.2 and since

∥γ̂ − γ∥2 =OP

(√
−→p 3

n

)
, which obtains by manipulations analogous to those in (24).

By a similar argument, the second term satisfies

1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

)
ε2i ≤

√√√√ 1

n

n∑
i=1

(
X̄2

i1 − X̄∗2
i1

)2√√√√ 1

n

n∑
i=1

ε4i
P→ 0.

By the symmetric argument, 1
n

∑n

i=1 X̄
∗2
i1 (ε̂2i − ε2i )

P→ 0. Finally, 1
n

∑n

i=1 X̄
∗2
i1 ε

2
i −E

(
X̄∗2

i1 ε
2
i

) P→
0 by M.2 and the law of large numbers.

Q.E.D.

We can now turn to the large sample theory of the randomized test. We opt for the Hoeffd-
ing approach as our proof technique. The distinction with the fully conditional approach is
discussed in Pouliot (2023) and Chung and Romano (2013).

THEOREM A.3: Let g and g′ be independent and uniformly distributed over Gn, i.e., g, g′ ∼
U [Gn], and be independent of the data Wn. Suppose, under Pn,

(Tn (gWn) , Tn (g
′Wn))

d→ (T,T ′) , (26)

where T and T ′ are independent, each with common cumulative distribution function RT (·).
Then, for all continuity points S of RT (·),

R̂T,n (S)
P→RT (S) . (27)

Conversely, if (27) holds for some limiting cumulative distribution function RT (·) whenever S
is a continuity point, then (26) holds.
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The sufficiency extension of Hoeffding’s Theorem is due to Chung and Romano (2013).

THEOREM A.4: Suppose (Yi,Xi) ∼ P independently, and that Assumptions M, S and D
hold. Suppose that n8

blocks/n → 0. Further suppose that ε2i = oP (n), uniformly, and that
nblocks

bζ
→∞, for some 0 < ζ < 1. Then, under the null hypothesis (3), the distribution R̂tg,n

satisfies

R̂tg,n (s)
P→Φ(s) ,

for all points of continuity of s, where Φ(·) is the standard normal cumulative distribution.

PROOF OF THEOREM A.4: Let

Tg = T ((X1,X2) , g (Y−X1β1)) =
1√
n
X̄T

1 g (Y−X1β1) ,

which under the null takes on the value

1√
n
X̄T

1 (gε) .

First, we want to verify Hoeffding’s condition for Tg . Let g, g′ ∼ U [Gn], drawn indepen-
dently, and consider the random pair (Tg, Tg′). We are interested in the limiting distribution of
this bivariate random variable. We use the Cramér-Wold device. Take any (a1, a2) ∈R2, under
the null hypothesis,

a1Tg + a2Tg′ =
1√
n

n∑
i=1

X̄i1 (a1εg(i) + a2εg′(i))

=
1√
n

n∑
i=1

X̄∗
i1 (a1εg(i) + a2εg′(i)) + oP (1) ,

by the same argument as in the proof of Theorem A.2.
We establish the CLT by verifying the main condition of Lemma 11.3.3 of Lehmann and

Romano (2005), i.e.,

max
i=1...n

1

n
(a1εg(i) + a2εg′(i))

2

1

n

n∑
i=1

(a1εg(i) + a2εg′(i))
2

→ 0 as n→∞. (28)

In order to both check (28) and to establish the asymptotic variance of Tg , we com-
pute the probability limit of the denominator. Condition on g and g′ being such that
#{i : g(i) = g′(i)}< neq, where neq is some small value depending on n which we will pick
later, and which is required to satisfy neq

n
→ 0. Then,

1

n

n∑
i=1

(a1εg(i) + a2εg′(i))
2
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= a2
1

1

n

n∑
i=1

ε2g(i) + a2
2

1

n

n∑
i=1

ε2g′(i) + 2a1a2

1

n

n∑
i=1

εg(i)εg′(i)

= a2
1

1

n

n∑
i=1

ε2g(i) + a2
2

1

n

n∑
i=1

ε2g′(i) +2a1a2

1

n

∑
i:g(i)̸=g′(i)

εg(i)εg′(i) +2a1a2

1

n

∑
i:g(i)=g′(i)

εg(i)εg′(i)

→ a2
1E
[
ε2i
]
+ a2

2

[
ε2i
]
+ 0+ 2a1a2E

[
ε2i
]
· lim
n→∞

neq

n
= a2

1E
[
ε2i
]
+ a2

2E
[
ε2i
]
,

relying on Assumption M.
We used that

1

n

∑
i:g(i)=g′(i)

εg(i)εg′(i) =
neq

n

1

neq

∑
i:g(i)=g′(i)

εg(i)εg′(i),

and
1

neq

∑
i:g(i)=g′(i)

εg(i)εg′(i) →E
[
ε2i
]
,

by the law of large numbers.
The probability that the conditioned upon event does not realize is

P (#{i : g(i) = g′(i)} ≥ neq)≤
E [#{i : g(i) = g′(i)}]

neq

=
b

neq

.

We can pick need neq such that neq

n
→ 0 and such that b

neq
→ 0, as n→∞. For instance,

pick neq = b1+ζ .
In particular, for any c > 0 and ϵ > 0, for n large enough,

P (#{i : g(i) = g′(i)} ≥ neq)< ϵ/2 (29)

and

P

(∣∣∣∣∣ 1n
n∑

i=1

(a1εg(i) + a2εg′(i))
2 −

(
a2
1E
[
ε2i
]
+ a2

2E
[
ε2i
])∣∣∣∣∣> c

: #{i : g(i) = g′(i)}< neq

)
< ϵ/2. (30)

The probability limit thus holds unconditionally, i.e.,

1

n

n∑
i=1

(a1εg(i) + a2εg′(i))
2 P→ a2

1E
[
ε2i
]
+ a2

2E
[
ε2i
]
.

Then, the denominator of (28) converges in probability and, because ε2i /n = oP (1) uni-
formly, its numerator is op (1). Therefore, by Slutsky’s Theorem, the quotient must be oP (1),



AN EXACT t-TEST 27

hence verifying the condition. By Lemma 11.3.3 of Lehmann and Romano (2005) and Slutsky’s
Theorem, we have that

a1Tg + a2Tg′
d→N

(
0,E

[
X̄∗2

i1

] (
a2
1E
[
ε2i
]
+ a2

2E
[
ε2i
]))

,

thus verifying Hoeffding’s condition. In particular, we find that the asymptotic covariance be-
tween Tg and Tg′ is zero. By Hoeffding’s Theorem, we then have that

R̂T,n(S)
P→RT (S), (31)

for all points of continuity S, where RT (S) is the distribution function of N
(
0,E

[
X̄2

i1

]
E [ε2i ]

)
.

Second, we verify that the studentizing term σ̂g is consistent. Observe that

σ̂g −E
[
X̄∗2

i1

]
E
[
ε2i
]
=

1

n

n∑
i=1

X̄2
g(i),1ε̂

2
i −E

[
X̄∗2

i1

]
E
[
ε2i
]

=
1

n

n∑
i:i ̸=g(i)

X̄2
g(i),1ε̂

2
i −E

[
X̄∗2

i1

]
E
[
ε2i
]
+

1

n

n∑
i:i=g(i)

X̄2
g(i),1ε̂

2
i

=
1

n

n∑
i:i ̸=g(i)

X̄2
g(i),1ε̂

2
i −E

[
X̄∗2

i1

]
E
[
ε2i
]
+ oP (1)

=O (1)

 1

n−m

∑
i:i ̸=g(i)

X̄2
g(i),1ε

2
i −E

[
X̄∗2

i1

]
E
[
ε2i
]+ oP (1) ,

where the number of match is m=#{i : i ̸= g(i)} and m/n= oP (1), and which goes to zero
in probability by an argument analogous to that used in the proof of Theorem A.2.

We must then have that

σ̂g
P→E

[
X̄∗2

i1

]
E
[
ε2i
]
. (32)

Third, we find by Slutsky’s Theorem for randomization distributions, Theorem 5.2 of Chung
and Romano (2013), that (31) and (32) imply

R̂tg,n(s)
P→Rtg(s),

for all points of continuity of s, where Rtg(s) is the distribution function of N (0,1). Q.E.D.

REMARK 2: We analyzed the case for a null hypothesis on a scalar coefficient. The large-
sample theory for the multivariate case obtains analogously.
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