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1 Introduction

One of the most concerning potential consequences of climate change is population
displacement, recently coined as the Great Climate Migration (Lustgarten, 2020). Sub-
sistence rural economies, like the sub-Saharan African (SSA henceforth) countries, lie
at the center of this issue. They are agriculture-dependent economies whose popu-
lations are expected to increase remarkably during the next decades (United Nations
and Social Affairs, 2019). Understanding how these rural economies would adjust to
a climate-changing world, with potentially different crop yields, is crucial for identi-
fying how this growing population will reallocate geographically.

Assessing the potential decisions of SSA economic agents when adapting to cli-
mate change is challenging. Changing agricultural yields could lead farmers to switch
production towards alternative crops (but remain in the agricultural sector). Alterna-
tively, they could leave agriculture, potentially moving geographically. Trade frictions
would determine how much specialization between agriculture and non-agriculture
is feasible. Migration barriers would discipline the capacity of affected individuals
to reallocate geographically, potentially limiting sectoral reallocation. Understand-
ing how these forces (production switching, trade, and migration) respond to climate
change is key to evaluating its impact on the economy.

In this paper, I develop a spatial model that accounts for these forces and can be
used to quantify how their response to climate change translates into migration and
welfare losses. I link the model to a unique spatial dataset that I assemble, covering
42 countries of SSA. Simulating the model for a future scenario by the end of the
century, I estimate the aggregate and distributional impacts of climate change in terms
of migration flows, welfare losses, and sectoral and spatial reallocation of production.
I also study the mitigating power of real-world migration and trade policies, finding
a novel trade-off associated with the former, which the latter attenuates.

My analysis begins with motivational evidence of the exposure of SSA agriculture
to future climate change, the potential margins of adaptation, and underlying fric-
tions. In terms of climate shocks, I document heterogeneous expected impacts across
SSA’s geography and, within locations, across crops. Hence, in terms of adaptation
margins, local producers could respond to this uneven shock by switching production
across crops and sectors. Importantly, I show that trade could have a key role in this
process, but subject to trade barriers in SSA. Migration could also be crucial: I doc-
ument a positive relationship between past changes in the climate and past internal
and international migration flows, though limited by geographical mobility barriers.

Informed by this evidence, I develop a multi-sector spatial model that accommo-
dates these mechanisms and frictions in general equilibrium. In the model, trade
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and migration between locations are costly. In each location, farmers produce goods
from multiple agricultural sectors (crops) and firms produce non-agricultural goods.
Differences in sectoral total factor productivities and market access across locations
generate trade, shaping the spatial pattern of sectoral specialization. Relative sectoral
prices and real income determine sectoral expenditure shares, generating endogenous
structural transformation through substitution and income effects.

My framework takes the perspective of subnational locations, so that trade and
migration happen within and across countries in SSA. The intensity of the spatial
frictions depends primarily on the distance between locations over the transportation
network. However, they are also determined by country-level institutional factors.
In particular, frictions for international trade are subject to tariffs. Likewise, interna-
tional migration is subject to an additional mobility cost related to barriers to foreign
migrants at the destination country. Integrating these realistic features of SSA trade
and migration policies into my framework allows me to investigate their role in the
resulting climate change effects and the effectiveness of alternative policy schemes.

To quantify the model, I assemble a high-resolution spatial dataset on, among oth-
ers, population, transportation infrastructure, international trade, crop prices, internal
and international migration, and agricultural production and suitability in SSA. Fol-
lowing Costinot et al. (2016), I model climate change as a shock to the suitability for
growing crops. In practice, I draw on the GAEZ (IIASA and FAO, 2012) estimates of
crop-specific potential yields for several grain crops in recent, past, and future (under
IPCC’s business-as-usual climate change scenario) periods. These potential yields re-
flect only local natural characteristics (e.g. topographic and climatic) and thus provide
a measure of geographical natural advantages for growing a specific crop.

I link the data to my model in two steps. First, I measure several elements and
fundamentals of my model directly from the data. Then, I quantify the remaining
fundamentals and parameters, like sectoral productivities, amenities, migration costs,
and trade frictions, by embedding standard quantification methods for spatial models
into a GMM framework. The richness of my data is a crucial input in this step. For
instance, I carefully separate the role of tariffs and geographical distances when de-
termining trade frictions by exploiting, respectively, variation from international trade
flows and the spatial distribution of prices. Likewise, I quantify mobility barriers with
empirical variation from both international and internal migration flows.

Importantly, I quantify trade costs with an innovative approach that exploits sec-
ond moments of local prices. Compared to the standard practice of using spatial
price wedges (e.g., Donaldson, 2018; Atkin and Donaldson, 2015), my method has the
advantage of requiring more accessible data: local prices rather than bilateral (origin-
destination) prices. Methodologically, that is an important innovation, as it expands
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the range of empirical applications in data-scarce contexts like developing economies.
With the quantified model in hand, I perform a backcasting exercise that validates

it. Using past crop suitabilities, I simulate the model back in time to 1975 and contrast
the results with observable data. The model predicts well the grid cell-level changes in
population between 1975 and 2000, reassuring its capacity to provide similar numbers
for the future. An additional overidentification test shows that the model captures
closely the degree of specialization in agriculture across countries.

My main counterfactual exercise consists of simulating a climate-changed SSA by
the end of the century. I retrieve GAEZ’s estimates for crop suitabilities in 2080 with
climate change and simulate the model with them, keeping all other fundamentals
unchanged. The results show that climate change displaces about 22 million indi-
viduals in SSA. Most of the climate migrants move out of the Western Sahel and DR
Congo, regions severely hit by climate change, into nearby countries like South Africa
or Tanzania. Damaged countries also experience large internal migration flows, and
overall the population in country capitals increases. Importantly, the welfare effects,
measured as changes in real income per capita, are small in aggregate terms. How-
ever, they are very heterogeneous across space: the 5th and 95th percentiles of the
welfare changes across countries are -15 and 3 percent, respectively, and some coun-
tries experience losses of up to -33 percent. Importantly, welfare results are similar if
accounting also for utility losses from migration costs, congestion, and other aspects.

Analogously, climate change does not affect SSA aggregate sectoral employment
but does so in distributional terms. The median country increases agricultural em-
ployment by about 1 percentage point, and the distribution of sectoral employment
changes is fairly skewed. As in Nath (2023), this happens because crops are subsis-
tence goods. Thus, affected economies respond to the reduced crop yields by allocat-
ing more labor to that sector. Nonetheless, this effect is spatially heterogeneous, and
the direction of sectoral specialization roughly follows the relative changes in sectoral
productivity (i.e. affected countries specialize out of agriculture, and the opposite for
the least damaged), but constrained by spatial frictions (i.e., migration and trade).

Next, I investigate the mitigating role of reducing these frictions with real-world
migration and trade policies. For that, I design a policy experiment that infers the
climate change effects in a hypothetical scenario where migration and trade frictions
in SSA drop to the European Union (EU) levels. In practice, I build a similarly rich
spatial dataset for the EU and, with the same quantification procedure, retrieve the
values of the parameters that reflect migration and trade policies in place in the EU.
With those in hand, I perform simulations that assume the adoption of these policies,
separately and combined, by SSA.

The quantified EU policy parameters are informative about the strictness of SSA
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policy and how to interpret my policy experiments. The estimated EU tariffs are
3 times lower than SSA, and the country-level distribution of mobility barriers is
substantially less skewed. Hence, the EU migration policy changes mobility barriers
unevenly, as it reduces the barriers of the strictest SSA countries by larger magnitudes
vis-à-vis the less strict countries. That differs from usual the approach in related work
that evaluate the role of these frictions with stylized experiments (e.g., by shutting
down migration or homogeneously increasing trade costs by an ad-hoc value).

Starting with migration policy, I find that reducing migration barriers to EU levels
increases total climate migration to 34 million individuals and reduces aggregate
welfare losses by about half. That happens because lower mobility barriers boost the
push aspect of climate change, reallocating labor out of unproductive rural regions.
However, these aggregate gains hide an underlying cost. While the policy permits
many individuals to be better off by migrating, those incapable of doing so remain as
worse off as before, and the distribution of welfare changes across countries remains
wide and skewed. Thus, this experiment uncovers a trade-off associated with climate
change mitigation with migration policy: it can reduce aggregate losses at the expense
of more climate migration and high regional inequality.

Subsequently, I assess the role of trade policy alone. Reducing tariffs to EU levels
reduces climate migration, as it increases the capacity to adapt by changing special-
ization rather than migrating. In terms of welfare, aggregate losses decrease mod-
erately, but disparities across countries decline substantially. Again, the channel is
the higher scope for sectoral specialization in this setting: lower trade barriers permit
agents to adapt by switching production out of agriculture. Extreme welfare losses
attenuate, and the distribution of country-level welfare changes narrows substantially
(the worst-off country experiences losses of -8 percent vis-à-vis -33 percent in the
baseline). Hence, trade policy is a powerful mitigating tool that moderates climate
migration and addresses the inequalities of welfare losses of climate change.

The last exercise combines both policies and shows that trade openness attenuates
the trade-off associated with migration policy alone. There is a reduction in aggregate
losses, as in the migration experiment. However, climate migration and inequalities
in the welfare effects also decrease. The policy mix increases the allocation efficiency
of factors across sectors and space, fostering a climate-driven process of structural
change (i.e., a relative increase in non-agricultural employment). This last result has
important policy implications: by combining both tools, SSA policymakers could take
advantage of the changes in the climate and allow the economy to structurally change,
through trade and migration, in a less unequal manner.

I close my investigation with simulations centered on mechanisms, extensions, and
robustness checks. For instance, I show that the capacity of producers to reallocate
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production across crops is a crucial margin of adaptation. Ignoring this margin over-
estimates the productivity and welfare losses of climate change by not considering
that crop yields are differently affected within locations. I also extend my framework
by allowing trade and migration with the rest of the world. Migration and welfare
losses grow, but not as much if increasing SSA’s integration with the global economy.
I also check the sensitivity of my results to assumptions on the evolution of fertility,
productivity growth, alternative climate damages, and future climate scenarios.

This paper contributes to a growing literature that, pioneered by Desmet and
Rossi-Hansberg (2015, 2023), evaluates the spatial consequences of climate change
and the role of spatial frictions. My work enriches this field in two ways. First,
rather than focusing on the global economy (Desmet et al., 2021; Cruz, 2023) or the
US (Rudik et al., 2021; Bilal and Rossi-Hansberg, 2023), I carefully zoom into SSA, a
low-income context where climate impacts and migration are pressing issues (Rigaud
et al., 2018). Second, while this literature usually investigates the role of frictions with
informative but stylized exercises (e.g., reducing trade or migration frictions by an
ad-hoc value), I evaluate the effectiveness of spatial policies with experiments that
have tangible counterparts in reality (i.e., if SSA adopts the EU’s integration policy).

Hence, my policy recommendations complement those from this field. I stress the
mitigating potentials of policies that target regional integration within SSA, adding
to the evidence of the gains from integrating developing economies with the global
economy through migration (Benveniste et al., 2020; Burzyński et al., 2022; Cruz and
Rossi-Hansberg, 2024) and trade (Conte et al., 2021; Nath, 2023). While echoing some
of the individual takeaways from these studies, my two central findings on (i) the
inequality trade-off associated with migration policy and (ii) the attenuating role of
trade policy are, to my knowledge, new to this literature.

These results are not simply a consequence of my geographical choice, but instead
of my innovative conceptual and empirical approaches to the climate migration issue
in SSA. Conceptually, I embed real-world policy in my framework by letting spatial
frictions in SSA depend not only on geography, but also on quantifiable institutional
features that my policy experiments exploit. Empirically, I uncover the rich struc-
ture of these spatial frictions thanks to my unique continental-scale dataset and the
new quantification method that I propose. These innovations (and the novel welfare
inequality trade-offs that they uncover) are my main contributions to this field.

My results also relate to the literature on the inequality of climate change effects.
Because climate damages depend on costly adaptation, this literature usually finds
unequal effects associated with exposure to extreme climate along several dimensions,
such as age, race, income, or location. Examples include the mortality effects of
temperatures (Carleton et al., 2022), damages from pollution exposure (Currie et al.,
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2023; Colmer et al., 2021), firm performance and climate extremes (Jia et al., 2022;
Castro-Vincenzi et al., 2024), and urban damages from coastal flooding (Desmet et al.,
2021; Hsiao, 2024). In my paper, the unequal effects of climate change (and policy)
also play a central role, but with a focus on how welfare effects differ across space.

I also contribute to the literature on the welfare benefits of reducing migration
barriers in developing settings. This literature documents that relaxing these barriers
improves welfare through several mechanisms, such as risk sharing (Bryan et al., 2014;
Morten, 2019; Meghir et al., 2022), insurance (Lagakos et al., 2023), and improved spa-
tial sorting (Bryan and Morten, 2019; Imbert et al., 2023). Others investigate how the
benefits of migration policy interact with trade and comparative advantage (Morten
and Oliveira, 2024; Pellegrina and Sotelo, 2024). My contribution is to show that these
welfare gains (and the power of integrating migration and trade policies) also hold in
the context of adaptation to climate change.

Finally, my paper speaks to the literature at the intersection of trade, develop-
ment, and the environment. This flourishing field establishes the importance of mar-
ket integration for development (Donaldson, 2018; Asturias et al., 2019; Sotelo, 2020;
Pellegrina, 2022; Nagy, 2023; Farrokhi and Pellegrina, 2023), inequality (Atkin et al.,
2021), environmental outcomes (Shapiro, 2016, 2021; Hsiao, 2022; Dominguez-Iino,
2023; Farrokhi et al., 2024), climate change impacts (Costinot et al., 2016; Nath, 2023;
Porteous, 2024; Farrokhi and Lashkaripour, 2024), and others. While my trade pol-
icy results corroborate many findings from this literature, they also convey the novel
takeaway of how trade openness attenuates the welfare inequality trade-off associated
with migration policy. Moreover, my novel method for quantifying trade frictions –
which has the advantage of requiring more accessible data than standard methods –
is a methodological contribution to this field.

2 Data sources

I collect and aggregate several sources of geographical data within 1� ⇥ 1� grid cells
(about 100 km2 at the equator), the empirical unit of observation. The set of cells
covering 42 countries of SSA contains 2,007 cells. The data sources, collection, and
aggregation follow below; see Appendix A for details.

GDP. Grid cell-level data on GDP per capita in US$ PPP (2000) comes from the Global
Gridded Geographically Based Economic Data v4 (G-Econ, Nordhaus et al., 2006).

Population. The G-Econ database also provides the population count at the grid cell-
level for 1990 and 2000, which is complemented with grid cell-level 1975 population
data from the Global Human Settlement Project (GHSP, Florczyk et al., 2019). Finally,
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country-level projections for the future population at the end of the century were
taken from United Nations and Social Affairs (2019).

Agricultural suitability. I construct a spatial and time-varying dataset of crop-specific
suitabilities using the Food and Agriculture Organization’s Global Agro-Ecological
Zones database (GAEZ, IIASA and FAO, 2012). This data is generated by an agro-
nomic model that combines geographic characteristics (e.g. soil, elevation, etc.) with
yearly climatic conditions to produce high-resolution estimates of potential yields for
different crops and periods.1 I collect and aggregate the potential yields for the six
main subsistence-type crops for 1975, 2000, and 2080.2,3

Agricultural production. Grid cell-level crop production comes from two sources:
grid cell-level production data (in tonnes) for 2000 from GAEZ and country-level crop
production (in current US$) for 2000-2010 from FAO-STAT. I convert current US$ to
US$ PPP using their ratio on the G-Econ data.

Crop prices. I retrieve spatially disaggregated crop price data from the Vulnerabil-
ity Assessment and Mapping program of the World Food Programme (WFP-VAM),
which has been monitoring crop prices in more than 900 markets across SSA since the
early 1990s. I focus on prices for maize, millet, sorghum, and rice – the crops with
higher temporal and spatial coverage. Figure 1 Panel A shows the wide spatial cover-
age within and across countries of this data, as well as a rich within-market coverage
of prices for different crops (i.e. many markets with data for more than one crop).

Transportation network. I build up a network connecting all grid cells of SSA by
combining the Global Roads Open Access Data Set (gROADS, CIESIN, 2013) with the
friction surface from the Accessibility to Cities project (Weiss et al., 2018).

Bilateral trade. I extract bilateral crop trade flows (in current US$, scaled to PPP
as above) between SSA country pairs from the International Trade and Production
Database (ITPD-E, Borchert et al., 2021). It is a benchmark source of trade data due to
its large geographical, sectoral, and temporal (2000 to 2016) coverage.

Internal and international migration flows. I obtain bilateral gross migration flows
between SSA countries from Abel and Cohen (2019)’s database (a comprehensive
source of migration data that covers about 200 countries and 25 years). Moreover,
I built a matrix of internal (i.e. within countries) migration at the grid cell pair-level
from census data (from IPUMS, 2020) by aggregating individual-level migration data

1These potential yields refer to the yield that a certain cell would obtain, on average, if its surface
was fully devoted to a specific crop.

2The 2080 yields refer to a climate-changed world under the business-as-usual scenario RCP 8.5.
3To focus on subsistence agriculture, I consider only the main staple crops produced and consumed

in the region: cassava, maize, millet, rice, sorghum, and wheat (see Table D.2). They account for 80%
of the agricultural production, as of 2000, and 50% of the caloric intake in SSA (Porteous, 2019).
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Figure 1: Spatial coverage of crop prices and internal (within-country) migration data

Panel A: Location of WFP markets. Panel B: Subnational regions with migration data.

Notes: Panel A shows the locations (markets) with crop price data from the WFP-VAM project. Panel
B shows the subnational locations with within-country migration data from IPUMS (2020).

at the subnational level for 24 countries and 40 years (since the 1970s to the early 21st
century). Figure 1 Panel B shows the high coverage and granularity of this data, with
migration between regional (ADM1) and provincial (ADM2) units.

3 Motivating facts

This section documents three facts about the potential impact of climate change in
SSA. It establishes that (i) these effects are expected to be strong and heterogeneous
and, as such, (ii) potentially determinant in the future organization of the SSA econ-
omy and (iii) future migration flows. Overall, these facts provide empirical support
for the channels I embed in the model.

Fact 1: Climate change is expected to bring about substantial and spatially hetero-
geneous changes in agricultural suitability in SSA.

I use the GAEZ estimates of agro-climatic potential yields for 2000 and 2080 to show
the expected degree of severity and heterogeneity in climate change’s impact.4 I define
DAk

i as the changes in the yields of crop k (in tonnes/ha) in location (i.e. grid cell) i
between the two periods, and DAi as the average change within locations.

Panel A of Figure 2 illustrates the high level of heterogeneity in the average climate
change shock to agricultural yields. In terms of levels, several locations will become

4The 2080 GAEZ forecasts are calculated assuming a hypothetical scenario for the future evolution
of the world’s climate. Appendix A describes how I chose the scenario from which to draw the data in
order that the results refer to the Representative Concentration Pathway (RCP) 8.5.
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Figure 2: Expected impact of climate change on average crop yields (left) and the
standard deviation of crop-yield changes (right) in SSA between 2000 and 2080

Panel A: Change in average crop suitability. Panel B: Location-level standard deviation.

Notes: Panel A shows the level changes in average potential yields between 2000 and 2080. Panel
B shows the standard deviation of the crop-level yield changes within cells. See Section 2 and
Appendix A for details, and Figure B.6 for Panel A in relative changes.

less suitable for agriculture, with average yields declining by 3 tonnes/ha (50 percent
of average yields) or more. However, other locations will become more suitable and
to a similar extent. This finding contradicts a general view of climate change as a
spatially homogeneous shock.

To illustrate the heterogeneity across crops, Panel B of Figure 2 documents the
dispersion of climate change effects at the cell level (in standard deviations of DAk

i ).
The changes in yields are not homogenous across crops, differentially shifting the
relative ranking of crop suitabilities within cells. Hence, climate change will affect
agricultural comparative advantages heterogeneously across both space and crops.

Thus, adjusting crop choices is a potential coping margin for affected farmers in
SSA. However, the extent to which such Ricardian production adjustments can take
place in SSA depends on the strength of these natural comparative advantages in
shaping effective agricultural production. The next empirical fact provides evidence
that such a mechanism indeed exists and emphasizes the importance of embedding it
in my theoretical framework.

Fact 2: Natural crop suitability closely explains the patterns of crop specialization
across SSA, as well as crop trade between countries (but subject to frictions).

Figure 3 Panel A documents a positive correlation between observed production and
the GAEZ yields in 2000. It plots the linear fit of effective crop production on average
crop yields at the country level, both in logs and net of crop and country fixed ef-
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fects.5 The strong, positive correlation (elasticity of 0.73) is evidence of specialization
in production, with countries producing the crops that they are more suitable for.6

Furthermore, Panel A documents a weaker degree of specialization in trade: the
slope of bilateral trade on exporter-importer relative yields is about 40 percent lower.7

Notably, this pattern remains if controlling for the distance between exporter-importer
capitals (a component of trade costs; see Appendix D.1), suggesting that other resis-
tance elements (e.g., tariffs) could be the reason for the weaker specialization in trade.

Hence, to align with these empirical patterns, my model will take the perspective
of subnational locations (and countries) that specialize in (and trade, but costly) crops
based on comparative advantage. As such, it will consider how climate change, in
general equilibrium, will reshuffle production and trade in SSA in the next decades.

Fact 3: Changes in crop suitability positively correlate with past internal and inter-
national migration flows in SSA.

Panels B and C of Figure 3 show that changes in crop suitabilities between 1975 and
2000 explain migration choices, within and across countries, in SSA. For that, they plot
the linear fit of bilateral migration flows on the change in the relative yields between
subnational locations (i.e., regions or provinces) or countries.8 A positive relationship
is correlational evidence of relative yields as a push factor of migration over time, with
larger bilateral flows for the pairs whose destination-origin relative yields increased.

This is the case for both internal and international migration. As shown in Ta-
ble D.1, this association is somehow weak on average, but stronger for location pairs
(subnational regions or countries) that are geographically closer: controlling for bilat-
eral distances increases the estimated slopes for both types of migration flows. This
shows that migration costs, like geographical distance, limited the capacity of agents
migrating to locations that became relatively better off in the past decades. Hence,
my model will incorporate these mobility barriers in general equilibrium, limiting the
capacity of migration as an adaptation response to future climate change.

5Importantly, the country-level production data is retrieved from national statistics, and not ag-
gregated from the FAO spatial data. Hence, using these two independent data sources prevents a
mechanical correlation between production and suitability data.

6Appendix D.1 discusses more formally these correlations, documents the associated regression
results, and documents additional facts, e.g., evidence for within-country specialization in production.

7The trade slope refers to the linear fit of bilateral crop trade on exporter-importer relative crop
yields, in logs, and net of importer-exporter and crop fixed effects.

8The relative yield changes refer to the percentual changes, between 2000 and 1975, in the relative
average yields between location pairs. Moreover, the migration flows refer to thousands of migrants
between origin and destination per thousand population at the origin in 1975 (which is equivalent to
controlling for the initial population at origin). Note that these results are not causal, but correlational;
see Appendix D.1 for details.
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Figure 3: Comparative advantage and the organization of the SSA economy: relation-
ship between crop yields (changes) and effective production, trade, and migration

Panel A: Country-level crop
production and trade (in logs).

Panel B: Bilateral internal
migration flows.

Panel C: Bilateral international
migration flows.

Notes: Panel A plots, with the solid line, the correlation between GAEZ potential yields and country-
level effective production from FAOSTAT. The dashed line plots the correlation between country-pair
relative GAEZ potential yields and bilateral trade flows from ITPD-E. Panel B plots the correlation
between internal (within-country) migration and changes in relative potential yields over time (and if
controlling for bilateral distances). Panel C plots analogous correlations to B but for international mi-
gration (between countries). All the correlations shown are net of fixed effects that make cross-country
(and cross-crop) relationships comparable; see appendix D.1 for details.

4 Model

This section presents a static quantitative spatial model that quantifies the general
equilibrium impacts of future climate change. It provides a tractable framework to ac-
count for the role of geographical heterogeneity along several dimensions (i.e. sectoral
productivities, market access, and migration barriers, among others) in determining
the spatial distribution of economic activity and population.9

4.1 Environment

The economy S is composed by N locations, denoted by i, j, or s. Each i belongs to a
country c(i) 2 {1, ..., C}, has a surface Hi 2 {Hi}i2S ⌘ H, and is initially populated by
L0

i 2 {L0
i }i2S ⌘ L of workers who supply their labor inelastically. There are K sectors

k 2 {1, ..., K} in the economy: K � 1 crops and a non-agricultural composite K sector.

9Refer to Appendix B for further details and derivations of the model.
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Locations can produce a horizontally differentiated variety w of each sector’s goods.
Each location has a sector-specific fundamental productivity Ak

i 2 A = {A1
1, ..., AK

N}

that partially drives the degree of sectoral comparative advantage across space. More-
over, workers residing in i enjoy an amenity value ui 2 {ui}i2S ⌘ U .

Goods and labor units are mobile in S, subject to frictions. In particular, T =

{tij}i,j2S is the bilateral trade friction matrix where tij = tji � 1 is the iceberg cost of
trading betwen i and j. Frictions to migration depend on an analogous mobility cost
m̄ij 2 M and on an idiosyncratic taste shock to the migration choices of agents.

The geography of the economy is G(S) = {L,H,A,U , T ,M}: the set of spatial
fundamentals that interact with the economic forces of the economy and determine
the spatial distribution of the economic activity, explained next.

Technology and Market Structure. In every i, a continuum of firms produces an w

variety of sector k goods with labor Lk
i (w) and land Hk

i (w) in:

qk
i (w) = zk

i (w)⇥ Lk
i (w)ak Hk

i (w)1�ak , where (1)

zk
i (w) is a Hicks-neutral productivity shifter that firms draw independently from:

zk
i (w) ⇠ Fk

i (w) = e�w�xk⇥(bk
i Ak

i ). (2)

Fk
i ’s shape parameter xk determines the dispersion of firms’ productivity draws (hence,

their ex-post heterogeneity) around the scale parameter
�
bk

i Ak
i
�
. Thus, they depend

on Ak
i (i.e., i’s fundamental characteristics) and bk

i , a location-sector efficiency shifter
that represents other determinants of firms’ productivity (e.g. technology).

The output can be locally consumed or traded with other locations in a perfectly
competitive, full information framework. Thus, the final price of the sector k variety
w produced in i and shipped to j is:

pk
ij(w) =

⇣
c̄kwak

i r1�ak
i /zk

i (w)
⌘
⇥ tij, (3)

where c̄k is a constant and wi and ri are factor prices (wages and land rents).

Preferences. Each location i is initially populated by a continuum of workers who
decide where to live and how much to consume. In particular, a worker n initially
living in location i who decides to migrate to j enjoys

Uij(n) = Cj ⇥ m̄�1
ij ⇥ # j(n), (4)

where Cj is the utility obtained from consumption in j, m̄ij is the mobility cost of
migrating to j, and # j(n) is a destination taste shock that disciplines workers’ (ex-
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post) heterogeneous taste with respect to their preferred destination.

Consumption choice. Workers in a location j decide how much to consume of all
possible w varieties from all K sectors goods, ck

j (w). Their preferences feature love for
varieties, which is modeled using a sectoral tier with CES hk > 1:

Ck
j =

✓Z
ck

j (w)
hk�1

hk dw

◆ hk
hk�1

. (5)

Workers at j enjoy per capita income vj = wj + rjHj/Lj. Following Eaton and Kortum
(2002), the share of j’s spending on sector k goods is:

lk
ij = bk

i Ak
i

⇣
Gkc̄kwak

i r1�ak
i tij/Pk

j

⌘�xk
, where (6)

Pk
j = Gk

 

Â
i2S

bk
i Ak

i

⇣
c̄kwak

i r1�ak
i tij

⌘�xk

!�1/xk

(7)

is the price index of sector k at j. Thus, workers expend a larger share on the cheapest
suppliers (i.e., with the lowest price vis-à-vis sectoral price index Pk

j ). xk determines
the extent to which this occurs, being the sectoral trade elasticity in the economy.

Worker choices across the K � 1 crops also feature love for varieties. All crop Ck
j

composites are aggregated into the following agricultural CES tier:

Ca
j =

 

Â
k 6=K

⇣
Ck

j

⌘ ga�1
ga

! ga
ga�1

. (8)

ga > 1 is the CES between crops which drives their degree of substitutability. Hence,
j’s share of expenditure on crop k relative to total crop expenditure is:

Xk
j =

�
Pk

j /Pa
j
�1�ga , where (9)

Pa
j =

✓
Â

k 6=K

�
Pk

j
�1�ga

◆ 1
1�ga

(10)

is the price index of the aggregate agricultural sector a. Therefore, workers substitute
crops based on their relative prices. Larger values of ga imply more consumption of
the locally cheapest crop and a stronger degree of specialization in crop consumption
across locations.

Finally, the consumption choice between agricultural and non-agricultural goods
is modeled with a further nonhomothetic CES tier in the spirit of Comin et al. (2021).
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In particular, the utility from consuming goods, Cj, is implicitly determined from:

Â
k2{a,K}

⇣
Wk
⌘1/s �

Cj
�ek/s

⇣
Ck

j

⌘(s�1)/s
= 1, (11)

where s > 0 is the CES between the a and K aggregate sectors, ek is their nonho-
mothetic elasticity of substitution, and Wk are sectoral preference shifters. Utility
maximization implies that total consumption equals real income, Cj = vj/Pj, and that
aggregate price indexes and expenditure shares at j are respectively determined as:

Pj =

0

@ Â
k2{a,K}

✓
Wk
⇣

Pk
j

⌘1�s
◆ 1�s

ek
⇥

⇣
µk

j v1�s
j

⌘ ek�(1�s)
ek

1

A

1
1�s

, and (12)

µk
j = Pk

j Ck
j /vj

= Wk
⇥

⇣
Pk

j /Pj

⌘1�s

| {z }
substitution

⇥

⇣
vj/Pj

⌘ek�(1�s)

| {z }
nonhomotheticity

8k 2 {a, K}. (13)

Equation (13) shows that workers’ choices between agricultural and non-agricultural
goods are more complex than within agriculture. The reasons are two: first, it con-
tains a substitution component analogous to eq. (9) that nevertheless permits a lower
degree of substitutability between sectors (s < 1). That makes it possible for changes
in sectoral expenditures to be relatively lower (in magnitude) than the changes in rel-
ative prices. Second, it features a nonhomothetic component that maps changes in
real income onto changes in sectoral expenditure shares – essentially, an income ef-
fect. The elasticities ek determine this relation: if ek < 1 � s, then sector k goods are a
necessity whose expenditure decreases with income (and the opposite if ek > 1 � s).
Note that if ek = 1 � s for all k, then the nonhomothetic component vanishes and
eqs. (12) and (13) become isomorphic to eqs. (9) and (10).10

In equilibrium, j’s per capita demand for sector k goods produced in i is lk
ijX

k
j µa

j vj

10Such a demand structure is required in order to account for the necessity (subsistence) aspect of
agricultural goods when endogenizing sectoral shifts from agriculture to non-agriculture (i.e. structural
change). This is what Gollin et al. (2007) refer to as the food problem and what Nath (2023) shows to
be a limitation of structural change as a response to climate change. I discuss this further in Section 4.2.
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for crops and lK
ij µ

K
j vj for the Kth sector. Hence, the total bilateral expenditure Xij is:

Xij = Â
k2K

Xk
ij = Â

k 6=K
lk

ijX
k
j µa

i vjLj + lK
ij µ

K
j vjLj

= Â
k 6=K

bk
i Ak

i

⇣
Gkc̄kwak

i r1�ak
i tij/Pk

j

⌘�xk

 
Pk

j

Pa
j

!1�ga

Wa

 
Pa

j

Pj

!1�s 
vj

Pj

!ea�(1�s)

vjLj +

+ bK
i AK

i

⇣
GKc̄KwaK

i r1�aK
i tij/PK

j

⌘�xK
WK

 
PK

j

Pj

!1�s 
vj

Pj

!eK�(1�s)

vjLj. (14)

Location choice. Workers choose where to live in order to maximize utility. In partic-
ular, worker n initially living in i chooses a destination j in order to solve:

max
j

Uij(n) =
�
vj/Pj

�
⇥ m̄�1

ij ⇥ # j(n). (15)

Therefore, workers will prefer locations with higher real income, although subject to
the bilateral migration cost m̄ij and the destination taste shock # j (n). Formally, the
former is modeled as

m̄ij = mij ⇥ mc(j) if c(i) 6= c(j), and m̄ij = mij otherwise, (16)

where mij and mc(j) � 1. Thus, mobility costs depend on mij (which accounts for
bilateral characteristics like distance) and potentially mc(j). The latter matters only if
the location choice requires workers to switch countries. Hence, it captures country-
specific characteristics of destination j in terms of national barriers to foreigners.

I assume that the taste shock is drawn independently from an extreme-value dis-
tribution with shape parameter q > 0 and scale parameter uj(Lj/Hj)�b:

# j ⇠ Gj(z) = e�z�q
⇥uj(Lj/Hj)

�b
. (17)

The parameter q drives workers’ heterogeneity with respect to their location tastes
(and, to some extent, the dispersion forces in the economy). A higher q makes
agents more homogeneous and their location decisions more dependent on real in-
come vj/Pj. That drives down the dispersion forces in the economy. In contrast,
a lower q implies greater heterogeneity among agents who are more likely to draw
higher values of taste shocks for every location. In that case, dispersion forces in-
crease. Moreover, the scale parameter uj(Lj/Hj)�b determines the average of the
preference draws; uj stands for the fundamental amenity of destination j; and b > 0
determines the extent to which population density diminishes quality of life.

Analogously to eq. (2), the distributional assumption on taste preferences allows

16



for a closed-form solution to the share of workers initially in i migrating to j:

Pij = P

✓
Wj(v) � max{Ws(v)}s 6=j

◆
=

(vj/Pj)qm̄�q
ij uj(Lj/Hj)�b

Â
s2S

(vs/Ps)qm̄�q
is us(Ls/Hs)�b

. (18)

Therefore, the total number of workers that choose to live in destination j is:

Lj = Â
i2S

Pij ⇥ L0
i . (19)

This is an intuitive result: locations with higher real income (vj/Pj) and/or density-
adjusted amenities uj(Lj/Hj)�b will have a higher population in equilibrium. The
magnitude of this effect is partially driven by q, which is the elasticity of the location
choice with respect to real income and to bilateral migration costs.

Spatial equilibrium. Given the geography G(S) and the exogenous parameters Q ⌘

{Wk, hk, ga, ek, ak, xk, s, q, b}, a spatial equilibrium is a vector of factor prices and labor
allocations {wj, rj, Lj}j2S such that eqs. (7), (10), (12) to (14) and (19) hold, and markets
for goods clear. Formally, market clearing requires trade-balacing, such that each j’s
income equals total exports to and total imports from all locations i 2 S:11

wjLj + rjHj = Â
i2S

Xji = Â
i2S

Xij. (20)

4.2 Illustration and discussion of the underlying mechanisms

I illustrate how changes in the fundamentals shape the geographical distribution of
economic activity and population by representing it as a line with a discrete number of
locations. By doing so, I emphasize the effect of the model’s underlying mechanisms
on the agent’s mobility decisions in response to a climate shock to the economy.

The locations i 2 {1, ..., N} are distributed over a line and are homogeneous
with respect to amenities, efficiency shifters, and initial population (ui = u, bk

i =

b, and L0
i = l 8i, k). The economy is composed of two countries, where the ten left-

most locations stand for country 1. I initially set K = 2, so that the agricultural a
sector consists of one crop only. I assume that the distribution of sectoral fundamen-
tal productivities is increasing in the right-most locations and that every location is
more productive in the Kth sector. I also set bilateral trade and mobility frictions to be
proportional to the bilateral distances and make it costly to migrate to country 2. In
terms of preferences, I assume that the agricultural crop is a necessity good and the

11Appendix B.3 documents the non-linear system of 7 ⇥ N equations that characterize the spatial
equilibrium, the iterative algorithm used to solve it, and aspects related to its existence and uniqueness.
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Figure 4: Equilibrium values of {L1
i , L2

i }i2S for an economy represented on a line

Panel A: Migration barriers, sectoral specialization,
and CD.

Panel C: CD and migration barriers.

Panel B: CD, the food problem, and
the role of trade frictions.

Panel D: CD and crop switching.

Notes: Equilibrium labor allocations for the model described in Section 4.2. Panel A describes the
equilibrium of the baseline and climate change simulations (country 1 becomes less suitable for
crops). Panel B, C, and D plot the results of the climate change scenario with, respectively, lower trade
frictions (a reduction in t), no migration barriers between countries (mc = 1 for all c) and multiple
crops (K = 3). See Appendix B.5 for details and a graphical representation of the fundamentals.

opposite for the Kth sector. For simplicity, I disregard land H.12

Panel A of Figure 4 plots the equilibrium distributions of {Lk
i } as dashed lines

(baseline). Overall, the economy produces more non-agricultural goods, which is the
most productive sector. In distributional terms, the rightmost locations in each coun-
try have a higher level of economic activity and a larger population. The discontinuity
at the country boundaries (i = 10) illustrates the role of country migration barriers (i.e.
m2 > 1). There is a higher population density on country 1’s side due to the inability
of workers to cross into country 2, where productivities and real wages are higher.

Subsequently, I simulate a climate shock by reducing country 1’s crop productiv-

12That is, ak = 1 8k, ea < 1 � s (and the opposite for k = K = 2), m1 = 1, m2 = 1.5, tij = mij =

et⇥|i�j|, and Ak
i = ak ⇥ i, where t = 0.05 and a2 > a1. See Appendix B.5 for details.
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ities even further. The result is shown in Panel A of Figure 4 using solid lines (CD).
Country 1 changes its patterns of sectoral specialization by increasing its relative em-
ployment in agriculture. This is driven by the necessity aspect of agricultural goods.
Climate change reduces crop productivity in country 1, which reacts by increasing
agricultural employment so to produce the needed quantity of crops. This reduces
real income in that country, increasing its share of expenditure on crops. Country 2,
if anything, gets benefitted. Its population and non-agricultural employment increase
due to the climate migrants from country 1.

This simple exercise illustrates the limitations of structural transformation as a
response to climate change. As rightly argued by Nath (2023), economies will switch
production out of affected sectors only if capable of importing subsistence goods from
unaffected regions. He refers to this as the food problem, inspired by previous studies
of structural change and development (Gollin et al., 2007; Herrendorf et al., 2014).
Panel B of Figure 4 provides further quantitative evidence of how this mechanism
works in my model. When facing lower trade frictions, country 1 switches production
out of agriculture, since it can now outsource crops from the nearest locations in
country 2 (which shifts its production towards agriculture).

The novelty of my framework lies in the addition of two dimensions that further
interact with the mentioned adaptation mechanisms. The first is migration barriers,
whose role is illustrated in Panel C of Figure 4 (the climate change scenario without
country migration barriers, i.e. mc = 1 for all c). The results are intuitive: instead
of reacting to the food problem, workers in country 1 migrate to country 2. Over-
all, workers enjoy higher real wages and spend lower income shares on agricultural
goods, making climate change less of a problem. Thus, migration can have a welfare-
improving role as a response to climate change. It permits individuals to move out
of unproductive rural regions, allowing for a more efficient sectoral spatial sorting of
workers. This echoes the insights obtained from research on spatial structural change
(Eckert and Peters, 2022) and on the gains from lowering migration barriers in rural
economies (Bryan and Morten, 2019; Pellegrina and Sotelo, 2024; Lagakos et al., 2023).
This is a key, novel aspect that I account for: I quantify the distribution of {mc}c across
SSA and investigate their mitigating role in policy experiments.

The second additional dimension is the multi-crop aspect of the agricultural sector.
Crops are partial substitutes as subsistence, and Section 3 shows that climate change
is expected to alter their yields heterogeneously within locations. Thus, a potential
response of farmers in affected locations would be to switch production towards less-
affected crops. The role of this margin is shown in Panel D of Figure 4. Dashed
lines represent the outcomes of a simulation with two crops, where only crop 1 is
affected in country 1. As a result, locations in that country switch production towards
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(unaffected) crop 2. This increases non-agricultural employment, real wages and wel-
fare. Country 2 remains qualitatively unaffected, and overall the economy is better
off relative to the one-crop scenario.

5 Bringing the model to the SSA data

I quantify the model to match SSA data by the early 21st century. To do so, I define
the economy S as the geography of SSA, leaving aside interactions with the rest of
the world.13 Then, I use a mix of quantification methods to map Q and G (S) to
observable features of SSA. Tables 1 and 2 document the methods and sources used,
and Section 5.5 the overidentification tests that validate the calibrated model.14

5.1 Parameters from the literature

I draw the values for {hk, ga, ek, ak, xk, s, q, b} from the related literature. I set the
lower-tier CES as hk = 5.4 for crops and hK = 4 (as in Costinot et al., 2016; Desmet
et al., 2018, respectively), and the mid-tier CES as ga = 2.5 as in Sotelo (2020). As
for the upper-tier nonhomothetic CES, I follow Comin et al. (2021) and set s = 0.26,
ea = 0.2, and eK = 1. Therefore, agricultural goods in my framework are a necessity,
as opposed to non-agricultural K goods. I obtain the factor shares ak = 0.39 and aK =

0.58 from Fajgelbaum and Redding (2022) and the trade elasticities xk = 5.66 and xK =

6.63 from Pellegrina (2022). Finally, I set q = 3 and b = 0.32 following Morten and
Oliveira (2024) and Desmet et al. (2018), respectively. Appendix B.8 further discusses
the implications of these parameter choices.

5.2 Transportation and trade networks

I follow the related literature (e.g. Allen, 2014; Donaldson, 2018; Pellegrina, 2022) by
assuming that trade frictions are proportional to the travel distance between locations:

tij = distance(i, j)d
⇥ tF

ij , (21)

where distance(i, j) is the shortest distance between the location pair (in kilometers)
and tF

ij � 1 is an additional tariff-like trade friction. That is, tF
ij > 1 only if c(i) 6= c(j).

I retrieve distance(i, j) for all location pairs by feeding the road network and fric-
tion surface data to a pathfinding algorithm that calculates the shortest routes and

13My baseline setting refrains from migration and trade with the rest of the world because about 75%
of international migrants from SSA by the early 21st century moved within the continent. However, I
extend my setting by adding these interactions with the rest of the world in Section 6.4.

14Appendix B.6 discusses the data used, data quality issues, and the numerical algorithms.
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Table 1: Preference and technology parameters borrowed from the related literature

Parameters Description Source
Panel A: Demand parameters
hk = 5.4 Lower-tier CES (k 6= K, crops) Costinot et al. (2016)
hK = 4 Lower-tier CES (non-agriculture) Desmet et al. (2018)
ga = 2.5 Mid-tier CES (across crops) Sotelo (2020)
s = 0.26 Upper-tier CES Comin et al. (2021)
ea = 0.2 Non-homothetic CES (agriculture) Comin et al. (2021)
eK = 1 Non-homothetic CES (non-agriculture) Comin et al. (2021)
Panel B: Supply parameters
xk = 5.66 Sectoral trade elasticity (k 6= K, crops) Pellegrina (2022)
xK = 6.63 Sectoral trade elasticity (non-agriculture) Pellegrina (2022)

ak = 0.39 Crop labor share (k 6= K) Fajgelbaum and Redding (2022)
aK = 0.58 Non-agricultural labor share Fajgelbaum and Redding (2022)
Panel C: Location choice parameters
q = 3 Migration elasticity 2 [2, 4] Morten and Oliveira (2024)
b = 0.32 Congestion to population density Desmet et al. (2018)

respective distances between all neighboring cells. Then, I use the Dijkstra algorithm
to calculate the shortest distance between all pairs. Finally, I map these distances onto
T with a GMM that estimates d = 0.17 and tF

ij = 6.75. This last step is done simulta-
neously with the calibration of other fundamentals, as explained in Section 5.3.

Figure 5 illustrates subsamples of the quantified T . It shows the complexity of
the trade network, which replicates well the existing transportation infrastructure
both within and across countries. As expected, trade frictions increase with distance.
Moreover, the discontinuity of the distance gradient shows the additional cost of in-
ternational trade captured by tF

ij .

5.3 Productivities, sectoral shifters, land endowments, and trade costs

The set of fundamentals and parameters {H,A, bk
i , Wk, tF

ij , d}i,j,k are quantified as fol-
lows. First, I set H as each cell’s land area in square kilometers. Subsequently, I follow
Costinot et al. (2016) and use the agro-climatic yields from GAEZ as the fundamental
productivities of crops {Ak

i }i2S,k 6=K.15 The underlying rationale is that the GAEZ data
provides potential yields and is thus informative about the productivity variation
across location-crops that is driven exclusively by differences in natural character-

15To be consistent with the SSA rural context in 2000, I use the agro-climate potential yields calculated
for rain-fed agriculture with low usage of modern inputs. See Appendix A for details.
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Figure 5: Estimated trade network for SSA – Western and Eastern Africa

Notes: Notes: Estimated trade network for Western Africa (left) and Eastern Africa (right). The
network is built by finding the shortest path between all neighboring cells over the road infrastructure.
tij represents the estimated iceberg trade costs with respect to the capital of Nigeria (left) and the
capital of Kenya (right), both represented by a black dot. See Section 5.2 for details.

istics, including the climate. The variation in effective producvity across locations,
conditional on the former, is embedded in {bk

i }i,k.
To quantify the remaining elements t ⌘ {tF

ij , d} and T ⌘ {{AK
i }i, {bk

i }i,k, {Wa, WK}},
I implement a two-stage procedure. In the first stage (inner loop), I guess values for
t and quantify T by inverting the general equilibrium conditions of the model. Then,
the second stage (outer loop) estimates t̂ with a GMM that targets model-generated
moments to their data counterparts conditional on the first stage. In what follows, I
concisely describe this two-stage approach, leaving further details to Appendix B.6.

Model inversion (inner loop). This step calibrates T by inverting the spatial equi-
librium so that the model reproduces, in general equilibrium, the spatial distribution
of GDP, the spatial distribution of sectoral production, and the relative a and K ag-
gregate expenditure shares. Following Farrokhi and Pellegrina (2023), I represent the
solution of this inner loop, conditional on a guess for t, as z (T; t) = 0.

Importantly, the model inversion identifies the product {bK
i AK

i }i (since its two ele-
ments cannot be separated), and pins down {bk

i }k 6=K in relative terms within locations.
Therefore, the latter is identified using within-crop variation in observed production
across locations, conditional on the fundamental productivities of A. The former,
conditional on the latter, is identified using spatial variation in GDP.

Estimation (outer loop). This step estimates t with a GMM that exploits moments
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related to international trade flows and prices. Specifically, I design the first moment
m1 = Âc Âc0 Âi2c Âj2c0 Âk Xk

ij, that is, the aggregate exports between all country pairs
in SSA. It provides variation to identify tF

ij = tF given the (intuitive) decreasing
relationship between tariffs and international trade flows in the economy.16

Then, I take an innovative approach that identifies d using spatial variation in crop
prices. Rather than using bilateral price wedges, as in the literature, I read my crop
price data as sectoral prices Pk

i and use its dispersion to identify d with m2 ⌘ stan-
dard deviation

�
Pk

i
�
.17 Intuitively, the identification relies on the positive relationship

between trade frictions and price dispersion: the lowest the former, the more homo-
geneous are price indexes across space (hence, less dispersion). Appendices B.6 and
B.7 elaborate on identification aspects and discuss data-related aspects, such as the
mapping between time-varying prices with my static framework.

My approach is innovative for two reasons. First, it pins down the differential
role of geography (d) and tariffs (tF) when determining trade costs, thus allowing
for experiments along these dimensions. Second, and most importantly, it quantifies
bilateral trade costs using only local prices, a much more accessible type of data vis-
à-vis the usual approach in the literature (which requires origin-destination prices).18

For the estimation, I define m = [m1, m2] and g (t) =
⇥
m(t)� mdata⇤ and solve for

t̂ which, based on E [g (t)] = 0, satisfies:

t̂ = arg min
t

g (t)Wg (t)0 subject to z (T; t) = 0,

where W is the weighting matrix. The estimates t̂ = {6.75, 0.17} (with bootstrapped
standard errors of {0.38, 0.01}) have meaningful economic implications. First, t̂F =

6.75 suggests barriers for international trade in SSA that are substantially larger than
developed economies (such as tF = 2.3 for the US from Antras et al., 2024). Second,
my d estimate is about half of what Moneke (2020) estimates using only Ethiopian
data. That stresses the importance of using cross-country data for continental-scale
applications like mine. Assuming a higher d would underestimate t̂F.19

16In practice, m1 is aggregated over the set of country-pair-crop combinations covered by the ITPD-E
trade data. In fact, the data sparsity (in terms of observed trade flows for SSA by the early 2000s) is
the main reason behind the modeling of tij = tF, that is, a common tariff for all country pairs in SSA.

17I take this approach because the WFP-VAM data do not specify the location of production of the
crops. Hence, it should not be interpreted as bilateral prices (as in, for instance, Donaldson, 2018), but
rather as local crop prices in different locations in SSA (i.e., crop prices indexes as in Equation (7)).

18Specifically, the literature pins down trade frictions with spatial price wedges: price differences of
goods produced in a common origin but sold in different destinations. Implementing that requires
origin-destination price data (e.g., prices of Malian rice sold in multiple locations, like Senegal, Niger,
and so on). Instead, my approach requires only local prices, regardless of their origin. This is a
relatively much more accessible type of data, especially for developing economies and in contexts of
high spatial granularity (i.e., where one needs price information within and between countries).

19My estimated trade costs lie also within other estimates that use different functional formats (e.g.,
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Table 2: Quantified fundamentals and parameters, data sources, and matched moments

Subset Description Data source/Moment matched
L - SSA’s initial Population data in 2000

population and 1990

{bk
i }i2S - Productivity shifters Matched to location-sector

production data

{Wk}a,K Wa = 1 Sectoral preference Matched to aggregate sectoral
WK =0.19 shifters expenditure

H - Land endowments Grid cell land areas

A {Ak
i }i2S,k 6=K Agricultural produc- GAEZ data

tivities
{AK

i }i2S Non-agricultural pro- Matched to GDP data
ductivities

U - Amenities Matched to population data

T dist(i,j) Bilateral travel Transportation data
distance

d =0.17 (0.01) Distance elasticity Matched to spatial dispersion
of t of sectoral prices

tF
ij =6.75 (0.38) Tariff-like Matched to aggregate trade

trade friction flows

M dist(i,j) Bilateral travel Transportation data
distance

f =0.41 (0.02) Distance elasticity Matched to total internal
of mij migration (from census data)

{mc}
C
c=1 Country migration Matched to country migration

barriers data (from bilateral flows)

Notes: Values in parenthesis stand for bootstraped standard errors; refer to Appendix B.6 for details.

5.4 Migration frictions and amenities

As with tij, I set the bilateral component of migration frictions to be proportional to
distance, i.e. mij = distance(i, j)f. Thus, the remaining elements to be quantified are
{f, mc, ui}i,c, which are solved for with an analogous two-stage procedure.

Inner loop. It uses the quantified elements in Section 5.3 to solve for prices and
real income in the economy. Then, starting with a guess for f, it inverts the spatial
equilibrium for {mc}c and {ui}i such that the model replicates, respectively, the gross

Donaldson, 2018; Pellegrina, 2022, for India and Brazil, respectively); see Appendix B.9 for details.
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migration flows at the country level and the spatial distribution of the population.20

The separate identification of {mc}c and {ui}i is possible because they are additively
separable in the denominator of eq. (18). That provides within-country variation in
terms of potential origins from which the migration cost is or is not scaled by {mc}c,
and allows for a separate identification conditional on {ui}i.21 The latter, conditional
on the former, is identified with spatial variation in population.22

Outer loop. It consists of a similar GMM that estimates f̂ = 0.41 (with bootstrapped
standard errors of 0.02 ) by matching the total internal migration observed in the
census data.23 It conveys evidence of large mobility barriers in SSA: the resulting
(median) {mij}i,j is about 20 percent higher than the estimates for Indonesia (from
Bryan and Morten, 2019), and three and four times larger than those for Brazil and
the US (respectively from Morten and Oliveira, 2024; Allen and Donaldson, 2022).24

5.5 Validating the model

Before using the quantified model to simulate the future, I first check the reasonability
of the quantified fundamentals. They align well with the mechanisms in the model.
I find high non-agricultural productivities in highly productive locations, high mi-
gration barriers in countries with (relative) little migration, high amenities in denser
locations with (relative) low real income, and preference shifters that match the SSA
context (and are close to estimates from related studies; see Appendix B.10 for details).

Next, I test the capacity of the model to replicate observed moments with a back-
casting exercise that solves for the spatial equilibrium in 1975 using the GAEZ agri-
cultural productivities and population endowments in that year. The result illustrates
how well the model replicates the population changes in SSA between 1975 and 2000
using the observed changes in the climate during that period.25

20Importantly, the international migration data from Abel and Cohen (2019) provides cross-country
gross flows between 1990 (the earliest year available) and 2000. Thus, my estimation requires a measure
of the initial population in 2000, i.e. {L0

i }i. I calculate it by scaling the distribution of the population
in 1990 to the levels of SSA population in 2000, while accounting for the observed natural population
growth rates (fertility minus mortality) across countries during the period. Intuitively, this represents
the population distribution in SSA if there had been no mobility during that period.

21Intuitively, the additive separation holds because, for each destination, there are several origins of
migrants, some of them being in other countries and others not.

22Therefore, amenities stand as a structural residual of my model that rationalize all location choices
observed in the data that cannot be explained by differences in real wages and migration frictions.

23To be consistent other data, I use internal migration flows between 1990 and the early 2000s.
24As with trade costs, the estimates from these sources are not directly comparable to my f̂ due

to different functional formats and/or units (e.g., travel time rather than distance). Appendix B.9
discusses their equivalence in detail and the reasons for (and benefits of) my specification.

25The data source for the 1975 population (GHSP) differs from that used in the calibration (G-Econ).
I check their compatibility using the correlation between them for the population in 2000 (available in
both datasets) at the grid-cell and country level. Furthermore, in order to have an initial population for
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Figure 6: Validation of the calibrated model in levels and differences

Panel A: Observed population in 1975

Panel C: Population changes, DLi

Panel B: Estimated population for 1975

Panel D: Agricultural employment (%)

Notes: Panels A shows the observed 1975 population distribution in SSA while Panel B shows the
distribution produced by the model. The values are shown in percentiles, where 1 (100) stands for
the bottom (top) percentile of each sample. Panel C plots the model fit in terms of population change
(between 1975 and 2000, in thousands) while Panel D plots the model fit for country-level agricultural
employment in 2000 (in percentage points).

Panels A and B of Figure 6 report the results in levels. The model closely replicates
the spatial distribution of the population in 1975 both within and across countries.
Moreover, Panel C shows that the results closely fit the population changes between
1975 and 2000, with a slope and R2 very close to one. Importantly, the major change in
this backcasting exercise is on the agricultural suitabilities, i.e. {Ak

i }i,k 6=K. According
to the GAEZ estimates, about 75 percent of the locations in SSA experienced a decline
in crop yields between 2000 and 1975. Thus, the fact that using this variation in the
model can explain the changes in population during the period confirms the model’s

solving the model for 1975 – i.e. {L0
i }i – I project the 2000 population distribution onto the 1975 levels.

Appendix B.11 discusses that in detail.

26



capacity to provide reliable forecasts of the future using the GAEZ estimates.26,27

As an additional overidentification test, Panel D compares country-level agricul-
tural employment shares (for all crops) generated by the model for 2000 against World
Bank data. The model closely replicates the ranking of countries with respect to agri-
cultural employment shares, though underestimating their levels. In aggregate, the
model predicts about a 24 percent share of employment in agriculture as compared
to 59 percent in the data. The main reason for this discrepancy is that I include only
a subset of the crops produced in SSA.

6 Climate change and migration: the 2080 forecast

I quantify potential climate migration in SSA by performing a series of counterfactual
simulations. The benchmark exercise consists of solving for the spatial equilibrium in
2080 with and without climate change. By comparing the two, I quantify the impact
of climate change on population reallocation, welfare losses, and other outcomes.
Subsequently, I study how policy attenuates these effects with an experiment that
hypothetically assumes that SSA adopts the migration and trade policies of the EU. I
conclude with additional discussions, extensions, and robustness checks.

6.1 Benchmark counterfactual

I solve for the spatial equilibrium in 2080 by inserting the 2080 forecasts of the initial
population L and crop productivities A into the calibrated model. The former is ob-
tained by scaling the observed population of 2000 using the estimates of country-level
population increase from the Population Prospects of United Nations and Social Af-
fairs (2019) for 2080.28 The latter, in contrast, is taken directly from the GAEZ data.
For the climate change simulations, I use the estimates of potential crop productivities
in 2080 based on the business-as-usual scenario.29 The simulations with no climate

26A complementary explanation for the good fit in this exercise is path dependence (i.e. the densest
locations in 1975 are also the densest in 2000). That is, in a context of high mobility frictions, such as
in SSA, the geography of the economy needs extreme shocks to its fundamentals in order to generate
dramatic changes in this kind of counterfactual. As shown in Figure B.6, the changes between 1975
and 2000 are not as dramatic as the ones expected by 2080.

27However, the model performs less precisely for outmigration predictions because of amenities
outliers in the Sahel regions (where very little income but somehow dense population is interpreted in
the model inversion as high-amenities).

28These estimates project the observed country-level natural rates of population growth (fertility
minus mortality without migration) at the beginning of the 21st century onto subsequent years. Hence,
I assume that fertility is exogenous. Section 6.4 shows how the results change if fertility is endogenized.

29Specifically, I draw the GAEZ data that assumes the business-as-usual future scenario, that is, the
Representative Concentration Pathway (RCP) 8.5; see Appendix A for details.
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change assume no changes in A and thus capture only the increase in population L.30

I quantify climate migration, DLi, using the differences between the equilibrium
populations of the two simulations – with and without climate change. Hence, it mea-
sures migration pressure in each location i net of the potential migration inflows and
outflows. Similarly, I infer the changes in sectoral specialization from the differences
in non-agricultural employment DLK

i (in percentage points) and the welfare changes
from the percentage change in real income per capita, Dvi/Pi.31

Figure 7 shows the results on a map. At the country level, Panel A shows large
climate migration flows – on the order of a million individuals or more – from Western
Sahelian countries like Mauritania and Mali to nearby countries (e.g. Niger, Ivory
Coast, and Burkina Faso) and from DR Congo and other South African countries to
Tanzania and South Africa. Panel B, which presents grid-cell-level results, shows a
high degree of within-country heterogeneity. Countries experiencing large migration
outflows, such as Senegal and DR Congo, also experience a high level of internal
migration. There are large movements from their central locations, which are highly
affected by climate change, to their relatively less affected south(western) locations.
Overall, countries heterogeneously hit by climate change experience large internal
migration flows and large population increases in their capitals.32

Panels C to F show the results in terms of structural change and real income per
capita. The countries that benefit from climate change, such as Tanzania, Rwanda, and
Uganda, specialize into agriculture (Panel C). This occurs because such an increase
in comparative advantage transforms them into the new agricultural powerhouses of
SSA. As a consequence, their real income increase (Panel E), which attracts migrants
from nearby countries, such as DR Congo and Mozambique. Panel D and F illustrate
the richness of these results in terms of within-country heterogeneity. Even within
countries that benefit from climate change, there is substantial variation in terms of
sectoral specialization and welfare effects.

Nevertheless, some countries forcedly shift towards agriculture in a non-welfare-
improving way. Western African countries like Guinea and Sierra Leone are an exam-
ple: compared to the no climate change scenario, they need to produce higher crop
quantities to supply food domestically and to nearby countries that, being much more
affected by climate change, specialize out of agriculture (e.g. Senegal). This shows
that the necessity aspect of crops limits the Western African economies to adapt to cli-

30Note that the spatial distribution of outcomes in the no-climate-change simulations differs from
the observed distribution for 2000 due to dispersion forces driven by q and b.

31I extend this welfare measure by also accounting for utility losses from migration costs, congestion,
and other aspects, in Section 6.3.

32See Table D.3 for details. Note that the large estimated increase in the populations of capital cities
is consistent with the findings in the empirical literature on the high urbanization rates associated with
climate change (e.g. Henderson et al., 2017; Peri and Sasahara, 2019; Castells-Quintana et al., 2021).
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Figure 7: Counterfactual results for a climate-changed SSA in 2080

Panel A: Climate migration - country level Panel B: Climate migration - grid cell level

Panel C: Non-agric. employment - country
level

Panel D: Non-agric. employment - grid cell
level

Panel E: Real GDP pc - country level Panel F: Real GDP pc - grid cell level

Notes: Panel A and B plot the results of climate migration in thousands of individuals. Panel C and
D describe the results in terms of non-agricultural employment, in percentage points. Panel E and F
present the welfare results in terms of percentage changes in real GDP per capita.
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mate change (through structural change) and forces them into a climate change-driven
poverty trap. Interestingly, the opposite holds for DR Congo. Climate change pushes
individuals from its poorest regions either abroad or to its more productive south. As
it stands among the poorest SSA countries in the no climate change scenario, such a
productivity-improving reallocation slightly increases real income in relative terms.

In aggregate, the estimated climate migration flows in SSA total about 22 million
individuals (Panel A of Table 3 column 1). This is much lower than Rigaud et al.
(2018)’s estimates of 90 million climate migrants in SSA by 2050. This discrepancy
is explained by the migration frictions that I account for and estimate using actual
migration data. As shown later in Section 6.4, removing them increases my climate
migration estimates to 80 million individuals, surprisingly close to these studies.33

Table 3 also shows that climate change barely affects aggregate welfare. However,
this seemingly null effect hides a large degree of heterogeneity. At the country level,
the 5th and 95th percentiles of welfare changes are about -15 percent and 3 percent,
respectively (Panel B). Thus, climate change will lead to unequal consequences across
SSA, generating a few winners and many losers (see Figure 7 Panel E). This final out-
come depends on several mechanisms that interact with each other, such as migration
barriers and the heterogeneous forces driving sectoral specialization and structural
change. I investigate the welfare importance of these mechanisms, and the potential
mitigating role of trade and migration policies, in Section 6.2.

Furthermore, climate change hardly affects aggregate sectoral employment. In dis-
tributional terms, however, this effect is also heterogeneous and negatively skewed:
the 5th and 95th percentiles of the country-level changes in non-agricultural employ-
ment are about -5 percentage points and 1.5 percentage points, respectively, and the
median country experiences a decrease in non-agricultural employment of about 1
percentage point. This happens because, with climate change, more labor needs to
be employed in agriculture to produce the necessary quantity of crops (making these
countries poorer and increasing their agricultural expenditure share).34

33This pattern is with consistent related findings that show that large mobility frictions in developing
economies may have an inhibiting effect on future climate migration and thus may exacerbate welfare
losses (e.g. Peri and Sasahara, 2019; Benveniste et al., 2020; Burzyński et al., 2022).

34This result is consistent with related findings in the literature. For instance, Nath (2023) estimates
an increase in the global agricultural expenditure shares of about 4 percentage points, whereas Cruz
(2023) estimates an increase in global agricultural employment of about 2 percent. The main channel
explaining the differences in magnitude between those estimates and my own (0.82) is the multi-crop
feature of my framework. By not taking into consideration the potential production reallocation within
agriculture (i.e. across crops), the consumption specialization effect of climate change is overestimated.
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Table 3: Aggregate and disaggregate results of the climate change counterfactuals

(1) (2) (3) (4)
Baseline EU mig. EU trade EU trade +

barriers frictions mig. barriers

Panel A - Aggregate effects:

Climate migration1 22.32 34.00 9.18 20.46
D Real income pc (%) -1.76 -1.01 -1.31 -1.41
DLK

i (non–agric. -0.82 -0.54 -0.84 -0.76
employment, %)

Panel B - Country-level effects:

Median D population1 0.06 0 0.01 -0.05
5th/95th deciles [-2.8; 2.76] [-4.18; 2.14] [-0.9; 1.13] [-2.69; 2.46]
Median D Real income pc (%) -2.15 -1.68 -2.29 -2.37
5th/95th deciles [-14.62; 3.27] [-11.32; 4.69] [-6.32; 3.69] [-5.64; 3.35]
Median DLK

i (%) -1.42 -1.02 -0.11 -0.11
5th/95th deciles [-5.36; 1.55] [-4.03; 3.42] [-5.32; 1.2] [-3.04; 1.11]

Panel C - Welfare effects:2

D Aggregate Welfare (%) 1.16 1.18 -2.12 -3.32
Median D Welfare (%) -1.27 -0.54 -2.18 -2.85
5th/95th deciles [-9.89; 0.95] [-7.65; 1.81] [-4.41; -0.41] [-3.83; -0.07]

Notes: Column 1 presents to the baseline results, while columns 2 to 4 present the results of policy
experiments in which frictions are equated to EU levels: in column 2, SSA adopts the migration policy
of the EU; in column 3 it adopts the same level of tariffs as the EU, and in column 4 it combines both
policies. 1Climate migration in million individuals. 2Results if using the alternative welfare measure
of Equation (22). Aggregate stands for changes in all SSA, as in Panel A. Median and percentiles
stand for the country-level distributional effects, as in Panel B.

6.2 Policy experiment - SSA as frictionless as the EU

One of the key takeaways from related literature is the magnifying role that spatial
frictions have on welfare losses from climate change (Desmet et al., 2021; Conte et
al., 2021; Bilal and Rossi-Hansberg, 2023; Cruz and Rossi-Hansberg, 2024). These
studies show that relaxing these frictions increases the scope for economic adaptation
through several margins, like sectoral specialization and migration. Yet, their findings
reflect experiments on extreme scenarios (e.g., shutting down migration completely or
homogeneously reducing frictions across the entire economy by an arbitrary value).
Hence, while informative about the role of the underlying mechanisms, their results
somehow lack realism if one thinks of policies to be implemented in the real world.35

I overcome this limitation with a realistic set of policy experiments that quantify

35Two exceptions are Nath (2023), who conducts policy experiments related to trade openess by
reducing trade barriers to the bottom decile of the worldwide distribution, and Bryan and Morten
(2019), whose experiments reduce mobility barriers in Indonesia to US levels.
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Figure 8: Estimated trade and migration frictions in the European Union

Panel A: Tariff-like trade frictions tF
ij in the EU Panel B: Country migration barriers {mc}c (in logs)

Notes: Panel A presents trade frictions in the EU as was done for SSA in Figure 5 (in this context, trade
frictions are relative to Barcelona (Spain), represented by the black dot). Panel B plots the distribution
of country migration barriers {mc}c (in logs, x-axis) in SSA and the EU.

climate change effects in the hypothetical scenario where SSA migration and trade
frictions drop to EU levels. Doing so requires quantifying migration and trade fric-
tions in the EU within the structure of my model. I do that by mapping the country
migration barriers {mc}c and tariffs tF

ij onto EU migration and trade policies. Focus-
ing on these parameters is particularly convenient because they reflect the institutional
characteristics of the EU in terms of trade and migration policies. In other words, they
are more tangible and realistic, as policy tools, than the elasticity parameters f or d.

In practice, I quantify {mc}c and tF
ij by bringing the model to the EU data using

the procedure described in Section 5.36 The estimated EU frictions are substantially
lower than those in the SSA. For trade, I estimate tF

ij = 2.60, which is about a third
of SSA’s and remarkably close to estimates for the US (tF = 2.3 from Antras et al.,
2024). Figure 8 shows that: the discontinuity in bilateral frictions for cross-country
trade is barely visible. It also shows that the estimated EU country migration barriers
are much less stringent. The average {mc}c is 63 percent lower than in the SSA case,
and its distribution is shifted far more to the left (Panel B).

Armed with that, I perform counterfactual simulations that replace the migration

36This requires data for the same period and therefore the estimated values for the EU are also for
2000. Importantly, I focus on isolating the variation in the observed trade and migration flows within
the EU. Thus, the values of the preference parameters and the bilateral elasticities d and f remain as
described in Table 2. See Appendix B.12 for details.
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and trade barriers with the EU values.37 Table 3 Column 2 shows the results for
migration policy only.38 In this setting, aggregate climate migration flows increase by
about 12 million individuals (52 percent), and aggregate welfare losses drop by half.
The mechanism behind these welfare gains is the interaction between migration and
sectoral specialization forces. Facing reduced mobility barriers, workers in affected
areas can migrate to farther away, more productive regions, improving the efficiency
of the SSA economy in terms of sectoral comparative advantage. In the climate change
scenario, this means that agricultural production reallocates to the climate-change-
benefitted regions, while non-agricultural production moves to the most developed
countries in SSA. This efficiency gain increases real income in SSA and reduces the
demand for agricultural goods and employment in that sector. Thus, migration allows
SSA to benefit from the push aspect of climate change by permitting individuals to
move out of unproductive rural regions and allowing the economy to go through a
welfare-improving process of structural transformation.

Table 3 Panel B provides quantitative evidence of this result. The distribution of
non-agricultural employment changes across countries shifts rightwards with lower
mobility frictions, thus confirming that more countries specialize out of agriculture
in this scenario. As such, my results corroborate the well-established potential of
reducing migration barriers in rural economies (e.g., Bryan et al., 2014; Bryan and
Morten, 2019; Lagakos et al., 2023), but in the context of adaptation to climate change.

Importantly, these aggregate gains hide a persistent inequality across countries:
the country-level distribution of welfare changes remains as wide as in the baseline.
That is, migration policy reduces aggregate welfare losses from climate change, but
individuals left behind in the most affected regions remain as worse off as before.
That happens because the policy does not imply that all individuals in affected re-
gions can migrate away and, because of high trade frictions, they cannot adapt by
locally changing production out of agriculture.39 Hence, reducing migration barri-
ers to EU levels poses a trade-off: it moderates aggregate welfare losses at the cost
of high migration flows and regional inequality. Figure 9 Panel A documents this
inequality aspect visually (and Panel B shows the same pattern if using alternative
welfare measures, discussed in Section 6.3).

Next, I investigate the potential of trade policy to attenuate this trade-off. Reduc-

37These exercises reduce migration and/or trade frictions to the EU levels in the simulations with
and without climate change. Thus, the comparison of the two isolates the climate change effect and
shows how they compare with the baseline in the absence of these barriers. Section 6.3 discusses this
further by disentangling level and relative effects of these policy experiments.

38I match the EU {mc}c values to the SSA countries by deciles (i.e. scaling the barriers of the SSA
countries to the value of their respective decile in the EU distribution). See Appendix B.12 for details.

39Note that this policy experiment unevenly changes migration barriers across countries (reducing
barriers more for the strictest countries) but does not remove them completely.
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Figure 9: Welfare effects of climate change for the baseline and different EU policies

Panel A: Real income per capita Panel B: Welfare

Notes: Panel A and B plot the country-level distributions of welfare in three different policy scenarios
for SSA: baseline, EU migration policy, and EU trade and migration policy. Panel A refers to the
baseline welfare measure (real income per capita). Panel B refers to an alternative welfare measure
that also account for mobility barriers and congestion (see Section 6.3).

ing tariffs to EU levels halves aggregate climate migration and moderately reduces
welfare losses (column 3). More importantly, it narrows the country-level distribution
of welfare changes (Panel B). The underlying channel is the higher adaptive capacity
through sectoral specialization, as seen in the rightward shift in the distribution of
non-agricultural employment changes (i.e., the median sectoral employment changes
centers at zero). Being able to adapt by switching out of agriculture reduces the need
for migrating from affected areas and attenuates inequality on the climate change im-
pacts. Thus, trade policy can be a powerful tool for a policymaker interested in reduc-
ing migration flows while attenuating the distributional impacts of climate change.

The implementation of both policies (column 4) provides combined results. In
this setting, climate migration not only does not increase, but actually decreases (by
about 9 percent). More importantly, while not as efficient when reducing aggregate
losses, it drastically attenuates the inequality aspect of the baseline and migration pol-
icy settings. The distribution of welfare changes narrows, and the mass of countries
experiencing substantial welfare losses drastically reduces (Figure 9). The policy rele-
vance of this result cannot be overstated: by combining both tools, a policymaker can
take advantage of climate change by enabling SSA to structurally change and adapt,
through trade and migration, more efficiently and less unequally.
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6.3 Alternative welfare measures

My main results use real income per capita (vj/Pj) as the welfare measure. The advan-
tage of this approach is to show the climate change impacts on spatial disparities in
income, a pressing aspect in developing economies like SSA. However, it misses other
components of utility considered in Equation (4), such as utility losses from costly mi-
gration and congestion and benefits from amenities. I account for those components
with the alternative welfare measure

WR = Â
j2R

wj

 

Â
i2S

(vj/Pj)
qm̄�q

ij uj(Lj/Hj)
�b

!1/q

, (22)

where wj ⌘ Lj/ Âj2R Lj. Hence, WR measures the per-capita-weighted average of the
ex-ante expected welfare across all j locations of region R.

Starting with the baseline results of Table 3 Column 1, Panel C shows qualita-
tively similar results: small aggregate welfare changes and a highly dispersed and
right-skewed distribution of country-level welfare changes. That is, few countries are
better off at the expense of many worse-off countries. Importantly, the distributional
welfare effects across different policy experiments (Columns 2 to 4) convey the same
takeaways on the effects of (and trade-offs behind) migration and trade policies. Fig-
ure 9 Panel B provides further evidence of that, showing that, as before, trade policy
attenuates the unequal climate change welfare effects in migration policy experiment.

However, a few aspects of the aggregate welfare effects need further discussion.
The first is that, under the baseline counterfactual, climate change increases aggregate
welfare. How can a spatially unequal shock that reduces aggregate income (Panel A)
increase aggregate welfare? The answer lies in the high spatial correlation between
positive climate change shocks and fundamental amenities and available land. Cli-
mate change pushes, in relative terms, more migrants towards locations with high
amenities and abundant land (i.e., less congested), increasing aggregate welfare vis-à-
vis the scenario without climate change. The same holds for the EU migration policy
experiment (Column 2). Even though, it is worth stressing again that these small
gains reflect a handful of better-off countries, while most of SSA is worse off.

A second intriguing aspect of Panel C relates to the role of trade policy: in columns
3 and 4, aggregate welfare losses increase in magnitude. This can suggest that relaxing
trade barriers makes SSA worse off, which is not the case. To show that, Table 4 doc-
uments aggregate welfare in levels for different climate scenarios and policy schemes.
Panel A shows that, with the EU trade policy, aggreagate welfare is about 70 larger
than the baseline economy in the two scenarios (with and without climate change).
Hence, what Table 3 Panel C shows is that their difference widens, and negatively so.
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Table 4: Level and relative climate change effects in different counterfactuals

(1) (2) (3)
With climate No climate Climate change

change change effect (%)

Panel A - Welfare WR:

Baseline 1.01 1.00 1.16
EU mig. policy 0.88 0.87 1.18
EU trade policy 1.65 1.69 -2.12
Both policies 1.84 1.90 -3.32
No mig. barriers (m̄ij = 1) 5.34 5.39 -0.89

Panel B - Real income per capita vj/Pj:

Baseline 0.98 1.00 -1.76
EU mig. policy 1.18 1.19 -1.01
EU trade policy 1.35 1.36 -1.31
Both policies 1.63 1.65 -1.41
No mig. barriers (m̄ij = 1) 1.32 1.32 -0.66

Notes: Columns 1 and 2 document the aggregate welfare and real income in levels normalized to the
baseline, no climate change scenario. Column 3 refers to the percentage difference between 1 and 2.

The reason for this counterintuitive finding is congestion externalities. Because
many benefitted regions are land-abundant, climate change pushes more individuals
to less congested areas, reducing the utility losses from congestion. Reduced trade
barriers attenuate this mechanism, as there are fewer incentives to adapt through
migration. Because congestion is an externality that agents do not account for, they
migrate less to these less congested areas. In other words, while lower trade barriers
increase welfare, it does less so with climate change because of higher congestion.

The third intriguing finding relates to the level effects of migration policy alone.
Panel A shows that, in that setting, aggregate welfare in SSA is about 12 percent lower
than the baseline. How can a policy that reduces frictions (thus, utility penalties from
migrating) diminish aggregate welfare? Again, the channel is congestion externalities.
As Figure 8 Panel B shows, the EU migration policy exercise unevenly changes mo-
bility borders, reducing the relative country barriers more drastically in the strictest
countries. Hence, in both climate change scenarios, there is more population in these
countries. This magnifies congestion, reducing aggregate welfare.

Importantly, this outcome depends on how much the congestion forces outweight
the welfare gains from reduced mobility barriers. To illustrate that, Table 4 also doc-
uments the results for a (irrealistic) scenario without these barriers (i.e. m̄ij = 1 8 i, j).
Here, we see that the gains from having no utility penalties from migration vastly
outweights congestion externalities, drastically increasing aggregate welfare. Finally,
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Table 4 shows that combined policies always welfare dominate trade or migration
policies separately implemented. Real income and welfare are both higher, corrob-
orating the main policy recommendations from Section 6.2 in favor of an integrated
approach that implements both policies.

6.4 Underlying channels, extensions, and robustness checks

In what follows, I check the robustness (or discuss the importance) of the previous
results in several dimensions: the role of crop switching as an adptation mechanism,
the addition of the rest of the world, the migration barriers, the climate change data
used in the simulations, and various model’s assumptions. Table 5 shows the main
results and Appendix C provides further details.

Crop switching. To investigate the importance of the multi-crop feature of my frame-
work, I perform a counterfactual exercise where I reduce ga by a half (i.e. where
subsititution between crops in lower, and thus there is less room for crop switching).
Table 5 Panel A shows that this setting magnifies the climate change effects: aggre-
gate climate migration, welfare losses, and agricultural employment increase. This is
explained by the heterogeneity of the expected crop yield changes within locations
(Figure 2). Affected producers can, in a multi-crop setting, reallocate agricultural
production to the less-affected crop (and less so if crops are not substitutes). Hence,
disregarding crop switching (as in, for instance, Nath, 2023; Cruz, 2023) overestimates
the impact of climate change on agricultural productivity, amplifying incentives to
migrate and the necessity for the economy to allocate, on aggregate, more labor into
agriculture. Thus, accounting for this margin is key in correctly predicting the impact
of climate change on subsistence rural economies like those in SSA.

Country migration barriers. I also check the sensitivity of my baseline results to
potential changes in country barriers over time. There are two reasons for that. First,
the time frame of migration choices in my setting is of about a decade, whereas the
time interval of my counterfactuals is of almost a century (during which agents could
become less sensitive to the decade-specific migration barriers). Second, restrictive
countries could become even stricter to foreign migrants over time. I account for these
two potential patterns by increasing or decreasing {mc}c (results in Table 5 Panel B).40

The results change as expected. I also check how the results change in the complete
absence of bilateral barriers (m̄ij = 1) and estimate similar values to related studies
that disregard these barriers (e.g., 90 million migrants from Rigaud et al., 2018).

40In particular, I alter the distribution of country barriers with (mc)i, where i is 1.25 (0.75) in the
increasing (decreasing) case. I choose the monotonic transformation (instead of scaling them up or
down) because the barriers {mc}c matter in the location choice (Equation (18)) up-to-scale.
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Rest of the world. I introduce trade and migration with the rest of the world (ROW)
by augmenting my setting with an additional R representative location.41 Table 5
Panel C documents the aggreate results of several climate change simulations under
this setting.42 Starting with an analogous baseline exercise but with the ROW, I find
that the interaction with the ROW increases remarkably climate migration and welfare
losses from climate change. That happens because now SSA increases crop imports
from the ROW and switches specialization as a response to the agricultural losses. In
fact, the changes in aggregate and median non-agricultural employment are close to
zero, and most of migrations sort into non-agricultural regions.

Moreover, removing mobility barriers with the ROW (mR = 1) decreases aggre-
gate migration within SSA, but increases flows towards the ROW (documented in
Table C.1). Welfare losses remarkably diminish in this setting. Moreover, removing
tariffs between SSA and the ROW (tR) amplifies the capacity of crop imports as adap-
tation (as in Nath, 2023). In this setting, there are major migration flows to highly pro-
ductive regions (and countries) in non-agriculture that acquire crops through imports
and specialize in non-agriculture. In fact, almost all SSA countries have now higher
non-agricultural employment, as seen in the changes in non-agricultural employment.
Combining both policies magnifies these effects and remarkably attenuate the climate
change effects in SSA. That is, opennes to the rest of the world is an additional tool
for SSA policymakers when addressing these future effects.

Homothetic preferences. I also show that the nonhomotheticity feature of the pref-
erences for agricultural goods and non-agricultural goods is a key driver of climate
change’s welfare consequences. Table 5 Panel D shows the results of a counterfactual
that assumes homothetic preferences (see Appendix C.2 for details). There is almost
no aggregate climate migration in this framework, and the welfare losses are dra-
matically centered around zero. This occurs because, by disregarding the subsistence
aspect of agricultural goods, agents replace agricultural goods with non-agricultural
goods. This intensifies the patterns of sectoral specialization (i.e. more production
and consumption of non-agricultural goods takes place in the most affected regions),
increasing non-agricultural employment on aggregate and distributional terms.

Endogenous fertility. I perform a simple exercise that illustrates how the results
change if fertility is allowed to be endogenous to climate change. To do so, I adjust the
estimates for population growth taken from the Population Prospects of United Na-
tions and Social Affairs (2019) using a damage function that depends on the average

41I introduce R as a representative location whose fundamentals and observed economic outcomes
are aggregates of the ROW (e.g., land endowments, population, income, migration flows). Ap-
pendix C.1 elaborates on that and documents the quantification method for this setting.

42The climate migration reported in Table 5 stand only for migration within SSA. Table C.1 docu-
ments detailed results in this setting, such as migration to the ROW and distributional effects.
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Table 5: Robustness of the benchmark results with respect to trade and migration frictions,
model assumptions, and climate change scenarios

(1) (2) (3)

Climate migration D Real income D Non–agricultural
(million individuals) per capita (%) employment (%)

Baseline results 22.32 [0.06] -1.76 [-2.15] -0.82 [-1.42]

Panel A: Role of crop switching

Less crop switching (lower ga) 27.36 [0.02] -1.88 [-2.94] -1.04 [-1.62]

Panel B: Robustness to country barriers

Higher country barriers mc 16.93 [0.04] -2.07 [-2.2] -0.88 [-1.52]
Lower country barriers mc 27.85 [0.03] -1.54 [-2] -0.7 [-1.23]
No migration costs (m̄ij = 1) 79.95 [-0.16] -0.66 [-0.93] -1.28 [-0.56]

Panel C: Adding the rest of the world (ROW)

Baseline with ROW 123.48 [0.31] -19.05 [-18.49] -0.09 [-0.01]
ROW + no mR barriers 111.08 [-1.13] -4.76 [-3.75] -0.14 [-0.01]
ROW + no tariffs tR 87.8 [0.22] -1.37 [-1.91] 2.46 [0.45]
ROW + no mR and tR 89.3 [-0.1] -0.78 [-1.19] 2.53 [0.38]

Panel D: Robustness to model assumptions

Homothetic preferences 1.78 [0] -0.21 [-0.29] 0.68 [0.49]
Endogenous fertility 21.6 [0.05] -1.75 [-2.14] -0.82 [-1.42]
Non-agricultural prod. growth 22.23 [0.06] -2 [-2.26] -0.87 [-1.54]
Modern inputs in agriculture 20.95 [0.07] -1.95 [-1.93] -0.83 [-1.47]

Panel E: Robustness to CD damages or scenarios

CD damages to non-agriculture 22.2 [0.06] -1.76 [-2.15] -0.81 [-1.42]
CD damages to amenities 22.31 [0.06] -1.75 [-2.15] -0.81 [-1.42]
RCP 4.5 CD scenario 10.27 [0.01] -0.94 [-0.66] -0.37 [-0.59]

Notes: Each panel presents the aggregate climate change effects in terms of climate migration, real income
per capita changes, and sectoral employment changes. Square brackets document median effects. Panel
A refers to a simulation that assumes lower room for crop switching. Panel B documents the results of
various simulations assuming different evolution of migration barriers. Panel C describe the results of an
extension that accounts for trade and migration with the rest of the world (ROW). Panel D refers to simulations
(separately) assuming homothetic preferences between agriculture and non-agriculture, endogenous fertility,
and productivity growth. Panel E shows the results of simulation that assume additional types of climate
damages or a less severe climate change scenario.

change in potential crop yields.43 This reduces the initial population L assumed in the
counterfactuals for 2080, particularly in the most affected countries. Table 5 Panel D
shows that the baseline results are unresponsive to this dimension: aggregate climate

43In particular, I assume that the rate of net population growth changes by 50 percent of the change
in average potential yield in each location. Appendix C.3 provides further details and documents
additional results with alternative scaling rules. Importantly, I adopt this approach for simplicity,
rather than the more realistic approaches in the literature (Delventhal et al., 2024; Cruz and Rossi-
Hansberg, 2024), due to the static feature of my model.
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migration and related effects remain around the same magnitude.

Economic growth. I also allow the non-agricultural sector to grow by increasing sec-
tor K’s TFP over time (using each i’s average country growth in the first decades of
the century). Panel D shows that the results remain qualitatively robust to this exten-
sion. This happens because the quantified {bK

i AK
i }i has remarkable spatial differences

in levels. Thus, even if accounting for uneven growth across countries, the results
remain unaffected.44 Likewise, I allow for productivity growth in agriculture with in-
formation from GAEZ. I retrieve the increase in crop suitabilities {Ak

i }i,k 6=K if moving
from production techinique from subisistence methods (the baseline) to high usage of
modern inputs (see Figure A.1). For the same reason as in the non-agricultural sector,
that does not affect profoundly the spatial distribution of these fundamentals, and so
the aggregate results under this scenario.

Climate damage to non-agriculture. My baseline counterfactual assumes no effects
of climate change on the non-agricultural sector. The advantage of that is isolating
the consequences of the effects on agriculture, the most relevant push factor of migra-
tion for subsistence rural economies like SSA. However, I also check how the results
change if allowing the Kth sector to be also affected. To do that, I scale the quantified
productivities of that sector by the equivalent sectoral damage function from Conte et
al. (2021).45 Table 5 Panel E shows that the baseline results remain unchanged if so,
for the same reason if allowing for economic growth (see footnote 44).

Climate damage on amenities. Analogously, the baseline counterfactuals assume
that amenities {ui}i remain constant and unaffected by climate change. I relax this
assumption using the damage function of temperature on amenities by Cruz and
Rossi-Hansberg (2024).46 The baseline results remain robust (Table 5 Panel E) due to
the large spatial dispersion of the quantified amenities.47

Assumption of climate change scenario. I also check the sensitivity of the results
to the severity of the underlying climate change scenario, by switching to the RCP
4.5 scenario (which assumes that carbon emissions will peak by mid-century and
decrease thereafter). I simulate the model with the suitability data for this scenario
(Table 5 Panel C). As expected, all climate change effects are attenuated in this setting.

44Specifically, the observed real income differences (in levels) across SSA are remarkably high, yield-
ing level {bK

i AK
i }i differences across locations in the order of thousands or more. Hence, allowing

for uneven, country-level growth does not affect drastically its distribution, which explains the little
sensitivity of my results to this extension. Appendix C.4 discusses that in detail.

45The damage function depends on the deviations from the optimal temperature for the non-
agricultural sector. Thus, to conduct this experiment, I also use the forecasts of temperature for 2080
from Conte et al. (2021) and match them to the locations of SSA. See Appendix C.5 for details.

46I use their estimated Lb(Ti) damage function for the global economy; see Appendix C.6 for details.
47Analogously to the above (footnote 44), this is due to the large observed real income differences

across space that map into large level differences in {ui}i across locations. See Appendix C.6 for details.
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Endogenous climate and dynamics. The static nature of my model excludes, natu-
rally, dynamic mechanisms such as climate-economy feedback (as in Cruz and Rossi-
Hansberg, 2024) and forward-looking agents (like Balboni, 2021; Kleinman et al.,
2023). The reason for the former is that Africa emits about 3 percent of global emis-
sions, which makes it reasonable to assume exogenous climate change. The reason for
the latter are data and tractability constraints. First, the GAEZ data provides estimates
for specific points in time, rather than a time-varying function to feed a dynamic set-
ting. Besides, and more importantly, characterizing transition dynamics in my highly
ganular, multisector (K = 7 and N > 2000) setting augmented with forward look-
ing agents would not be feasible with the standard ”dynamic hat algebra” approach
(Caliendo et al., 2019), and would require ignoring second-order effects (as in Bilal
and Rossi-Hansberg, 2023; Bilal, 2023), which might not be ideal in the SSA setting.

Sectoral frictions and home bias. Because of data limitations, my framework re-
frains from additional frictions to sectoral reallocation of factors and home biased
preferences. If accounting for them, my results would be magnified. For instance, if
allowing for frictions on sectoral reallocation of labor (as in Cruz, 2023) or land (as in
Chen et al., 2023), the climate change effects on the food-problem and welfare losses
would be further magnified. The same would hold if allowing preferences to be home
biased, because trade attenuates to a large extent the welfare losses that I identify.

7 Conclusion

The main message of this paper is that climate change must not lead to bad out-
comes if rural economies like SSA can adapt to it. If mobility barriers can be reduced,
climate change can encourage the shift of population out of poor, low-productivity ru-
ral locations and set off a process of structural change. Openness to trade determines
the aggregate and distributional welfare effects of this process, by allowing affected
economies to switch production to less-affected sectors. The interaction of these – and
other – mechanisms in general equilibrium is complex and interconnected. I model
that with a transparent framework that I develop and connect to SSA data.

I identify that a high degree of frictions in SSA that inhibit the welfare-improving
process just described. My estimates suggest sizeable welfare losses and migration
flows in many orders of magnitude smaller than reduced-form estimates from the
literature. However, a policy experiment shows that, by becoming as frictionless as
the EU, SSA adaptation to climate change would moderate welfare losses both in
aggregate and distributional terms. My climate migration estimates when relaxing
migration frictions approach those from other studies that disregard these barriers.

My results deliver important contributions to the literature and the policy debates.
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I connect the findings from the literature on the gains from incentivizing migration
in developing economies with those from the literature on the importance of sectoral
specialization and trade in adapting to climate change. I also deliver a policy-relevant
message on the potential role of real-world trade and migration policies in adapting
to climate change.
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Appendix

Appendix A provides more details about the data sources mentioned in Section 2 and
other data sources not mentioned therein. Appendix B documents theoretical deriva-
tions that support the main results of Section 4. Appendix C describe alternative
models used in the robustness. Appendix D contains additional figures and tables.

A Data Appendix

Table A.1 below documents all data sources used and their temporal coverage. Next,
I provide further detail on the data choices and aggregation.

Table A.1: Main data sources

Type of data Coverage Source

GDP and Population 2000 G-Econ Project v4.0 (Nordhaus et al., 2006)
Population 1975, 2000 Global Human Settlements Project (Florczyk et al., 2019)
Population projections 2021 – 2100 United Nations and Social Affairs (2019)
Agric. Productivities 1960–2000 GAEZ v3.0 (IIASA and FAO, 2012)
Climate D projections 2020, 2050, 2080 GAEZ v3.0 (IIASA and FAO, 2012)
Transportation data 2000 gROADS project (CIESIN, 2013)
Friction transportation surface 2000 Accessibility to Cities’ project (Weiss et al., 2018)
Bilateral crop international trade 1995–2005 ITPD-E (Borchert et al., 2021)
Bilateral international migration 1990–2000 Abel and Cohen (2019)
Bilateral internal migration 1970–2015 Census data from IPUMS (2020)
Crop prices 1990–2015 VAM project, World Food Program

GAEZ agro-climatic yields. The GAEZ’s database provides estimates of agricultural
potential yields for several crops, in different time periods, and for different degrees
of technology usage in agriculture. As my interest in subsistence agriculture setup of
SSA, I aim at building a time varying dataset of potential yields over the entire sub-
continent, for several crops, at low usage of modern inputs: with rainfed water access,
labor intensive techniques, and no application of of nutrients, no use of chemicals for
pest and disease control and minimum conservation measures.

A challenge, however, is that the time varying potential yields from GAEZ are
available only for high usage of modern inputs (based on improved high yielding va-
rieties, fully mechanized with low labor intensity techniques, and usage of optimum
applications of nutrients and chemical pest, disease and weed control). The estimates
for different input levels are only available for the long-run estimates (averages be-
tween 1960-1990).

49



Figure A.1: Yield gains from adoption of high inputs in agriculture vis-à-vis low
inputs for selected crops.

Panel A: High input gains for rice Panel B: High input gains for sorghum

Notes: Panels A and B show the ratio of high/low input usage yields for growing two selected crops
according to GAEZ long-run estimates. The values are shown in deciles; 1 (10) stands for the bottom
(top) decile of each sample.

Therefore, to obtain a time varying dataset of the agro-climatic yields at low input
usage, I first use the long-run values to calculate the GAEZ-implied ratio between
high inputs (Ak,h

i ) / low inputs (Ak,l
i ) yields for each crop. This procedures reveals

how the gains from adopting higher input levels differ across locations and crops –
Figure A.1 illustrates the results for two selected crops in deciles. I use the calculated
ratios to scale down the time varying estimates for high inputs that I collect.

Armed with the location-crop technology scales, I collect the time varying esti-
mates of agro-climatic yields for high input usage. For the estimates in the past,
retrieve those for 1971-1975 and 1996-2000. I average out the 5 years’ blocks so to
avoid year-specific outliers. The reason is to capture long term changes, which could
be contaminated if a certain year faces unusual climate conditions.

The yield estimates for future periods require another parametrical selection: the
underlying scenario for which the data is produced and with which climatic (general
circulation) model (GCM) the data is produced. As carefully discussed by Costinot et
al. (2016), the GAEZ v3.0 database provides such estimates produced with four main
GCM, and for several future scenarios. The latter is of key importance: it contains the
underlying assumption on how the global carbon emissions are going to evolve in the
future so to produce the changes in the climate.

I choose the scenario A1 from the GAEZ database, which is the baseline scenario
of Costinot et al. (2016) that matches closely the current standard of severe evolution
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Figure A.2: Equivalence between long and longer-run estimates of radiative forcing
(proportional to carbon emissions) between SRES and RCP scenarios.

Source: IPCC (2012), chapter 1, Figure 1.15 (left) and Chapter 12, Figure 12.3 (right).

of the global climate for the future: the RCP 8.5.48 This scenario assumes a steady
increase in carbon stocks in the atmosphere througout the 21st and 22nd centuries,
becoming stable by mid-23rd century. A milder scenario that I use for my robustness
checks is the B1, which is similar to the nowadays-standard RCP 4.5. It assumes that
the global stock of carbon will peak by late 21st century, becoming stable thereafter.

Agricultural production data. To build a dataset for agricultural production at the
location-crop level for 2000, I combine the GAEZ data of production (in tonnes) with
the FAOSTAT agricultural production data (country-crop level) and World Bank coun-
try GDP data (both in current US$). First, I use the GAEZ data at the cell-crop level to
calculate the share that each cell is observed to produce, of each crop, over its coun-
try’s total production. Second, I obtain with the FAOSTAT and WB data the share
of each country crop production for the years of 2000 to 2010. I average out such
shares and multiply them by the country GDP implied by the G-Econ data, so that
the unit is consistent with the monetary unit of the model (US$ PPP). Finally, I multi-
ply the country-crop PPP values by the location-crop shares. For very few locations,
the outcome exceeds their total GDP: I then trim the value by 99.99% of its GDP.

Crop price data. The Vulnerability and Assessment Program from the WFP (WFP-
VAM) has been collecting prices at various markets (locations within cities) across the
developing world since the early 1990s at the monthly basis; I retrieved the prices
for all SSA markets from the earliest dates to early 2019. When doing so, I focus on

48The GAEZ v3.0 forecasts are based on the Special Report on Emission Scenarios (SRES; see IPCC,
2000). The SRE Scenarios were later updated by IPCC as the RCP scenarios, which are now the
standards in the climate community (IPCC, 2012). Figure A.2 illustrates the equivalence between the
SRES and RCP scenarios.
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Table A.2: Summary statistics of the WFP-VAM price data

Obs. Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
All Sample

Year 173,101 2,012.006 4.578 1,992 2,009 2,013 2,016 2,019
Maize 173,101 0.376 0.484 0 0 0 1 1
Millet 173,101 0.216 0.411 0 0 0 0 1
Sorghum 173,101 0.218 0.413 0 0 0 0 1
Rice 173,101 0.191 0.393 0 0 0 0 1

Market-Crop

Lenght of Series 2,516 68.800 60.627 1 20.8 53 107 329
Min(Year) 2,516 2,010.331 4.824 1,992 2,007 2,011 2,014 2,018
Max(Year) 2,516 2,016.914 2.070 2,006 2,016 2,018 2,018 2,019
Average crop price (USD) 2,516 0.437 0.243 0.035 0.284 0.377 0.541 2.244

Market

# Crops 978 2.573 0.940 1 2 2 3 4

Country

Number of Markets 31 31.548 23.511 1 13.5 25 46 87

maize, millet, sorghum, and rice (the set of crops with the largest temporal and spatial
coverage). I geocode each market with Google Maps to subsequently link them to the
grid cells by overlaying the former on the latter. Figure 1 shows the wide spatial
coverage of the WFP-VAM data for SSA.

Besides, Table A.2 documents summary statitics. The whole data consists of about
173 thousand data points, of which about 37 percent of maize prices (and about 20
percent of the other crops). The data contain about 2,500 market-crop series, on av-
erage covering 5 years (68 months) during the 2010s (on average, starting at 2011 and
ending at 2018). The data provides crop prices for 978 markets (for about 2 crops, on
average) across 31 countries. On average, countries have about 30 markets surveyed.

ITPD-E international trade data. The trade data used in this paper is obtained from
the ITPD-E database (Borchert et al., 2021). I collect all available bilateral trade flows,
in current US$, for all country-crops combinations of my study. Consistent with
good practice with trade data, I collect import flows rather than exports.49 Then, I
transform the trade data to monetary unit of my study (US$ PPP from G-Econ) as
follows. First, I calculate the share of trade flows, at the importer-exporter-crop-year
levels, over the GDP of of the importing country in each year, in current values. Next,
I average out the shares over the 2000-2010 period, so to avoid outliers in the year of

49The reson for that is the usual discrepancy between total import and exports at the country-pair-
product level. While import flows are registered between country of production and final country of
shipment, export data usually register intermediate countries on the trade chain as final destination,
biasing the trade flows (Veronese and Tyrman, 2009).
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Table A.3: Census waves for SSA countries available from IPUMS

Country 1960s 1970s 1980s 1990s 2000s 2010s

Benin 1979 1992 2002 2010
Botswana 1981 1991 2001 2011
Burkina Faso 1985 1996 2006
Cameroon 1976 1987 2005
Ethiopia 1984 1994 2007
Ghana 1984 2000 2010
Guinea 1983 1996 2014
Kenya 1969 1979 1989 1999 2009
Lesotho 1996 2006
Liberia 1974 2008
Malawi 1987 1998 2008
Mali 1987 1998 2009
Mozambique 1997 2007
Rwanda 1991 2000 2012
Senegal 1988 2002 2013
Sierra Leone 2004 2015
South Africa 1996 2001/07 2011/16
Sudan1 2008
Tanzania 1988 2002 2012
Togo 1960 1970 2010
Uganda 1991 2002 2014
Zambia 1990 2000 2010
Zimbabwe 2012

1Sudan stands for both Sudan and South Sudan, as both countries were the same in the baseline
period of 2000. The IPUMS data for these countries are available for the same year of 2008.

2000. Finally, I multiply the shares at the importer-exporter-crop level by the importer
GDP of G-Econ for the year of 2000.

International migration data. I obtain bilateral gross migration flows between SSA
countries from Abel and Cohen (2019)’s database. It is a comprehensive source of
data on gross migration flows between about 200 x 200 country pairs during 5-years
intervals from 1990 to 2015; I filter it for all SSA country pairs for 1990 to 2000.

Internal (within-country) migration data. I construct a bilateral matrix of internal
migration flows using census data obtained from the IPUMS International Project
from IPUMS (2020). Table A.3 documents the set o country-census waves available.
For each of these, I retrieve individual-level data on migration status and location of
origin (within the same country). The whole data set, of about 17 million data points,
is then aggregated at the subnational region pair level. I use the ”Geography & GIS”
supplementary data sources in IPUMS to obtain the time consistent boundaries of the
subnational regions (or provinces, depending on the country – see fig. 1). That allows
me to calculate long-term changes in potential yields for each of these regions (for
fig. 3) or to match them to grid cells (to obtain total internal migration for Section 5.4).

Main populated places. I collect the coordinates of the main populated places of SSA
from the Populated Places data set from Natural Earth. It consists of a geo-referenced
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dataset with the coordinates of about 90 percent of all cities, towns and settlements
in the World. I use it to set coordinates for each of the cells of SSA. If a certain
cell contains more than one location, I pick the one with the highest population. If
another does not have any location to obtain the coordinates, I set them to be the cell’s
centroid. If any of the centroids are not located in the mainland (e.g., ocean), I set it
to be the closest coordinate to the centroid that is on the mainland.

B Theory Appendix

B.1 The producer problem, shipping prices, trade probabilities, price
indexes, and consumption shares

Producers in the economy face a perfect competition. Hence, taking all prices as
given, a firm/farmer in i produce variety w of sector k choosing inputs L(

i w) and
Hk

i (w) that, subject to production function Equation (1), maximize profits

pk
ij(w)qk

j (w)� wiLk
i (w)� riHk

i (w), (B.1)

where pk
ij(w) is the price at destination/consumption location j. This standard Cobb-

Douglas producer problem, solved as a cost minimization problem, yields the follow-
ing unit cost of producing variety w in i:

pk
i (w) =

c̄kwak
i r1�ak

i
zk

i (w)
, (B.2)

where c̄k = a�a(1 � a)a�1. Hence, scaling Equation (B.2) with the bilateral iceberg
trade costs between i and a buyer location j, tij, yields the bilateral shipping prices
between locations in Equation (3). Moreover, the bilateral sectoral trade shares of
Equation (6) are equivent to

lk
ij ⌘ P

✓
pk

ij  min
s 6=i

{pk
sj}

◆
, (B.3)

that is, the probability that i is the cheapest supplier of sector k goods to destination
j.50 The distributional assumptions on zk

i that conditional trade probabilities for a

50Note that sectoral varieties become symmetric conditional on productivities, which allows us to
disregard the w index and focus on the location pair-sector dimension.
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given price p, lk
ij(p), are also distributed extreme value:
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Following Eaton and Kortum (2002), integrating over p 2 R+ yields lk
ij:
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Moreover, the CES utility over varieties with elasticity of substitution hk < 1 + xk 8k
yields sectoral price indexes at destination j as:

Pk
j =

✓Z 1

0
pk

j (w)1�hk dw

◆1/1�hk

= Gk
⇣

Fk
j

⌘1/xk
, where (B.6)

Gk =


G
✓

1 � hk
xk

+ 1
◆�1/1�hk

is a constant and G(a) is the Gamma function. Note that Equation (B.6) is equivalent
to Equation (7); plugging it into Equation (B.4) yields Equation (6).

Sectoral consumption shares. These follow standard CES properties. Starting with
crops, workers at j maximize welfare with respect to crop consumption by solving:

max
{Ck

j }k

Cj s. to Â
k 6=K

Pk
j Ck

j  µavj ,

where Cj is (implicitly) defined in eq. (11), Ck
j are the sectoral CES composites in

eq. (5), and µa is j’s expenditure share in agriculture (i.e., crops). Then, rearranging

the first order conditions yields Ck
j /Ck0

j =
⇣

Pk
j /Pk0

j

⌘�ga
. Then, by defining Xk

j as the
share of j’s agricultural expenditure on crop k 6= K goods (and making use of the
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Ck
j /Ck0

j ratio), one obtains:

Xk
j =

Pk
j Ck

j

Â
k0 6=K

Pk0
j Ck0

j
=
⇣

Pk
j /Pa

j

⌘1�ga
8i, j,

where the last equation takes advatage of the definition of the agricultural price in-
dex from eq. (10). Note that, for the upper CES nest (choice between agricultural
and non-agricultural consumption bundles), the derivation is analogous but with the
additional income effect following Comin et al. (2021).

B.2 Derivation of migration shares

Take the definition of the welfare attained by a worker v living in i and moving to j
as Wij(v) = (wj/Pj)m̄�1

ij # j(v), #i ⇠ Gj(v) = e�v�qujL�a
j . Following Eaton and Kortum

(2002), one can obtain the distribution of the welfare from one specific location i as

Aij(w) ⌘ P(Wij  w) = Gj(wPjm̄ij/wj) = e�(wPjm̄ij/wj)
�qujL�a

j .

Thus, the joint distribution of welfare of all destinations s from i can be derived as

Ai(w) = ’
s2S

e�(wPsm̄is/ws)�qusL�a
s = e�Fi⇥w�q

, where Fi = Â
s2S

(Psm̄is/ws)
�qusL�a

s .

Now, recalling the share of workers moving from i to j is equivalent to the probability
that the welfare attained by moving to j, w, is the highest among all other possible s
destinations, one writes

Pij(w) = P

✓
Wij(v) ⌘ w � max{Wis(v)}s 6=j

◆
= ’

s 6=j
P(Wis  w) = e�F�j
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.

With that, it is possible to obtain the unconditional probability Pij by integrating over
all possible values of w 2 R+, i.e.

Pij =
Z •

0
Pij(w) dP(Wij  w) dw

=
Z •

0
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which is the equivalent of eq. (18).
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B.3 Spatial equilibrium

Given the geography G(S) and the parameters Q ⌘ {Wk, hk, ga, ek, ak, xk, s, q, b}, a
spatial equilibrium is a vector of factor prices and labor allocations {wj, rj, Lj}j2S such
that eqs. (7), (10), (12) to (14) and (19) hold, and markets for goods clear. Formally,
market clearing requires trade-balacing, such that each j’s income equals total exports
to and total imports from all locations i 2 S, as in Equation (20). In fact, by using
eq. (14) on (20), one characterizes the spatial equilibrium with the following system
of 7 ⇥ N equations and unknowns:
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i2S

Â
k 6=K

bk
i Ak

i

⇣
Gkc̄kwak

i r1�ak
i tij/Pk

j

⌘�xk

 
Pk

j

Pa
j

!1�ga

Wa

 
Pa

j

Pj

!1�s 
vj

Pj

!ea�(1�s)

vjLj +

+ Â
i2S

bK
i AK

i

⇣
GKc̄KwaK

i r1�aK
i tij/PK

j

⌘�xK
WK

 
PK

j

Pj

!1�s 
vj

Pj

!eK�(1�s)

vjLj (B.7)

Pj =

0

@ Â
k2{a,K}

✓
Wk
⇣

Pk
j

⌘1�s
◆ 1�s

#k
⇣

µk
j v1�s

j

⌘ #k�(1�s)
#k

1

A

1
1�s

(B.8)

Pk
j = Gk

 

Â
i2S

bk
i Ak

i

⇣
c̄kwak

i r1�ak
i tij

⌘�xk

!�1/xk

(B.9)

Lj = Â
i2S

(vj/Pj)qm̄�q
ij ujL�a

j

Â
s2S

(vs/Ps)qm̄�q
is usL�a

s
⇥ L0

i (B.10)

µk
j = Wk

⇣
Pk

j /Pj

⌘1�s⇣
vj/Pj

⌘ek�(1�s)
(B.11)

Pa
j =

✓
Â

k 6=K

�
Pk

j
�1�ga

◆ 1
1�ga

(B.12)
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�
/Lj (B.13)

Existence and Uniqueness. My model is not isomorphic to the general set up of
Allen and Arkolakis (2014) and, as a consequence, the existence and uniqueness of
the equilibrium cannot be guaranteed under their conditions for such. The reason
for that is the additional non-linearity introduced by the middle- and upper-level CES
structures. I address that by solving my model for several parametric choices, starting
from many different initial guesses. The solution is invariant across all cases.

B.4 Numerical algorithm for solving the model

I find {wj, rj, Lj}j2S that solves for the spatial equilibrium characterized by the system
of equations (B.7) to (B.13) with an algorithm that nests three loops in one another.

Inner loop. I start with a guess for {wj, rj, Lj}j and solve for sectoral price indexes in
eqs. (B.9) and (B.12). Then, with a guess for {Pj}j, I iterate over eqs. (B.8) and (B.11)
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to find a simultaneous solution for {Pj, µk
j }j,k. In particular, with the guess for {Pj}j,

I solve for {µk
j }k in eq. (B.11), replace it on eq. (B.8) to update solve for {Pj}j, and

iterate until both solutions converge.

Middle loop. I use the solution for {Pk
j , Pa

j , Pj, µk
j }j,k and the guesses for {wj, rj, Lj}j

in eq. (B.13) and (B.7) to update {wj, rj}j.51

Outer loop. I use the solution of {wj, rj, Pj}j and the guess for {Lj}j in eq. (B.10) to
obtain an update for {Lj}j, iterating it until the solution converges.

I then replace the solutions for {wj, rj, Lj}j back in the inner loop and repeat the
procedure above until all solutions converge to a fixed point. Importantly, I winsorize
both data and fundamentals when (i) bringing the model to the data (Appendix B.6)
and (ii) solving the model with the calibrated geography. I do that to remove the role
of extreme outliers on the counterfactual results. Appendix B.6.3 provides further
details.

B.5 Details of the economy represented as line

The illustration of the model mechanisms in Section 4.2 represents the economy as
a line with a discrete number of locations. To make the exposition of these mech-
anisms the cleanest possible, I make the economy as homogeneous as possible in
many fundamentals, like amenities and land endowments. For the latter, I take a fur-
ther simplification step: I disregard land as a factor, which implies that labor (wages)
is the only factor (rent) in the economy.52 Hence, to make the consumption choices
of agents consistent (and more transparent) with new setting, I change the lower CES
tier to a pure Armington set-up where the CES for local varieties, hk, disciplines the
trade elasticity of the economy.53

The only sources of spatial heterogeneity in this stylized economy are the trade
frictions T and, most importantly, fundamental productivities A. Specifically, I as-
sume the left-most regions (and country) to be less productive in both sectors, as
shown in Figure B.1 Panel A. Moreover, as shown in Panel B, when simulating the
impact of climate change in this economy, I assume it affects only the left regions,
thus making them even less productive in agriculture.

51For that, I use the Cobb-Douglas fixed proportion of factor bills. For the case of labor rents, that
implies wjLj = Âk akXk

j , which can be solved for wj (Xk
j is the right-hand side of eq. (B.7)).

52In practice, it implies weaker dispersion forces vis-à-vis the full-fledged model.
53That is, lk

ij = (pk
ij/Pk

j )
hk = (wk

i tij/Ak
i Pk

j )
hk , while equations (B.7) to (B.13) remain nearly identical.
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Figure B.1: Spatial distribution of productivities {A1
j , A2

j }j in the line economy with
and without climate change

Panel A: Baseline (no climate change) Panel B: Climate change affects agriculture

B.6 Model quantification

I quantify the parameters and fundamentals related to technology and location choice
in two different steps, each consisting of a two-stage procedure. When doing so, I
link the theory to data; Appendix B.6.3 discusses aspects related to data quality and
measurement error.

B.6.1 Technology

Conditional on parameters from the literature and fundamentals observed from the
data, this step quantifies t ⌘ {tF

ij , d} and T ⌘ {{AK
i }i, {bk

i }i,k, {Wa, WK}} with a two-
stage procedure (with the inner stage nested on the outer). Specifically, the first stage
(inner loop), guesses values for t and quantify T by inverting the general equilibrium
conditions of the model. Then, the second stage (outer loop) estimates t̂ with a GMM
that targets model-generated moments to their data counterparts conditional on the
first stage.

Inner loop. With a guess on t̂, it finds T ⌘ {{AK
i }i, {bk

i }i,k, {Wa, WK}} such that make
the model perfectly match, respectively, the spatial distribution of nominal income
{vjLj}j, the spatial-sector distribution of production {Xk

j }j,k, and the aggregate sec-
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toral expenditure ratios XK/Xa. The model counterpart of these moments are:
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Then, one can invert each of the equations above to obtain the expressions for the
unobserved fundamentals of interest. For instance, for {AK

j }j, one inverts eq. (B.14)
to obtain:
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Importantly, I do not observe factor prices {wi, ri}i from the data, but rather nominal
incomes {vi}i, sectoral production {Xk

i }i,k, land endowments H, and sectoral alloca-
tion of land {Hk

i }i,k.54 With that, I obtain {wi, ri}i with:

XK
i = riHK

i / (1 � aK) !

ri = XK
i ⇥ (1 � aK) /HK

i , and (B.19)

viLi = wiLi + riHi !

wi = vi � (riHi) /Li, (B.20)

where eq. (B.19) comes from the fixed factor proportion from the Cobb-Douglas pro-

54I measure sector-cell-level data on land usage {Hk
i }i,k also from GAEZ. Specifically, I retrieve har-

vested land for all crops of my setting by overlaying (and aggregating) my grid into the GAEZ har-
vested land data. Then, I obtain HK

i = Hi � Âk 6=K Hk
i 8i.

60



duction function.55 Then, analogous to eq. (B.18), I invert eqs. (B.15) to (B.17) with:
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The inversion algorithm finds {AK
j , {bk

j }j,k, WK/Wa} such that eqs. (B.18) and (B.21)
to (B.23) hold simultaneously. However, because {bK

j }j and {AK
j }j cannot be separated

out in levels, I normalize the latter to one and identify their product in eq. (B.22). That
also gives me tractability, as then eq. (B.18) is not needed anymore for inverting the
spatial equilibrium.56 To solve this high-dimensional problem, I proceed as follows:
with a guess for {bk

j }j,k, I solve for WK/Wa in eq. (B.23). I then plug the solution in
eqs. (B.21) and (B.22) (embedded in {µk

j }j,k) to solve for {bk
j }j,k. I iterate it until all

solutions converge; I represent it, conditional on a guess for t, as z (T; t) = 0.

Outer loop. Conditional on z (T; t) = 0, I estimate t ⌘ {tF
ij , d} with a GMM. For that,

I design moments that provide the identifying variation for the parameters of interest
and that are observable in the data. Specifically, these are:
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that is, aggregate export flows and the dispersion (standard deviation) of sectoral
price indexes.57 Note that m1 provides the required variation for identifying due to
the (intuitive) decreasing relationship between bilateral trade flows and tariffs tF (i.e.,
larger tariffs, less international trade). Moreover, the identification of d relies on the
positive relationship between trade frictions and price dispersion in m2. That is, the

55Importantly, all monetary values, built from the data in US$ PPP units (see Section 2), are further
normalized to the wages of the first location w1. This is done as I am not able to pin down levels in my
quantification, but instead the spatial distribution of fundamentals up to a normalization.

56In particular, that equation holds by construction if eqs. (B.21) and (B.22) hold simultaneously.
57Note that D is the set of location-crop combinations for which the WFP-VAM data provide data

for. Moreover, N(D) and P̄ are the size and mean of this set, respectively. Analogously, m1 is calculated
with the country pair-crop combinations with export data available from the ITPD-E trade data.
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lowest d, the lower the degree of trade frictions in the economy and, as a consequence,
the more homogeneous would price indexes be across space (hence, less dispersion).
Importantly, the WFP-VAM price data provides time varying data between 2000 and
2018; I discuss how I decompose these location-crop time series so to match the static
feature of my model (and thus, sectoral price indexes {Pk

j }i,k) in Appendix B.7.
I estimate t by defining m = [m1, m2] and g (t) =

⇥
m(t)� mdata⇤ and solving for t̂

that, based on E [g (t)] = 0, satisfies:

t̂ = arg min
t

g (t)Wg (t)0 subject to z (T; t) = 0, (B.26)

where W is the weighting matrix.58 I solve for t̂ with a bidimensional grid search
over tF and d values and infer standard errors by bootstrapping it ten thousands
iterations.59 Table 2 documents the estimation results.

Figure B.2 Panels A and B plot the grid search results (with the log objective func-
tion g (t)Wg (t)0 evaluated at different d and tF pairs). They show a non-linear rela-
tionship between the two parameters and the objective function, as well as a ”valley-
looking region” along the diagonal where the solution lies on. Moreover, Panels C
documents slices of the objective function evaluated for a fixed tF, showing the rel-
evance of the designed moments in terms of providing identifying variation for the
parameters of interest. In particular, it shows that, for a given tF, the objective func-
tion is U-shaped along the d dimension (and hence that the relationship between d

and price dispersion is monotonic, as expected).

B.6.2 Location choice

I proceed with an analogous two-stage step where T ⌘ {ui, mc}i,c and t ⌘ f.

Inner loop. It solves for {ui}i and {mc}c conditional on all previsouly quantified
parameters and fundamentals, a guess for t, and the observed following endogenous
variables: population {Li}i and country-level total inflow of foreign migrants, {Lc}c

(from Abel and Cohen, 2019, between 1990 and 2000, where 1990 is the earliest period
available for SSA). In practice, I use eq. (19) to calculate Lc and invert it to obtain an
expression for country barriers as a function of Lc and other endogenous variables

58I choose W to be the identity matrix due to the high non-linearity of my moments (thus, the
complexity of their Jacobian and Hessian matrices).

59Grid search methods can easily lead to curse of dimensionality and global-local optima issues.
However, my model requires that tariffs and trade costs are both non negative; which restricts the
parametric space. I also rule out global-local optima tradeoffs by running a coarse search over large
intervals (Panel A) and then narrowing it down around the minimum of the coarse search (Panel B).

62



Figure B.2: Results of the outer loops that solve for tF, d, and f

Panel A: Grid search (coarse) over d and tF

Panel C: Slices over d

Panel B: Grid search (fine) over d and tF

Panel D: Grid search over f

Notes: Panel A and B: Grid searchs over d (x-axis) and tF
ij (y-axis) with the colored evaluation of the

objective function (in logs) for each of these pairs. Panel C shows slices of A evaluated at fixed values
of tF. Panel D: analogous grid search over f and the resulting model-generated internal migration
flows (the dashed red line stands for observed total internal migration flows from IPUMS data).
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(B.27)

Note that the denominator in the equations above is equivalent to eq. (19)’s – it sepa-
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rates the inter/intranational bilateral choices to illustrate the identification of parame-
ters later on. Analogously, I invert eq. (B.10) to pin down amenities {uj}j as a function
of population distribution and other endogenous variables and fundamentals:

uj = Lj ⇥
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I solve eqs. (B.27) and (B.28) as follows: with a guess for {uj}j, I solve for {mc}c

in eq. (B.27), plug it in eq. (B.28) to solve for {uj}j, and iterate it until all solutions
converge. Importantly, I am able to separate out {uj}j from {mc}c because location
pairs can refer to either intra or international migration. That is, conditional on a
guess of {uj}j, there are distinct origins s for which a destination j stand for one type
of migration of the other (the denominator of eq. (B.27)), and thus where amenities
multyplies or not the country migration barriers {mc}c. Considering all possible or-
gins s and destinations j in S, there is at least one pair for which they do and do not
multiply one another, which then allows me to separately identify them.

Outer loop. The outer loop estimates t ⌘ f similarly to Equation (B.26) but finding
f̂ such that the model-generated internal migration flows, LD = Âc2C Âj2c Âi2c Lij,
matches the observed internal migation flows between 1990 and 2000 from IPUMS.60

Figure B.2 Panel D shows the results of the grid search, displaying the intutive de-
creasing relationship between f and internal migration in the economy.

B.6.3 Data issues, measurement error, and trimming data and fundamentals

The calibration of the geography G(S) for 2000 fits perfectly the observed data for that
period. Therefore, the quantified fundamentals incorporate all possible measurement
error present in the data. This is particularly important for the dissagregated data on
real income, {vj}j, where extreme outliers could map into extraordinary differences in
quantified non-agricultural productivities {bK

j }j and/or amenities {uj}j. To address
that, I follow common practice in empirical literature Chen et al. (2023) by winsorizing
the income data used in the quantification method of Appendix B.6.

Specifically, as in Desmet et al. (2018) and Conte et al. (2021), the observed real
income per capita, {vj}j is truncated at the 97,5th percentile. However, after visual
inspection, that procedure does not eliminte fully the extreme outliers obtained in the

60Hence, C is the set of countries for which migration data is available in IPUMS.
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fundamentals, especially with respect to the efficiency shifters {bk
j }j,k and amenities

{uj}j. Thus, when solving the model for any simulation using the calibrated model, I
also trim {bk

j }j,k and {uj}j at the 97.5% percentile.

B.7 Mapping the time-varying price data into the static model prices

A challenge to link the sectoral prices {Pk
j }j,k to their empirical counterpart from the

WFP-VAM data is the ”static-dynamic mismatch” between them: while the former
is static (due to the static aspect of the model), the latter is time-varying (due to the
long location-crop price series available for numerous locations across SSA). The most
immediate approach to overcome it is restricting the price data within a time window
that is the closest to the baseline period of my quantification, the year of 2000.

This approach implies two drawbacks. First, it restricts the data to a narrow sub-
set with a poor geographical coverage. Second, and most importantly, it incorporates
location-crop-time specific shocks at that specific period that could pollute the result-
ing aggregate price dispersion used in Appendix B.6.1.61 To avoid that, I propose a
time series decomposition approach that, by exploiting the long longitudinal charac-
teristic of each location-crop series, nets them out of these shocks and retrieves a time
invariant, location-crop component that maps into {Pk

j }j,k.
More specifically, I first aggregate the market-crop-level price series at the grid

cell-crop level by averaging crop prices across markets that belong to the same grid
cell. While in principle this could add noise to the data, in practice the observed prices
across markets evolve quite homogeneously in levels and trends within grid cell-crop
pairs. Figure B.3 Panels A and B illustrate that for markets located at a common
grid cell, one in Mali and another in Malawi, respectively. I define these observed
location-crop-time (year-month t) price series as P̃k

j,t and assume it evolves as:

P̃k
j,t = ac(j) ⇥ t + bc(j)⇥m(t) +

⌘ Pk
jz}|{

ck
j + #k

j,t, (B.29)

where ac(j)⇥ t is a set of country-specific time trends that account for secular evolution
in crop prices that are common for all markets j in the same country c(j). Moreover,
bc(j)⇥m(t) are country-month of the year (e.g., January or February) fixed effects that
account for country-specific ciclicality on crop production and prices. Finally, ck

j ⌘ Pk
j

are location-crop fixed effects that absorb the common j ⇥ k component of the price
series. Hence, it is the empirical counterpart of the theoretical prices {Pk

j }j,k: it con-
tains the time invariant, location-crop specific component of prices at each observed

61For instance, spatially heterogeneous incidence of droughts by 2000 (or before) could inflate the
observed price dispersion, hence underestimating d.
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Figure B.3: WFP-VAM raw data, matching to grid cells, and price decomposition

Panel A: Markets in the same grid cell in Mali

Panel C: Decomposed cell-level average prices

Panel B: Markets in the same grid cell in Malawi

Panel D: Decomposed cell-level average prices

Notes: Panels A and B plot two samples of crop prices in markets within common grid cells (in Mali
and Malawi, respectively). Panels C and D show how the grid cell-level average (i.e., across markets
within grid cells over time) crop prices are decomposed into a location-crop time invariant component
c̄k

j ⌘ Pk
j and contrasts it to the unconditional mean along each j ⇥ k time series (”Mean prices”).

j ⇥ k combination (net of the shocks over their time series).62

I estimate Equation (B.29) with the WFP-VAM price data and retrieve ĉk
j as the

observed {Pk
j }j,k. Figure B.3 Panels C and D illustrate the result for the two locations

j in Mali and Malawi (from Panels A and B, respectively). They also contrast ĉk
j to

a naive approach of averaging out prices along the grid cell-crop dimension (”Mean
prices”). Because of the increasing trend in prices over time, averages are upward
biased vis-à-vis ĉk

j (that account for this secular trends). In fact, some ĉk
j have negative

values – while counterintuitive if thinking of negative prices, this makes sense for the
purpose of my exercise (that aims at exploiting (spatial) within-country differences in

62Importantly, idiosyncratic shocks to prices – such as weather shocks – are accounted for, but with
the underlying assumption that they are normally distributed and have expectation equal to zero (in
the error term #k

j,t) at the j ⇥ k level.
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prices). Hence, not accounting for the components in Equation (B.29) overestimates
the magnitude of prices. That would, in turn, underestimate the aggregate dispersion
of prices across space and, as a consequence, the estimated d.

B.8 Discussion of the parameters taken from the literature

Lower CES tier. The values taken for {hk}k come from Costinot et al. (2016) and
Bernard et al. (2003) for crops and non-agriculture, respectively. These values are
widely used in other applications in the literature (e.g. Desmet et al., 2018, for hK).
They nevertheless are estimated in global (or cross-country) settings. Assuming differ-
ent values for {hk}k (say, substitution of varieties within countries being more intense
than across countries) would mainly affect the model-generated trade flows, and con-
sequently the levels of the parameters associated to trade frictions.

Middle CES tier. The value ga = 2.5 comes from Sotelo (2020), who studies rural
Peru by early 2000s and focus on intranational trade in that country. Thus, it stands
for a context similar to rural SSA as of 2000.

Upper CES tier (and Wk shifters). The values for {#k} and s come from the global
estimation of Comin et al. (2021) (and are particularly close to Nath (2023)’s estimates).
These values therefore reflect preferences between agricultural and non-agricultural
goods from a global representative consumer. Thus, the values can underestimate the
subsistency aspect of agricultural goods in SSA, where the negative slope of the Engel
curve could be steeper vis-à-vis the rest of the world. If so, then, my results would
underestimate the welfare losses associated to that mechanism. In fact, the estimated
{Wk}a,K reflects that: I quantify a relative Wa/WK that is about twice the estimates
from Nath (2023) for the global economy, reflecting that expenditures in agriculture
are much more pronounced in SSA visà-vis the global economy.63

B.9 Discussion of the estimated trade and migration frictions

In what follows, I benchmark trade and migration frictions quantified in Section 5
with estimates from related literature. This exercise is relevant due to the different
approaches from these studies (in terms of functional format or units of distance),
which hinders a direct comparison between their estimates and mine. When compar-
ing them, I also stress the reasons and advantages of my modeling choices.

Trade frictions. Many studies estimate the relationship between distance and trade
frictions for developing contexts (e.g. Donaldson, 2018; Sotelo, 2020; Pellegrina and

63In particular, I quantify Wa/WK = 1/0.19 = 5, while Nath (2023) estimates a relative agriculture
and manufacturing shifters for the global economy of 11.73/3.7 = 3.2.
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Sotelo, 2024; Pellegrina, 2022). Importantly, most of these parametrize trade costs
with an exponential format; e.g., log(tij) = d ⇥ dist(i, j). Moreover, some use differ-
ent distance metric – such as travel time. Hence, to compare my trade costs estimates
to related studies, I use the functional formats and estimates from Donaldson (2018)
and Pellegrina (2022) (for India and Brazil, respectively) to calculate and benchmark
their resulting tij to mine (i.e., with dist(i, j)0.17). Figure B.4 Panel A documents their
differences visually. It shows that, for small distances, my estimated tij lie between
Indian and Brazilian estimates. However, as distances increase, these estimates (ex-
ponentially) exceed mine. In fact, for extremely large distances (between, say, the
North-South extremes of SSA), the resulting tij becomes unreasonably large (which
generates numerical problems, such as close-to-infinite prices in the economy). My
functional format, instead, is tailored for continental empirical settings like mine, con-
veying reasonable values tij for small (i.e., within country) distances that smoothly
increase with (large) distances.

Migration costs. I analogously benchmark my estimated mij = dist(i, j)0.41 to val-
ues from Indonesia, Brazil, and the US (from Bryan and Morten, 2019; Morten and
Oliveira, 2024; Allen and Donaldson, 2022, respectively). Figure B.4 Panel B shows
the results: my median SSA estimates are about 20 percent larger than the median
estimates for Indonesia, and about three to four times larger than those for Brazil and
the US, respectively. Moreover, the (exponential) increase in the migration costs for
larger distances is also visible, though not as pronounced as for trade costs (however,
these patterns hold for continental distances between geographical extremes of SSA).

B.10 Discussion of the inversion results

Figure B.5 illustrates the spatial distribution of some of the quantified fundamentals.
Panel A and B show that more productive locations (which have higher real wages)
have higher fundamental productivities in the Kth sector. Thus, the model rationalizes
that, net of the variation in the K � 1 sectors, locations with a high level of economic
activity must be very productive in non-agriculture. This pattern stands out in some
capitals and in high-GDP countries, such as South Africa. Panel C illustrates an
analogous aspect of the quantified sectoral shifters of cassava. There are high {bk

i }i

values for locations in countries that are large cassava producers, such as Nigeria.
Moreover, Panel D and E show that high-amenity locations have relatively high

population density and very low real wages. DR Congo and Zimbabwe are two
examples. Their higher amenities are utility compensations that explain why individ-
uals are not living somewhere else in SSA. Intuitively, this captures local cultural or
institutional characteristics that work as pull factors (which will be kept constant in
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Figure B.4: Equivalence between the quantified (trade and migration) frictions and
related estimates from the literature.

Panel A: Trade frictions tij Panel B: Migration frictions mij

Notes: Scatter plots of the estimated trade (Panel A) and migration (Panel B) costs from Section 5
against estimates from the literature.

the counterfactuals).
However, these characteristics do not include migration frictions, since they are ac-

counted for separately in my framework. To illustrate, Panel F plots the distribution
of the quantified country-level migration barriers, i.e. {mc}c. High-barrier coun-
tries display two characteristics: higher income differentials relative to neighboring
countries and relatively low inflows of migrants. Sudan and South Africa (which are
geographically close to DR Congo and Zimbabwe, respectively) illustrate this. Their
relative income differences (with respect to their surrounding countries) are dispro-
portionally larger than the observed total flow of immigrants, which implies higher
migration barriers.64

B.11 Details on the backcasting exercise for 1975

The backcasting exercise consists of solving for the spatial equilibrium of the SSA in
1975. In particular, it uses the calibrated model for 2000 and replaces two fundamen-
tals that reflect the reality of the economy in 1975:

64A second mechanism explaining the variation in country barriers is the absolute variation in mi-
gration flows. Countries with low migration flows, even if at the left of the real wage distribution,
must have, at least to some extent, relatively high migration barriers. The reason for this is the id-
iosyncratic component of workers’ preferences, which generates some migration that must somehow
be rationalized.
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Figure B.5: Comparison between the calibrated fundamentals and the observed en-
dogenous variables

Panel A: Real wages Panel B: Non-agric. prod.

Panel C: Sectoral shifters (cassava) Panel D: Population

Panel E: Amenities Panel F: Migration barriers

Notes: Each panel plots the spatial distribution of the quantified fundamentals as explained in sec-
tions 5.3 and 5.4 in percentiles (or deciles for F), where 100 (or 10) stands top percentile.
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Figure B.6: Percentual changes in average crop potential yields within locations in the
past and estimates for the future

Panel A: 1975-2000 Panel B: 2000-2080

Notes: Panel A: Within grid cell changes (%) in crop suitabilities between 1975 and 2000. Panel B:
Analogous changes between 2000 and 2080 (under climate change). Note that the scale between Panels
A and B are different to facilitate visualization (they imply that the effects between 1975 and 2000 are
much less pronounced than the expected future effects).

Population. I calculate and estimate of the initial population in 1975 by projecting
the distribution of the observed population in 2000 into the levels of the SSA popula-
tion in 1975. The reversibility of the spatial equilibrium follows Desmet et al. (2018),
who characterize the possibility of backcasting exercises such as mine (i.e. validating
spatial models calibrated in a cross section).

Crop yields. I replace the fundamental productivities {Ak
j }k 6=K used in the calibration

with the values of 1975. Importantly, during the period there was already climate-
driven changes in these productivities so that the model can generate climate migra-
tion (Figure B.6 illustrates that). Finally, the validating exercises consists of comparing
the model outcomes with observed population data for 1975. Because the data source
of the latter (GHSP, Florczyk et al., 2019) differs from the source of population data
used in the calibration (G-Econ, Nordhaus et al., 2006), I check the consistency of
these two datasets for the period of 2000 (for which data in both sources is available)
in terms of grid cell- and country-level population correlation in Figure B.7.

B.12 Details on the calibration with EU data

I take the model to EU data so to retrieve the levels of the tariffs and country barriers
paramters tF

ij and {mc}c. To do that, I build a likewise rich spatial dataset for the EU.
I use the same sources described in Section 2, as all of them have a global coverage.
Subsequently, I link that data to my model with the procedure described in Section 5.
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Figure B.7: Correlations between G–Econ and GHSP datasets for the year of 2000

Panel A: Country-level population Panel B: Cell-level population

Notes: Panel A (B): Country (grid cell)-level population counts in SSA from G-Econ and GHSP.

Importantly, when doing so, I use the same preference parameters and elasticities to
bilateral distance, d and f. Thus, my quantification for the EU embeds the differences
between cross country trade (or migration) in EU and SSA in the policy parameters
tF

ij (or {mc}c).
Finally, when replacing the EU policy parameters into the SSA counterfactual, I

must match the country level EU parameters {mc}c to SSA countries. I do that by
quantiles. That is, I assign the country barrier value for the bottom decile of the EU
sample to the countries in the bottom decile of the SSA county barrier distribution,
as so forth for the other deciles. Importantly, to make the levels of {mc}c comparable
across EU and SSA, I normalize the former as a ratio with the minimum. Thus, I in
practice simply scale SSA’s country barriers in relatives (e.g. the ratio between the
least and most strict country) so to reflect the relative ratios of the EU barriers.

C Alternative models

C.1 Extension with the rest of the World

I allow for trade and migration between SSA and the ROW by modeling the latter as
a single, representative location R. As such, I use the same data sources and methods
in Sections 2 and 5 to link this extended model to global data and perform counter-
factuals as in Section 6, but assuming that the ROW is unaffected by the climate.65,66

65In terms of data, the process is simple. For instance, land endowments (or population) for R are
simply the sum of the land area (or population from G-Econ) in all locations but the SSA grid cells.

66The reasoning behind this assumption is that, over the course of the decades until the end of the
century, the ROW could be able to adapt to the agricultural productivity shocks from GAEZ such that,
on average, its productivity would be unaffected.
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Table C.1: Aggregate and disaggregate results of the climate change counterfactuals accounting
for trade and migration with the rest of the world (ROW)

(1) (2) (3) (4) (5)
Baseline Baseline + ROW + no ROW + no ROW + no

ROW barriers mR tariffs tR tariffs/barriers

Panel A - Aggregate CD effects:

Climate migration1 22.32 123.48 111.08 87.80 89.30
(of which to the ROW)1 5.35 99.59 58.45 73.23
D GDP pc (%) -1.76 -19.05 -4.76 -1.37 -0.78
DLK

i (non–agric. -0.82 -0.09 -0.14 2.46 2.53
employment, %)

Panel B - Country–level CD effects:

Median D population1 0.06 0.31 0.22 -1.13 -0.1
Bottom/top deciles [-2.8; 2.76] [-15.04; 12.98] [-6.95; 3.12] [-8.35; 2.42] [-6.31; 2.29]
Median D GDP pc (%) -2.15 -18.49 -1.91 -3.75 -1.19
Bottom/top deciles [-14.62; 3.27] [-29.7; -8.73] [-3.91; 1.3] [-17.5; 6.74] [-3.64; 2.66]
Median DLK

i (%) -1.42 -0.01 0.45 -0.01 0.38
Bottom/top deciles [-5.36; 1.55] [-0.19; 0.03] [-8.02; 10.31] [-0.6; 0.03] [-8.55; 11.21]

Panel C - Welfare effects:2

D Aggregate Welfare (%) 1.16 -2.71 -3.62 -1.17 -1.21
Median D Welfare (%) -1.27 0.06 -0.81 -0.51 -0.66
5th/95th deciles [-9.89; 0.95] [-3.93; 6.2] [-4.73; 3.76] [-1.76; 2.49] [-2.43; 2]

Notes: Column 1 presents the baseline results, while columns 2 to 5 present the results of extensions with the
ROW: column 2 is analogous to the baseline but where trade and migration also take place between SSA and
the ROW, column 3 eliminates migration barriers into the ROW (mr = 1), column 4 eliminates tariffs for trading
between SSA and the ROW (tR = 1), and column 5 eliminates both barriers. 1Climate migration in million
individuals.

Assuming so facilitates remarkably the quantification of this extended setting. The
reason is that it rules out the necessity of separating shifters {bk

R}k and fundamental
productivities {Ak

R}k for the ROW (as they will be all kept fixed in the counterfactu-
als). Hence, the quantification normalizes bk

R Ak
R = 1 for all k and pins down {bk

j }j 6=R,k

in relative terms to the ROW. In terms of trade frictions, I assume dist(i, R) as the
distance to the nearest port and, for simplicity, d = 0.17 and tF

iR = tF = 6.5.67 For
migration costs, I also use the port distances and the quantified f. However, to keep
a consistent quantification of country migration barriers {mc}c, I aggregate all gross
migration flows from SSA to the ROW to pin down mR.68

67I set trade barriers with R as the quantified tF in the baseline for tractability in my quantification.
In principle, one could allow tF

6= tF
iR, and quantify them separately in the outerloop of Section 5.3 by

matching cross-country trade between SSA countries and between SSA and R, respectively. However,
that would add another dimension to the grid search (tF

iR), increasing remarkably its computational
requirement (the current grid search requires more than a week of high performance cluster power).

68The quantified {mc}c with the ROW illustrates the degree of real income spatial disparities between
SSA and the global economy. Specifically, the quantified mR is thousands of times larger than the
maximum of {mc}c 6=R, reflecting that, through the lens of the model, these barriers must be substantial
to explain the observed migration choices conditional on real income differences.
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C.2 Homothetic preferences

I simulate the climate change effects in SSA with homothetic preferences by setting
s = 4 (as in Bernard et al., 2003) and ek = 1 � s for all k 2 {a, K}. As such, the
income effect on Equation (13) cancels out and only relative sectoral prices matters
for sectoral expenditures. That is, Equation (13) becomes isomorphic to (9). I link this
model to the data with the same procedure as in Section 5 and, with the quantified
model in hand, perform a counterfactual as in the baseline of Section 6.

C.3 Endogenous fertility

I endogenize fertility, with respect to climate change, with a simple damage function
that assumes that the projected grid-cell-level initial population for 2080 is affected by
the average change in local crop yields. Formally:

L̂0
j =

�
i ⇥ DAj

�
⇥ L0

j ,

where DAj is the average crop yield change in j (as in Section 3) and i a shitfer
that maps the latter into fertility changes. When doing so, the initial population of
SSA L reduces if compared to the baseline case. In particular, it decreases more
in the locations and countries that are most affected by climate change. Thus, in
distributional terms, the initial population of SSA starts sligthly better distributed,
which leads to lower climate migration flows. However, these level differences are
not too strike; hence, the aggregate effects of climate change are not stark vis-à-vis
the baseline. The fertility robustness results of Table 5 use L̂0

j and i = .5 in the climate
change simulations. As of completeness, Table C.2 below document how these results
are sensitive to the choice of i.

Table C.2: Robustness of the endogenous fertility exercise with respect to i

(1) (2) (3)

Climate migration D GDP per D Non-agricultural
(million individuals) capita (%) employment (%)

Endogenous fertility i = 0.1 21.94 -1.76 -0.82
Endogenous fertility i = 0.25 21.84 -1.76 -0.82
Endogenous fertility i = 0.5 21.60 -1.75 -0.82

C.4 Economic growth

I account for economic growth in my simulations by scaling up the non-agricultural
productivities {bK

j AK
j }j with country-level projections of GDP growth. For that, I first

74



retrieve the GDP growth rates at the country level between 1980 and 2020 from the
World Bank Development Indicators. Next, I calculate the country-level cummulative
rate in this 40-years interval and use its square as the 80-years projected rate for each
country. Figure C.1 Panel A shows the results. Most countries experience a two- to
fourfold increase in productivity (and some up to a tenfold increase).

Importantly, Figure C.1 Panel B shows that the {bK
j AK

j }j distribution in the two
cases barely changes. This is due to the large spatial level differences in the quantified
{bK

j AK
j }j, some in the order of millions.69 Hence, even if accounting for tenfold growth

in some countries, the {bK
j AK

j }j distribution, as well as the climate change simulation
results in Section 6.4, remain little affected.

C.5 Climate damage on non-agriculture

I consider climate change productivity effects on non-agriculture by scaling {bK
j AK

j }j

with a damage function that maps climate conditions to the latter. For that, I borrow
the non-agricultural gK(Tj) damage function from Conte et al. (2021). It is a bell-
shaped function, quantified at a global scale, that maps local temperature, in Celsius,
into a shifter between zero and one. I collect temperatures by the early 2000s and esti-
mates for the end of the century, also from Conte et al. (2021), to calculate a DgK(Tj). I
use the latter as the non-agriculture damage function that scales {bK

j AK
j }j. Figure C.1

shows the result: there are large spatial differences in the expected changes in non-
agricultural productivities (Panel C) but, for the same reason as in Appendix C.4,
that does not affect drastically the relative productivities across space (Panel D) and,
likewise, the climate change results.

C.6 Climate damage on amenities

I allow for climate change impacts in life quality through a damage function that af-
fects amenities {uj}j. For that, I borrow the amenity damage function Lb(Tj) from
Cruz and Rossi-Hansberg (2024). It provides a non-linear relationship between tem-
perature changes and amenities, quantified for the global economy. I combined it
with the expected temperature changes previously calculated (appendix C.5) to re-
trieve theses changes, illustrated in Figure C.1 Panel F. Similarly to Appendices C.4
and C.5, that barely affects the distribution of amenities across SSA, and hence the
result of the simulations in this setting.

69That is so due to the likewise large differences in real income per capita across SSA, that my quan-
tification method (conditional on crop productivities and production) interprets as large differences in
fundamental non-agricultural productivities {bK

j AK
j }j.
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Figure C.1: Changes in the fundamentals for robustness checks

Panel A: Country-level GDP growth

Panel C: Non-agric. damage function DgK(Ti)

Panel E: Amenity damage function Lb(Ti)

Panel B: log(bK
j AK

j ) distribution, in logs

Panel D: log(bK
j AK

j ) distribution, in logs

Panel F: log(uj) distribution, in logs
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D Additional results

D.1 Motivating facts: additional results and details

The following provides formal support for the Facts 2 and 3 of Section 3 on the
correlations between potential crop yields and production, trade, and migration.

Country-level production. I investigate the relationship between country-level crop
production and crop yields estimated with:

log(crop productionk
i ) = a ⇥ log(Ak

i ) + ai + bk + #k
i , (D.1)

where Ak
i is the country i average yields of crop k. Including country ai and crop bk

fixed effects implies that the variation that identifies a, the parameter of interest, is at
the country-crop level. Hence, a positive â is evidence of specialization in production
across countries, i.e., countries producing the crops that they are, on average, more
suitable for, according to the GAEZ potential estimates. Table D.1 Column 1 shows
that this is the case, as in Figure 3 Panel A: a 10 percent increase in average country-
crop potential yields is associated with a 7 percent larger production of that crop.70

Within-country specialization. Table D.1 Column 2 provides additional evidence
of specialization in production, but within countries. That is, it shows the regres-
sion results of Equation (D.1) on grid cell-level crop production and potential yields.
Important, this setting allows for country-crop fixed effects. As a consequence, the
variation that identifies a is within-countries: grid cells producing the crops that they
are more productive at vis-à-vis other locations within the same country. The results
in Column 2 corroborate this hypothesis, with an estimated within country elasticity
of production of about 4.5 percent.

Bilateral crop trade. I verify the hypothesis of specialization in trade by estimating:

log(Xk
cc0) = a ⇥ log(Ak

c/Ak
c0) + acc0 + bk + #k

cc0 , (D.2)

where Xk
cc0 is the bilateral crop k trade flows from country c to c0 from the ITPD-E trade

data by the early 21st century. Moreover, Ak
c/Ak

c0 are the exporter-importer relative
crop k potential yields calculated from the GAEZ estimates in 2000. By introduc-
ing importer-exporter fixed effects, I absorb all fixed characteristics at this dimension
– including bilateral trade resistence elements such as bilateral tariffs – and exploit
variation at the country pair-crop level. The positive a (Table D.1 Column 3) implies

70Importantly, the effective production data is retrieved from national statistics (FAOSTAT). Hence, I
exclude an eventual mechanical correlation between production and potential yields that could arrise
if building country-level production data by aggregating cell-level data from GAEZ.
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Table D.1: Correlational results between potential crop yields (changes) and production, trade, and migration

log(productionk
i ) log(bilateral tradek

cc0) Internal migij International migcc0

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(potential yieldsk
i ) 0.735⇤⇤ 0.044⇤⇤

(0.339) (0.019)

log(relative yieldsk
cc0) 0.433⇤⇤ 0.300⇤ 0.317⇤

(0.183) (0.154) (0.166)

D relative yields (%) 1.859 2.562 3.664 6.151
(6.550) (6.537) (47.624) (83.191)

Bilateral distance �0.001⇤⇤⇤ �0.012⇤⇤⇤ �0.805⇤⇤
(0.0001) (0.004) (0.336)

Country FE Yes No No No No Yes Yes No No
Crop FE Yes No Yes Yes Yes No No No No
Country-crop FE No Yes No No No No No No No
Origin-destination FE No No Yes No No No No No No
Origin FE No No No Yes Yes No No No No
Destination FE No No No Yes Yes No No Yes Yes
Observations 194 8,136 352 352 352 4,913 4,913 324 324
R2 0.521 0.876 0.840 0.538 0.589 0.361 0.367 0.074 0.236

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01.

that, conditional on a importer-exporter pair, a 10 percent increase in the relative (ex-
porter over importer) average yields of a specific crop is associated with four percent
higher exports of that crop. Consistent with Figure 3 Panel A, this elasticity is about
40 percent lower than the one of specialization of production (Column 1).

Subsequently, I use this framework to investigate the role of geographical distance
as a bilateral trade resistence. Specifically, I replace the acc0 fixed effects with a set of
separate importer and exporter fixed effects in Equation (D.2). The resuls (Table D.1
Column 4) are much less precise, but close to the former estimate in magnitude. I
then add to this model (column 5) covariates at the importer-exporter level: bilateral
distances (between capitals). The a estimate remains considerably stable, suggesting
that non-tariffs trade barriers, such as distances, might not be as strict, as bilateral
resistence between countries, if compared to tariffs.

Internal migration flows. I then verify whether changes in crop potential yields, over
time, associate with observed internal migration flows. For that, I estimate

Lij = a ⇥ Drelative yieldsij + ac(i,j) + populationi + #ij, (D.3)

where Lij is the total number of migrants between subnational region i to j observed
in the IPUMS data (that is, from the early 1970s to early 2010s). Along the same lines,
Drelative yieldsij is the percentual change in the relative (destination over origin)
average yields between 1975 and 2000 from GAEZ. Equation (D.3) also controls for
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population at origin and country fixed effects.71

The results in Table D.1 Column 6 provide evidence of relative potential yields as
a push factor of migration (i.e., â > 0). The point estimate has little power and small
magnitude.72 However, adding origin-destination bilateral distances as a covariate
(Column 7) improves that and delivers an economically meaningful message. The
â estimate increases in magnitude by about 40 percent, suggesting that geographi-
cal distances are an important aspect underlying migration choices within countries.
Moreover, the precisely estimated negative coefficient of distance aligns with the idea
that internal migration becomes more costly for destinations that are further away.

International migration flows. I conclude with an analogous investigation for inter-
national migration with:

Lcc0 = a ⇥ Drelative yieldscc0 + a0c + populationc + #cc0 , (D.4)

where Lcc0 stand for thousands of migrants from country c to country c0. The results
(Columns 8 and 9) convey a similar message: international migration in SSA did
respond to changes in crop yields in the past decades, and more so for the countries
that are geographically close by.

71Ultimately, I control for population at origin by using migration flows per thousand inhabitants at
origin in the regressions.

72This is not surprising given the high urbanization rates experienced in SSA (which does not need
to be necessarily driven by changes in relative yields at destination but rather other forces driving
structural change).
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D.2 Additional figures and tables

Table D.2: Share of grain crop production (in tonnes) over total production of
the main staple and cash crops in SSA.

Grain crop Share Cash crop Share

Cassava 56.65% Coffee 1.13%
Maize 11.75% Cotton 1.14%
Millet 4.59% Groundnut 2.72%
Rice 2.18% Palm oil 4.93%
Sorghum 6.15% Soybean 0.33%
Wheat 1.13% Sugarcane 7.31%
Total: 82.45% Total: 17,55%

Source: GAEZ production data for 2000 aggregated in over all countries of my empirical
setup. SSA includes all sub-Saharan African countries but Somalia.

Table D.3: Climate migration results for country capitals

Country Capital DLi (K) Country Capital DLi (K)
Angola Luanda -374.56 Lesotho Maseru -4.75
Burundi Bujumbura 1,388.74 Mali Bamako 50.94
Benin Cotonou 10.30 Mozambique Maputo -446.89
Burkina Faso Ouagadougou 26.21 Mauritania Nouakchott 81.99
Botswana Gaborone -660.51 Malawi Lilongwe 6.14
Central African Republic Bangui 15.83 Namibia Windhoek -160.07
Ivory Coast Abidjan 26.47 Niger Niamey 10.96
Cameroon Yaounde 19.38 Nigeria Abuja 65.81
Congo (Kinshasa) Kinshasa 718.65 Rwanda Kigali 473.70
Congo (Brazzaville) Pointe-Noire 154.15 Sudan Khartoum 51.10
Djibouti Djibouti 11.42 Senegal Dakar 534.41
Eritrea Asmara 16.74 Sierra Leone Freetown -88.24
Ethiopia Addis Ababa 45.67 Swaziland Mbabane 23.18
Gabon Libreville 298.14 Chad Ndjamena -8.33
Ghana Accra 52.20 Togo Lome 26.04
Guinea Conakry -61.65 Tanzania Dar es Salaam 44.76
The Gambia Banjul 31.07 Uganda Kampala -3.45
Guinea Bissau Bissau 6.89 South Africa Johannesburg 26.67
Equatorial Guinea Malabo 43.02 Zambia Lusaka -32.69
Kenya Nairobi -26.75 Zimbabwe Harare -29.06
Liberia Monrovia 111.40
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