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Abstract

This paper shows how the subjective beliefs of large dealer banks help under-
stand the excess volatility in bond markets, the large volatility of long-term interest
rates. I document that the interest rate exposures of primary dealers comove sys-
tematically with the interest-rate forecasts of their research departments, both in
the cross-section of dealers as well as over time. In particular, primary dealers
choose higher interest-rate risk exposures when they are more optimistic about the
returns on long Treasury bonds relative to short T-bills. I develop and estimate an
equilibrium model with dealer banks that have heterogeneous interest-rate expec-
tations. The quantitative model shows that the variation in dealers’ beliefs about
future interest rates is a strong mechanism to explain the volatility of long rates.
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1 Introduction

Historically, long-term interest rates in the U.S. have displayed significant volatility when
contrasted with the long-term averages of short-term rates. Moreover, there is docu-
mented evidence of profitable market-timing strategies within bond markets, suggesting
that it is possible to anticipate excess returns on long-term bonds. For example, an invest-
ment strategy involving borrowing at the short-term rate to purchase long-term bonds
at the onset of a recession and selling them right after the recession yields substantial
returns. Nevertheless, it is unclear why this predictability evidence is not exploited in
real-time; if investors were to capitalize on these opportunities, bond prices would adjust,
and predictability would vanish.

Primary dealers are involved in substantial trading within Treasury bond markets as
marketmakers and actively research bond market dynamics. It is particularly important
to understand why such sophisticated investors, who play a crucial role within the United
States financial system, have not yet taken advantage of the predictability of bond returns.
As of June 2022, the five largest dealer banks held 45.5% of all assets in the U.S. banking
industry.1 Given the pivotal position that dealers hold in bond markets, it is remarkable
that they have not seized the opportunities presented by the aforementioned market-
timing strategies.

In this paper, I show that the subjective bond return expectations of the largest bond
dealers, and their portfolio decisions based on these expectations, can account for the
predictability of bond excess returns and time-variation in bond risk premia. If dealers’
real-time expectations about bond returns do not coincide with what econometricians
observe in hindsight, portfolio decisions based on these expectations need not exploit
the return predictability documented with in-sample predictive regressions. I empirically
document that large primary dealers’ interest rate risk exposure and their research de-
partments’ bond excess return forecasts comove systematically, both over time and in the
cross-section of dealers. Dealers who expect higher returns on long-term Treasury bonds
bear more interest rate risk by increasing their holdings of long-term assets.

I develop a quantitative-term structure model with dealer banks who have heteroge-
neous beliefs about the dynamics of interest-rates. In the model, dealers choose their
interest rate risk exposures according to their subjective beliefs, and bond prices reflect
dealer beliefs as well as their risk exposures. I quantify my model by incorporating data
on dealers’ exposures and return forecasts, thus disciplining the subjective beliefs in the

1Source: https://www.chicagofed.org/banking/financial-institution-reports/top-banks-bhcs.
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model to generate realistic portfolio positions. The quantified model suggests that time-
variation in the subjective beliefs of dealers is a strong mechanism to explain the excess
volatility of long-term rates and the predictability of excess bond returns. Hence, my
model connects the triad of large dealers’ interest rate risk exposures, their subjective
bond return forecasts, and time-variation in expected excess returns.

For my main empirical specification, I construct a measure of interest rate risk ex-
posure at the Bank Holding Company (BHC) level for the largest primary dealers in
the U.S., using FR Y-9C filings administered by the Federal Reserve and the CRSP/-
Compustat database.2 I then compute the subjective expected excess bond returns of
dealers at a quarterly frequency using their interest rate forecasts reported in Blue Chip
Financial Forecasts. Running panel regressions of dealers’ interest rate risk exposures on
their expected excess return forecasts reveals that risk exposures comove with expected
returns on long-term bonds. When dealers’ subjective expected excess returns on long-
term bonds are one standard deviation higher, their interest rate risk exposure is 2.5
percentage points higher on average. Dealers are heterogeneous in their expectations and
exposures both over time and in the cross-section, with dealers who expect higher excess
returns being more exposed to interest rate risk. Additionally, I demonstrate that the
risk exposure of dealers significantly predicts realized bond excess returns, with the pre-
dictive power of exposures increasing when dealers’ expected excess returns are higher.
This finding suggests that large dealer banks’ Euler equations hold under their subjective
beliefs.

To assess the contribution of dealers’ subjective beliefs in explaining time-variation in
bond risk premia, I develop a quantitative term-structure model and use dealers’ portfolio
positions and survey forecasts to discipline the dynamics of subjective beliefs. The model
is designed to parsimoniously capture the impact of dealers’ subjective beliefs about in-
terest rates, and their associated risk exposures, while ruling out alternative mechanisms
that could generate time-varying bond risk premia. I find that dealer beliefs account
for substantial time-variation in bond risk premia, and can explain the predictability of
Treasury excess returns. My results demonstrate the significance of large financial inter-
mediaries’ subjective expectations for explaining bond price dynamics, complementing
the evidence on the importance of their risk assessment.

In the model, I consider a single risk factor, representing interest-rate risk. The short-
term interest rate moves around a stochastic mean, both varying with interest-rate risk,

2The dealers in my sample are Bank of America, Bank One, Citigroup, Goldman & Sachs, and J.P.
Morgan & Chase.
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capturing the impact of short-rate shocks on the expected path of future short-rates.
Log-utility dealers have heterogeneous beliefs about the stochastic mean, characterized
as a mean-reverting bias from its true value. I postulate that dealer beliefs also vary
over time along with the single risk factor. Hence, dealers have time-varying subjective
beliefs about the expected path of future short-rates, and accordingly about future bond
prices. The subjective belief processes are exogenous, and based on my empirical findings,
I use data on dealer exposures and forecasts to estimate their dynamics. The model does
not impose a particular foundation for the formation of these beliefs (such as Bayesian
learning or behavioral biases).

How do the subjective beliefs of each particular dealer impact bond prices? In the
model, zero-coupon bond prices are wealth-share weighted averages of bond prices in
hypothetical economies where there is only a single type of dealer. Beliefs about future
short-rates both affect the hypothetical single-dealer bond prices, and also the distribution
of wealth amongst dealers. Thus, each dealer’s impact on prices is directly related to
their wealth-share. I solve the single-dealer bond prices in closed-form, which allows me
to evaluate the effects of the short-rate, the stochastic-mean, and the subjective beliefs
on interest rates in a straightforward fashion. Dealers’ relative wealth shares over time
are entirely determined by their belief differences.

The model features two key mechanisms that generate time-varying risk premia. Sub-
jective beliefs about future short-rates, and consequently about future bond excess re-
turns, are the first drivers of risk premia dynamics. Dealers agree-to-disagree about the
short-rate dynamics, specifically about its stochastic mean, and choose their interest rate
risk exposures accordingly. Dealers who are pessimistic about long-term bond returns
require a higher compensation for bearing interest rate risk, which is reflected in bond
prices, and thus in the statistical risk premia observed by the econometrician. As dealers’
subjective beliefs about future returns change over time, the compensation they require
for bearing risk also varies over time. An econometrician who observes the equilibrium
bond returns from this model concludes that they are predictable. The model successfully
generates the bond return predictability evidence documented in data using actual bond
returns.3 In the estimated model, the time-variation in dealers’ pessimism is the main
force of bond risk premia. Dealers on average expect lower bond returns relative to the
statistical expectation, and thus command higher risk premia to hold long-term bonds.
Dealers’ reluctance to take long positions in bonds (due to low subjective expected re-

3Specifically, I run Fama and Bliss (1987) regressions using model implied and actual bond prices.
The model also produces the hump-shaped factor in Cochrane and Piazzesi (2005).
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turns) can thus speak to why investors have not capitalized on the predictability patterns
historically.

The second source of risk premia in the model is due to redistribution of wealth.
Dealers engage in speculative trading based on their beliefs about future short-rates, and
thus face the risk of making losses on their positions, which redistributes wealth from
dealers with highly incorrect beliefs to more accurate dealers. I find that redistribution
risk hardly matters for risk premia dynamics, because the wealth distribution among
dealers only changes slowly over time. It therefore cannot explain the cyclical variation
in bond risk premia.

Nevertheless, dealers’ wealth distribution still matters for bond risk premia, because
it determines the weights on dealers’ subjective beliefs, and the beliefs of dealers with a
larger share of aggregate wealth are reflected more in bond prices. The estimation shows
that the dealers with the most pessimistic beliefs also have the largest wealth share.
As a consequence, their pessimism receives a large weight in determining risk premia in
equilibrium. During recessions, this pessimism is especially pronounced and raises the
risk premium. Moreover, the model is able to produce the dealer wealth distribution
patterns observed in data, such as J.P. Morgan & Chase taking over Bank of America
to become the largest bank over time. Hence, my model suggests that subjective beliefs
about asset returns, and the resulting portfolio positions, could provide a meaningful
explanation for the evolution of the dealer wealth distribution, amongst many other
possible explanations.4

Finally, the estimation of the model uses quarterly data on dealer exposures, survey
forecasts, and actual interest rates during the years 2001-2021. Dealers’ forecast errors for
the 3-month interest rate are informative about the persistence of their subjective beliefs
and the volatility of the short-rate. Time variation in dealers’ interest-rate exposures
is informative about the volatility of their subjective beliefs. The initial distribution
of dealer wealth is measured from the distribution of dealers’ assets in Federal Reserve
filings at the beginning of the data sample. The remaining parameters are estimated with
observations on long-term interest rates.

4My model does not speak to mergers and acquisitions, hence is unable to capture factors such as
Bank One and J.P. Morgan’s merger in the early part of the sample, or the redistribution of Lehman
Brothers and Bear Stearns assets following 2008.
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1.1 Related Literature

I contribute to several strands of the macro-finance literature. Many studies document
potential drivers of bond return predictability, emphasizing time variation in bond market
risks or the risk assessment of investors. Wachter (2006) and Bansal and Shaliastovich
(2013) focus on the implications of variation in risk assessment for the term-structure
of interest rates.5 They argue that when expected excess returns are projected to be
high, investors do not act on this predictability due to increasing risks associated with
holding long-term bonds or a greater aversion to interest rate risk among investors. This
paper proposes an alternative explanation based on subjective beliefs: when econometri-
cians project high bond returns, bond investors are pessimistic about bond returns, and
therefore do not want to buy long bonds.

There is a growing body of work that consider financial intermediaries as marginal
agents for asset prices, rather than households, and my paper also follows this approach.6

Vayanos and Vila (2021) and Schneider (2023) are examples of papers that model in-
termediaries as marginal agents in bond markets. Vayanos and Vila (2021) consider a
model of preferred-habitat, where intermediaries act as arbitrageurs facing the demand
from habitat-investors for various bond maturities. Schneider (2023) considers an econ-
omy with a financial sector along the lines of Brunnermeier and Sannikov (2014), and
shows that occasionally-binding endogenous leverage constraints of intermediaries gener-
ates time-varying term premium. Numerous studies focus specifically on primary dealers
due to their significant role in bond markets. Haddad and Sraer (2020) show that the
average interest risk sensitivity of U.S. banks predicts future bond returns, and relate it
to long-term bond holdings of banks. They develop an equilibrium model of the term-
structure, where the interest risk sensitivity of banks is an exogenous state-variable that
generates time-varying bond risk premia. Kekre et al. (2022) provide further evidence on
primary dealers’ portfolio holdings impacting bond yields, and show that it is connected
to monetary policy. Du et al. (2022) document that primary dealers’ positions in Trea-
sury bonds have shifted from a net short to a net long following the Great Recession, and
bond yields have reflected this change. They further relate these findings to interest swap
spreads and balance sheet costs. I contribute to this literature by also incorporating the

5These papers build on the frameworks in Campbell and Cochrane (1999) and Bansal and Yaron
(2004) respectively.

6See for example: He and Krishnamurthy (2013), Dell’Ariccia and Marquez (2013), Brunnermeier
and Sannikov (2014), He et al. (2017), Adrian et al. (2014), Adrian et al. (2016), Drechsler et al. (2018),
Greenwood et al. (2018), Haddad and Muir (2021).
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heterogeneity in dealer positions and expectations, and demonstrating that it influences
bond risk premia.7

My paper also contributes to the literature exploring the heterogeneity of interme-
diaries in various contexts. Gabaix and Maggiori (2015), Maggiori (2017) and Morelli
et al. (2022) are examples of papers that study heterogenous intermediaries’ role in inter-
national financial markets, focusing on exchange rate determination, international risk-
sharing, and systemic debt crises respectively. Importantly, they connect heterogeneity
in risk exposures of intermediaries with financial markets. Kargar (2021) and Coimbra
and Rey (2021) explore the implications of heterogeneous intermediaries for risk premia.
Kargar (2021) considers the implications of heterogeneity in financial intermediaries’ risk
aversion for asset prices. Coimbra and Rey (2021) model intermediaries who face different
Value-at-Risk constraints, and show that heterogeneity in risk-taking matters for asset
price and risk premia dynamics. My contribution is to introduce another dimension of
heterogeneity amongst intermediaries by investigating the subjective beliefs of financial
intermediaries.

Several papers use survey data on expectations to connect investor beliefs and asset
prices. Piazzesi et al. (2015) use median survey forecasts to estimate investors’ subjective
bond risk premia using an affine-term structure model. They find that subjective risk
premia is less volatile and not very cyclical compared to the statistical premia. Nagel
and Xu (2023) explore the dynamics of subjective risk premia in many asset classes
including Treasury bonds, also using survey forecast data. They also find that subjective
premia is not very cyclical, and document a similar lack of cyclicality in out-of-sample
statistical forecasts of excess returns. I contribute to the literature studying subjective
bond risk premia by highlighting the role of primary dealer beliefs, and their associated
risk exposures in a structural equilibrium model. Furthermore, I consider the potential
impact of heterogeneity in dealers’ forecasts instead of using the consensus or median
forecasts.

Many papers present theoretical frameworks to study the implications of subjective
beliefs for asset prices.8 Fan (2006) and Xiong and Yan (2010) are studies that specifically
focus on the Treasury bond interest rates and disagreement amongst forecasters. Similar

7Other examples of papers that explore dealer and bank balance sheets in various contexts include:
Begenau et al. (2015), Boyarchenko et al. (2021) He et al. (2022), Allen and Wittwer (2023).

8See for example: Detemple and Murthy (1994), Zapatero (1998), Basak (2000), Chiarella and He
(2002), Scheinkman and Xiong (2003) Basak (2005), Anderson et al. (2005), Buraschi and Jiltsov (2006),
Jouini and Napp (2006), Jouini and Napp (2007), David (2008), Dumas et al. (2009), Chen et al. (2010),
Cvitanić and Malamud (2011), Chen et al. (2012), Cvitanić et al. (2012), Bhamra and Uppal (2014),
Chien et al. (2016), Andrei et al. (2019), Borovička (2020).
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to my setup, in their settings time-variation in risk premia is entirely due to subjective
beliefs. In Fan (2006), agents have subjective beliefs about their income shocks, and
also about other agents’ beliefs about their respective income shocks. In Xiong and Yan
(2010), agents disagree about inflation dynamics, as they receive signals about shocks to
the long-run mean of inflation, and have different beliefs about the informativeness of
signals regarding economic fundamentals. Bond prices in their setup are also a wealth-
weighted average of bond prices in hypothetical single-agent economies. However, their
work considers only two types of investors rather than multiple financial intermediaries.
Giacoletti et al. (2021) incorporate both the consensus forecast and disagreement amongst
forecasters in an affine-term structure model, and consider bond risk premia from the
perspective of a Bayesian econometrician. Yet, none of these studies incorporate data on
portfolio holdings while disciplining the belief processes.

Finally, Leombroni et al. (2020), Giglio et al. (2021) Kekre and Lenel (2022) are
recent studies that connect subjective investor expectations with portfolio holdings. My
paper complements their findings, as I show that primary dealers’ subjective beliefs and
portfolio holdings can serve as a strong mechanism in explaining the excess volatility of
long-term interest rates and time-variation in bond risk premia.

This paper is organized as follows. Section 2 describes the data and presents the
main empirical results about exposures and subjective expected excess returns. Section
3 describes the model. Section 4 presents the results from the model estimation. Section
5 concludes.

2 Exposure & Subjective Bond Returns

2.1 Data

Subjective Expectations
The subjective expectations of dealers are from the Blue Chip Financial Forecasts.

The sample starts in 2001:Q1 and ends in 2021:Q4. The data consists of surveys con-
ducted at a monthly frequency, where survey participants report their forecasts for the
averages of various macro-financial variables over a quarterly horizon up to five quar-
ters ahead. Primary dealers who participate in the surveys over my sample are Bank
of America, Bank One, Citigroup, Goldman & Sachs, J.P. Morgan & Chase, and Wells
Fargo.
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The forecasts I use to construct subjective bond excess returns are for the average
Federal Funds Rate, the 3-month, 6-month, 1-year, 2-year, 5-year, 10-year, and 30-year
Treasury bond interest rates, over the quarter during which the survey was conducted.
To obtain quarterly observations on dealers’ expectations, I use their forecasts at the
beginning month of each quarter.

In some surveys, multiple subsidiaries of the same dealer participate. I take the
average of their forecasts, and exclude those who are not directly subsidiaries of the
dealer.

Expected Excess Returns
Let ypτqt denote the (log) interest rate (or yield) on a zero-coupon bond with maturity

of τ quarters at time t. The bond price is: P pτqt “ exp
`

´ τy
pτq
t

˘

. I use this relation
to convert interest rate forecasts into implied bond price expectations. The notation
rt “ y

p1q
t denotes the one-quarter short-term interest rate, and ppτqt denotes the log bond

price. The return (in logs) on a bond with maturity τ , in excess of the short-rate, over a
holding period from t to t` 1 is defined as:

rx
pτq
t`1 “ p

pτ´1q
t`1 ´ p

pτq
t ´ rt. (1)

Let sypτqt,t`1 denote the average interest rate on a τ period bond between t and t` 1. This
average rate corresponds to the forecasted interest rate variables in Blue Chip surveys.
Dealer i’s average expected returns from buying a bond of maturity τ between t and t`1
and selling it between t ` 1 and t ` 2, in excess of the average short-rate between t and
t`1, is denoted with Ei

trĎrx
pτq
t`1,t`2s. Using the relation between log prices and log interest

rates, these expectations relate to survey forecasts at time t as:

Ei
trĎrx

pτq
t`1,t`2s “ ´pτ ´ 1q Ei

trsy
pτ´1q
t`1,t`2s

looooomooooon

forecast of τ´1
quarter interest

rate

` τ Ei
trsy

pτq
t,t`1s

loooomoooon

forecast of τ
quarter interest

rate

´ Ei
trsrt,t`1s

looomooon

forecast of
3-month

interest rate

.
(2)

The τ quarter and the 3-month interest rate forecasts are directly observed. However,
y
pτ´1q
t is not reported for all the maturities available in the surveys. For the 1-year bond,
I use the next-quarter ahead forecasts of the 6-month rate to recover the implied 9-month
interest rate.

For longer maturities, I use term-structure equalities to approximate the implied fore-
casts. The quality of approximation relies on two key assumptions. First, I assume that
each forecaster’s beliefs satisfy the law of iterated expectations. Now, let rpyi,pτqt denote
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the subjective term premium of dealer i at time t. No-arbitrage implies that the interest
rate forecast of a τ period bond can be decomposed into the average expected future
short-rates, and a term premium:

Ei
t

”

y
pτq
t

ı

“
1
τ
Ei
t rrt ` rt`1 ` . . .` rt`τ´1s ` rpy

i,pτq
t . (3)

The second assumption is that the difference between the subjective term premia on τ´1
and τ period bonds is small relative to the subjective term premium on the τ ´ 1 period
bond. This difference arises only due to the subjective premium commanded for holding a
zero-coupon bond from t`τ ´1 to t`τ . For a 2-year bond, the difference corresponds to
the additional premium the dealer requires to hold the bond for 8 quarters as opposed to 7,
and to the additional premium to hold the bond for 40 quarters as opposed to 39 quarters
for a 10-year bond. As long as this additional component constitutes a small fraction of
the term-premium, the approximation works well. In Appendix A.1, I formally derive
why the two assumptions are needed, and discuss the accuracy of the approximation in
detail. Appendix A.2 further shows that replacing the forecast of the 3-month interest
rate in (2) with the actually observed 3-month interest rate does not alter the results of
the paper.

Interest Rate Data
The data on interest rates is from Liu and Wu (2021), who use a non-parametric

kernel-smoothing method to estimate rates on zero-coupon bonds from observed Treasury
bond prices. The data is monthly with maturities ranging from 1 month to 30 years. I
average their monthly data over a quarter to obtain a quarterly series.

Exposures
To construct my exposure measure, I closely follow Gomez et al. (2021). I use the

quarterly Consolidated Financial Statements for Bank Holding Companies (form FR Y-
9C) administered by the Federal Reserve Board, and the quarterly CRSP/Compustat
database. Both datasets are obtained from WRDS. I focus on the Bank Holding Compa-
nies (BHC) of the primary dealers, for which granular data is available over the sample
period.

The measure of exposure is:

Exposurei “ 1´ Assetsiď1 ´ Liabilities
i
ď1

Total Assetsi
, (4)
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where Assetsiď1 and Liabilitiesiď1 indicate the assets and liabilities of dealer i that are
repricing or maturing within one year respectively. The measure corresponds to 1 ´
Income Gapi as defined by Mishkin and Eakins (2009) and Gomez et al. (2021). My
measure reflects the portion of net long-term, fixed-rate asset holdings, and thus the
interest-rate sensitivity of dealer portfolios. It is available at a quarterly frequency and
for the entire cross-section of dealers in my sample, and it corresponds to how interest-rate
sensitivity is measured in practice by market-participants. Appendix A.2 details the use
of CRSP/Compustat database as an alternative to construct Assetsiď1 and Liabilitiesiď1,
in a way analogous with Gomez et al. (2021)’s construction, and reports the relevant
results.

Core Deposits & Derivatives
There are two key issues in regard to using income gaps when constructing dealer

exposure. The first concerns the treatment of "core" deposits, corresponding to transac-
tion or savings deposits. Since I use BHC-level data, these deposits contribute to a large
percentage of short-term liabilities through the dealers’ commercial banking subsidiaries.
However, despite their short-term contractual maturity, the interest rates on these de-
posits are known to adjust sluggishly to market rates, and thus these deposits are like
longer term assets. In constructing the income gaps, and consequently the exposures, I
treat these deposits as liabilities that reprice or mature within more than one year as in
Gomez et al. (2021).

The second issue with measuring interest-rate risk exposure is the treatment of deriva-
tives. Dealers can in principle trade in derivatives to manage their exposure to interest-
rate risk, which would imply that the measure of exposures would overestimate the actual
risk exposures. Yet, Begenau et al. (2015) find that banks who are large participants in
the derivatives market do not hedge their exposure due to other business, and instead
have derivative positions that gain in value when interest rates fall, just like long-term
bonds. This finding suggests that dealers are even more exposed to interest rate risk.
Since the exposure measure (4) does not contain derivatives, it understates the actual
exposure by dealers.

Despite its limitations, the measure of exposures reveals an important degree of vari-
ation both over time and in the cross-section that is consistent with the findings of the
literature on banks’ risk-taking. Figure 1 depicts the time-series of the cross-sectional
average of dealer exposures. There is a slight increase in dealer exposures leading up to
the Great Financial Crisis (GFC) in 2008, and since then exposures have been declin-

11



Figure 1: Avg. Dealer Exposure

Notes: The teal line plots the average exposure across dealers. The grey dotted lines plot the individual
dealer exposures. Shaded areas correspond to NBER recessions.

ing. With the infusion of short-term reserves into the banking sector due to quantitative
easing (QE), dealer exposures steadily decline in the post-GFC period. Similarly, during
the Covid-19 recession, exposures declined due to Fed’s QE policies.

The average exposure is not very volatile, with a standard deviation of 9.4% compared
to its sample average of 70.5%. However, the individual dealer exposures show stark
differences over the sample, and are much more volatile relative to the average. Figure
2 displays the dealer exposures after removing a time-trend to account for the effects of
QE, and after removing dealer fixed-effects.9 The two largest dealers, J.P. Morgan &
Chase and Bank of America are highlighted for comparison. Dealer exposures are much
more volatile relative to the average exposure, and display stark differences at times. For
example, earlier in the sample Bank of America is more exposed to interest rate risk
than J.P. Morgan, whereas this pattern switches directions following the GFC. During
the COVID-19 crisis, J.P. Morgan responds by lowering its exposure and then increasing

9Dealers may have different business models or investment mandates that lead to consistent differences
in exposures, which are not due to business cycle variables.
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Figure 2: Comparison of Detrended Exposure

Notes: The dark green line plots the exposure of J.P. Morgan & Chase, and the dark blue line plots the
exposure of Bank of America. The grey dotted lines plot the individual dealer exposures. Shaded areas
correspond to NBER recessions.

it back up again, whereas Bank of America rapidly increases its exposure, and then
proceeds to take on a much safer position following the crisis. These patterns suggest
that dealers choose different strategies to make profits. The following section shows that
these strategies are tightly related to dealers’ beliefs about future bond returns.

2.2 Main Results

Baseline Regression
For my benchmark empirical analysis, I estimate the following regression using quar-

terly data:
Exposuret,i “ α ` fei ` κt` β

pτqEi
t

“

Ďrx
pτq
t`1,t`2

‰

` εt,i, (5)

where i represents each individual dealer and fei are dealer-fixed effects. I include a
time-trend κt to control for the downward trend in exposures due to QE. The dependent
variable Exposuret,i is the interest-rate risk exposure measure in (4). I use the last avail-
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able observation at the beginning of the quarter for the corresponding survey forecasts.
That is, I regress the last available "snapshot" of a dealer’s exposure on their subjective
expected excess returns on long-term bonds over the following quarter.

Table 1: Exposures & Subjective Expected Excess Returns

Exposure

3-Month Treasury Fed Funds Rate

(1) (2) (3) (1) (2) (3)
1 YR ´1.210 ´2.538 ´2.538˚ ´2.489 ´2.489 ´2.489˚

(3.602) p1.91q (1.556) (2.719) (3.501) (1.774)
2 YR 1.289 2.216˚˚ 2.216˚˚ 0.766 2.539˚˚ 2.539˚˚

(1.600) p1.139q (1.157) (1.204) (1.454) (1.163)
5 YR 0.610 0.796˚˚ 0.796˚˚˚ 0.447 0.780˚ 0.780˚

(0.573) p0.359q (0.338) (0.385) (0.512) (0.534)
10 YR 0.502˚ 0.372˚˚ 0.372˚˚˚ 0.290˚ 0.548˚˚ 0.548˚˚

(0.310) p0.166q (0.150) (0.183) (0.323) (0.345)
30 YR 0.255˚˚ 0.135˚˚ 0.135˚˚˚ 0.168˚˚ 0.091˚ 0.091˚

(0.127) p0.055q (0.037) (0.083) (0.063) (0.057)

Avg. R2 0.74 0.83 0.83 0.67 0.81 0.81
Observations 323 323 323 370 370 370

Dealer FE YES YES YES YES YES YES
Time Trend YES YES YES YES

Cluster Robust SE YES YES

Notes: This table displays the estimation results from the regression:

Exposuret,i “ α` fei ` κt` β
pτqEit

“

Ďrx
pτq
t`1,t`2

‰

` εt,i

Standard errors are in parentheses. Stars indicate significance at ˚˚˚: 99%, ˚˚: 95%, ˚: 90%
confidence levels.

I consider two main specifications; one where I use the 3-month interest rate forecasts
as the short-rate while constructing expected excess returns, and another where I instead
use the Federal Funds Rate forecasts as the short-rate.10 Table 1 reports the estimated
coefficients. The standard errors for the baseline cases are corrected for heteroskedasticity
using the Huber-White method, and I also consider Liang-Zeger cluster-robust standard
errors to account for potential serial correlations.11 The coefficient estimates in column

10Dealers have access to overnight lending markets of the Fed, so the relevant short-term borrowing
rate is the Federal Funds Rate. In this case, the returns in (1) correspond to bond returns in excess of
the average overnight borrowing rate over a quarter.

11See Abadie et al. (2023).
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(2), which correspond to the estimates from (5), are all statistically significant except for
the 1-year returns. The coefficients on two and longer maturity bonds are all positive,
consistent with the notion that higher expected excess returns on long-term bonds are
associated with higher exposure to these long-term assets, captured by my exposure
measure. In contrast, the coefficients on the 1-year bond are negative, suggesting that
dealers adjust their portfolios to hold short-term, low-risk assets when they expect high
returns on short-term securities. The adjusted R2s are surprisingly high, suggesting that
after adjusting for dealer fixed effects and the time-trend, cyclical variation in subjective
expected excess returns accounts for almost all of the remaining variation in exposures.12

The results for the specification using the Federal Funds Rate are similar, displaying a
similar pattern across maturities, albeit losing some statistical significance.

Finally, to account for potential serial correlation over time in dealer specific residuals,
I compute cluster-robust standard errors treating each dealer as a single cluster. Columns
labeled (3) on 1 report the resulting standard errors and significance levels. Cluster-
robust standard errors for the 3-month Treasury short-rate specification are lower than
the Huber-White errors for maturities 1, 5, 10, and 30 years, hinting towards some degree
of negative serial correlation in dealer-specific residuals relating to these maturities. For
the 2-year returns, Huber-White errors are slightly lower, suggesting a mild positive
serial correlation. The directions of the effect for the Federal Funds Rate specification
are mixed, with no change in significance levels except for the estimate for the 1-year
returns.

The coefficients in Table 1 represent the response of exposures to a 1 percentage point
(pp.) increase in the subjective expected excess returns for each maturity, and decline in
magnitude as maturity increases. However, subjective expected excess returns on longer
bonds are much more volatile, thus it is natural that a 1 pp. increase in the expected
returns on a 30-year bond barely has a significant implication for risk exposures. To
account for this disparity, I standardize the estimates and standard errors by scaling the
subjective expected returns by their sample standard deviations. Figure 3 demonstrates
the resulting coefficients, which now correspond to a one standard deviation increase in the
subjective expected excess returns. Following the volatility adjustment, the coefficients
for each maturity line up around 2.5 pp. This finding provides further support for the use
of a single "interest rate risk exposure" measure constructed from the long-term holdings
of dealers: exposure moves in the same way in response to a one standard deviation

12Note that I do not imply any causality, as variation in subjective expected excess returns might be
reflecting variation in other macro-financial variables that matter for dealers’ exposure decisions.
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Figure 3: Standardized βpτq Estimates

Notes: The dark blue dots represent the regression coefficients from Table 1, scaled by the sample
standard deviation of the subjective expected excess returns for the corresponding maturity. The vertical
dashed red lines display the scaled 95% confidence intervals.

increase in long-term bond returns regardless of maturity. If bonds load on a single
risk factor and the loadings are increasing with maturity, then these coefficients would
correspond to the response of exposures to an expected upward movement in the risk
factor.

Predictive Regressions
Do large dealers’ interest rate risk exposures matter for realized excess returns? Had-

dad and Sraer (2020) document that average income gaps of banks significantly predict
one-year excess returns on Treasury bonds. I first repeat their exercise using only the
position data of the dealers in my sample, and I document that the resulting estimates
are very similar to those of Haddad and Sraer (2020). I run the regressions

rx
pτq
t,t`4 “ apτq ` bpτq ˆ Exposuret ` ε

pτq
t`4, (6)

where rxpτqt,t`4 is the one-year excess return on a bond with maturity τ quarters. Exposuret
corresponds to the cross-sectional average of dealers’ exposures at the beginning of each
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period. Table 2 reports the estimates. I compute Newey and West (1987) standard errors
with 4-lags correction, and adjust the estimates for potential bias as inStambaugh (1999)
using the methodology of Lewellen (2004). Average exposures of dealers significantly
predict one-year excess returns, with explanatory power declining in maturity. Except for
the 30-year bonds, all coefficient estimates are statistically significant at 90% confidence
level. The magnitude of coefficients increases in maturity in absolute terms, but the
explanatory power declines, as the adjusted R2 decreases from 0.41 for the 1-year bond
to only 0.05 for the 10-year bond. Overall, the magnitudes of estimates are highly similar
to those of Haddad and Sraer (2020), suggesting that large dealers’ exposures are an
important driver of the predictability evidence they document.13

Table 2: Exposure & Realized Bond Excess Returns

(1) (2) (3) (4) (5)
rxp4q rxp8q rxp20q rxp40q rxp120q

Exposuret 0.23˚˚˚ 0.32˚˚˚ 0.44˚˚ 0.50˚ 0.15
(0.07) (0.12) (0.23) (0.33) (0.75)

Constant ´0.12˚˚˚ ´0.17˚˚ ´0.19 ´0.17 0.14
(0.05) (0.08) (0.16) (0.25) (0.57)

Observations 83 83 83 83 83
Adjusted R2 0.41 0.30 0.12 0.05 ´0

Notes: This table displays the estimation results from the regression:

rx
pτq
t,t`4 “ apτq ` bpτq ˆ Exposuret ` ε

pτq
t`4

Newey-West standard errors with 4 lags are in parentheses. I correct
for potential bias as in Stambaugh (1999) using the methodology of
Lewellen (2004). Stars indicate significance at ˚˚˚: 99%, ˚˚: 95%, ˚:
90% confidence levels.

Now that I establish that dealer exposures predict bond excess returns, the next
question to ask is whether their subjective expectations are reflected in bond returns. To
analyze the effect of dealers’ subjective expected excess returns, I extend the regression
in (6) to incorporate dealer forecasts:

rx
pτq
t,t`4 “ apτq`bpτq Exposuret`c

pτq Ei
t

“

rx
pτq
t,t`1

‰

`γpτq Exposuret ˆ Ei
t

“

rx
pτq
t,t`1

‰

`ε
pτq
t`4, (7)

where Ei
t

“

rx
pτq
t,t`1

‰

t
represents the cross-sectional average of the quarterly subjective ex-

pected excess returns of dealers at date t, for the maturities available in the surveys.
13 Haddad and Sraer (2020) report results for maturities longer than 5-years in their Internet Appendix.
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The main coefficient of interest is γpτq, the effect of the interaction term. I am interested
in seeing whether the predictive power of dealer exposures depends on their subjective
expected excess returns.

Table 3: Exposure, Subjective Beliefs & Realized Bond Excess Returns

(1) (2) (3) (4)
rxp8q rxp20q rxp40q rxp120q

Exposuret 0.48˚˚˚ 0.95˚˚˚ 0.86˚˚ 0.49
(0.10) (0.22) (0.39) (0.89)

Eit
“

rx
pkq
t,t`1

‰

t
´0.77˚˚ ´0.52˚˚˚ ´0.15˚ ´0.10
(0.39) (0.17) (0.10) (0.12)

Exposuret ˆ E
i
t

“

rx
pkq
t,t`1

‰

1.29˚˚˚ 0.82˚˚˚ 0.25 0.11
(0.51) (0.22) (0.21) (0.14)

Constant ´0.27˚˚˚ ´0.52˚˚˚ ´0.39˚ ´0.14
(0.07) (0.16) (0.30) (0.71)

Observations 83 83 83 83
Adjusted R2 0.49 0.30 0.08 -0

Notes: This table displays the estimation results from the regression:

rx
pτq
t,t`4 “ apτq ` bpτq Exposuret ` c

pτq Eit
“

rx
pτq
t,t`1

‰

` γpτq Exposuret ˆ Eit
“

rx
pτq
t,t`1

‰

` ε
pτq
t`4

Newey-West standard errors with 4 lags are in parentheses. I correct for potential bias as in Stambaugh
(1999) using the methodology of Lewellen (2004). Stars indicate significance at ˚˚˚: 99%, ˚˚: 95%, ˚:
90% confidence levels.

Table 3 reports the estimation results for this regression. The main effects of exposures
are statistically significant except for the 30-year excess returns, and quarterly average
expected excess returns of dealers positively predict realized one-year excess returns,
as the coefficients in the second row of Table 3 are significant except for the 30-year
returns. What provides even stronger evidence on the role of subjective beliefs are the
coefficient estimates on the interaction terms. For 2 and 5-year excess returns, average
dealer exposure more strongly predicts realized excess returns when the average expected
excess returns of dealers are higher. This suggests that the Euler equation for large dealer
banks holds under their subjective beliefs.

If in equilibrium dealers expect high excess returns on long-term bonds, and thus
increase their holdings of long-term assets, this would lead them to be more exposed to
interest rate risk. The market compensation for risk has to rise in order for them to take
such positions. When the subjective expected excess returns, representing the compen-
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sation dealers expect for bearing interest rate risk, are higher, the market compensation
for risk has to adjust more strongly. This mechanism is the main driving force for bond
risk premia in my quantitative model.

3 Model

This section represents an equilibrium model that captures the main empirical findings
presented in the previous section. The main focus of the model is interest rate risk,
subjective expectations about interest rates, and risk exposures. The model describes
heterogeneous dealers who trade in bonds with various maturities. The dealers have
heterogeneous expectations about future interest rates, and choose their risk exposures
accordingly.

3.1 Setup

I consider a continuous time, infinite horizon pure-exchange economy. Throughout I
operate on a probability space pΩ,F ,Pq augmented with the filtration F “ tFt : 0 ď tu,
satisfying the usual regularity conditions in Protter (2005).

The economy is populated by a continuum of infinitely lived dealers. There are N
different types of dealers, indexed by i : 1, . . . N , who differ in their beliefs about the
interest rate rt on a short-term bond. Each dealer discounts the future with a rate of
time preference ρ, has log utility, and receives an endowment stream yit.

Dealers trade with each other using contingent claims that are in zero net supply.
There are enough contingent claims so that markets are dynamically complete. Dealers
maximize their expected utility, which they evaluate using their subjective beliefs. All
dealers of type i are identical with each other, thus in what follows I will directly proceed
with dealer types instead of referring to individual dealers.

Short Rate
There is a single shock process in this economy: interest-rate risk. To introduce this

shock, I first specify the equilibrium dynamics of the short-rate and subjective beliefs of
different dealer types. Then I back out the exogenous aggregate endowment process that
is consistent with the equilibrium short-rate and dealer beliefs.

The short-rate follows a mean-reverting Ornstein-Uhlenbeck process:

drt “ κrpµt ´ rtq ` σrdBt, (8)
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where Bt is a standard Brownian Motion. Based on Balduzzi et al. (1998), I assume
that the mean µt to which the short-rate reverts to is stochastic, and also follows an
Ornstein-Uhlenbeck process:

dµt “ κµpµ̄´ µtq ` σµdBt. (9)

The short-rate and its stochastic mean are driven by the same Brownian Motion Bt,
which represents interest-rate risk. The volatilities σr and σµ can have positive or negative
signs. For example, if σr ą 0 and σµ ă 0, a positive short-rate shock today implies lower
expected rates in the future.

Subjective Beliefs
At each time t, dealers have subjective expectations of the stochastic mean, described

as a bias from the true value by εit:

µir,t “ µr,t ` ε
i
t, (10)

where the law of motion of εit is:

dεit “ ´κεε
i
tdt` σ

i
εdBt. (11)

To keep the model parsimonious, I assume that the rate of mean-reversion κε is the same
across all dealers. However, dealers differ in the volatility of their beliefs, σiε. That is,
each dealer’s bias responds differently to interest rate risk, which is the only source of
heterogeneity in dealers’ beliefs. Yet, although σiε are time-invariant, because the belief
processes εit vary over time, dealers will have heterogeneous beliefs at any point in time.
I do not take a stance on why this bias arises. Specifically, although it is possible to
generate such bias in a Bayesian-learning setting, I allow for the possibility that agents
are non-Bayesian.14

Aggregate Endowment
The aggregate endowment follows a Geometric Brownian Motion with a time-varying

drift:
dYt
Yt

“ prt ` µY,tq dt` σY dBt. (12)

14 In a similar setup, Dumas et al. (2009) show how the law of motion described in Eq. (11) can be
the outcome of an imperfect information setting with Bayesian agents learning about correlated signals.
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The component of the drift in excess of the short-rate, µY,t, is determined in equilibrium
such that the short-rate process defined in (8) and the subjective beliefs defined in (10)
are indeed the equilibrium processes. The volatility of the aggregate endowment σY , on
the other hand, is constant. This feature of my model is important to assess the role of
subjective beliefs of dealers, as it implies that the quantity of risk is constant. Dealers
have logarithmic utility with the coefficient of relative risk aversion set to 1, and thus risk
assessment is also constant. Taken together, these assumptions would generate constant
risk premium under rational expectations as in the standard Lucas-asset pricing model.
The only potential source of time-variation in risk premium is via the subjective beliefs
of dealers.

To summarize the model setup, dealers observe the short-rate, but agree-to-disagree
about its dynamics. If σµ and σiε are of the same sign, then dealer i overreacts to interest
rate shocks. If instead they are of the opposite sign, dealer i underreacts. Now suppose
σr ą 0, σµ ă 0. In this case, a dealer who underreacts expects higher future rates
relative to the statistical dynamics. Because bond prices are inversely proportional to
interest rates, this is a dealer who is "pessimistic" about bond returns. On the contrary, a
dealer who overreacts expects very low rates and thus is "optimistic" about bond returns.
Finally, degrees of dealer optimism and pessimism vary over time due to the stochastic
volatility term in (51).

3.2 Equilibrium

Before I move on to defining the equilibrium in this economy, I first define the restriction
on the aggregate endowment such that the resulting equilibria are consistent with the
short-rate process and subjective beliefs.

Lemma 1. Assume that the aggregate endowment process is as given in (12). Then, if
µY,t satisfies:

µY,t “ ´ρ` σ
2
Y ´

N
ÿ

i“1

cit
Yt

ˆ

σY ε
i
t

κr
σr

˙

, (13)

and the subjective beliefs are characterized by (10) and (11), then the short-rate process
(8) is the equilibrium short-rate process.

Proof. See B.6.

Note that under rational expectations, εit “ 0, @i P I and this condition reduces down
to µY,t “ ´ρ ` σ2

Y for all t ą 0. Then the drift of the aggregate endowment becomes
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rt ´ ρ ` σ2
Y , which is exactly the condition on the equilibrium short-rate satisfied in the

standard Lucas-asset pricing model. Rearranging this expression yields further insights:

N
ÿ

i“1

cit
Yt

ˆ

µY,t ` σY ε
i
t

κr
σr

˙

looooooooomooooooooon

subjective µY,t

“ ´ρ` σ2
Y . (14)

The term in the parentheses is the subjective drift of the endowment in excess of the short-
rate under dealer i’s beliefs. The condition then states that the wealth-share weighted
average of the subjective "excess" return on the aggregate endowment is constant.

Equipped with this condition, I can now define the equilibrium:

Equilibrium: Given a distribution of initial endowments tyi0uNi“1, an equilibrium in this
economy is a collection of consumption processes tcituNi“1 and a set of contingent claims
prices such that:

1. dealers optimize,

2. markets clear ;
I
ř

i“1
cit “ Yt, contingent claims holdings sum up to zero

3. µY,t satisfies (14).

3.3 Interest Rate Risk Exposures

In this section, in order to connect the model to data on exposures and dealer forecasts,
I express dealers’ optimization problem in terms of bond returns and interest-rate risk
exposures.

There is a single risk-factor, Bt. Then, standard arguments imply that the risk-free
asset paying rt and one risky asset are sufficient to span and complete asset markets.15

Dealers choose their "exposure" to the risk-factor, therefore any dealer portfolio position
can be perfectly replicated with a simple portfolio consisting of these two assets. Fol-
lowing Haddad and Sraer (2020), I introduce a "coupon bond" as the risky asset with a
stream of dividend payments θe´θτ , at each date τ ě t. This coupon bond represents a
consolidated portfolio of all long-term assets held by dealers, such as deposits, mortgage-
backed securities, corporate bonds, loans, etc. The parameter θ controls the maturity
profile of these assets, as the average maturity is θ´1. I use xit to denote type i dealers’

15See for example: Duffie (2010).
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exposure to the risky asset, corresponding to my exposure measure in the data. Finally,
I also introduce zero-coupon bonds of all maturities in zero-net supply.

With log-utility, standard arguments imply that optimal consumption is a constant
fraction of wealth: cit “ ρwit where wit denotes the wealth of dealer type i. Moreover,
since with complete markets, any portfolio position is redundant, I can express dealers’
optimization problem in terms of their zero-coupon bond portfolios and their wealth:

Vt
`

wit
˘

“ max
!

tα
pτq,i
t`s uτPp0,8q

)

Eit
„
ż 8

t

e´ρs log
`

ρwis
˘

ds



s.t.

dwit “ wit prt ´ ρq dt`

ż 8

0
α
pτq,i
t wit

˜

dP
pτq
t

P
pτq
t

´ rtdt

¸

dτ,

(15)

where αpτq,it denotes the portfolio share of bond with maturity τ as a fraction of wealth,
and P pτqt denotes the price of the bond with maturity τ . dP

pτq
t

P
pτq
t

´rt is thus the instantaneous
excess return on a bond with maturity τ .

Now, the portfolio of zero-coupon bonds can be perfectly replicated using the risky
coupon bond. Thus the portfolio shares of bonds and "exposure" to the risky asset are
related in the following way:

Exposure xit “
α
pτq,i
t

θe´θτ
“

Portfolio share of bond with maturity τ
dividend of long term asset . (16)

Then I can rewrite the dealers’ problem in terms of exposures and bond returns as follows:

Vt
`

wit
˘

“ max
ttxitu

8

t“0u
Eit

„
ż 8

t

e´ρs log
`

ρwis
˘

ds



s.t.

dwit “ wit prt ´ ρq dt`x
i
t

ż 8

0
θe´θτwit

˜

dP
pτq
t

P
pτq
t

´ rtdt

¸

dτ,

(17)

The optimality condition for dealers derived in Appendix B.2 is:

Eit

˜

dP
pτq
t

P
pτq
t

¸

´ rt
looooooooomooooooooon

subjective expected excess returns

“ xit

ż 8

0
θe´θu Covit

˜

dP
pτq
t

P
pτq
t

,
dP

puq
t

P
puq
t

¸

du

looooooooooooooooooooooomooooooooooooooooooooooon

covariance of returns with portfolio

. (18)
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This condition is equivalent to the standard Euler equation for dealers, under dealer i’s
beliefs. The left-hand side of the equality is the dealer i’s expected excess return, or
required risk compensation for holding a bond with maturity τ . The right-hand side of
the equality tells us that the compensation required depends on the covariance of the bond
excess returns with the already accumulated exposure to interest-rate risk. Furthermore,
Girsanov Theorem implies that Covit

´

dP
pτq
t

P
pτq
t

,
dP
puq
t

P
puq
t

¯

“ Covt

´

dP
pτq
t

P
pτq
t

,
dP
puq
t

P
puq
t

¯

. Thus in the
model, differences in exposures across dealers depend only on the subjective expected
excess returns, not on differences in risk assessment.

3.4 Bond Prices

I use dealers’ optimality condition (18) to derive zero-coupon bond prices. First, I show
that a familiar condition in models with subjective beliefs and log-utility is also satisfied
in my model.

Proposition 1. Consider a hypothetical economy consisting of only type i dealers. Let
P
pτq,i
t denote the price of a zero-coupon bond with maturity τ in this hypothetical single-

dealer economy. Then, the bond price in the heterogeneous dealer economy is given by
the wealth-share weighted average of single-dealer economy prices:

P
pτq
t “

N
ÿ

i“1

cit
Yt
P
pτq,i
t . (19)

Proof. See Appendix B.4.

With log-utility, each dealer’s pricing impact on the actual bond price depends on
their relative wealth (consumption). The richer a dealer is, the more influence it has on
the market prices.

To obtain the single-dealer economy bond prices, I guess and verify an exponential-
affine form, as is standard in the term-structure literature. I derive closed-form solutions
for these prices, along with other equilibrium objects such as risk premia.

Proposition 2. Bond prices in the hypothetical single-dealer economy are given by:

P
pτq,i
t “ exp

ˆ

Apxit, τq ` Crpτqrt ` Cµpτqµt ` C
i
εpτqε

i
t

˙

, (20)

where
Crpτq “ ´

p1´ e´κrτ q
κr

, (21)
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Cµpτq “ ´
1
κµ

ˆ

1´ κre
´κµτ ´ κµe

´κrτ

κr ´ κµ

˙

, (22)

Ci
εpτq “

κµσr ` κrσµ
κµ pκrσiε ´ κεσrq

˜

1´ e
´

ˆ

κε´κr
σiε
σr

˙

τ

¸

´
κµσr ` κrσµ

κµ pκrσiε ´ κεσr ` κµσrq

˜

e´κrτ ´ e
´

ˆ

κε´κr
σiε
σr

˙

τ

¸

,

(23)
and

Apxit, τq “

ż
ˆ

Cµpτqκµr µ̄`
1
2Crpτq

2σ2
r `

1
2Cµpτq

2σ2
µ `

1
2C

i
εpτq

2σi2ε ` Crpτqbµpτqσrσµr

` CrpτqC
i
εpτqσrσ

i
ε ´ x

i
t

´

Crpτqσr ` Cµpτqσµ ` C
i
εpτqσ

i
ε

¯

Zi
θ,r

˙

dτ,

(24)

where
Zi
θ,r “

σr pκε ` θq pκrσµ ` κµσr ` σrθq

pκr ` θq pκµ ` θq pκrσiε ´ κεσr ´ σrθq
. (25)

Proof. See Appendix B.4.

The coefficients on the state-variables depend on the relative persistences and volatil-
ities of the short-rate, its stochastic mean, and dealer beliefs. Note that the coefficient
Apxit, τq depends on the exposure of dealer i. This is because the prices in the single-
dealer representative agent economy should be consistent with the risk exposures under
the heterogeneous dealer economy. xit is not pinned down in the single-dealer economy,
and hence must adjust until the hypothetical economy prices are such that the risk-factor
exposure is identical to the one in the heterogeneous dealer economy. This has to be sat-
isfied for each dealer, such that the optimal exposures are a fixed-point satisfying the
bond price equation (19).

The interest rates on the bonds are:

y
pτq,i
t “ ´

1
τ

ˆ

Apxit, τq ` Crpτqrt ` Cµpτqµt ` C
i
εpτqε

i
t

˙

. (26)

Figure 4 demonstrates the interest rate loading coefficients, ´Crpτq{τ,´Cµpτq{τ and
´Cεpτq{τ . The loading on rt declines exponentially, indicating that the short-rate alone
can potentially match the level of the yield curve but not the slope. The loadings on µt
and εit on the other hand have a hump-shape. This hump-shape is important for matching
the term-spreads of long and short-term interest rates, and the volatilities of long-term
interest rates.

How do exposures affect expected excess returns? Figure 5 demonstrates how the
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Figure 4: Interest Rate Loadings

Notes: Left panel: ´Crpτq{τ as a function of maturity for different values of κr. Middle panel: ´Cµpτq{τ
as a function of maturity for different values of κr and κµ. Right panel: ´Cεpτq{τ as a function of maturity
for different values of σiε, κε.

expected excess bond returns in the single-dealer economy depend on exposures, from
the perspective of the econometrician. Higher exposure increases the expected excess
returns on bonds of all maturities, and the effect is stronger when short-rate volatility
is higher. Intuitively, higher exposure increases the bond risk premium that the dealers
command to hold long-term bonds. In an equilibrium with only type i dealers, bond
returns adjust accordingly so that the portfolio positions of dealers are unchanged. This
mechanism relating exposures and bond risk premia is identical to the one in Haddad
and Sraer (2020) or Vayanos and Vila (2021). Yet, with heterogeneous dealers, there are
now three forces that impact the (statistical) bond excess returns: (i) exposures of each
dealer type, (ii) subjective beliefs of dealers, and (iii) the relative wealth-share of each
dealer type. The risk premium is the required compensation for exposure to interest rate
risk, the risk of being "wrong" about future interest rate dynamics, and the risk of wealth
being redistributed amongst dealers given their positions.

Finally, to compute bond prices in the heterogeneous dealer economy I need the
consumption shares. The following proposition shows that consumption shares can be
computed directly using the exogenous laws of motion for the state variables.
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Figure 5: Exposures & Excess Returns

Notes: The plotted lines correspond to the drift of bond returns in the hypothetical single-dealer
economy under the econometrician’s measure. Each line corresponds to the expected excess returns for
different levels of exposure to interest rate risk, and for different volatilities of the short-rate.

Proposition 3. Define the relative likelihood ratio of dealer j’s beliefs with respect to
dealer i’s beliefs as ξj,it . These likelihood ratios evolve as:

dξj,it

ξj,it
“ pεjt ´ ε

i
tq
κr
σr
dBt ´ pε

j
t ´ ε

i
tqε

i
t

ˆ

κr
σr

˙2

dt (27)

Moreover, relative consumption ratios also evolve as:

dcjt{c
i
t

cjt{c
i
t

“
dξj,it

ξj,it
, (28)

starting from initial values λi{λj, where λi and λj depend only on the initial endowments
tyi0u

I
i“1.

Proof. See Appendix B.6.

Proposition 3 states that the relative consumption ratios of dealers can be charac-
terized for the entire history given the evolution of exogenous subjective belief processes
and the initial endowment distribution. I solve for c1

t {Yt at each period using the aggre-
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gate resource constraint, and use the relative likelihood ratios to recover the remaining
consumption shares. Details of the solution method are provided in Appendix B.6.

Equation (27) provides useful insights about the evolution of wealth ratios. The first
term pεjt ´ εitq

κr
σr
dBt reflects the changes in wealth that are due to movements in interest

rates. If εit ă εjt , that is dealer j expects higher interest rates compared to dealer i, then
a positive shock to interest rates favors dealer j and wealth flows from i to j. The second
term ´pεjt ´ ε

i
tqε

i
t

´

κr
σr

¯2
dt reflects the overall accuracy of beliefs. On average, the dealers

with smaller σiε are more accurate about their forecasts of µt. The sign of this expression
depends on the sign of εit and the relative magnitudes of εit and ε

j
t . Hence in the long run,

the most accurate dealer (smallest |εit|) accumulates all wealth by taking positions based
on superior forecasts. These two forces characterize the evolution of wealth in the short
and long-run. Shocks to interest rates can generate wealth flows towards less accurate
dealers temporarily, but eventually the most accurate dealer is the sole survivor.16

4 Quantitative Analysis

4.1 Estimation

There are three key goals of my estimation strategy: (i) to match actual Treasury bond
interest rate dynamics, (ii) to match the dynamics of dealers’ forecasts, and (iii) to match
the relation between exposures and forecasts. In order to do so, I proceed step-by-step.

Subjective Forecast Errors

Proposition 4. Let ∆t denote the time-subinterval in the discretized version of the model.
Let ∆Bt “ Bt`∆t´Bt denote the discrete-time version of the Brownian Motion intervals,
that is, independent and identically distributed standard Normal variables. Then, the
subjective forecast errors of the short-rate follow an ARMA(1,1) in discrete time:

rt`∆t ´ E
i
t rrt`∆ts “ e´κε∆t

`

rt ´ E
k
t´∆t rrts

˘

´
`

σiε
`

1´ e´κr∆t
˘

` e´κε∆tσr
˘

?
∆t ∆Bt

` σr
?

∆t ∆Bt`∆t.

(29)

Proof. See Appendix B.7.
16Survival here refers to a positive wealth share as time goes to infinity, following Sandroni (2000),

Kogan et al. (2006), Yan (2008), Borovička (2020) and others.
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In my model, the time-subinterval ∆t is one quarter. The autoregressive component of
the ARMA(1,1) specification (29) identifies κε, and the unconditional variance identifies
σr. Moreover, since κε is assumed to be the same across all dealers, dealers’ forecast
errors can be stacked together to estimate (29). I use the subjective forecast errors of the
3-month interest rate to estimate the parameters of this equation. The estimates are all
statistically significant at 95% confidence level.

Exposures & Term Structure Estimation
Upon estimating κε and σr via (29), there are 4 ` K parameters left to estimate:

pκµ, σµ, κr, µ̄q and each dealer’s σiε. As derived formally in Appendix B.3, the model
implies that dealers’ exposures satisfy:

xit

ż 8

0
θe´θτ

I
ř

i“1

ˆ

cit
Yt
P
pτq,i
t

ˆ

ζτ,ir,t ´
ř

j‰i

cjt
Yt

`

εjt ´ ε
i
t

˘

˙˙

I
ř

i“1

cit
Yt
P
pτq,i
t

dτ “ σW,r ´
κr
σr

I
ÿ

i“1

cit
Yt
εit `

κr
σr
εit. (30)

The key observation in regards to (30) is that the differences in dealers’ exposures are
only due to the last term κr

σr
εit. The wealth-share weighted average of subjective beliefs

and bond prices matter for the common "level" of exposures, yet the cross-sectional differ-
ences are entirely determined by individual biases. Then, the cross-sectional differences
in the sample standard deviations of subjective beliefs perfectly mimic the cross-sectional
differences in the sample standard deviations of exposures, scaled by a factor common to
all dealers. This observation reduces the number of free parameters to estimate. Namely,
I search over the parameter space for a single belief volatility σ1

ε , and use the differences
in the sample standard deviations of dealers’ exposures to back out the remaining belief
volatilities. This leaves 5 remaining parameters to estimate. My approach takes into ac-
count the connection between exposures and subjective beliefs, and restricts the estimated
belief processes to be coherent with dealer positions in the data. These restrictions are
highly important to discipline the model, as they prevent the subjective beliefs dynamics
from generating counterfactual portfolios in order to match interest rate dynamics.

The methodology for estimating the parameter vector pκµ, σµ, κr, µ̄, σ1
ε q is rather stan-

dard in the term-structure estimation literature. Given an initial guess for the parameters,
I generate the subjective belief processes and accordingly the consumption shares. The
exposures constructed in Section 2 are directly input to the model. Thus, the data on
exposures both directly matches their model counterparts, and disciplines the subjective
belief processes. Upon obtaining the consumption shares, beliefs, and exposures, it is
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straightforward to recover the component of interest rates that only depend on rt and
µt. I assume the 1-year and 5-year interest rates are perfectly observed without any
measurement error, and subtract from them the model-implied components that depend
on dealer-specific variables. The remaining components are affine in the common state
vector, and can be inverted to recover rt and µt, similar to an affine term-structure model
estimation.17

I use the Generalized Method of Moments to search over the parameter space, target-
ing the following term-structure moments:

1. The time-series of the averages of 1-year, 2-year, 4-year, 5-year, 7-year and 10-year
interest rates at each quarter.

2. Term-spreads of 2 and 5-year, and 2 and 10-year interest rates.

3. Sample standard deviations of 1-year, 2-year, 4-year, 5-year, 7-year and 10-year
interest rates.

Finally, θ´1 is calibrated to match the average maturity of long-term assets to be 10
years following Haddad and Sraer (2020), the time-preference rate is set to 0.03, and σY
is calibrated to match the observed exposures. The initial distribution of endowments is
calibrated to match the distribution of gross domestic assets amongst the dealer banks
in my data, at the beginning of the sample in 2001:Q1.18 I exclude Bank One from the
model estimation, as they merge with J.P. Morgan early in the sample, and thus there
are few observations for their exposures and forecasts.

Estimation Results
Table 4 reports the estimation results. The stochastic mean is highly persistent,

almost like a random walk, as κµ is nearly zero. The short-rate is also highly persistent,
yet less so than the stochastic mean. A noteworthy observation is that the volatility
of the short-rate and the stochastic mean have opposite signs. A positive shock to the
short-rate (dBt ą 0) leads to lower expected future rates since σµ ă 0, and therefore
higher bond prices.

The value of κε indicates that subjective biases are highly transitory; in discrete-
time it corresponds to an autoregressive coefficient of 0.23 for quarterly data. There
is substantial heterogeneity in the volatilities of beliefs, with estimates ranging from

17See for example: Piazzesi (2010).
18I compute the distribution using the reported domestic assets on the form

https://www.federalreserve.gov/releases/lbr/20010331/lrg_bnk_lst.pdf.
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0.005 to 0.047, which more than doubles the volatility of the stochastic mean in absolute
terms. The estimates suggest that dealers are "pessimistic", as the belief volatilities have
opposing signs with the volatility of the stochastic mean. Two dealers, in particular,
expect future short-rates to be higher following a positive short-rate shock today, as
σ1
ε ` σµ and σ3

ε ` σµ are both positive. Since higher expected future rates signal lower
bond prices, these two dealers expect low returns on long-term bonds following an increase
in the short-rate, thereby requiring higher compensation for holding these securities. The
overall pessimism of dealers about long bond returns explains why dealers do not perceive
a market-timing strategy in real-time, as they expect lower excess returns compared to
the econometrician.

Table 4: Estimated & Calibrated Parameters

Description Value Target

κµ : persistence of stochastic mean 0.0010 Interest rate moments
σµ : volatility of short-rate level ´0.0189 Interest rate moments
κr : persistence of short-rate 0.0302 Interest rate moments
σr : volatility of short-rate 0.0079 ARMA(1,1) estimates
µ̄ : long-run mean of short-rate 0.0125 Interest rate moments

κε : persistence of beliefs 3.0931 ARMA(1,1) estimates
σiε : volatilities of dealer beliefs 0.030, 0.005, 0.047, 0.015, 0.016 Differences in volatilities

of dealer exposures

ρ : time-preference rate 0.03 Literature
σY : volatility of aggregate endowment ´0.0034 Dealer exposures
θ : average maturity of long-term assets 0.1 10 years - (Haddad and

Sraer (2020))

Notes: This table displays the estimated parameters of the model, and the calibrated parameters. The
model is estimated using quarterly data, and the reported estimates are in quarterly terms.

4.2 Model Fit

In this section, I evaluate the goodness-of-fit of the model. Figure 6 displays the targeted
data moments and the model counterparts. The model successfully matches the time-
series of the average of 1, 2, 4, 5, 7, and 10-year interest rates. Model implied term-
spreads of 5-2 year and 10-2 year interest rates replicate the dynamics of their data
equivalents, yet the model implied spreads are slightly lower during certain parts of the
sample. Finally, the model matches the 1-year and 10-year interest rate volatilities almost
perfectly, yet slightly underestimates the volatilities of the remaining maturities. Still,
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the model-generated values are close to their data counterparts. Overall, the model fares
well in matching the targeted moments.

4.3 Untargeted Moments

I now discuss how the model matches untargeted moments about excess return pre-
dictability. The model’s ability to match the statistical properties of bond excess returns
is an important indicator of the plausibility of the model-implied real-time bond risk
premia.

Fama-Bliss Regressions
I first consider a classic test of excess return predictability based on Fama and Bliss

(1987) (FB henceforth). Define the one year log forward rate as:

f
pτq
t “ p

pτ´4q
t ´ p

pτq
t . (31)

FB document that the "forward spread" between the τ period forward rate and the one-
year interest rate predicts the one-year excess returns on a τ period bond, by estimating
the regression:

rx
pτq
t,t`4 “ a

pτq
FB ` β

pτq
FBpf

pτq
t ´ y

p4q
t q ` υ

pτq
t`4. (32)

If the Expectations Hypothesis holds in its weak form, then expected excess returns are
constant, indicating βpτqFB “ 0 and thus no predictability. In its strong form, it further
implies apτqFB “ 0. Since the original work of FB, the null hypothesis of no-predictability
is rejected by numerous studies.

I estimate 32 separately for model-generated and actual data, using 2, 3, 4, and 5-
year bond excess returns and forward spreads. Figure 7 demonstrates the predicted values
xrxpτqt,t`4 “ pa

pτq
FB`

pβ
pτq
FBpf

pτq
t ´y

p4q
t q from these regressions. These predicted values correspond

to the in-sample statistical expected excess returns. Clearly both the model-implied and
data series are time-varying, indicating return predictability. Expected excess returns
are cyclical, rising swiftly following recessions and declining subsequently. My model
overestimates the 2-year and 3-year expected excess returns, but for the 4 and 5-year
bonds, the model successfully matches the data values. Moreover, despite overestimating
the level of expected excess return on the 2 and 3-year bonds, the model successfully
captures the cyclical behavior of these returns. Since these moments are not targeted
during estimation, these results hint towards the model’s ability to generate plausible
time-variation in bond risk premium. Yet, one should keep in mind that the plotted
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series in Figure 7 are statistical risk premia, estimated using full-sample information.
They do not necessarily reflect the real-time risk premium.

Figure 7: Fama-Bliss Predicted Values

Notes: The red lines correspond to the model-implied predicted values, and the blue lines correspond
to the predicted values using actual data. All values are expressed in percentages.

Cochrane-Piazzesi Factor
Cochrane and Piazzesi (2005) (CP henceforth) extend FB’s work by documenting

that a "tent-shaped" linear combination of forward rates predicts bond excess returns,
with much higher explanatory power than forward spreads. Following their approach, I
regress the 2, 3, 4, and 5-year excess returns over one-year on the 1-year interest rate,
and the 3 and 5-year forward rates using model-generated data:

rx
pτq
t,t`4 “ α

pτq
CP ` β

pτq
CP,1y

p1q
t ` β

pτq
CP,3f

p12q
t ` β

pτq
CP,5f

p20q
t ` υ

pτq
t`4. (33)

Interest rates in the model are affine in the two-state variables rt and µt, and in the
wealth-share weighted average of εit. Thus, to avoid potential issues with multicollinearity,
I only use two forward rates. CP further show that a single factor comprised of forward
rates predicts excess returns. I replicate their two-stage "restricted" approach to see if
the model generates a similar return-predicting factor. I first regress the average (across-
maturity) excess returns on the forward rates, and recover the factor as the predicted
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values of this regression:

ÿ

τPt8,12,16,20u

1
4rx

pτq
t,t`4 “ γ0 ` γ1y

p1q
t ` γ3f

p12q
t ` γ5f

p20q
t ` sυt`4. (34)

I then regress each individual excess return on the recovered factor:

rx
pτq
t,t`4 “ b

pτq
CP

´

pγ0 ` pγ1y
p1q
t ` pγ3f

p12q
t ` pγ5f

p20q
t

¯

` u
pτq
t`4, (35)

where
´

pγ0 ` pγ1y
p1q
t ` pγ3f

p12q
t ` pγ5f

p20q
t

¯

are the predicted values from (34).

Figure 8: Cochrane-Piazzesi Factor

Notes: This figure plots the model-implied estimates of the CP regressions. Different markers and
colors correspond to excess returns on bonds with different maturities.Top panel: the markers display
the estimated β

pτq
CP,1, β

pτq
CP,3, β

pτq
CP,5 from the regression in (33). Bottom panel: the markers display the

estimated bpτqCP γ1, b
pτq
CP γ3, b

pτq
CP γ5 from the regressions in (34) and (35).

Figure 8 shows the results of the CP regressions using the model-generated data.
Both the unrestricted and restricted estimates highlight a clear tent-shaped pattern,
reproducing CP’s findings. The model-generated CP factor significantly predicts excess
returns, with much higher explanatory power than the FB regressions. The model’s ability
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to produce a tent-shaped return predicting factor speaks to its success in generating excess
return predictability that is consistent with empirical findings.

4.4 Bond Risk Premia

The results discussed in the previous section concern the "statistical" risk premia, esti-
mated using full-sample information on interest rates. What about the real-time risk
premia commanded by dealers? In this section, I examine the quarterly bond risk premia
produced by the model.

First, I start by considering the model-implied risk premium in the rational expec-
tations case. With rational expectations, since the aggregate endowment has constant
volatility, the Expectations Hypothesis holds, and risk premia are constant. It is then
natural to examine the contribution of subjective beliefs in generating time-varying risk
premia.

Proposition 5. Suppose all dealers have rational expectations, that is, εit “ 0, i : 1, . . . , I.
Then the risk premium on a τ period bond is given by:

rp
pτq,RE
t “ ´CrpτqCµpτqσrσµ ` σY

´

Crpτqσr ` Cµpτqσµ

¯

. (36)

Therefore, if dealers have rational expectations, the risk premium is constant. Moreover,
the risk premium is increasing in maturity τ .

Proof. The result follows directly from setting εit “ 0 and computing the drift of bond
returns given the bond prices in (20), which I formally show in B.5.

With rational expectations, all dealers are identical and thus an identical representa-
tive dealer can be constructed. The market price of risk is then simply the covariance
of the aggregate endowment with the pricing factors rt and µt. The risk premium on
a zero-coupon bond then depends on its loading on the pricing factors, as well as an
adjustment term for the correlation of the factors.

The next proposition characterizes the impact of subjective beliefs on risk premia,
relative to the rational expectations benchmark.

Proposition 6. The subjective risk premium commanded by dealer i on a τ period bond,
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expressed under the econometrician’s probability measure is given by:

rp
i,pτq
t “ rp

pτq,RE
t ´

`

σµCµpτq ` σ
i
ε,rC

i
εpτq

˘ κr
σr
εit

loooooooooooooooooomoooooooooooooooooon

ě0

´ CrpτqC
i
εpτqσrσ

i
ε

loooooooooomoooooooooon

signpσrσiεq

` xitC
i
εpτqσ

i
ε

ˆ

pκrσµ ` κµσr ` σrθq

pκr ` θq pκµ ` θq

˙ˆ

σr pκε ` θq

pκrσiε ´ κεσr ´ σrθq

˙

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

ě0

.
(37)

Proof. Once again, the result follows directly from computing the drift of bond returns
given the bond prices in (20), which I formally show in B.5.

Comparing equations (36) and (37), it is straightforward to see that the only source of
time-variation in risk premia is subjective beliefs. Beliefs affect risk premia both directly
through the compensation required for the risk of having wrong beliefs about interest
rate dynamics, and also indirectly through exposures. Unlike the rational expectations
case, exposures are no longer constant or identical across agents. As can be seen from
equation (30), they depend on the wealth-share weighted averages of beliefs and bond
prices, as well as directly on dealers’ individual beliefs, all of which vary over time.

Equation (37) describes the instantaneous risk compensation that a single type of
dealer i to hold a long-term bond. The economy-wide risk premium under the econome-
trician’s measure is given by a highly involved expression, as it also depends on the covari-
ances of single-dealer economy bond returns with dealers’ consumption shares. Figure 9
compares the bond risk premia on 2, 5, and 10-year bonds when dealers have subjective
beliefs to the risk premia when dealers have rational expectations. All series are quarterly
and are expressed in annualized percentages. When dealers have subjective beliefs, risk
premia are time-varying and cyclical: risk premium on a bond starts to increase at the
onset of recessions, and falls afterward. During the zero-lower bound (ZLB) period, risk
premia are almost constant, similar to the premia under rational expectations.

Table 5 reports the summary statistics of risk premia on bonds with maturities 1,
2, 4, 5, 7, and 10-years, as well as the premia in the rational expectations case. The
average risk premia with subjective beliefs are only slightly larger than the rational ex-
pectations counterparts, suggesting that subjective beliefs of dealers do not matter much
for the average risk premium over the sample. This finding is not very surprising, as the
estimation results suggest that subjective biases are highly transitory and quickly revert
back to their long-run mean of zero. Accordingly, risk premia also quickly revert back to
their rational expectations counterparts. However, subjective beliefs generate substantial
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Figure 9: Bond Risk Premia

Notes: This figure displays the model-generated real-time bond risk premia, for bonds with maturities
of 2, 5, and 10-years. Risk premia series are quarterly, and all values are expressed in annualized
percentages. The red straight lines correspond to the risk premia of the baseline heterogeneous-dealer
economy, computed under the econometrician’s measure. The dashed green horizontal lines correspond
to the risk premia with rational expectations, also computed under the econometrician’s measure.

time-variation in bond risk premia, as their standard deviations are nearly as high as
their average values for shorter maturities, and about 40% of its average for the 10-year
bond. Due to the ZLB episode the distribution of premia is negatively skewed as evident
by the comparison of the 25’th and 75’th percentiles.

In summary, the subjective beliefs of the largest bond dealers generate sizable time-
variation in bond risk premia, the large volatility of long-term interest rates, and repro-
duce the empirical findings on return predictability. The main novelty underlying these
results is that the subjective belief processes are disciplined by the portfolio positions of
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Table 5: Summary Statistics of Bond Risk Premia

Bond Maturity

Summary Statistic (% ann.) 1-Year 2-Year 4-Year 5-Year 7-Year 10-Year
Mean 0.05 0.15 0.69 1.17 2.62 5.85
Std. Deviation 0.02 0.11 0.43 0.66 1.23 2.30
Median 0.05 0.15 0.70 1.20 2.66 5.94
25’th Percentile 0.04 0.09 0.47 0.85 2.01 4.72
75’th Percentile 0.05 0.17 0.70 1.33 2.91 6.40

Rational Expectations 0.02 0.11 0.64 1.13 2.57 5.76

Notes: This table displays the summary statistics of the model-generated real-time bond risk
premia, for bonds with maturities of 1, 2, 4, 5, 7, and 10-years. Risk premia series are quarterly,
and all values are expressed in annualized percentages. The bottom row displays the constant
risk premia in the rational expectations economy.

dealers. My model connects the triad of large dealers’ interest rate risk exposures, their
subjective bond return forecasts, and time-variation in expected excess returns. I show
that dealers’ subjective beliefs are a sufficiently potent force to drive the empirical results
on excess return predictability without implying counterfactual portfolio positions.

4.5 Average Dealers & Distribution of Wealth

Average Dealer Counterfactuals
Does heterogeneity in beliefs and exposures matter? Can the same risk premia dy-

namics be generated by an "average dealer", whose beliefs and exposures are the cross-
sectional averages of dealer beliefs and exposures? To answer these questions, I consider
two counterfactual exercises where there is only a single type of dealer in the economy.

First, I construct a "weighted-average dealer", whose beliefs and exposures at each
date are the wealth-share weighted averages of dealers’ subjective beliefs and interest
rate risk exposures. That is, at time t, the weighted-average dealers have the beliefs and
exposures defined as:

εw.avg.t “

N
ÿ

i“1

cit
Yt
εit, xw.avg.t “

N
ÿ

i“1

cit
Yt
xit. (38)

For the second counterfactual, I directly construct an "average dealer" in the same manner,
but without weighting by wealth-shares.

Heterogenous dealers trade on their beliefs with each other, and in theory, require
compensation for bearing the risk that their bond positions might redistribute some of
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their wealth-share to other dealers. This mechanism is missing from the weighted-average
dealer economy. Therefore, the comparison of bond risk premia in an economy with only
weighted-average dealers to the heterogeneous dealer baseline sheds light on whether
redistribution risk plays a significant role in risk premia dynamics.

Even without redistribution risk, the distribution of dealers’ wealth-shares, or equiv-
alently wealth, might matter for risk premia. Recall from (19) that bond prices are
wealth-share weighted averages of hypothetical single-dealer economy bond prices. Then,
dealers with larger wealth-shares also have a larger influence on bond prices, and as a
consequence on expected excess returns. Comparison of the weighted-average dealers
economy with the average dealers economy reflects whether the distribution of dealer
wealth impacts bond risk premia.

Figure 10: Bond Risk Premia: Weighted-Average Dealers vs. Average Dealers

Notes: This figure displays the risk premia on 5 and 10-year bonds, for the baseline case with hetero-
geneous dealers, for the weighted-average dealers economy, and for the average dealers economy. Risk
premia series are quarterly, and all values are expressed in annualized percentages. Top panel: The red
straight lines correspond to the risk premia of the baseline heterogeneous-dealer economy. The purple
dashed lines correspond to the risk premia in the weighted-average dealers economy. Both series are
computed under the econometrician’s measure. Bottom panel: The purple dashed lines correspond to
the risk premia in the weighted-average dealers economy. The magenta straight lines correspond to
the risk premia in the average dealers economy. Both series are computed under the econometrician’s
measure.

Figure 10 demonstrates the comparison of the baseline model with heterogeneous
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dealers, and the two counterfactual cases. I focus on 5-year and 10-year bonds since
for shorter maturities risk premia is small, making any comparison difficult to interpret.
Looking at the top two panels reveals that redistribution risk essentially plays no role:
the weighted-average dealer risk premia is nearly identical to the heterogeneous dealer
premia. In other words, time-variation in bond risk premia is mainly driven by weighted-
average beliefs and exposures, and cross-sectional heterogeneity hardly matters.

Yet, the bottom two panels of Figure 10 show that the distribution of wealth matters
for bond risk premia. Premia are less volatile when the average dealer is constructed
without taking wealth distribution into account: the annualized standard deviation of
the 5-year (10-year) risk premium in the weighted-average dealers economy is 0.67%
(2.30%), compared to 0.45% (1.53%) in the average dealers economy. The difference in
premia is especially stark during recessions, as the average dealers’ premia increases much
less than those of weighted-average dealers.

How to interpret these findings? The decline in the volatility of bond risk premia in
the average dealers economy suggests that the wealthier dealers are also the ones with
more volatile subjective beliefs. This is indeed what I find when I estimate the model,
as the largest belief volatilities reported on Table 4 are those of Bank of America and
J.P. Morgan & Chase, the two largest dealers. The wealthiest dealers are also the most
"pessimistic" ones, hence the large risk compensation they require is disproportionately
reflected in the economy-wide risk premium.

Wealth Distribution
Finally, I plot the model implied evolution of the dealer wealth distribution in Figure

11. The model implies that J.P. Morgan earns high returns on its bond portfolios, and
becomes the largest dealer surpassing Bank of America early in the sample. Wells Fargo
starts with a slightly lower share than Citigroup, and eventually ends up with a slightly
higher share. These patterns resemble the evolution of the gross asset holdings of these
dealers over my sample period, so another success of the model is generating realistic
wealth distribution patterns. However, in reality, there are many other factors that
affect dealers’ wealth distribution, such as J.P. Morgan’s merger with Bank One in 2004,
whereas my model attributes all of it to subjective beliefs. Thus, I do not compare the
model-generated evolution of dealers’ wealth distribution with the data counterpart, as
it would be an unfair assessment of the model’s capabilities.
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Figure 11: Wealth Distribution

Notes: This figure displays the evolution of dealers’ consumption shares over time. Relative wealth-
shares evolve according to the subjective belief differences of dealers, as described in equations (27) and
(28).

5 Conclusion

In conclusion, this paper explores the dynamics of bond excess returns, particularly focus-
ing on the role of large dealer banks and their subjective beliefs. I empirically document
the comovement of primary dealers’ interest-rate risk exposures and bond excess return
forecasts, and show that forecasts and exposures are heterogeneous both in the cross-
section of dealers and also over time.

By developing a quantitative-term structure model, that incorporates the heterogene-
ity of dealers’ beliefs, this paper underscores the crucial link between subjective beliefs
and the volatility of long-term interest rates. The model not only provides a theoretical
framework for understanding the behavior of large dealers but also aligns these theoreti-
cal propositions with empirical data to generate realistic portfolio positions. One of the
key findings of this paper is that the time-variation in the subjective beliefs of dealers
serves as a potent mechanism for explaining the excess volatility of long-term rates and
the predictability of excess bond returns. By running counterfactual exercises, I further
find that the wealth distribution of dealers is important for the pass-through of subjective
risk premia into market risk premia.

The empirical findings and the theoretical framework developed in this paper highlight
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the interplay between the subjective beliefs and actions of large dealer banks, contribut-
ing to a deeper understanding of the bond market’s excess volatility and risk premia
fluctuations. These findings have important implications for investors, policymakers,
and market-participants seeking to make more informed decisions in bond markets, as
well as for future studies that aim to explore the implications of subjective beliefs while
incorporating portfolio evidence.
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A Data Appendix

A.1 Approximating Expected Excess Returns

Let rpyi,pτqt denote the subjective term premium of dealer i at time t. No-arbitrage implies
that the interest rate forecast of a τ period bond can be decomposed as:

Ei
t

”

y
pτq
t

ı

“
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τ
Ei
t rrt ` rt`1 ` . . .` rt`τ´1s ` rpy
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Then the forecast for the one-quarter ahead rate on the same maturity is:
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Now, let rt`H denote the farthest short-rate forecast available in the surveys. That is,
Ei
trrt`Hs is dealer i’s short-rate forecast for 5-quarters ahead. Denote epτq,it “ Ei

trrt`τ s ´

Ei
trrt`Hs. This residual represents the difference between the farthest available forecast

of dealer i, and their expectation of the τ -quarters ahead short-rate. Then (39) and (40)
can be rewritten as:
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Subtracting both sides of (42) from (43), I obtain:
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The assumption that the law of iterated expectations holds under each forecaster’s beliefs
then implies Ei

t

”
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t “ 0, hence using (44), I recover the residual epτq,it
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multiplying by τ
τ´1 yields:
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With the law of iterated expectations, the term-premia terms on the right-hand side of
this equality equals:
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Straightforward algebraic manipulation yields the second assumption:

ˆ

τ

τ ´ 1
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i,pτq
t
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i,pτ´1q
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´ 1
˙
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i,pτ´1q
t « 0 (47)

For longer maturities, both the contribution to term premium from this holding period
and the ratio τ

τ´1 are small, hence the approximation improves in accuracy as bond
maturity increases. For smaller maturities, the quarterly term premium on the bond
itself is likely to be small. As a quantified example, the average magnitude of the 2-year
statistical quarterly term-premium estimated using the methodology in Kim and Wright
(2005) over the period 2001:Q1-2021:Q4 is approximately 0.21%.19 Even if rpy

i,p4q
t

rpy
i,p3q
t

“ 1.5,
that is, just the term-premia due to the holding period of t` 3 to t` 4 equals half of the
premium on a 1.75-year bond, the approximation error in (47) would only be 0.004.

A.2 Additional Results

Actual Short-Rate
In this section, instead of using the forecasts of the average 3-month Treasury interest

rate as the short-term interest rate for computing excess returns as in (1), I use the actual
3-month Treasury interest rates. The 3-month interest rate data comes from Liu and Wu
(2021), and I use the last available observation for the month preceding each survey.

19Data comes from the series [THREEFYTP2], retrieved from FRED, Federal Reserve Bank of St.
Louis; https://fred.stlouisfed.org/series/THREEFYTP2
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Thus, subjective expected excess returns computed this way are expressed as:
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(48)

I then run the regression (5) again using the subjective expected excess returns in (48).
Table 6 reports the estimates. The coefficients are slightly larger than those in Table 1,
with the magnitude of increase declining in maturity. Coefficients in columns (2) and (3)
for long maturities are all statistically significant. Thus, using actual short-rates instead
of forecasts of the 3-month interest rates does not alter the conclusions of the empirical
exercise in this paper.

Table 6: Exposures & Subjective Expected Excess Returns – Actual Short-Rate

Exposure

3-Month Treasury

(1) (2) (3)
1 YR ´1.524 ´1.612 ´1.612˚

(2.120) p2.064q (1.812)
2 YR 2.592 2.860˚˚˚ 2.860˚˚˚

(2.408) p1.082q (1.357)
5 YR 1.188 1.056˚˚˚ 1.056˚˚

(0.520) p0.448q (0.436)
10 YR 0.544˚˚ 0.428˚˚ 0.428˚

(0.212) p0.184q (0.164)
30 YR 0.212˚˚ 0.140˚˚˚ 0.140˚˚

(0.068) p0.056q (0.040)

Avg. R2 0.83 0.87 0.88
Observations 323 323 323

Dealer FE YES YES YES
Time Trend YES YES

Cluster Robust SE YES

Notes: This table displays the estimation results from the re-
gression: Exposuret,i “ α` fei ` κt` β

pτqEit
“

Ďrx
pτq
t`1,t`2

‰

` εt,i.
Standard errors are in parentheses. Stars indicate significance
at ˚˚˚: 99%, ˚˚: 95%, ˚: 90% confidence levels.

Figure 12 displays the coefficient estimates from this regression after scaling by the
standard deviation of expected excess returns. The stronger increase in the shorter-term
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coefficients is reflected here in the figure, as the coefficient on the 2-year expected excess
returns is considerably larger than those for other maturities, unlike the pattern in 3.
Hence, replacing the forecasted short-rate with the actual one mainly has an impact on
the results concerning short-term maturities.

Figure 12: Standardized βpτq Estimates – Actual Short-Rate

Notes: The dark blue dots represent the regression coefficients from Table 1, scaled by the sample
standard deviation of the subjective expected excess returns for the corresponding maturity. The vertical
dashed red lines display the scaled 95% confidence intervals.

CRSP/Compustat Data
In addition to the FR Y-9C filings, I alternatively use the CRSP/Compustat database

obtained from Wharton Research Data Services (WRDS).20 CRSP/Compustat is a com-
prehensive financial database that provides a wide range of financial, statistical, and
market information about publicly traded companies. I construct the exposure measure
(4) using the analogous balance sheet items reported in CRSP/Compustat as follows.
Assetsiď1 is the item "Cash and Short-Term Investments". Liabilitiesiď1 comprises "Debt
in Current Liabilities", "Long-Term Debt Due in One Year" and "Preferred/Preference
Stock (Capital) - Total". I again scale them by "Total Assets".

20See https://wrds-www.wharton.upenn.edu/pages/about/data-vendors/center-for-research-in-
security-prices-crsp/.
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Table 7 presents the estimates from the main regression (5) using exposures con-
structed with CRSP/Compustat data. The slope coefficients in column (2) are slightly
larger than their counterparts in Table 1, albeit less statistically significant. The coef-
ficients for the 2-year expected excess returns lose significance at 90% confidence level
when using Liang-Zeger standard errors or the Federal Funds Rate as the short-term bor-
rowing rate. Yet, overall the estimates display a similar pattern as in Table 1, and suggest
positive co-movement between risk exposures and subjective expected excess returns.

Table 7: Exposures & Subjective Expected Excess Returns – CRSP/Compustat Data

Exposure

3-Month Treasury Fed Funds Rate

(1) (2) (3) (1) (2) (3)
1 YR ´0.705 ´1.748 ´1.748˚ ´1.640 ´2.496 ´2.496˚

(5.426) p5.582q (5.483) (5.527) (5.619) (6.230)
2 YR 1.456 3.097˚ 3.097 ´2.390 3.039 3.039

(4.517) p2.420q (4.029) (4.731) (2.585) (4.433)
5 YR 1.374˚ 0.954˚ 0.954˚˚ 0.400 0.978˚˚ 0.978˚

(0.984) p0.588q (0.681) (1.002) (0.572) (0.732)
10 YR 0.990˚˚ 0.453˚˚ 0.453˚ 0.795˚˚ 0.490˚˚ 0.490˚

(0.449) p0.263q (0.344) (0.452) (0.256) (0.367)
30 YR 0.718˚˚˚ 0.189˚˚ 0.189˚˚ 0.582˚˚˚ 0.191˚ 0.191˚˚

(0.146) p0.101q (0.125) (0.156) (0.090) (0.115)

Avg. R2 0.68 0.83 0.83 0.66 0.86 0.86
Observations 337 337 337 396 396 396

Dealer FE YES YES YES YES YES YES
Time Trend YES YES YES YES

Cluster Robust SE YES YES

Notes: This table displays the estimation results from the regression:

Exposuret,i “ α` fei ` κt` β
pτqEit

“

Ďrx
pτq
t`1,t`2

‰

` εt,i

Standard errors are in parentheses. Stars indicate significance at ˚˚˚: 99%, ˚˚: 95%, ˚: 90%
confidence levels.
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B Model Derivations

B.1 Belief Disagreement

Let pI,FI , dιq denote the measured-space of dealers. The effective probability space of
dealers of type i is

´

IˆΩ, I bF i
t , dιbP i

t

¯

,21 with P i
t representing the probability measure

implied by the information filtration of type i dealers. Define a random variable dPi
P such

that EirdPi
P s “ 1 and

EirXs “ E
„

dP i

dP
X



(49)

The random variable dPi
dP is the Radon-Nikodym derivative of dealer i’s probability mea-

sure with respect to the "true" statistical measure. Define the density process ξit “ dPi
dP

∣∣∣
F i
t

such that:
EitrXss “

EtrξisXss

Etrξiss
“

EtrξisXss

ξt
, s ą t (50)

Then by Girsanov Theorem, I have:

dξit
ξit
“ εit

κr
σr
dBt (51)

Thus, belief disagreement is characterized by the Radon-Nikodym derivative ξit, and εit

acts as its stochastic volatility component.

B.2 Individual Optimization & HJB

In what follows, I will drop the i superscripts when convenient for ease of exposition,
since all dealers of a particular type solve the same problem given their beliefs. First of
all, define portfolio shares

α
pτq
t “

h
pτq
t

wt
(52)

With log-utility, the consumption-wealth ratio is constant: ct “ ςwt. Then the problem
can be rewritten as:

Vt
`

wit
˘

“ max
!

tα
pτq,i
t`s uτPp0,8q

)

,

Eit
„
ż 8

t

e´ρs logpςwisqds


(53)

21I consider the Fubini extension of the probability space as in Sun (2006).
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subject to

dwit “ witprt ´ ςqdt`

ż 8

0
α
pτq,i
t wit

˜

dP
pτq
t

P
pτq
t

´ rtdt

¸

dτ (54)

and
drt “ ´κrprt ´ µ

i
tqdt` σrdBt (55)

Now, conjecture an equilibrium pricing function that follows the Itô process:

dP
pτq
t

P
pτq
t

“ `tpτqdt` ζ
τ
r,tdBt (56)

for some functions `pτq, ζτr,t, ζτε,t which will be determined in equilibrium. I will use p̈ to
indicate that a variable is expressed under the beliefs of type i. Conjecture that the value
function of dealer i is:

Jpτ, wt,X t, rt, µ
i
tq “ logwt `Gt

´

τ,X t, rt, µ
i
t

¯

(57)

Due to heterogeneous beliefs, each dealer’s wealth is an endogenous state variable of
the model. For ease of notation, I use X t to denote the S ˆ 1 vector of (endogenous)
state variables other than the dealer wealth, the real short-rate, and its stochastic drift,
and xst to denote a particular state-variable.

Then I can write down the HJB as:

sup
α
pτq
t`s

#

BJ

Bw

˜

wtprt ´ ςq `

ż 8

0
α
pτq
t wt

´

p`tpτq ´ rt

¯

dτ

¸

`

S
ÿ

s“1

BJ

Bxst
µsx,t ´

BJ

Br
κrprt ´ µ

i
tq ´

BJ

Bµit
κµpµ

i
t ´ µ̄q

`
1
2
B2J

Bw2w
2
t

ˆ
ż 8

0
α
pτq
t
pζτr,tdτ

˙2

`

S
ÿ

s“1

S
ÿ

s“1

1
2
B2J

Bxst
2σ

s2
x,t `

1
2
B2J

Br2 σ
2
r `

1
2
B2J

Bµi2t
` upcq

+

“ ´
BJ

Bt

(58)
where upcq “ logpcq. Local optimization with respect to αpτqt`s yields the first-order condi-
tions:

wt

´

p`tpτq ´ rt

¯

BJ

Bw
“ ´w2

t

ˆ
ż 8

0
α
puq
t

pζτr,t
pζur,tdu

˙

B2J

Bw2 , @τ P p0,8q (59)

Plugging in my conjecture for J , I get:

p`tpτq ´ rt “

ˆ
ż 8

0
α
puq
t

pζτr,t
pζur,tdu

˙

, @τ P p0,8q (60)

Optimal portfolio shares do not directly depend on dealer wealth. The dependence only
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arises from how the wealth distribution affects the bond return process: given the return
process, portfolio shares are independent of the individual dealer wealth.

Using the definitions of `tpτq and ζτr,t, one can rewrite the first-order condition as:

Eit
ˆ

dP
pτq
t

P
pτq
t

˙

´ rt “

ż 8

0
α
puq,i
t Covit

ˆ

dP
pτq
t

P
pτq
t

,
dP

puq
t

P
puq
t

˙

du (61)

or equivalently

Eit
ˆ

dP
pτq
t

P
pτq
t

˙

´ rt “
1
wit

ż 8

0
h
puq,i
t Covit

ˆ

dP
pτq
t

P
pτq
t

,
dP

puq
t

P
puq
t

˙

du (62)

That is, the portfolio share of the bond with maturity τ is determined by the subjective
expected excess return on the bond,22 and the subjective covariance of the bond return
with total bond-portfolio return.23

At optimum, the envelope condition implies ς “ ρ. That is the time-preference rate
ρ is also equal to the dividend payout ratio. Plugging in the first order conditions back
into the HJB and canceling out the logpwtq terms I get:

Gt

˜

rt ´ ρ`

ż 8

0
α
pτq
t

´

p`tpτq ´ rt

¯

dτ

¸

`

S
ÿ

s“1

BG

Bxst
µsx,t ´

BG

Br
κrprt ´ µ

i
tq ´

BG

Bµit
κµpµ

i
t ´ µ̄q

`
BG

Bt
´

1
2

ˆ
ż 8

0
α
pτq
t
pζτr,tdτ

˙2

`

S
ÿ

s“1

S
ÿ

s“1

1
2
B2G

Bxst
2σ

s2
x,t `

1
2
B2G

Br2 σ
2
r `

1
2
B2G

Bµi2t
` logpρq “ 0

(63)
Gt solves this equation, which does not depend on individual dealer wealth, verifying my
value function conjecture. Finally, the state price density takes the form:

dπt
πt
“ ´rtdt´

ˆ
ż 8

0
α
pτq
t ζτr,tdτ

˙

dBt (64)

B.3 Long-Term Asset Exposure

Markets are complete, thus the long-term asset is redundant. Zero-coupon Treasury
bonds are in zero net supply. Long-term assets are in finite net supply. A portfolio of

22In excess of the short-rate, plus a dealer-specific spread on bond with maturity τ .
23This follows from the linearity of covariance.
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θe´θτ bonds of each maturity τ replicates a unit position in the long-term assets. Then,
one can define the "net exposure" to the long-term assets, xit. The relation between bond
holdings and net exposure is then:

xit “
α
pτq,i
t

θe´θτ
(65)

That is, the net exposure denotes type i’s exposure to the long-term assets’ payoff at
time τ by holding αpτq,it share of bonds.

Then, the optimality condition becomes:

Eit
ˆ

dP
pτq
t

P
pτq
t

˙

´ rt “ xit

ż 8

0
θe´θuCovit

ˆ

dP
pτq
t

P
pτq
t

,
dP

puq
t

P
puq
t

˙

du (66)

and the wealth evolution is:

dwit “ witprt ´ ςqdt` x
i
tw

i
t

ż 8

0
θe´θτ

˜

dP
pτq
t

P
pτq
t

´ rtdt

¸

dτ (67)

Recall the conjectured price process:

dP
pτq
t

P
pτq
t

“ `tpτqdt` ζ
τ
r,tdBt (68)

By Girsanov Theorem, the subjective price process is then:

dP
pτq
t

P
pτq
t

“ p`itpτqdt` ζ
τ
r,td

rBi
t (69)

where
d rBi

t “ dBt ´ ε
i
t

κr
σr
dt (70)

and

Eit
ˆ

dP
pτq
t

P
pτq
t

˙

“ Et
ˆ

dP
pτq
t

P
pτq
t

˙

`

„

dP
pτq
t

P
pτq
t

,
dξit
ξit



t

“ `tpτqdt` ζ
τ
r,tε

i
t

κr
σr
dt

(71)

and

Covit

ˆ

dP
pτq
t

P
pτq
t

,
dP

puq
t

P
puq
t

˙

“ Covt

ˆ

dP
pτq
t

P
pτq
t

,
dP

puq
t

P
puq
t

˙

(72)
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Then, one can rewrite the subjective optimality condition of dealer type i under the
objective measure as:

`tpτq ` ζ
τ
r,tε

i
t

κr
σr
´ rt “ xit

ż 8

0
θe´θuζτr,tζ

u
r,tdu (73)

Now, rearranging this expression yields:

`tpτq ´ rt “ xit

ż 8

0
θe´θuζτr,tζ

u
r,tdu´ ζ

τ
r,tε

i
t

κr
σr

(74)

This equation has to hold for each dealer. The left-hand side of the equality contains no
dealer-specific terms. Isolating exposures, I find:

xit “
`tpτq ´ rt

ş8

0 θe´θuζτr,tζ
u
r,tdu

`
ζτr,t

κr
σr

ş8

0 θe´θuζτr,tζ
u
r,tdu

εit (75)

Finally, define
Zi
r,t “ xit

ż 8

0
θe´θτζτr,tdτ, (76)

Recall that by market completeness a portfolio of θe´θτ bonds replicate a unit position
in the long-term assets. Then, as τ Ñ 8, the payoff of the long-term assets goes to zero:
θe´θτ Ñ 0. Thus, the price of a bond of maturity τ as τ Ñ 8 must almost surely be zero
over the entire state-space. Hence:

lim
τÑ8

ζτr,t “ 0 (77)

Further, by the boundary condition for bond prices, I must have that the return on a
bond of maturity τ “ 0 must be equal to the short-rate:

lim
τÑ0

`tpτq “ ´κrprt ´ µtq, lim
τÑ0

ζτr,t “ σr (78)

These conditions guarantee that Zi
r,t is well-defined.

B.4 Zero-Coupon Bond Prices

Proof of Proposition 1. The proof follows Xiong and Yan (2010). For any random
variable Xτ such that EirXτ s ă 8 define Yτ “ wiτ

wit
Xτ . Since markets are complete, each
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dealer is a marginal agent. Then a claim to the cash-flow Yτ is priced as:

Ei
t

„

e´ρpτ´tq
u1pciτ q

u1pcitq
Yτ



“ e´ρpτ´tqEi
t

„

cit
ciτ
Yτ



“ e´ρpτ´tqEi
t

„

wit
wiτ
Yτ



“ e´ρpτ´tqEi
t rXτ s (79)

Define
ωi,jt “

wit
wjt

(80)

Then the same security is priced by dealer j as:

Ej
t

„

e´ρpτ´tq
u1pcjτ q

u1pcjtq
Yτ



“ e´ρpτ´tqEj
t

«

cjt

cjτ
Yτ

ff

“ e´ρpτ´tqEj
t

«

wjt

wjτ
Yτ

ff

“ e´ρpτ´tqEj
t

„

ωi,jτ
ωi,jt

Xτ



(81)
Then the wealth ratio acts as a Radon-Nikodym derivative. In equilibrium it must be
the case that:

Ei
t rXτ s “ Ej

t

„

ωi,jτ
ωi,jt

Xτ



(82)

The price of an asset paying off a single dividend at time τ is:

P
pτq
X,t “ Ej

t

«

e´ρpτ´tq
wjt

wjτ
Xτ

ff

“ e´ρpτ´tqEj
t

«

wjt

wjτ

Wτ

Wt

Wt

Wτ

Xτ

ff

“
wjt
Wt

e´ρpτ´tqEj
t

„

Wτ

wjτ

Wt

Wτ

Xτ



“
wjt
Wt

e´ρpτ´tqEj
t

«

řN
i“1w

i
τ

wjτ

Wt

Wτ

Xτ

ff

“
wjt
Wt

e´ρpτ´tqEj
t

«

N
ÿ

i“1

wiτ
wjτ

Wt

Wτ

Xτ

ff

“
wjt
Wt

e´ρpτ´tqEj
t

«

N
ÿ

i“1
ωi,jτ

Wt

Wτ

Xτ

ff

“
wjt
Wt

e´ρpτ´tqEj
t

„

Wt

Wτ

Xτ



`
wjt
Wt

e´ρpτ´tq

˜

ÿ

i‰j

Ej
t

„

ωi,jτ
Wt

Wτ

Xτ



¸

“
wjt
Wt

e´ρpτ´tqEj
t

„

Wt

Wτ

Xτ



`
wjt
Wt

e´ρpτ´tq

˜

ÿ

i‰j

ωi,jt E
j
t

„

ωi,jτ
ωi,jt

Wt

Wτ

Xτ



¸

“
wjt
Wt

e´ρpτ´tqEj
t

„

Wt

Wτ

Xτ



`
ÿ

i‰j

wit
Wt

e´ρpτ´tqEi
t

„

Wt

Wτ

Xτ



“

N
ÿ

i“1

wit
Wt

Ei
t

„

e´ρpτ´tq
Wt

Wτ

Xτ



“

N
ÿ

i“1
ωitE

i
t

„

e´ρpτ´tq
Wt

Wτ

Xτ



(83)
Now, notice that the term

Ei
t

„

e´ρpτ´tq
Wt

Wτ

Xτ



(84)

would correspond to the price of the security if a dealer of type i owned all wealth in
this economy. This would be the case if the economy was populated by a single dealer
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type. Thus, the price of any security with a single dividend at time τ in the heterogenous
dealer economy is given by:

P
pτq
X,t “

N
ÿ

i“1

wit
Wt

P
pτq,i
X,t (85)

For zero-coupon bonds, Xt “ 1.

Proof of Proposition 2. Suppose wit “ Wt, that is, only type i dealers exist. Then I
have P pτq,it “ P

pτq
t . The optimality condition must still be satisfied. Conjecture:

P
pτq,i
t “ exp

´

apτq ` brpτqrt ` Cµpτqµ
i
t ` C

i
εpτqε

i
t

¯

(86)

By Itô’s lemma:

dP
pτq,i
t

P
pτq,i
t

“
1

P
pτq,i
t

„

P
pτq,i
r,t κrpµt ´ rtq ` P

pτq,i
µ,t κµpµ̄´ µtq ´ P

pτq,i
εi,t κεε

i
t ´ P

pτq,i
τ,t

`
1
2P

pτq,i
rr,t σ

2
r `

1
2P

pτq,i
µµ,t σ

2
µ `

1
2P

pτq,i
εiεi,tσ

i2
ε

κ2
r

σ2
r

` P
pτq,i
rµ,t σrσµ ` P

pτq,i
rεi,t σrσ

i
ε



dt
loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

`ipτq

`
1

P
pτq,i
t

„

P
pτq,i
r,t σr ` P

pτq,i
µ,t σµ ` P

pτq,i
εi,t σ

i
ε



loooooooooooooooooooooooomoooooooooooooooooooooooon

ζτ,ir,t

dBt

(87)

The optimality condition implies:

Crpτqκrpµt ` ε
i
t ´ rtq ` Cµpτqκµpµ̄´ µt ´ ε

i
tq ´ C

i
εpτqκεε

i
t

´ a1pτq ´ C 1rpτqrt ´ C
1
µpτqpµt ` ε

i
tq ´ C

i1
ε pτqε

i
t `

1
2Crpτq

2σ2
r `

1
2Cµpτq

2σ2
µ `

1
2C

i
εpτq

2σi2ε

` CrpτqCµpτqσrσµ ` CrpτqC
i
εpτqσrσ

i
ε ´ rt “ xitC

i
εpτqσ

i
ε

ż 8

0
θe´θuCi

εpuqσ
i
εdu

` xit
“

Crpτqσr ` Cµpτqσµ ` C
i
εpτqσ

i
ε

‰

ż 8

0
θe´θu

“

Crpuqσr ` Cµpuqσµ ` C
i
εpuqσ

i
ε

‰

´
“

Crpτqσr ` Cµpτqσµ ` C
i
εpτqσ

i
ε

‰κr
σr
εit

(88)
Coefficients on the two sides of the equality must be identical. Collecting the coefficients
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on rt yields:
C 1rpτq ` κrCrpτq ` 1 “ 0 (89)

This is a first-order linear ODE with boundary condition brp0q “ 0, so the solution is:

Crpτq “ ´
p1´ e´κrτ q

κr
(90)

Similarly, collecting the coefficients of µt:

C 1µpτq ` κµCµpτq ´ κrCrpτq “ 0 ùñ C 1µpτq ` κµCµpτq ` 1´ e´κrτ “ 0 (91)

Imposing the boundary condition Cµp0q “ 0 once again, I find:

Cµpτq “ ´
1
κµ

ˆ

1´ κre
´κµτ ´ κµe

´κrτ

κr ´ κµ

˙

(92)

Now, considering the terms multiplying εit I find:

2κrCrpτq ´
ˆ

κµ ´
κr
σr
σµ

˙

Cµpτq ´

ˆ

κε ´
κr
σr
σiε

˙

Ci
εpτq ´ C

1
µpτq ´ C

i1
ε pτq “ 0 (93)

Plugging in Crpτq and Cµpτq:

C i1
ε pτq “ ´2p1´ e´κrτ q `

ˆ

1´ κrσµ
κµσr

˙ˆ

1´ κre
´κµτ ´ κµe

´κrτ

κr ´ κµ

˙

`
κr

κr ´ κµ

`

e´κµτ ´ e´κrτ
˘

´

ˆ

κε ´
κr
σr
σiε

˙

Ci
εpτq

(94)

The solution is:

Ci
εpτq “

κµσr ` κrσµ
κµpκrσiε ´ κεσrq

˜

1´ e
´

ˆ

κε´κr
σiε
σr

˙

τ

¸

´
κµσr ` κrσµ

κµpκrσiε ´ κεσr ` κµσrq

˜

e´κrτ ´ e
´

ˆ

κε´κr
σiε
σr

˙

τ

¸

(95)
Now, note the following:

Bθ,r “

ż 8

0
θe´θτCrpτqdτ “ ´

1
κr ` θ

(96)
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Bθ,µ “

ż 8

0
θe´θτCµpτqdτ “ ´

κr
pκr ` θq pκµ ` θq

ă 0 (97)

Bi
θ,ε “

ż 8

0
θe´θτCi

εpτqdτ “
κr pκr σµ ` κµ σr ` σr θq

pκr ` θq pκµ ` θq pκr σiε ´ κε σr ´ σr θq
ă 0 (98)

Recall that:
ζ
pτq,i
r,t “ Crpτqσr ` Cµpτqσµ ` C

i
εpτqσ

i
ε (99)

Hence by the linearity of integral:

Zi
θ,r “

ż 8

0
θe´θτζ

pτq,i
r,t dτ “

σr pκε ` θq pκr σµ ` κµ σr ` σr θq

pκr ` θq pκµ ` θq pκr σiε ´ κε σr ´ σr θq
ă 0 (100)

Finally, collecting the remaining terms together I obtain the following ODE:

a1pτq “ Cµpτqκµµ̄`
1
2Crpτq

2σ2
r `

1
2Cµpτq

2σ2
µ `

1
2C

i
εpτq

2σi2ε ` CrpτqCµpτqσrσµ ` CrpτqC
i
εpτqσrσ

i
ε

´ xitζ
i
r,tpτqZ

i
θ,r

(101)
Note that a1pτq enters the drift of bond returns with a negative sign. Then I can back
out the relation between long-term asset exposure xit and expected bond returns as:

xitζ
i
r,tpτqZ

i
θ,r (102)

The sign of this expression depends on the sign of xit. If xit is positive, indicating positive
exposure to long-term assets, then high exposure is associated with higher expected bond
returns.

Since Crp0q “ Cµp0q “ Ci
εp0q “ 0, I have a1p0q “ 0. The boundary condition implies

ap0q “ 0. I further have:
ż 8

0
θe´θτCrpτq

2dτ “
2

pκr ` θq p2κr ` θq
(103)

ż 8

0
θe´θτCµpτq

2dτ “
2κr2 p2κr ` 2κµ ` 3 θq

pκr ` θq pκµ ` θq p2κr ` θq p2κµ ` θq pκr ` κµ ` θq
(104)

ż 8

0
θe´θτCµpτqCrpτqdτ “

κr p2κr ` 2κµ ` 3 θq
pκµ ` θq p2κr2 ` 3κr θ ` θ2q pκr ` κµ ` θq

(105)
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ż 8

0
θe´θτCiεpτqCrpτqdτ “

„

κr

ˆ

3σr2 θ3 ` 2κr3 σr σµ ´ 2κr3 σµ σ
i
ε ` 2κr κµ2 σr

2 ` 2κr2 κµ σr
2 ` 2κµ2 κε σr

2

` 5κr σr2 θ2 ` 2κr2 σr
2 θ ` 6κµ σr2 θ2 ` 3κµ2 σr

2 θ ` 2κε σr2 θ2 ` 2κr κµ κε σr2 ` 2κr2 κµ σr σµ ´ 2κr κµ2 σr σ
i
ε

´ 2κr2 κµ σr σ
i
ε ` 2κr2 κε σr σµ ´ 2κr2 κµ σµ σ

i
ε ` 7κr κµ σr2 θ ` 2κr κε σr2 θ ` 4κµ κε σr2 θ ` 4κr σr σµ θ2

` 5κr2 σr σµ θ ´ 2κr σr σiε θ2 ´ 2κr2 σr σ
i
ε,r θ ´ 3κr2 σµ σ

i
ε θ ` 2κr κµ κε σr σµ

` 3κr κµ σr σµ θ ´ 4κr κµ σr σiε θ ` 3κr κε σr σµ θ
˙

ˆ

„

pκµ ` θq
`

2κr2 ` 3κr θ ` θ2˘ pκr ` κµ ` θq

`

´κr
2 σr σ

i
ε ` κr

2 σε,ri
2 ` κr κε σr

2 ´ 2κr κε σr σiε ` κr σr2 θ ´ 2κr σr σiε θ ` κε2 σr2 ` 2κε σr2 θ ` σr
2 θ2˘

´1

(106)

The expression for the integral involving Ci
εpτq

2 is highly involved, yet a closed form
expression is available. These ensure that the drift of the bond holdings portfolio is
well-defined. Moreover:

lim
τÑ8

Crpτq “ ´
1
κr

(107)

lim
τÑ8

Cµpτq “ ´
1
κµ

(108)

lim
τÑ8

Ci
εpτq “

κµσr ` κrσµ
κµpκrσiε ´ κεσrq

(109)

Then by the properties of the exponential function:

lim
τÑ8

a1pτq “ ´µ̄
loomoon

ă0

`
1
2
σ2
r

κ2
r

`
1
2
σ2
µ

κ2
µ

`
1
2

ˆ

κµσr ` κrσµ
κµpκrσiε ´ κεσrq

˙2

σi2ε `
σrσµ
κrκµ

´
κµσr ` κrσµ

κrκµpκrσiε ´ κεσrq
σrσ

i
ε

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

ą0

´xit

„

´
σr
κr
´
σµ
κµ
` σiε

κµσr ` κrσµ
κµpκrσiε ´ κεσrq



Zi
θ,r

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

´signpxitq

(110)
In any reasonable calibration of the model parameters, I have that lim

τÑ8
a1pτq ą 0. Further,

consider the following:

apτq “

ż
ˆ

Cµpτqκµµ̄`
1
2Crpτq

2σ2
r `

1
2Cµpτq

2σ2
µ `

1
2C

i
εpτq

2σi2ε ` CrpτqCµpτqσrσµ ` CrpτqC
i
εpτqσrσ

i
ε

´ xitζ
i
r,tpτqZ

i
θ,r

˙

dτ

(111)
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I established the finiteness of the limits for the functions brpτq, Cµpτq, Cpετq. By the
properties of the exponential function, it is straightforward to establish the existence and
finiteness of limits for any positive power of these functions. Then, integrating these
functions and the constant terms one can express apτq as:

apτq “ Cτ ` Epτq (112)

where Epτq is the collection of the exponential terms, and C P R is some constant. Then
by the properties of the exponential function, I have:

lim
τÑ8

´apτq

τ
“ ´C (113)

ensuring that bond yields are well-defined.

B.5 Representative Agent Risk Premium

Proof of Proposition 5. Recall that the risk premium is:

`itpτq “ Crpτqκrpµt ` ε
i
t ´ rtq ` Cµpτqκµpµ̄´ µt ´ ε

i
tq ´ C

i
εpτqκεε

i
t

´ a1pτq ´ C 1rpτqrt ´ C
1
µpτqpµt ` ε

i
tq ´ C

i1
ε pτqε

i
t

`
1
2Crpτq

2σ2
r `

1
2Cµpτq

2σ2
µ `

1
2C

i
εpτq

2σi2ε

(114)

In the representative agent case, I have:

`itpτq ´ rt “ ´CrpτqCµpτqσrσµ ´ x
i
t

´

Crpτqσr ` Cµpτqσµ

¯

˜

pκr σµ ` κµ σr ` σr θq

pκr ` θqpκµ ` θq

¸

(115)
In the heterogeneous agent case:

`itpτq ´ rt “ ´

ˆ

σµCµpτq ` σ
i
εC

i
εpτq

˙

κr
σr
εit ´ CrpτqCµpτqσrσµ ´ CrpτqC

i
εpτqσrσ

i
ε

´ xit

´

Crpτqσr ` Cµpτqσµ ` C
i
εpτqσ

i
ε

¯

˜

pκr σµ ` κµ σr ` σr θq

pκr ` θq pκµ ` θq

¸˜

σr pκε ` θq

pκr σiε ´ κε σr ´ σr θq

¸

(116)
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I can rewrite this as:

rpitpτq “ rprept ´

ˆ

σµCµpτq ` σ
i
εC

i
εpτq

˙

κr
σr
εit

looooooooooooooooomooooooooooooooooon

ě0

´ CrpτqC
i
εpτqσrσ

i
ε

loooooooooomoooooooooon

signpσrσiεq

`xitC
i
εpτqσ

i
ε

˜

pκr σµ ` κµ σr ` σr θq

pκr ` θq pκµ ` θq

¸˜

σr pκε ` θq

pκr σiε ´ κε σr ´ σr θq

¸

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

ě0

(117)

B.6 Wealth Evolution

In this section, I work with aggregate wealthWt. Since Yt “ ρWt and cit “ ρwit, the results
of this section extend immediately to aggregate and individual consumption processes.

Denote the process for aggregate wealth as:

dWt

Wt

“ prt ` µW qdt` σWdBt (118)

Following the martingale approach of Cox and Huang (1989), the problem of dealer i can
be rewritten as the static optimization problem:

max
ci

Ei
0

„
ż 8

0
e´ρtu

`

cit
˘

dt



s.t.

Ei
0

„
ż 8

0
πitc

i
tdt



ď si0E
i
0

„
ż 8

0
πitρWtdt



(119)

where πit denotes the (unique) state-price density of dealer i, and si0 denotes the initial
wealth share. Under i’s beliefs, the problem of dealer j becomes:

max
ci

Ei
0

„
ż 8

0
ξj,it e

´ρtu
`

cjt
˘

dt



s.t.

Ei
0

„
ż 8

0
πitc

j
tdt



ď sj0E
i
0

„
ż 8

0
πitρWtdt



(120)

where ξj,it denotes the Radon-Nikodym derivative of dealer j and i’s beliefs. The opti-
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mality conditions for the two dealers are respectively:

wit “ e´ρt
`

ρλiπit
˘´1 (121)

and
wjt “ e´ρtξj,it

`

ρλjπit
˘´1 (122)

where λi is the Lagrange multiplier on the static budget constraint. Plugging in the
optimality condition into the static budget constraint yields a condition for λi:

ρλisi0E
i
0

„
ż 8

0
πitρWtdt



“ 1 (123)

Now, using the optimality condition and the aggregate resource constraint I obtain a
single equation in one unknown πit:

e´ρt
`

ρλiπit
˘´1

looooooomooooooon

wit

`
ÿ

j‰i

e´ρtξj,it
`

ρλjπit
˘´1

looooooooomooooooooon

wjt

“ Wt (124)

Solving for πit and plugging in the optimality condition then yields:

ωit “
wit
Wt

“

ˆ

1`
ÿ

j‰i

ξj,it
λi

λj

˙´1

(125)

I further have:
πit “ e´ρtpρλiwitq

´1 (126)

and thus
ρπitWt “ e´ρtWt

1
λi

1
wit
“ e´ρt

1
λi
` e´ρt

ÿ

j‰i

ξj,it
1
λj

(127)

Then:

Ei
0

„
ż 8

0
πitρWtdt



“
1
λi

ż 8

0
e´ρtdt` Ei

0

«

ż 8

0
e´ρt

ÿ

j‰i

ξj,it
1
λj
dt

ff

“
1
ρλi

`

ż 8

0
e´ρt

ÿ

j‰i

Ei
0
“

ξj,it
‰ 1
λj
dt

“
1
ρλi

`

ż 8

0
e´ρt

ÿ

j‰i

λi
λ2
j

dt

“
1
ρλi

`
1
ρ

ÿ

j‰i

λi
λ2
j

(128)
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Then:
ρλisi0E

i
0

„
ż 8

0
πitρWtdt



“ si0

ˆ

1`
ÿ

j‰i

λ2
i

λ2
j

˙

“ 1

ùñ λi “

d

ˆ

1
si0
´ 1

˙ˆ

ÿ

j‰i

1
λ2
j

˙
(129)

This equation has to hold for each dealer, giving us I non-linear equations in I unknowns.
I solve this system numerically. Importantly, this equation highlights that the Lagrange
multipliers on the static budget constraint only depend on each other and the initial
wealth share.

Now, recall that the relative wealth ratios ωj,it “
wjt
wit

serve as Radon-Nikodym deriva-
tives with logarithmic preferences. The Radon-Nikodym derivative between two dealers’
beliefs must be unique, which yields:

dξj,it

ξj,it
“
dωj,it

ωj,it
“ pεjt ´ ε

i
tq
κr
σr
dBi

t (130)

Thus, knowing wit and ξ
j,i
t fully characterizes the wealth distribution at any time t. Under

the econometrician’s measure:

dξj,it

ξj,it
“
dωj,it

ωj,it
“ pεjt ´ ε

i
tq
κr
σr
dBt ´ pε

j
t ´ ε

i
tqε

i
t

ˆ

κr
σr

˙2

dt (131)

I further have the following relation between relative wealth ratios and likelihood ratios:

ωj,it “ ξj,it
λi

λj
(132)

Applying Itô’s lemma to wit, I get the loadings on the Brownian risk factors as:
˜

´Wt

ˆ

1`
ÿ

j‰i

ξj,it
λi

λj

˙´2
ÿ

j‰i

λi

λj
ξj,it pε

j
t ´ ε

i
tq
κr
σr
`

ˆ

1`
ÿ

j‰i

ξj,it
λi

λj

˙´1

σWWt

¸

dBi
t (133)

Using the definition of wit and algebraic manipulation yields:
˜

σW ´
wit
Wt

ÿ

j‰i

λi

λj
ξj,it pε

j
t ´ ε

i
tq
κr
σr

¸

witdB
i
t (134)
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Recall that wealth evolves as:

dwit
wit

“ prt ´ ρ
´1
qdt`

ż 8

0
αitpτqp`

τ
t ´ rtqdtdτ `

ż 8

0
αitpτqζ

τ
r,tdτdBt (135)

Thus, I obtain the following equalities for portfolio shares:

ż 8

0
αitpτqζ

τ
r,tdτ “

˜

σW ´
wit
Wt

ÿ

j‰i

λi

λj
ξj,it pε

j
t ´ ε

i
tq
κr
σr

¸

(136)

or equivalently
ż 8

0
αitpτqζ

τ
r,tdτ “

˜

σW ´
wit
Wt

ÿ

j‰i

ωj,it pε
j
t ´ ε

i
tq
κr
σr

¸

(137)

Now, consider the pricing function

P
pτq
t “

N
ÿ

i“1

wit
Wt

P
pτq,i
t (138)

Start by considering the dynamics of wit
Wt
P
pτq,i
t “ ωitP

pτq,i
t . By Itô’s lemma,

dωitP
pτq,i
t “ ωitdP

pτq,i
t ` P

pτq,i
t dωit ` dω

i
tdP

pτq,i
t (139)

The second term yields the diffusion term:

´ P
pτq,i
t ωit

2 ÿ

j‰i

ξj,it
λi

λj
pεjt ´ ε

i
tqdBt (140)

The first term yields the diffusion term:

ωitP
pτq,i
t ζτ,ir,t dBt (141)

Then the diffusion of dωitP
pτq,i
t is simply:

ωitP
pτq,i
t

ˆ

ζτ,ir,t ´ ω
i
t

ÿ

j‰i

ξj,it
λi

λj
pεjt ´ ε

i
tq

˙

dBt (142)
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Hence I can recover the total bond return volatility as:

N
ř

i“1

ˆ

ωitP
pτq,i
t

ˆ

ζτ,ir,t ´ ω
i
t

ř

j‰i

λi

λj
ξj,it pε

j
t ´ ε

i
tq

˙˙

N
ř

i“1
ωitP

pτq,i
t

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

ζτr,t

dBt (143)

Hence exposures solve:

xit

ż 8

0
θe´θτ

N
ř

i“1

ˆ

ωitP
pτq,i
t

ˆ

ζτ,ir,t ´
ř

j‰i
ωjt pε

j
t ´ ε

i
tq

˙˙

N
ř

i“1
ωitP

pτq,i
t

dτ “

˜

σW ´
ÿ

j‰i

ωjt pε
j
t ´ ε

i
tq
κr
σr

¸

(144)

Rearranging the left-hand side I get:

xit

ż 8

0
θe´θτ

N
ř

i“1

ˆ

ωitP
pτq,i
t

ˆ

ζτ,ir,t ´
ř

j‰i
ωjt pε

j
t ´ ε

i
tq

˙˙

N
ř

i“1
ωitP

pτq,i
t

dτ

“ xit

ż 8

0
θe´θτ

N
ř

i“1

ˆ

ωitP
pτq,i
t

ˆ

ζτ,ir,t ´
N
ř

i“1
ωitε

i
t ` ε

i
t

˙˙

N
ř

i“1
ωitP

pτq,i
t

dτ

“ xit

ż 8

0
θe´θτ

N
ř

i“1

ˆ

ωitP
pτq,i
t

ˆ

ζτ,ir,t ` ε
i
t

˙˙

N
ř

i“1
ωitP

pτq,i
t

dτ ´ xit

N
ÿ

i“1
ωitε

i
t

ż 8

0
θe´θτdτ

“ xit

ż 8

0
θe´θτ

N
ř

i“1

ˆ

ωitP
pτq,i
t

ˆ

ζτ,ir,t ` ε
i
t

˙˙

N
ř

i“1
ωitP

pτq,i
t

dτ ´ xit

N
ÿ

i“1
ωitε

i
t

“ xit

ż 8

0
θe´θτ

«

N
ř

i“1
ωitP

pτq,i
t ζτ,ir,t

N
ř

i“1
ωitP

pτq,i
t

`

N
ř

i“1
ωitP

pτq,i
t εit

N
ř

i“1
ωitP

pτq,i
t

ff

dτ ´ xit

N
ÿ

i“1
ωitε

i
t

(145)
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The right-hand side becomes:

σW ´
ÿ

j‰i

ωjt pε
j
t ´ ε

i
tq
κr
σr
“ σW ´

κr
σr

N
ÿ

k“1
ωitε

i
t `

κr
σr
εit (146)

Multiplying each side of this equation, I obtain:

σ2
W ´

N
ÿ

k“1
ωitσW ε

i
t

κr
σr
` σW

κr
σr
εit “ µW ` σW

κr
σr
εit “ µiW (147)

and

σWx
i
t

ż 8

0
θe´θτ

«

N
ř

i“1
ωitP

pτq,i
t ζτ,ir,t

N
ř

i“1
ωitP

pτq,i
t

`

N
ř

i“1
ωitP

pτq,i
t εit

N
ř

i“1
ωitP

pτq,i
t

ff

dτ ´ xit

N
ÿ

i“1
ωitε

i
t (148)

Hence I get the familiar Merton portfolio choice solution under the subjective beliefs of
the dealer:

xit “

#

ż 8

0
θe´θτ

«

N
ř

i“1
ωitP

pτq,i
t ζτ,ir,t

N
ř

i“1
ωitP

pτq,i
t

`

N
ř

i“1
ωitP

pτq,i
t εit

N
ř

i“1
ωitP

pτq,i
t

ff

dτ ´
N
ÿ

i“1
ωitε

i
t

+´1

ˆ
µiW
σW

(149)

Next, I characterize the drift of aggregate wealth.

Proof of Lemma 1. Note the following:

πit “ e´ρtpρλiwitq
´1
“ e´ρtpρλiq´1W´1

t

ˆ

1`
ÿ

j‰i

ηj,it
λi

λj

˙

(150)

Itô’s lemma implies that the drift of dπit
πit

under dealer i’s measure is :

´rt ´ µW ´ σW ε
i
t

κr
σr
´ ρ` σ2

W ´ σW
κr
σr

ř

j‰i
ηj,it

λi

λj
pεjt ´ ε

i
tq

ˆ

1`
ř

j‰i
ηj,it

λi

λj

˙ (151)
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By no-arbitrage the subjective drift should equal ´rt, implying:

µW “ ´ρ´ σW ε
i
t

κr
σr
` σ2

W ´ σW
κr
σr

ř

j‰i
ωj,it pε

j
t ´ ε

i
tq

ˆ

1`
ř

j‰i
ωj,it

˙

“ ´ρ´ σW ε
i
t

κr
σr
` σ2

W ´ σW
κr
σr

ÿ

j‰i

ωjt pε
j
t ´ ε

i
tq

“ ´ρ` σ2
W ´ σW

κr
σr

N
ÿ

i“1
ωitε

i
t

“

N
ÿ

i“1
ωit

ˆ

´ ρ` σ2
W ´ σW

κr
σr
εit

˙

(152)

I have the following equivalence:

N
ÿ

i“1
ωit

ÿ

j‰i

ωjt ε
j
t “

N
ÿ

i“1
p1´ ωitqωitεit (153)

and
N
ÿ

i“1
ωit

ÿ

j‰i

εjt “
N
ÿ

i“1
p1´ ωitqεit (154)

Then:

µW ` σW ε
i
t

κr
σr
“ ´ρ` σ2

W ´ σW
κr
σr

ÿ

j‰i

ωjt ε
j
t ` σW

κr
σr
p1´ ωitqεit

ùñ

N
ÿ

i“1
ωit

ˆ

µW ` σW ε
i
t

κr
σr

˙

“ ´ρ` σ2
W ´ σW

κr
σr

N
ÿ

i“1
ωit

ÿ

j‰i

ωjt ε
j
t ` σW

κr
σr

N
ÿ

i“1
ωitp1´ ωitqεit

“ ´ρ` σ2
W ´ σW

κr
σr

N
ÿ

i“1
p1´ ωitqωitεit ` σW

κr
σr

N
ÿ

i“1
p1´ ωitqωitεit “ ´ρ` σ2

W

(155)
That is, the wealth-share weighted average of subjective expected wealth growth is con-
stant and equals ´ρ` σ2

W . Using the equivalence Yt “ ρWt completes the proof.

Now, consider:

ωit “

ˆ

1`
ÿ

j‰i

ωj,it

˙´1

(156)

dωitε
i
t “ εitdω

i
t ` ω

i
tdε

i
t ` dω

i
tdε

i
t (157)
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dηj,it

ηj,it
“
dωj,it

ωj,it
“ pεjt ´ ε

i
tq
κr
σr
dBt ´ pε

j
t ´ ε

i
tqε

i
t

ˆ

κr
σr

˙2

dt (158)

Then under the objective measure, ωit evolves as:

dωit
ωit

“

ˆ

κr
σr

˙2
ÿ

j‰i

«

ωjt pε
j
t ´ ε

i
tqε

i
t ` ω

j
t

2
pεjt ´ ε

i
tq

2

ff

ÿ

j‰i

ωjt pε
j
t ´ ε

i
tq
κr
σr
dBt

(159)

Now recall that under i’s beliefs, the relative wealth ratios evolve as:

dωj,it

ωj,it
“ pεjt ´ ε

i
tq
κr
σr
dBi

t (160)

Then:
d

ˆ

1`
ÿ

j‰i

ωj,it

˙

“
ÿ

j‰i

dωj,it “
ÿ

j‰i

ωj,it pε
j
t ´ ε

i
tq
κr
σr
dBi

t

“
1
ωit

ÿ

j‰i

ωjt pε
j
t ´ ε

i
tq
κr
σr
dBi

t “
1
ωit

N
ÿ

j“1
ωjt ε

j
t

κr
σr
dBi

t ´
1
ωit
εit
κr
σr
dBi

t

(161)

Note that:
ˆ

1`
ÿ

j‰i

ωj,it

˙

“

ˆ

1` 1
ωit

ÿ

j‰i

ωjt

˙

“ 1` 1´ ωit
ωit

“
1
ωit

(162)

Define: ωit “
wit

wit`Xt
:

dωit
ωitp1´ ωitq

“
dwit
wit

´
dXt

Xt

´ ωit

ˆ

dwit
wit

˙2

` p1´ ωitq
ˆ

dXt

Xt

˙2

` ωit
dwit
wit

dXt

Xt

´ p1´ ωitq
dwit
wit

dXt

Xt

“
dwit
wit

´
dXt

Xt

´ ωit
dwit
wit

ˆ

dwit
wit

´
dXt

Xt

˙

´ p1´ ωitq
dXt

Xt

ˆ

dwit
wit

´
dXt

Xt

˙

“

ˆ

1´ dWt

Wt

˙ˆ

dwit
wit

´
dXt

Xt

˙

ùñ dωit “ ωitp1´ ωitq
«

dwit
wit

´
d
ř

j‰iw
j
t

ř

j‰iw
j
t

´
dWt

Wt

ˆ

dwit
wit

´
d
ř

j‰iw
j
t

ř

j‰iw
j
t

˙

ff

(163)
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This equation characterizes the evolution of i’s wealth share. Recall that:

wit “

ˆ

1`
ÿ

j‰i

ωj,it

˙´1

Wt (164)

Then by Itô’s lemma, I have:

dwit
wit

“ rt`µW´σ
2
W`σW

κr
σr

N
ÿ

j“1
ωjt ε

j
t`

ˆ

´σW`
κr
σr

N
ÿ

j“1
ωjt ε

j
t´
κr
σr
εit

˙2

`

˜

σW´
ÿ

j‰i

ωjt pε
j
t´ε

i
tq
κr
σr

¸

dBi
t

(165)
Given the definition of µW , this reduces to:

dwit
wit

“

„

rt´ρ`

ˆ

´σW`
κr
σr

N
ÿ

j“1
ωjt ε

j
t´

κr
σr
εit

˙2

dt´

˜

´σW`
κr
σr

N
ÿ

j“1
ωjt ε

j
t´

κr
σr
εit

¸

dBi
t (166)

Note that combined with the optimality condition, this equation imposes the exact same
restriction on exposures.

Now note that under i’s beliefs, the drift of
ř

j‰i ω
j,i
t is zero, meaning that the drift

of Xt
wit

is zero. I also have:

dωit “ d

ˆ

wit
wit `Xt

˙

“ ´d

ˆ

Xt

wit `Xt

˙

“ ´d

˜

ÿ

j‰i

ωjt

¸

“ ´dp1´ ωitq (167)

Then:

d

ˆ

Xt

wit

˙

“ d

ˆ

Xt{Wt

wit{Wt

˙

“
Xt

wit

„

dpXt{Wtq

Xt{Wt

´
dpwit{Wtq

wit{Wt

`
dpwit{Wtq

wit{Wt

ˆ

dpwit{Wtq

wit{Wt

´
dpXt{Wtq

Xt{Wt

˙

(168)
Now replace each dpXt{Wtq with ´dpwit{Wtq:

d

ˆ

Xt

wit

˙

“ d

ˆ

Xt{Wt

wit{Wt

˙

“
Xt

wit

„

´
dpwit{Wtq

Xt{Wt

´
dpwit{Wtq

wit{Wt

`
dpwit{Wtq

wit{Wt

ˆ

dpwit{Wtq

wit{Wt

`
dpwit{Wtq

Xt{Wt

˙

“
Wt

wit

„

´
dpwit{Wtq

wit{Wt

`

ˆ

dpwit{Wtq

wit{Wt

˙2 

(169)
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B.7 Estimation

Recall the processes:
drt “ ´κrprt ´ µtqdt` σrdBt (170)

where the drift µt follows the law of motion:

dµt “ ´κµpµt ´ µ̄qdt` σµdBt (171)

µit “ µt ` ε
i
t (172)

where the law of motion of εit is:

dεit “ ´κεε
i
tdt` σ

i
εdBt (173)

dξit
ξit
“ εit

κr
σr
dBt (174)

Recall
dB̃i

t “ dBt ´ ε
i
t

κr
σr
dt (175)

Under i’s beliefs, εit follows:

dεit “ ´

ˆ

κε ´ σ
i
ε

κr
σr

˙

εitdt` σ
i
εdB̃

i
t (176)

Under the econometrician’s measure, the dynamics of µit follow:

dµit “ dµt ` dε
k
t “ ´κµpµ

i
t ´ µ̄qdt`

`

κµ ´ κε
˘

εitdt`
`

σµ ` σ
i
ε

˘

dBt (177)

Under i’s beliefs, I get the following instead:

dµit “ dµt ` dε
k
t “ ´κµpµt ´ µ̄qdt´

ˆ

κε ´
κr
σr

´

σµ ` σ
i
ε

¯

˙

εitdt`
´

σµ ` σ
i
ε

¯

dB̃i
t (178)

The corresponding (subjective) state-space in discrete time is as follows:

εit`1 “

˜

1´
ˆ

κε ´ σ
i
ε

κr
σr

˙

∆t
¸

εit ` σ
i
ε

?
∆t εit`1 (179)

µir,t`1 “ κµµ̄∆t` p1´ κµ∆tq µt `
ˆ

κε ´
κr
σr

´

σµ ` σ
i
ε

¯

˙

∆t εit `
´

σµ ` σ
i
ε

¯?
∆tεit`1 (180)
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rt`1 “ p1´ κr∆tq rt ` κr∆t µit ` σr
?

∆t εit`1 (181)

where ∆t corresponds to the time-interval dt, and εit`1 corresponds to the Brownian
increment Bi

t`∆t ´B
i
t. More concisely, I have:

εit`1 “ θiεε
i
t ` ν

i
εε
i
t`1

µir,t`1 “ p1´ θµqµ̄` θµµt ` θiµ,ε εit ` νµεit`1

rt`1 “ θrrt ` θr,µµ
i
t ` νrε

i
t`1

(182)

True state-space system for short-rate dynamics is:

rt`1 “ θrrt ` p1´ θrqµt ` νrεt`1

µr,t`1 “ p1´ θµqµ̄` θµµt ` νµεt`1
(183)

Rewriting I get the relation:

µt “
1

p1´ θrq
rt`1 ´

θr
p1´ θrq

rt ´
νr

p1´ θrq
εt`1

rt`1 ´ θrrt “
p1´ θrq
θµ

µr,t`1 ´
p1´ θrq
θµ

p1´ θµqµ̄`
ˆ

νr `
p1´ θrq
θµ

νµ

˙

εt`1

(184)

I further have:
Ei
trrt`1s “ θrrt ` p1´ θrqµt ` p1´ θrqεit (185)

Ei
t`1rrt`2s “ θrrt`1 ` θr,µµ

i
r,t`1

“ θ2
rrt ` θrp1´ θrqµt ` θrνrεt`1

` p1´ θrqp1´ θµqµ̄` p1´ θrqθµµt ` p1´ θrqνµεt`1

` p1´ θrqθεεit ` p1´ θrqνiεεt`1

(186)

Then the forecast errors are:

rt`1 ´ E
i
trrt`1s “ ´p1´ θrqεit ` νrεt`1 (187)

rt`2 ´ E
i
t`1rrt`2s “ ´p1´ θrqεit`1 ` νrεt`2

“ ´θεp1´ θrqεit ´ νiεp1´ θrqεt`1 ` νrεt`2

“ θε

´

rt`1 ´ E
i
trrt`1s

¯

´

´

νiεp1´ θrq ` θενr
¯

εt`1 ` νrεt`2

(188)
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Hence I obtain the ARMA(1,1) representation of dealer forecast errors.
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