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Abstract

Weak US investment after the 1980s is puzzling because rising profitability
and falling interest rates should have stimulated investment. I find the decline
in the startup rate of new businesses is behind this missing investment puzzle.
Confidential US Census micro data shows a striking divergence between micro
and macro trends. Investment increased for the average firm despite a decline
in aggregate investment, but changes in the firm age distribution masked this
investment boom from aggregate data. Fewer startups being born aged firms
and depressed aggregate investment because older firms, despite likely being
more profitable, invest less intensely. In a calibrated firm dynamics model, firm
aging due to falling startup rates explains 80% of the investment trend decline
from 11.5% to 9% of GDP between 1980 and 2010. Given historical changes in
startup rates, the life cycle model rationalizes the boom and bust in aggregate
investment and its puzzling relation with profits and interest rates since the
1950s. Consistent with the model, cross-country data shows rising investment
and falling profits amidst a resurgence in startup activity since 2010.
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1 Introduction

Following a boom in the aftermath of World War II, US aggregate investment has
been weak since the 1980s. Given falling interest rates and corporate valuations
reaching all-time highs, why did the US not experience an investment boom since the
1980s? In standard models, we would expect forces driving up returns to stimulate
investment. Rather than booming, investment in physical capital–the main focus of
this work, which includes computers or robots–has trended down by over 2.5% of
GDP since the 1980s.1

The existing literature on the aggregate investment puzzle has debated which
firm-level changes could have made firms invest less.2 Some argue incentives to
invest fell among firms following the rise in market power perhaps driven by a
deterioration of anti-trust institutions. Others argue new technologies increased
returns to scale of some firms at the expense of tangible capital and firms that cannot
keep up with intangible-intensive superstars. While the decline in startup rates is
viewed as one more sign of weak investment, my work shows falling entry is behind
the missing investment boom. This work builds on the firm dynamics tradition
of Hopenhayn (1992) to explore the life cycle origins of the aggregate investment
puzzle placing the decline in startup activity at the center stage.

In this paper, I find the aging of firms that followed this decline in the startup rate
of new businesses explains around 80% of the aggregate investment decline despite
high corporate profitability since the 1980s. In the neoclassical life cycle model
calibrated to firm-level data, the co-movement between aggregate investment, entry,
and interest rates and their inverse relation with profitability is neither puzzling
nor a sign of changing competition or technology.3 These seemingly puzzling
phenomena are a feature of perfectly competitive economies with neoclassical
technology where the supply of startups and the firm age distribution change over
time. My work builds on a rising literature, including Hopenhayn et al. (2022)
and others, that argues modeling heterogeneous firm dynamics is important to
understand the macro-economy.4

1Broader measures that include intangibles (e.g., intellectual property) have stagnated.
2Explanations include Gutiérrez and Philippon (2017), Gutiérrez et al. (2021); Gutiérrez and

Philippon (2019), intangibles, Crouzet and Eberly (2018), falling rates Liu et al. (2022), and technology
Autor et al. (2020, 2017), Aghion et al. (2019).

3Clementi and Palazzo (2016) and Clementi et al. (2014) have shown the firm life cycle is an
important form of investment propagation and amplification in the short run.

4My work inherits from the firm demographic literature pioneered by Hopenhayn et al. (2022),
Peters and Walsh (2022), Pugsley and Şahin (2019), Alon et al. (2018) and Karahan et al. (2019), who all
speak about firm aging but do not feature explicit capital investment. Bilal et al. (2021) is an exception
in a model with labor market rigidities and ideas getting harder to find. Gutiérrez and Philippon
(2019) have shown skepticism about whether firm demographic explanations, although consistent
with the decline in the mass of entrants and potentially the decline in dynamism, could account for
the puzzling divergence of entry, investment, and profitability. My work shows incorporating firm
the life cycle into a model with investment addresses this skepticism due to age composition effects.
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I start by documenting empirically that firm aging has been a powerful force
behind the aggregate investment decline using confidential data from the US Cen-
sus. I combine micro data on the investment behavior of firms in the Census of
Manufacturing universe and firm age from the recently-redesigned Longitudinal
Business Database (LBD). I show the share of output firms re-invest into building
physical capital (structures and equipment) systematically declines with age in the
cross-section of firms, mimicking the negative investment-to-GDP trend.5 The data
also shows the median size-weighted firm has aged from around 20 to 30 years old
since the late 1990s. A simple aggregation formula implies that the changing firm
age composition depressed investment-to-GDP like in the national accounts.

Surprisingly, the data shows firm aging has undone an investment boom condi-
tional on age in manufacturing, where a 10% investment increase for the average
firm has been overpowered by a 14.5% decline in aggregate investment.6 This
evidence suggests changes in startup rates and the firm age distribution can make
micro and macro trends diverge.7

I further show that the depressing effects of firm aging on investment may apply
more broadly than for physical capital in manufacturing by measuring intangible
capital investment intensity of firms across all sectors in the LBD. Consistent with
the evidence of tangible investment, citation-weighted patents per employee also
systematically declines with firm age while increasing conditional on age. This
suggests firm aging may have been putting the breaks to the rise of intangibles,
slowing their positive impact on aggregate investment.8

I build a neoclassical theory with heterogeneous firms to understand why the
firm age distribution matters for aggregate investment dynamics. Firms enter the

This shows the investment literature could benefit from explicitly modeling the firm life cycle given
recent advances in the literature such as Sterk et al. (2021); Jaimovich et al. (2023).

5This result is consistent with Ottonello and Winberry (2023) who shows younger public firms in
Compustat invest more intensely and exhaust returns to capital as they grow with age.

6This result is consistent with why measures of startup quality in Guzman and Stern (2020) have
increased while startup quantity have declined. This missing investment conditional on age may not
be just a feature of manufacturing. Survival and investment are related in life cycle models, and
Census data on all sectors shows younger firms survive at higher rates today than those in the past.

7This finding that investment and survival policies conditional on age seem to have shifted
stands in sharp contrast to the findings in the firm life cycle literature, e.g. Hopenhayn et al. (2022),
that argue nothing has changed at the micro level. I also find that structural transformation has been
another force dampening the investment decline due to aging because the economy has reallocated
away from sectors with low startup rates and old firms such as manufacturing.

8I focus on data on the "output" of investment expenditures in R&D such as patents granted
and the citations of those patents. The patent intangibles data is available for all other sectors in the
economy, including services (however, only until 2001 instead of 2017). While more work remains
to be done here, there is suggestive evidence that the bulk of the increase in intangible investment
intensity is due to changes conditional on age larger than those seen for tangible capital. Given the
evidence in Aragoneses (2023b) which uses data on the "inputs" of intangible investment, my current
best guess if that the rise in intangibles may be operating through new cohorts of young firms that
are more likely to adopt new technologies as they appear, not through firm aging.

3



economy as startups and invest in capital experiencing productivity dynamics. The
model combines elements of seminal models of firm life cycle dynamics–Hopenhayn
(1992)–and of capital investment–Hayashi (1982)’s Q-theory. Endogenous changes in
startup activity driven by population or technology need not matter for the macro-
economy: if firms do not change much over the life cycle, the firm age distribution
becomes irrelevant for aggregate investment. However, in the empirically relevant
case where firms start small and older firms grow slower as they approach their
productivity frontier, firm aging induced by a startup deficit depresses aggregate
investment. Lower investment demand depresses interest rates as long as the startup
deficit is partly driven by technology.9

I calibrate the model to quantify how historical changes in the firm age distribu-
tion affected aggregate investment in the post-war era. To discipline the economic
forces in the model I employ the same back-of-the envelope calculation formula I
used to analyze the data. In the model, investment intensity decline with firm age as
in US data since younger firms front-load investment in anticipation of future profits.
Firms receive these back-loaded profits if they survive to be old as rewards to past
investments. However, despite this forward looking firm-level investment, aggregate
investment in the model becomes backward-looking as the firm age distribution is
affected by past startup rates.

Strikingly, the post 1980 investment puzzle is not so puzzling through the lens of
the life cycle model. Quantitatively, firm aging predicts a substantial part of the 2.5%
decline in tangible investment to GDP in the data since 1980, with my preferred
model predicting 80% (2%).10 The investment effect of firm aging post-1980 is
comparable to the magnitude of the Marshall Plan in 1948-1951. In the model, the
steady decline in firm entry since the 1980s shifted the composition of firms towards
those that invest less intensely despite being more profitable. Firm aging reallocates
economic activity from young firms focused on re-investing their earnings to fuel
future growth towards older firms profiting from past investments while having
less room to grow. In the life cycle model, we should not expect high profitability
on aggregate to stimulate investment, since profits are earned by different firms (the
old) than the ones carrying out the investments (the young).

Going back in time, I find this neoclassical life cycle model calibrated to post-2000
firm age micro data effectively reproduces relevant aggregate dynamics observed
since the 1950s, particularly the rise and fall of investment-to-GDP. Inferring shocks
to the supply of business ideas that make the model reproduce the historical startup
rate boom and bust the US experienced since WWII, the model generates the
desired co-movement between entry, tangible investment and (inverse) profits in US
aggregate data. Surprisingly, I find little evidence that the historical relation between
these macroeconomic aggregates changed much around 1980. This continuity casts

9This driving force is known as “ideas getting harder to find” following Bloom et al. (2020).
10This comes from non-linear balanced growth path comparisons. A lower bound was 1% of GDP,

which come from linearized transitional dynamics.
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doubt on investment puzzle explanations that rely on post-1980 changes depressing
incumbent firm investment directly.11 While there is mounting evidence that changes
in anti-trust institutions or production technologies took place, these likely affected
investment indirectly through their effects on the changing firm age distribution and
the startup stage.

I find the startup deficit has also been driving 70% of the 4.7% secular decline in
interest rates since the 1986–when rates start to trend down in the data.12 Model
exercises also predicts rising interest rates between 1950 until 1980, a period in which
firms in the US economy turned younger and investment boomed. Consequently,
lower interest rates may not be expected to stimulate investment and startup activity,
but may instead be a byproduct of a depression in both.13 In fact, the best fit of the
model is achieved when firms do not directly respond to interest rate changes at all
as in Hopenhayn (1992).

The model also predicts that a brighter future may lie ahead. Recent US Census
data and cross-country data from the OECD show there has been a resurgence
in startup activity in the aftermath of the Great Recession14. This startup surge,
which accelerated during and after the recent pandemic, may be generating an
investment boom as firms rejuvenate through the lens of the model. Consistent
with the model, investment has been rising and profits falling in the cross section
of countries experiencing a startup surge. The model also highlights that this rise
in startup activity–potentially due to recent technological advances such as remote
work operating against falling population growth–may be one of the forces helping
the economy grow out of the zero lower bound.

This paper yields a lesson for policy-makers interested in raising aggregate
investment as urged by as Mario Draghi (2024): prioritize boosting startup activity

11Some examples include Gutiérrez et al. (2021) and Crouzet and Eberly (2018).
12The 70% number comes from varying household rates due to per capita growth without affecting

firm discount rates; allowing for some sensitivity of firms to interest rates shrinks this number to
40%, while making firms fully sensitive to rates further lowers it to 20%. Gormsen and Huber (2023)
argue falling interest rates have not affected firms much perhaps due to hurdle rates arising from
behavioral frictions or competition. This resonates with Zwick and Mahon (2017), Koby and Wolf
(2020), and Winberry (2021) who argue against high responsiveness of firms investment decisions to
interest rate changes in neoclassical investment models like Khan and Thomas (2008).

13Auclert et al. (2021b) perform a similar analysis for savings and interest rates and household
aging focusing on the household side. Relative to them, I focus on the firm side of the economy, and
find taking the fall in firm entry as an input generates the puzzling relation between investment,
interest rates, and profitability via changes in the firm age distribution. However, although short-run
investment elasticities to interest rates exist, little is known about their long-run counterparts, with
Gormsen and Huber (2023) arguing firms may not react much to interest rate changes.

14This is a fact recently documented by Haltiwanger and Decker (2023), a fact that could not
be seen with older vintages of the Census data, which has been recently re-designed. Since I use
their same most-up-to date data from the US Census, I am able to detect the effects of the recent
rejuvenation of firms, which none of the studies in the literature tend to emphasize. This result is
also consistent with the evidence in Guzman and Stern (2020) showing the surge in growth-oriented
startups after the Great Recession, challenging the notion that business dynamism is still on decline.
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to take advantage of the fact that young firms invest more intensely.
Outline. I first present a decomposition formula used to look at the data. I then

gather the different terms of this formula in US Census micro data, in particular,
how investment behavior changes by firm age and the shifting firm age distribution.
Then, I document how this firm aging empirically predicts the aggregate investment
decline. I then present a model where changes in the firm age distribution matter
for aggregate investment and calibrates it to firm age micro data post 2000. The
paper then induces the model to have startup rate dynamics like in post 1950s data,
generating the seemingly puzzling dynamics of aggregate investment through the
changing age distribution. Then I discuss implications for profitability and interest
rates. Finally, the paper provides cross-country evidence of the investment channel
highlighted in this paper and the resurgence in entry since the Great Recession.

2 Data

2.1 Investment dynamics and firm age: a formula

How can we exploit micro data on the changing firm age distribution to understand
macro investment trends? In the micro data, we observe the number of firms Na by
age a, their average size ya in terms of output, and how much they invest on average
ia. Given this data, the following equation–which will reappear in a proposition
later in the paper–can be used to dis-aggregate the ratio of investment to GDP It/Yt
in macro data as a weighted average of investment-to-output ratios by firm age
ia/ya in the micro data.

Investment/GDP︷ ︸︸ ︷
It/Yt = ∑

a

firms︷︸︸︷
Nat

size︷︸︸︷
yat

∑a Natyat

inv/output share︷ ︸︸ ︷
(iat/yat) , a = firm age (1)

Since firms grow with age, economic activity is concentrated on a smaller
number of older firms, so equation (1) reflects that total GDP of firms of a given
age (Ya = Naya) is a combination of how many of those firms there are and their
size. Further, the macro-relevant investment share ia/ya in equation (1) is not a
simple average investment ratio among firms of a given age, but one that weights
by their size15. For aggregate dynamics, one wants to compare the production and
investment behavior of relatively big, young firms against large, mature ones (e.g.,
15 year-old firms like Uber or Moderna against 50 year-old firms like Starbucks or

15Using the same size-weighted logic of equation (1), we can go from firm-level to age level ratios

ia/ya︸ ︷︷ ︸
macro ratio

= ∑
f

(
y f a/Ya

)
︸ ︷︷ ︸

firm f share in a

·
(

i f a/y f a

)
︸ ︷︷ ︸

firm-level inv/output

̸= E
[
i f a/y f a

]
︸ ︷︷ ︸
average ratio
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Microsoft) rather that the limited investment of old “mom-and-pop” shops that are
just as small as they were when they were young.

2.2 Data sources to dis-aggregate investment/GDP

The main measures and sources for each term in equation (1) are described below.
Aggregate data. For the macro ratio (I/Y) on the left hand side, I gathered

the share of aggregate investment in physical capital (gross private domestic non-
residential equipment and structures fixed investment) relative to GDP. The data is
from the national accounts (BEA/NIPA from September 2023) for the post-war era.
From the BEA, I also gather other forms of corporate investments in intellectual
property products (i.e. intangibles), the share of corporate profits after taxes, and
the labor share of GDP for applications; I will discuss this later throughout the
dissertation. I also gathered their counterparts for other countries from the OECD. I
also collect historical real interest rate data from Rogoff et al. (2022).

Micro ratios. For the micro ratios (ia/ya) on the right hand side, I obtained how
the share of physical (equipment and structures) investment expenditures in value
added–since sales minus intermediate costs aggregates up to GDP–varies across
firms of different ages. I obtained access to this for the universe of manufacturing
producers in the U.S. Census. The main data used, known as the Census of
Manufacturers (CM), contains 2.7 million firm-year observations of 338, 000 firms
every five years between 1977 and 2017, and an additional 1.1 million subset of it for
the period after 2002 to combat censoring–I highlight under each fact what sample
is used. I have kept data treatment as minimalist as possible to let the data speak for
itself. I did not want to drop any firms or trim measures in order to not introduce
selection (i.e. I did not want to keep only the “good” looking younger firms). Only a
negligible number of small plants in Census of Manufacturing were excluded from
the analyses because they could not be matched to the LBD which contained the
measure of firm age I use. I aggregated plants at the firm level. Instead of dropping
either firms or plants I kept “quality” control variables for several empirical issues
(imputation, right-censoring, zero-observations) known to exist in Census. Since
Census contains the universe of manufacturers, I do not need to use any sampling
weights. All age-level ratios are size-weighted as described in Footnote 15.

Firm age. I measure the 1978-2021 firm age (a) distributions (Na) following
the methods Census used for their public-use Business Dynamics Statistics (BDS)
from September 2023.16 Rather than tracking incorporations, Census imputes firms’
age by linking administrative and tax records that are constantly curated to adjust
for changes to firms’ organizational and legal structure. Census tracks firms as
a collection of units (establishments whose age is the years since they first report

16In this article I used the most up to date available measure of firm identifiers in the Longitudinal
Business Database (LBD) and the latest release of the BDS disclosed in late September of 2023. Note
that since 2020, Census greatly updated their measurement of firm linkages and age.

7



positive employment). It then uses a relatively conservative measure of firm age:
when a “firm” first appears in government records, they are assigned an initial
age by determining the age of the oldest unit that belongs to the firm at time
of birth. Firm age then accumulates naturally. This is done because some firms
have multiple units at time of birth, hence generating concerns that mergers and
acquisitions may lead firms to appear as new entrants when they really are older
firms. Thus, measuring age based the oldest of an organization’s establishments
when the firm first appears prevents any spurious age changes that would result if
an organization’s age was updated based on M&A activity.17 A startup is a firm for
which all units (if there are more than one) are new to the economy in that year.18

Intangible investment intensity. While the main objective of this paper is to
understand the dynamics of physical capital investment intensity as a function
of firm age, the approach developed here can also include "intangible" capital
investment. For all sectors in the economy, I measure patenting activity using what
is known as the “SSEL NBER patent match” and merge it to LBD which contains
information on the number of employees of firms.19 I measure intangible investment
intensity relative to the number of employees in terms of the number of patents
granted to a firm weighted by forward citations across all patents granted in a year.
This citation-weighted measure captures the fact that not all patents are worth the
same, weighting more heavily more scientifically meaningful patents. Even though
we do not know how much firms are spending to get these patents, these measures
provide a sense of how intensively firms of different ages are investing in building
intangible capital through R &D.

Censoring. Because the data of incorporation is not available, firm age is “cen-
sored” for the oldest cohort of firms: Census cannot provide the age distribution at
or prior to 1977. I deal with this issue in several standard ways: excluding censored
age groups, excluding earlier periods, and controlling for censored firms. For
public BDS data, I use the raw variable of age but exclude the very oldest cohort of
censored firms in the economy in every year, and estimate relations for uncensored
ages in later years of the sample where sufficiently many uncensored ages exist.
For confidential Census data, I use the latest periods, and I have disclosed results
where I estimate a separate mean for censored age groups and found controlling for
censoring often increases the strength of the relations highlighted here20.

Historical entry series. To build a historical startup rate series, I gather historical
17See https://www.kauffman.org/wp-content/uploads/2019/12/bds_handout_011209.pdf
18I acknowledge this is a crude measure of age, but my goal here was to make my estimates able

to be combined with public data from the BDS so my results were portable to other studies. I am
working on a companion study describing the firm age anatomy of the economy using different
measures of firm age, Aragoneses (2023a).

19A major advantage of this data is that it covers not just manufacturing but also data on services
and other sectors. However the data stops in 2001 and thus, it cannot be used to do the same
split-sample longitudinal analyses as the main investment data.

20This has been done due to disclosure requirements, since dropping firms would require “cutting”
the data. I have however checked results inside Census dropping the oldest firms.
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Table 1: Summary statistics of main data sources

Data Source Sector Variable 77-97 02-17 ∆ % ∆
BEA (Macro) All Investment/GDP I/Y 10.6 8.8 −1.7 −17%

Manu. 10.9 9.4 −1.5 −14%
Census (Micro) All Startup Rate N0/N 11.6 8.8 −2.9 −25%

Manu. 8.8 5.3 −3.5 −40%
Investment/GDP I/Y 8.3 7.1 −1.2 −14.5%

"Mean" E (i/y) 8.0 8.8 +0.8 +10%

Note. This table highlights that aggregated Manufacturing Census data exhibits a similar levels and
declines in investment-to-GDP I/Y as the broader economy across all sectors. It also shows that the
within-sector decline in entry N0/N has been larger than the aggregate one. Despite the decline in
aggregate investment in Census, at the micro level average investment-to-output E (i/y) increased
indicating a disconnect between micro and macro trends.. It shows public data from the BEA and
data from the US Census Bureau’s public BDS for all sectors and for manufacturing. In addition, it
also shows data on restricted-access micro-data from the Census of Manufacturers with ≈ 2.7 million
firm-year observations in the universe of US manufacturing firms. See Section 2.1 for further data
details.

firm entry from the Survey of Current Businesses pre 1963 as digitized by Hopen-
hayn et al. (2022), and match it to the the post 1977 BDS (2023) entry rate using an
imputation of firm entry rates for the years between 1963 and 1977 from Karahan et al.
(2019) that imputes establishment entry rates using the County Business Patterns.21 I
also gathered a measure of the entry rate from the Global Business Monitor.

2.3 Puzzling macro trends

Figure 1 shows that aggregate physical capital investment-to-GDP I/Y move with
firm startup rates: both increased after WWII and have declined after 1980.

Economy-wide v.s. Manufacturing investment trends. Table 1 shows manufacturing
exhibits trends similar to the aggregate economy, with declining investment and firm
entry rates since the 1980s; manufacturing and the aggregate exhibit similar level
of tangible I/Y in the period of 1977-1997 and a similar magnitude of the decline
since then (10.9% vs 10.6% and −17% and −14% respectively). Manufacturing

21For a companion article that will be available shortly (Aragoneses (2023a)) I also digitized
records from Crum (1953) “The Age Structure of the Corporate System” on the 1945-1946 firm age
distribution right after WWII from tax records by incorporation dates going back to 1860. Using this
initial age distribution together with the historical path of the firm startup rate I have been able to
impute the firm age distribution in 1977 using an iterative procedure. Although this distribution
cannot be used to determine the age of particular firms in the 1977 spell of the micro data, it can be
used for aggregation.
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Figure 1: Trends in startup activity, investment, profits, and r∗
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Note. Investment boomed after WWII accompanied by rising startup rates and interest rates until
the 1980s and started under-performing afterwards. Manufacturing also experienced a decline in
investment, as shown by the red line. The Census of Manufacturing exhibits a similar trend to the
BEA data, although with different levels. This figure shows BEA GDP ratios of investment and GDP
and corporate profits after tax. The restricted-access data from the Census of Manufacturers is from
≈ 2.7 million firm-year observations in the universe of US manufacturing firms. All trends include a
HP filtered trend with smoothing parameter λ = 100. Data on US interest rates is from Rogoff et al.
(2022). Data on startup rates come from Census BDS data on firm entry after 1978 and from the SCB
prior to 1963, following Karahan et al. (2019) to interpolate years in between. See Section 2.1 for data
details.
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does however have a lower entry rate and a larger entry decline, likely due to
the process of structural transformation, as the economy shifted towards services
that had higher entry rates, mitigating the aggregate entry decline. However, as
shown in the Data Appendix, despite having lower entry and higher initial size
y0, manufacturing firms do grow just as fast over the life cycle as the average firm
across all sectors ya/y0, suggesting that firm dynamics patterns in manufacturing
can be extrapolated to learn about patterns in the rest of the economy.

Aggregate (BEA) v.s. Aggregated (Census) manufacturing investment decline. The
table also shows that although the measure of I/Y aggregated inside Census is
lower than the one captured in BEA data (8.3% vs 10.9% in the pre-period), the time
trends of both measures are identical: −14%. This suggests that although Census
might systematically under-measure investment relative to BEA, this does not affect
the time trends that are of interest for this study.

Figure 1 also shows broader measures of investment that include intellectual
property (intangibles) increased before 1980, but have flat-lined afterwards. This
break in the investment series is puzzling because real interest rates have been on
decline since the 1980s, which should have stimulated investment on aggregate.
Not only did total investment not rise, but its physical component fell strongly.
The literature has proposed broadly three different explanations. First, a rise in
intangibles made firms substitute away from physical capital Crouzet and Eberly
(2018). Second, a fall in competition made firms need to invest less to remain market
leaders Gutiérrez and Philippon (2017). Third, falling rates may benefit market
leaders more Liu et al. (2022). All view the startup trend as an outcome: startups
are being “discouraged” from entering due to incumbents.

The summary statistics Table 1 shows the striking disconnect: while aggregate
physical I/Y fell by 14% along with the startup rate, the average investment share of
firms in Census E

(
i f /y f

)
increased by 10%.22 As will become clear throughout the

rest of the section, while aggregate investment has been weak, in fact, firms at the
micro level seem to be investing more in physical capital than they did before.

In what follows, the trends in the startup rate will be thought of as an “input”
depressing aggregate investment by shifting economic activity towards older firms
while the average firm remains young and dynamic.

2.4 Investment and growth by age and over time

How does investment behavior and firm growth vary with firm age and over time?
Fact 1.1: Older firms invest less intensely: investment/output falls with age
Table 2 shows in the universe of manufacturing firms after 2002 the relationship

between firm age and the investment expenditure shares of value added is negative,

22This divergence between the average firm and the aggregate trend has also been highlighted by
Kehrig and Vincent (2021) and Hubmer and Restrepo (2021) within the Census of Manufacturers for
a different trend, the labor share.
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Table 2: Older firms invest less intensely but investment intensity
increased given age (for both tangible and intangible investment)

investment
output (1) (2) (3) (4) (5) (6)

Base. t FE a FE Sec FE Controls Intangibles
βage −.09 −.09 −.08 −.10 −.12

(.01) (.01) (.01) (.01) (.03)
βtime +.05 +.05 +.02 +.05 +.06

(.01) (.01) (.01) (.01) (.03)

i f at/y f at = α + βage a + βtime t + Θ′X + ε f at

Note. This table hows that investment/output falls with age (βage < 0) while it has increased over
time (βtime > 0), motivating why aging could be behind the aggregate trend in Table 1 and reflecting
a disconnect between the declining macro investment and the increasing average investment in Table
1. (1) pools all data 1977-2017 data running a regression on age and year without controls, (2) uses
year fixed effects, (3) age fixed effects, (4) adds fine sector fixed effects, and (5) adds a mean for
firms in the 1976 cohort whose age is unknown, showing the age relationship strengthens when
controlling for the censored cohort of oldest firms, (6) uses a measure of intangible investment
intensity (patents/employee weighted by citations). A figure in the data appendix uses only 2002-
2017 data to address censoring. The main data used is from the Census of Manufacturers, ≈ 2.7
million firm-year observations pooling 1977-2017. The last column’s NBER patents data sample
covers firms in all sectors of the economy (not just manufacturing) for which information on the
SSEL patent match exists and was able to be matched to the Longitudinal Business Database LBD.
While the economic censuses cover he 1977-2017 period in five year spells, the LBD-NBER patent
match in the SSEL is annual but only covers the 1976-2001 spell. Variables: for tangible capital
intensity I uses total investment expenditures in physical capital (structures, equipment) relative to
value added (the micro counterparts of investment/GDP) by firm age (measured by definition in
LBD used in BDS); for intangible capital intensity (last column) I use the number of patents granted
relative to the number of employees. Weights: share of the firm in total value added of its age group
per equation, patent citations to capture scientific value (last column). See Section 2.1 for data details.
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mimicking the decline in aggregate investment-to-GDP. Investment expenditures
tends to grow with firm age at a slower rate than output grows with age, and as
a result.23 The table shows the share of output that is re-invested back into the
business robustly declines with age, and adding controls for data quality issues
(such as right-censoring) only strengthens this relation. Aging a decade decreases
investment/output by 1%. 24 The last column of Table 2 also shows that intangible
investment falls with firm age, measured using the number of new patents granted
per employee weighted by citations to capture scientific importance. The sign
and magnitude of the decline roughly mimics what one sees for tangible capital.
Importantly, this data covers all sectors in the economy (not just manufacturing).25

Fact 1.2 Investment intensity increased conditional on age over time
Table 2 shows that in fact firms today seem to be investing more than firms

did in the past once we condition on age, 0.5% more every decade. The Empirical
Appendix suggests this might be driven by new cohorts of younger firms. This fact
is unlikely to be driven by either censoring or manufacturing specificities. In fact,
the last column shows the investment boom conditional on age is also present for
intangible investment measures based on patenting LBD firms across all sectors.
The next section also will demonstrate that survival rates (a form of investment)
conditional on age have increased across all sectors in non-censored younger cohorts.

Fact 1.3: Firm size increases with age in a stationary way
Figure 3 shows that while the size of a business increases with age economy-

wide, this size-age relationship has remained surprisingly stationary over time. A
table in the Appendix also shows this holds regardless of whether employment or
value added is used as a measure of size26. This stationarity is striking because
there has been an aggregate slowdown since the 1980s (which would make firms
grow faster) but also because investment conditional on age increased (which would
make firms grow slower).27 I will exploit the strength of the output by age relation
and its apparent stationarity hereafter.

2.5 Micro facts on the changing firm age distribution

Since firms survive longer and fewer started, the US firm population has aged.

23This is consistent with independent work by Ottonello and Winberry (2023) using Compustat.
24See empirical appendix for further evidence that censoring is not an issue.
25I focus on tangible investment rather total investment because the measure of intangible

investment has many caveats: it ends in 2001 and measures only the output of investment (patents
granted) rather than inputs (dollar-valued expenditures), that is, is available only for innovating
firms, and thus it misses the extensive margin of investment (the choice of whether to patent or not)
as well as the intensity at which firms spend in patenting.

26The Table also shows this property holds for value added, which scales faster than employment
27Prior studies using old vintages of US Census data found the size-age relation seemed to be

flattening
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Figure 2: Size increases with age in a stationary way

Note. This figure shows size by age has been stationary so firms grow with age but not faster or
slower than in the past. The figure uses Census BDS data on employment by age across all sectors,
but the Data Appendix shows this same pattern holds in the Manufacturing Census 1977-2017 for
output as well as employment. See Section 2.1 for data details.
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Fact 1.4: Younger firms today survive at higher rates than in the past Aging can
take place if fewer firms are being born or existing firms survive longer. Declining
firm entry was one of the trends in Figure 1. Figure 17 in the Appendix shows that
while in every year older firms tend to exit less, younger firms today are more likely
to survive than those in the past, a fact that has recently emerged in BDS after the
LBD methodology was re-designed to better measure firms identities. Nearly 30%
of newborn startups did not survive a year, while close to 20% exit in the 2010s.
This echoes the result in Table 2: firms are investing more intensely in capital but
also in survival.

Fact 1.5: US firms have aged significantly Figure 3 shows the US age distribu-
tion has shifted towards old firms: the median firm age rose from 6 to 9 since the
1980s.28 Firm aging has generated an even stronger shift in workers towards older
firms (given that size increases with age in a stable way). Following the red line
in Figure 3, we see that the median worker nowadays is employed at a 30 rather
than 20 year old firm as they were in the late 1990s. The Appendix demonstrates
that aggregates underestimate within-sector aging because the economy is moving
away from sectors with less entry (and older firms) such as manufacturing.29 The
empirical predictive analyses that follow are thus performed within sectors.

2.6 Firm aging implications: a back-of-the envelope calculation

The shift in the age distribution of US firms documented above predicts the trend in
aggregate investment to GDP. I do so using a back-of-the-envelope calculation that
shifts only the composition of firms by age holding constant how micro investment
behavior and size varies by age. This age-based de-composition isolates how the
three terms in equation (1) change over time.
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investment intensity by age

(2)

28When studying life cycle dynamics, most data sources share a similar problem: age since
founding date is not directly observed. Age must be estimated within the available years for which
longitudinal linkages are available. In US Census, we do not know the true age of businesses founded
in 1976 or earlier. Thus, the maximum age observed in 1987 will be 10. To get around this problem, I
follow Axtell (forthcoming) in approximating the business age distribution via a Weibull function
(thinner tailed than exponential) separately for each year, sector, and type of business (plants and
firms). My reliable estimates start at 1992 because this is when the coefficients from a Weibull fit
Fst (a) = 1− e−(a/pst)

qst .
29In the appendix I show how within each year-sector, I estimate the share of firms using

uncensored age data, and fill in the missing empirical distribution with the estimated one. I estimate
micro ratios and the distribution with data truncated at the maximum age observable (i.e. 40 in
2018) and extrapolate the terms for the formula up to age 200 since that is the age of some of today’s
largest firms. See the Empirical Appendix for details on the implementation. In addition, I also find
plants tend to be younger on average but exhibit similar aging patterns to firms.
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Figure 3: US firms have aged significantly

Note. This figure shows firms have aged significantly in the US since the late 1980s. Following the
red line, we see that the median worker nowadays is employed at a 30 rather than 20 year old firm
as they were in the late 1990s. Figure shows a Weibull cumulative distribution function F (a) =

1 − exp
(
− (a/p)q) overlaid on data from BDS (09/2023) with coefficients estimated separately

for each year. I mitigate the effect of censoring by estimating this age distribution with only the
non-censored age groups (dropping the firms in the first year of BDS), and do not use the pre 1988
years where little age variation is available. The figure uses Census BDS data on employment by
age across all sectors, but the Data Appendix shows this same pattern holds in the Manufacturing
Census 1977-2017 for output as well as employment. See Section 2.1 for data details. See Section 2.1
for data details.
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Figure 4: Changing firm age composition predicts the aggregate
investment decline
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)
︸ ︷︷ ︸

firm aging prediction

Note. This figure shows the aging of US firms depressed aggregate investment, while a recent
rejuvenation may have put a stop to this downward pressure. The “aggregate data trend” is from
the BEA’s investment-to-GDP ratio in Figure 1 while “firm aging prediction” dashed red line in
Figure 6 plots the “firm age composition” term in the back-of-the-envelope equation. Firm aging
shifts the age distribution of firms Nat–estimated from Census BDS data on each year like in Figure
3–towards firms that have lower investment-to-output ratios (ia/ya), measured in restricted-access
micro-data from the Census of Manufacturers as shown in Fact 1. Importantly, the aging prediction
reached its lowest point in the mid-2010s but has since then has experienced a rebound due to
a resurgence in entry. Throughout I hold the size-by-age ya and investment-by-age ia ratios are
held constant, where ya is estimated in the BDS in terms of labor but adjusted to value added
using estimates of the value added to labor relation from the Census of Manufacturing. In my
implementation I isolate within-sector aging effects by controlling for structural transformation in the
economy ∆It/Yt ∝ ∑s Ys0/Y0 · ∆Ist/Yst holding constant the 1980s sectorial composition.
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Fact 1.6: Changing firm age composition predicts aggregate investment decline
The “firm aging prediction” dashed red line in Figure 4 plots the “firm age compo-
sition” term in the back-of-the-envelope equation (2). It suggests firm aging (shown
in Fact 3) has been a powerful force depressing aggregate investment-to-GDP in the
US since the 1980s. The prediction is remarkably close to the actual trend in black,
and in fact, predicts that if aging was the only force, there would have been an even
larger decline. Firm aging drove down investment by 2.5% of GDP between the late
1980s and the 2010s (125% of the actual 2% decline).

Why firm aging depressed investment after the 1980s. Intuitively, aging shifts eco-
nomic activity towards firms that have lower investment-to-output ratios (ia/ya), as
shown in Fact 1 for the Manufacturing Census. The prediction weights the change
in the age distribution of firms (Na/N) in Fact 5 by the stable size-by-age relation
(ya/y) shown in Fact 3 to arrive to the change in the firm age distribution of GDP
(∆Natya/ ∑a Natya). Given the stable size-by-age relation, the middle term has likely
been negligible (∆tya/y ≈ 0), implying an increase in investment intensity given
age likely dampened the aggregate decline. This is consistent with the evidence in
Fact 2 that investment increased condition on age.

The recent rejuvenation of US firms. Importantly, the aging prediction reached
its lowest point in the mid-2010s but has since then has experienced a significant
rebound. This is due to the resurgence of firm entry after the Great Recession that
accelerated during the COVID-19 pandemic.

Implementation details. I extrapolate my estimates inside Census for manufactur-
ing ia/ya profile (Fact 1) in Compustat across all sectors (see Appendix) a similar
negative profile exists across all sectors30. In the empirical appendix, I show further
evidence that manufacturing is not very different from the rest of the economy,
including that size-by-age in manufacturing mimics the average firm in all sectors,
justifying why we can use the extrapolation from manufacturing for the decomposi-
tion. Manufacturing indeed is still one of the largest sectors although it has been on
decline due to structural transformation shifting the economy towards services: in
1947 manufacturing was 1/3 of the non-finance economy while today is only around
1/6.31 Because the level of i/y might be different in the manufacturing Census
than in the rest of the economy, I use the schedule in manufacturing relative to a
startup (ia/i0) / (ya/y0) to multiply the changing weight Natya/ ∑a Natya where the
estimate used controls for censoring ages. I also isolate within-sector aging effects by
controlling for structural transformation in the economy. I do so applying this for-
mula for ∆Ist/Yst at the sector level and aggregating up ∆It/Yt ∝ ∑s Ys0/Y0 ·∆Ist/Yst,
holding sectorial composition of output Ys0/Y0 unchanged since the 1980s to pre-
vent the reallocation from older to younger sectors (manufacturing to services)

30A more serious cross-sector investigation of differences in investment behavior over the life
cycle is left for future work.

31It is common to remove Finance, Insurance, and Real Estate (FIRE), see Ottonello and Winberry
(2020), from analyses because firms in these sectors tend to behave differently from the rest of the
economy.
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biasing down the aggregate dynamics. In the BDS I estimate Na changes and the la
employment by age profiles within each sector and period. I also use the adjustment
between labor and value added inside Census to adjust the BDS schedule. I have
left the details of the decomposition are in the Data Appendix.

Intangibles. Despite the different approaches to measure investment in physical
capital (in manufacturing) and intangible capital (across all sectors), both types of
data show that by the time firms reach 25 years old, they invest 60% as intensely
as a young startup. Furthermore, we have seen conditional on age intangibles
exhibit the same investment boom over time observed in physical capital. This adds
to the robustness of the main channel highlighted in this study–that firm aging
quantitatively depresses investment intensity at the aggregate. Further exploring
these changes conditional on age and deepening our understanding for intangibles
investment using broader measures is left for future work.32

This age decomposition, while illustrative, supports the assessment that changing
age composition alone, while holding constant the micro relations estimated above,
can help predict the aggregate investment-to-GDP decline observed after the 1980s.

3 Theory

Does entry and the firm age distribution matter for aggregate investment dynamics?
I build a neoclassical theory that combines elements of models of firm life cycle
dynamics–Hopenhayn (1992)–and of capital investment-Hayashi (1982)’s Q-theory.
The model is calibrated to the age heterogeneity in the back-of-the-envelope formula
to assess the aggregate implications of changes in startup activity since 1950.

3.1 Environment

Time is discrete and infinite, with no aggregate risk. The close economy is populated
by a household and entrepreneurs that can launch startups to become firms.

Household. Each of a growing mass L̄t = ∏t
k=0 gLk of symmetric individuals

supplies inelastically one unit of labor. They do not own any capital, own all firms
in the economy, including startups, and receive the flow profits of firms (net of all

32As an alternative measure, I also collected information on spending into advertising, commu-
nications, and non-production worker salaries as a proxy for organizational capital. Some of this
spending of non-production workers could be used in R&D activities to produce patents. This
“input” rather than “output” approach to the measurement of intangible investment shows clearly
an increase in intangible investment conditional on age that is especially concentrated on young firms. This
could imply that while for tangible investment the aging force has been quantitatively the dominant
depressing force while for intangible investment the negative impact of aging has been offset by
an increase conditional on age that may not be visible using existing measures of patenting firms.
While these aging effects seem to also potentially be present in intangible measures of investment
based on advertising/patenting, it seems like direct changes conditional on age may have been more
powerful for intangibles.
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investment costs) as dividends πt. They have access to bonds bt (in zero net supply)
paying interest rate rt. The household maximizes lifetime utility over consumption
ct of all its members given a sequence of per capita budget constraints:

V0 (b0) = max
{ct,bt+1}

∞

∑
t=0

βt L̄t log (ct) (3)

ct + gLt+1bt+1 = (1 + rt) bt + wt + πt (4)

Firms. Output, Yt, the numeraire, is produced by a stock of firms of mass Nt.
Firms produce using labor lt, which they hire in a competitive market, their own
tangible capital stock kt, and productivity zt, which can be thought of as their
intangible capital stock. Firms are heterogeneous in zt and kt. The production
technology features a growing common level of productivity Z̄t = ∏t

k=0 gZk, and
decreasing returns to scale θ, so that αθ is the capital share. Decreasing returns
allows unequal firms to coexist in equilibrium rather than all the output being
produced by the most productive firm in the economy.

yt = Z̄zt

(
kα

t l1−α
t

)θ
, α, θ < 1 (5)

Firms will enter the economy drawing a relatively small productivity ze, accumu-
lating productivity and capital as they age. Their productivity evolves as a Markov
process with persistence ρ accumulating log-normal shocks ε with dispersion σ if
they survive. Their tangible capital stock depreciates at rate δk and is accumulated
explicitly via costly investment it–our key object of interest. Convex adjustment
costs ϕ (i, k) slow down this capital accumulation process. This captures the fact that
it may take firms some time to build up to their desired capital level that matches
their level of productivity.

log zt+1 = ρ log zt + σεt+1 , εt+1 ∼ N (0, 1) , z0 = ze given (6)

kt+1 = (1− δk) kt + it , ϕ (i, k) = κi (i/k)γ k (7)

After production takes place and workers are paid, firms continuously decide
whether to invest in continuing in operation or shutting down. I capture this exit-
survival choice by the discrete choice p f t ∈ {0, 1} of paying an additional fixed
cost of production in goods κ f . If the firm shuts down, their intangible capital is
lost forever because it cannot be sold in the market; in contrast, they can sell their
capital stock net of depreciation and costs required to uninstall their capital stock
λ = 1− κi (− (1− δk))

γ−1. Their dynamic optimization problem given (5)-(7) is:

vt (z, k) = max
p f ,t∈{0,1},i,k′,y,l

(
1− p f t p̄ f

)
(1− δk) λk (← shut-down choice value)

+ p f t p̄ f

{
y− wtl − k′ − ϕ (i/k)− κ f +

1

1 + r f
t+1

Et
[
vt+1

(
z′, k′

)]}
(8)
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Note that current z and k are the only state variables because firms start with a
different initial ze < 1 described below, but converge to a common long run mean
z̄ = 1 over the life cycle.33

Startups. I allow both for free entry as well as entrant selection and investment.
A non-negative mass of entrepreneurs Mt ≥ 0 decides to enter the economy in every
period. Each entrepreneur Mt pays a cost of entry κe, which can be thought of as the
cost of “exploring” the market. Once they pay the cost, they draw an “idea” of their
future intangible productivity ze from a Pareto distribution Fe (ze) = 1− (ze/ze)

−ξ

such that ze ≥ ze. This endogenous mass of entrepreneurs choose to enter as long
as the net expected value of doing so is non-negative:

−κe +
∫

ve (ze) Fe (dze) ≥ 0 (9)

Given their initial idea ze, each potential entrepreneur in mass Mt decides
whether to start the business or not and if they do so, they invest in an initial level of
capital k′e with which to start the firm. Similarly to incumbents’ survival, their entry
choice pst ∈ {0, 1} is subject to an overhead cost κs so their optimization program is:

ve (ze) = max
k′e,pst∈{0,1}

pst

{
−κs − k′e +

1

1 + r f
t+1

Ez′|ze

[
vt+1

(
z′, k′e

)]}
(10)

Entrants are entrepreneurs with a signal above an endogenous threshold ze > z∗e
will choose to launch their startup.

Crucially, Mt does not directly affect firms idiosyncratic problem: entry affects
the economy only through the distribution of firms. The level of Mt will scale up
the economy. A faster growing Mt will result in relatively younger firms.

Discount rates. The firm dynamics literature often works with two extremes
regarding firms’ discount rates: either r f

t is fixed at an exogenous rate r∗ as in
Hopenhayn et al. (2022)or sets it equal to the household rate rt as in the neoclassical
model in Khan and Thomas (2008). I allow for an intermediate case where r f

t =
(1−m) r∗ + mrt. The constant m ∈ [0, 1] allows firms’ investment behavior to
depend on household interest rates but in a less sensitive fashion than in the
neoclassical model as argued by Gormsen and Huber (2023), Gabaix (2020), Winberry
(2021) and Koby and Wolf (2020). m < 1 allows the model to be relatively insensitive
to interest rates without having to calibrate investment adjustment costs to be so
high that firms do not grow enough over the life cycle.

Law of Motion of the Distribution µt. There is an endogenous measure of firms
µt (s) where s = (z, k) is a short hand for the state vector and t is a short hand for

33I have also develop an extension where firms draw a long-run mean z̄ where log zt+1 =
(1− ρ) log z̄ + ρ log zt + σεt+1 which required an additional state variable so (z̄, z, k). Because the
presence of k due to adjustment costs already breaks the perfect correlation between size and
productivity, I leave this extension for the Appendix.
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all aggregates: {wh, rh, Mh, L̄h, Z̄h}h≥t. There is an underlying age distribution:

µt (s) :=
∞

∑
a=0

µat (s) (11)

Let ds = (dz, dk). The distribution evolves according to the endogenous entry
and exit of firms as well as their capital investment decisions captured by ϖk and
exogenous productivity dynamics captured by ωz:

µa+1t+1
(
s′
)

= p̄ f

∫
p f t (s)ϖk

(
k′ = k′t (s)

)
ωz
(
z′|z
)

µa,t (ds) if a > 1 (12)

= Mt+1

∫
pst (ze)ϖk

(
k′ = k′et (ze)

)
ωz
(
z′|ze

)
Fe (dze) if a = 1(13)

Consequently, the mass of firms evolves as:

Nt+1 =
∫

µt+1
(
ds′
)
= p̄ f

∫
p f t (s) µt (ds) + Mt+1

∫
pst (s) Fe (ds) (14)

I define the general equilibrium of this economy and its balanced growth path.

3.2 Equilibrium

I define a recursive competitive equilibrium given paths of exogenous shocks
{L̄t, Z̄t} where all agents optimize given sequences of prices {wt, rt} that adjust to
clear markets:

Household. Given prices wt, rt and profits πt, the household chooses individual
consumption sequences {ct} to maximize lifetime utility (3) given their constraints
which reflect that bonds are in zero net supply so bt = 0 ∀t.

(1 + rt+1) β = ct+1/ct, ct = wt + πt (15)

Firms. Given prices wt, rt, firm value and policy functions satisfy (8). Firms
choose output and labor statically, and given output and profits, firms make their
dynamic investment decisions p f (s), k′ (s) . Because all costs are paid in output,
firms optimally choose to have a constant labor share of output θ̄ = θ (1− α).

wtlt (s) /yt (s) = θ̄, yt (s) =
(
θ̄/wt

) θ̄
1−θ̄

(
Z̄tzkαθ

) 1
1−θ̄ (16)

Startups. Given prices wt, rt and the value of a firm vt (s) implied by (8),
Mt > 0 entrepreneurs enter until free entry is satisfied. Once each draws ze, each
entrepreneur makes their investment decisions: ps (ze) , k′e (ze) to satisfy (10). Free
entry requires:

κe =
∫

ve (ze) Fe (dze) (17)
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Distribution. {µt, Mt} satisfy the law of motion of the distribution (11)-(13).
Market clearing. Given optimal choices, wt, rt, and Mt adjust to clear labor

markets
L̄t =

∫
lt (s) µt (ds) = θ̄Yt/wt (18)

as well as to clear goods markets where consumption is what is left of total
production after the costs of investment and operations are paid.

Yt = Ct + It + Xt (19)

These costs include costs of entry, operations, and investment paid in goods
(which could be thought of as a “broader” notion of investment that is not empha-
sized here)

It = Mt

∫
ke (z) ps (z) Fe (dz) +

∫
k′ (s) p f (s) µt (ds)−

∫
(1− δk) kp f (s) µt (ds)(20)

Xt = Mt

(
κe + κs

∫
ps (s) Fe (ds)

)
+
∫ [

κ f + ϕ (s)
]

p f (s) µt (ds) (21)

Aggregate output scales with the stock of firms and their average productivity

Yt =

[∫ (
zkαθ

) 1
1−θ̄

µ̄t (ds)
]1−θ̄

Z̄t L̄θ̄
t N1−θ̄

t

where
∫

µ̄t (ds) = 1 defines a density. Thus the model jointly endogenizes
Total Factor Productivity (TFP) as well as It/Yt as a function of entry and the age
distribution of firms. The model also highlights why profitability and investment are
inversely related: when firms spend less in investment, they retain more earnings
since the dividends distributed to individuals πt = Πt/L̄t depend on the profit
share:

Πt

Yt
= 1− θ̄ − It

Yt
− Xt

Yt
(22)

We are now ready to define a balanced growth path.
(Balanced Growth Path) Along a BGP where population and technology grow

at constant rates L̄t = gt
L and Z̄t = gt

Z, the mass of entrants Mt grows with GDP as a
function of population growth and income per capita growth driven by technology

gM = gY = gcgL, gc = g1/θ̄
Z (23)

so that M̄t = Mt/Z̄1/θ̄
t L̄t = M̄ and other de-trended aggregates are stationary

along the BGP. Startup activity only affects interest rates in the long run if it is not
only driven by household demographics, but also due to technological change gZ.

(1 + r (gc)) β = gc (24)
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Proof. For goods markets to clear, total consumption Ct = L̄tct needs to be growing
at the same rate as output Yt so per capita consumption grows gc = gY/gL. If costs
of entry κe are constant, then Mt also needs to be growing with Yt, gM = gY. This
means that consumption per capita, wages, and profits per capita need to be growing
at gc = gw = gπ, which determines the equilibrium interest rate (1 + r (gc)) β = gc.
For labor markets to clear, wages need to be growing with technology:

wt = θ̄Yt/L̄t = gt
ww where gw = gY/gL = g

1
θ̄
Z

Due to this general equilibrium offsetting, output by age is stationary over time
(Fact 3) but grows with age as z, k accumulate.

yt (s|w) = Yt (wt)
(

zkαθ
) 1

1−θ̄ , Yt (w) =
(

θ̄ θ̄ Z̄t/wθ̄
t

) 1
1−θ̄ =

(
θ̄ θ̄ Z̄/wθ̄

) 1
1−θ̄ = Y (w)

Given r and w, because neither Mt nor L̄t directly affect either the firm or startup
problem (there are no direct competition or congestion effects), these problems
become stationary as a function of aggregates Y (w) and r f (r).

v (s|w, r) = max
(
1− p f (s)

)
(1− δk) λk

+ p f (s)
{(

1− θ̄
)

Y (w)
(

zkαθ
) 1

1−θ̄ − k′ − ϕ− κ f +
Ev (s′)

1 + r f (r)

}
(25)

ve (ze|w, r) = max p (ze)
{
−κs − k′e + Ev

(
s′
)

/
(

1 + r f (r)
)}

(26)

r (gc) is determined by households while w is determined by the free entry
condition:

Eze ve (ze|w, r (gc)) = κe

Let the stationary distribution be µ̄ such that µt = Ntµ̄ where Nt is growing with
Yt for goods markets to clear. Then, labor market clearing determines the number
of firms the economy can sustain:34

N (w) =
(
w/θ̄

) 1
1−θ̄ L̄/ (Z̄)

1
1−θ̄ /

∫ (
zkαθ

) 1
1−θ̄

µ̄ (ds)

Therefore, given that w is determined by free entry independently of N, N and
thus, M adjusts to clear the labor market. Given that Mt, µt and all aggregates
are growing with technology and labor supply, I de-trend M̄t = Mt/Z̄1/θ̄

t L̄t and

34Note that because Nt will be growing with Yt, we have that:

1 =
∫

lt (s) µt (ds) /L̄t = (Nt/wt L̄t)Y (w) θ̄
∫ (

zkαθ
) 1

1−θ̄ µ̄ (ds)
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µ̄t = µt/Z̄1/θ̄
t L̄t. Along the BGP with gM = g1/θ̄

Z gL, M̄ and µ̄ are stationary, and the
normalized distribution solves:

µ̄
(
s′
)

=
1

gM

∫
p f (s)ϖk

(
k′|s
)

ωz
(
z′|z
)

µ̄
(
ds′
)
+ M̄

∫
ps (ze)ϖk

(
k′|ze

)
ωz
(
z′|ze

)
Fe (dze)

I now calibrate the BGP of the model to firm age micro data.

3.3 Calibration

Figure 5 shows the model is able to match the key relations in the data quite closely.
I parameterize the model in a BGP that the economy is assumed to have reached
right before 2020. I discipline the parameters of the model given gM by forcing
the model to reproduce the three central relations in the data used for the age
decomposition from equation (1) using a Simulated Method of Moments (SMM)
algorithm that minimizes the distance between moments in the model and in the
data35. The model is complex and non-linear so no one-to-one mapping between
moments and parameters exists. However, several moments are more useful in
identifying certain parameters.

Age distribution of firms Na. Figure 5 shows the model reproduces well the entry
rate around 8%, median firm age around 7, and the fact that the vast majority of
firms (around 80%) are under 25 in the data. Intuitively, the age distribution of
firms is most influenced by gM directly affecting entry and the operating cost and
by exogenous p f that drive exit, with the former mattering more for young firms
and the latter more for old firms.

Size by age ya/y0. Figure 5 also shows the model matches well how size grows
with age. The model reproduces that firms grow by a factor of 6 by the time they
reach 25. These growth dynamics of firms relative to entry are influenced by the
productivity process. The key driver of these patterns are that entrants are born
relatively unproductive and small given z0 and given ρ ∈ (0, 1) and κx ̸= 0 their
productivity process takes time to converge to their steady state.

Investment/output by age ia/ya. Figure 5 shows the model matches the overall
negative relation between investment intensity and age, where a 30 year old firm is
expected to invest roughly half out of output relative to the youngest firms in the
economy. Due to positive selection from exit, initially investment intensity increases
with age, but eventually diminishing returns and convergence make investment
intensity decline with age. The key driver of these patterns is that firms begin with

35Formally, I search iteratively for a parameter vector Θ–listed in Table X–which jointly minimizes
the distance between empirical moments and their theoretical counterpart which change with Θ and
depend on the endogenous variables X that must satisfy the equilibrium conditions of the model
given by H (·).

Θ∗ = argminΘ

∥∥∥m (X|Θ)− m̂data
∥∥∥ s.t. HΘ (X) = 0
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Figure 5: Model calibrated targeting firm life cycle dynamics in the
micro data
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Note. This figure shows the model intentionally matches the three terms of the back-of-the-envelope
decomposition formula used to retrace I/Y in the empirical section. These three objects are the main
targets for the baseline calibration under the parameters in Table 3 along a 2020 BGP. The figure
depicts the model’s counterparts of the data’s share of firms Na economy-wide from the BDS, output
by age ya/y0 from the BDS adjusted to value added using an adjustment factor from the Census of
Manufacturing, and investment-to-output by age ia/ya relative to startups, extrapolating from the
manufacturing data. For instance, a 30 year old firm invests roughly half of what the youngest firms
invest relative to their size.
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Table 3: Model Calibration

Θ Parameter Value m (Θ) Targeted moment
ρ AR(1) persistence 0.935 ya/y0 size by age
σ AR(1) dispersion 0.29 Na/N age distribution of firms
δk depreciation rate 0.096 ia/ya investment/output by age
δ f exogenous exit rate 0.02 1− S aggregate exit rate
α capital share 0.168 I/Y aggregate investment share
θ returns to scale 0.72 WL/Y aggregate labor share
κ f operating cost 0.013 1− Sa exit rate by age
κx investment cost 0.307 i0/y0 entrant inv. share
κe entry “idea” cost 0.034 Eve entrant value
κs entry startup cost 0.013 y0 entrant mean size
gM startup growth 4.8% N0/N entry rate
δr interest rate spread 0.07 r0 0% real rate in 2010
ξ entrant’s pareto tail 20.5 1− S0 entrant exit rate
gL population growth 1% Externally calibrated
γ investment cost exp 2 Externally calibrated
β discount rate 0.99 Externally calibrated

Note. I used a Simulated Method of Moments (SMM) algorithm to jointly calibrate model parameters.
See Figure 5 for more details.
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Figure 6: Older firms are more profitable and exit less as they are
better selected
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Note. This figure shows older firms exit less and are more profitable as they are better selected
relative to the youngest firms. This figure plots firm policies and the marginal production stationary
distribution µ̄ (z) :=

∫
k µ̄ (z, k) dk under the baseline BGP calibration in Table 3. Startups are firms

that decide to enter into production, while all firms include firms across different ages.

little capital and and low productivity, but accumulate both capital and productivity
as they age experiencing idiosyncratic shocks.

In addition to the three empirical schedules, I also target key moments of the life
cycle of firms and aggregates.36 Table 2 lists the parameters that emerge from the
calibration and the moments used.

3.4 Why do Young Firms Invest More Intensely?

Figure 6 shows older firms are more profitable than younger firms. Since younger
firms also exit more, as in Fact 4, a firm surviving to old age must have accumulated
good productivity shocks. Given the larger size, productivity, and profitability of
older firms, why do they invest less intensely in the model calibrated to US data?

Several economic forces lead firms to front-load investment when young and
postpone profits until they are old.

(1) Productivity growth slows down with age. Figure 7 illustrates firms start un-
productive and small but grow and slow down as they converge to their steady
state. When firms are young, their z is low, but since firms anticipate high growth
potential, they invest strongly as their expected returns are high. Older firms are
larger but their z is closer to their frontier and thus they decelerate investment since

36I have also calibrated the spread to match a micro-elasticity of investment to match the interest
rate to be E∂ri = 6% from quasi-experimental evidence provided by Koby and Wolf (2020) (5%) and
Winberry (2021) (7%), to make sure investment demand is downward sloping instead of flat.
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Figure 7: Firms have higher returns on investment and grow faster
when young
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Note. This figure plots average productivity z level and growth as well as production y (z, k) level
and growth under the stationary age distribution µ̄a from the baseline BGP calibration in Table 3.

they do not expect to grow as dramatically in the future. Absent adjustment costs
and endogenous exit, output would be driven only by productivity y∗ (z), and this
would be the only force at play.

(2) Capital takes time to build. Figure 7 illustrates that firms start smaller than
the optimal size their productivity would imply because capital takes time to
build. Adjustment costs raise the incentives of relatively productive young firms
to accelerate their growth via explicit investment and “catch-up” to their desired
productivity-implied size. Older firms have reached higher valuation, z, and have
had the time for their k to catch up to their productivity, but their growth is slowing
and returns of capital have been exhausted.

(3) Age limits precautionary motives. Younger firms face a imminent threat of a
shock forcing them to exit. This increases precautionary incentives for relatively
high productivity young firms to speed up their growth via investment to escape
exit. Older firms do not face this high exit threat any longer, generating lower
incentives to invest.

Firm aging reallocates economic activity from young “growth” firms focused on
re-investing their earnings into the businesses to fuel future growth to older “value”
firms that are more established and have less room to grow and focus on reaping
the benefits from their past investments and ease off their investment expenditures.
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Figure 8: Lower startup rates ages firms, depressing TFP growth
despite concentration
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Note. This figure is purely illustrative. It shuts down adjustment costs ϕ = 0 and plots mean age

∑a

(
p f /gM

)a
a and the level and growth rate of macro TFP ∑a

(
p f /gM

)a
zk

a defined in the Appendix

by varying gM and thus the startup rate ∫ (gM) = M̄/N̄ = gM − p f

3.5 A Tractable Special Case

I simplify the model to show aggregates depend on the firm age distribution through
the endogenous dynamics of aggregate TFP. In the cost-less limit κ f , κi, κe, κs →
0 where exit can only happen exogenously and investment is flexible, the age
distribution becomes exponentially decaying

Nt = p f Nt−1 + Mt =
∞

∑
a=0

Nta =
∞

∑
a=0

pa
f Mt−a (27)

Mt enter exogenously at each t, starting with k0 = 0. Their investment demand
reflects uncertainty about their future survival and productivity

r f
t + δk = p f

(
1− θ̄

)
Ez|z−∂kyt (28)

Like in Figure 7, firms grow with productivity as they age and slow down as
they converge to a steady state. It turns out that in this simple model, aggregates
can be expressed as averages of all dynamic heterogeneity across firms weighted by
the age distribution37. Underlying this is the fact that firm-level objects–including
the path of capital kt+1 (zt)–are linear in terms related to “macro” (e.g., wt) and
“micro” sources of dynamics heterogeneity (i.e., zt):

Yt =
∫

yt (s) µt (ds) = Yt ∑
a

pa
f Mt−azy

at, Kt =
∫

kµt (ds) = Kt ∑
a

pa
f Mt−azk

at−1

(29)

37This follows from policy functions’ linearity in idiosyncratic states (e.g. Gorman (1959) and
Werning (2015)
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Macro indices reflect technology and general equilibrium variables common to all
firms:

Kt =

(
Z̄t
(
θ̄/wt

) θ̄
1−θ̄ p f αθκz/

(
r f

t + δk

)) 1−θ̄
1−θ

Yt =

[
Z̄t
(
θ̄/wt

) θ̄
1−θ̄

] 1−θ̄
1−θ [

p f αθκz/
(

r f
t + δk

)] αθ
1−θ

What happens when startup activity slows down? In the BGP, the mass of entrants
grows with population and technology Mt = gt

M M̄ where gM = g1/θ̄
Z gL. Lower gM

depresses the startup rate s (gM), shifting the age distribution towards older firms:

∫ (gM) = M̄/N̄ = gM − p f , Nat/Nt =
(

p f /gM
)a (30)

As firms in the economy age, Figure 8 shows aggregate TFP growth slows down
while concentration, linked to the level of TFP, rises. As we will see below, this
decline in TFP growth that takes place when firms age due to slower startup activity
will drive down investment intensity in the economy.

4 The life cycle origins of the investment puzzle

4.1 How does aggregate investment change with startup activity?

This section shows a standard neoclassical model, when enriched to incorporate firm
life cycle dynamics present in US micro data, can predict the seemingly puzzling
investment, interest rate, and value dynamics observed in aggregate data. Through
the lens of the model driven by startup supply growth shocks we see these relations
are no longer puzzling: they are just a feature of any economy where changes in
startup activity affect not only the scale of the economy, but also its age distribution
of firms.

I present a general result on how startup activity affects aggregate investment,
which I illustrate analytically within tractable model of section 3.5 before providing
simulations with the full model calibrated in the previous section.

The main surprising message of this theoretical result will be that despite invest-
ment being a forward-looking object at the micro level, at the macro level it is also
partially backward-looking object due to the age distribution of firms. Furthermore,
the proposition highlights that the age distribution matters for investment to the
extent that there are meaningful age differences across firms: if firms were heteroge-
neous throughout their lives but they did not have life cycle profiles, the channel
highlighted here would disappear.

Consider first the full model with a growing supply of startup ideas Mt = gt
M M̄

(driven by either technology gL or population gZ), so the mass of firms Nt also
grows at rate gM. Then, the mass of firms of age a declines exponentially with
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gM (i.e. M̄t−a = M̄tg−a
M ) and the accumulation of exit/survival choices, which

also depend on other firms policies. An important assumption in the model is
that Mt does not directly affect any firms’ policies, only indirectly thorough how
the price vector x = w, r is affected by the distribution of firms, µt = Ntµ̄. Let
ya (x) =

∫
y (s|x) µ̄a (s|x) be the average output by age (weighted by the state space).

Similarly, ia (x) is average investment by age, and Sa (x) is the survival function (the
probability that firms survive to a) implied recursively by their optimal exit choices
given x.

Given this notation, the following result shows that one can write the aggregate
investment to GDP ratio as a function of the growth rate in startup activity given
underlying age profiles. (Aggregate Investment with a Firm Age Distribution
Given Prices). Given prices x = w, r for different growth rates of the mass of startups
gM = gLg1/θ̄

Z , firm policy functions remain unchanged and we can express aggregate
investment-to-GDP as a backward-looking function of gM via the age distribution of firms
and their life cycle profiles:

Investment/GDP︷︸︸︷
It

Yt
= ∑

a

firms by age Na︷ ︸︸ ︷( p̄ f

gMt

)a
Sa (x) ·

size by age︷ ︸︸ ︷
ya (x)

∑a

(
p̄ f

gMt

)a
Sa (x) · ya (x)

·

inv/output by age︷ ︸︸ ︷(
ia (x)
ya (x)

)

Given x, It/Yt falls when gM falls as long as
∫

i (s|x) µ̄a (ds|x) /
∫

y (s|x) µ̄a (ds|x)
investment-to-output by age is a gM-invariant declining function of firm age. Falling
gM ages the distribution of firms like an increase in the probability of survival p̄ f
that does not affect firm policies.

The proposition implies that if we calibrate a model to the same size-by-age ya,
how investment-to-output falls with age ia/ya, and the age distribution Na at some
point, then given prices, this model would behave similarly in respond to changes
in startup rates driven by gM. Underlying it is the strong assumption that changes
in entry do not directly affect incumbent firms partial equilibrium problems, which
would not hold in oligopolistic models where firms directly internalize competition.
Given this assumption, entry changes affects the economy only through the age
distribution of firms and through its impact on general equilibrium prices. In what
follows, I hold these constant at first.

It is easier to see the implications of this result through the tractable model
of section 3.5 where the model admits explicit aggregation despite its complex
micro-structure.

Life cycle differences make the age distribution matter for I/Y:

It

Yt
=

p f
∑a

(
p f

gMt

)a
zk

a

∑a

(
p f

gMt

)a
zk−

a

− 1 + δk

 ∑a

(
p f

gMt

)a
zk−

a

∑a

(
p f

gMt

)a
zy

a

( p f αθκz

rt − 1 + δk

)
(31)
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Figure 9: Firm aging depresses investment demand despite lower
interest rates
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Note. This figure is purely illustrative. It shuts down adjustment costs ϕ = 0 and plots I/Y in (31)
and the equilibrium interest rate (24) for two values of gM corresponding to high and low startup
rates: ∫ (gM)

Falling startup activity need not matter for aggregates. Without age differences
in productivity, even if firms differ in size, za = z, and if only population drives
entry, M̄t ∝ L̄t so gc = gM/gL = 1, interest rates and I/Y would have both remained
fixed:

I
Y

=
(
δ f + δk

) zk

zy

( p f αθ

1/β + δk

)
if za = z ∀a and gM = gL (32)

Figure 9 illustrates the post 1980s slowdown in business idea growth linked to

technology or population gM = (gZ)
1
θ̄ gL. By 2020, the investment demand curve

I
Y (gM|r) has fallen because lower entry, by aging firms, depresses TFP growth.
Furthermore, interest rate r (g) declined with entry as output per capita fell as long
as gM ̸= gL. Overall these combined effects of the startup rate decline can lead to a
lower aggregate I/Y due to firm aging and a decline in interest rates as output per
capita slows down.

4.2 Aggregate Investment given post-WWII Startup Rates

I use historical changes in the startup rate to show a neoclassical model with firm
life cycle dynamics and a changing firm age distribution is enough to explain why
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Figure 10: Startup rate targeted with the growth of business ideas gM,t
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Note. This figure the main counterfactual exercise performed with the model: I use the growth rate
in startup activity (gM = g1/θ̄

Z gL) to target the actual path of the startup rate since 1950, showing
that the model perfectly hits this path by varying gM only. The source of entry rate data is the
BDS (September 2023) after 1978, historical records from SCB and CBP prior to 1978 as described in
section 2.1.

the US had an investment boom after WWII and a decline after 1980.
Figure 10 depicts my first quantitative exercise in which I hold constant all

parameters in the model except for one: the growth rate of startup supply flows
regardless of whether it is driven by technology or labor supply (since gM = g1/θ̄

Z gL).
In the model, I infer the growth path required to match the data on the startup rate
dating back to 1950, ∫t (ĝMt) ≈ ∫data

t . In historical records dating back to the 1960s,
we see there was a rising influx of new startups after WWII—including Walmart
(1950), Dunkin Donuts (1950), and Burger King (1953)—and this “boom” in the
startup rate continued for three decades. Some of the largest companies still around
today—including Starbucks (1971), Microsoft (1975), Apple (1976), and Costco (1983)
—were founded at the peak of startup activity around 1980. The model economy
generates a 40% decline in the startup rate since the 1980s as a result of a slightly
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larger decline in the growth rate in the number of new business ideas.38

Figure 11 depicts the aggregate investment-to-GDP dynamics generated by the
inner equilibrium relationship in the model economy experiencing movements in
the startup rate from Figure 10. This can be seen as an “out of sample” exercise,
since the parameters of the model are all calibrated using data mostly coming from
after 2000.

Figure 11 shows that in the model, consistent with aggregate data, the surge in
startup activity after WWII translated into an aggregate investment boom as the
average firm became younger. It also shows the post-1980 fall in investment-to-GDP
that followed the steady decline in the birth rate of new companies, which shifted
the composition of firms towards older firms that invest less intensely as in the
model despite these being larger, better selected, and more profitable on average.

Finally, the model predicts that there could be an investment rebound following
the Great Recession due to a recent resurgence of firm entry that accelerated
during the COVID-19 pandemic. This matches the result found in the empirical
decomposition.

The previous analyses showed what happened to the economy across balanced
growth paths as we varied the rate of growth of startup flows independently across
each point in time. This produced an effect size of the age composition effect of
around 2.2% of GDP, potentially explaining over 80% of the 2.6% effect seen in
the aggregate data trend in BEA.39 The Appendix shows robustness to general
equilibrium transitional dynamics under perfect foresight.

To summarize, I find that, depending on the method used, the aging effects are
likely between 1.3% and 2.2% of GDP (50%− 85%) of the aggregate boom and bust
in physical investment to GDP. The remaining (15− 50%) is likely explained by
other forces discussed in the literature, such as weakening of anti-trust institutions
or the shift in production functions towards intangibles, but quantifying this is left
for future work.

The fact that the model shows no break in the series while perfect competition
and neoclassical technology are held constant highlight no “direct” micro changes
to the firms’ problems are needed to generate these boom and bust aggregate
investment dynamics. However, the remaining 50% to 15% of the effect might still
be explained by some of the hypotheses in the literature.40

38As shown in equation (??) the full model, it is no longer the case that startup rates are purely
driven by the exogenous supply of startups in the exogenous exit model, ∫ (gM) = gM − p̄ f , because
a slowdown in gM lowers aggregate exit through indirect channels (i.e. through shifting the age
distribution towards the old that exit less and by lowering r (g) which increases survival).

39Note this is lower than the 125% found in the empirical section for two reasons: first, the entry
series fed through the model does not adjust for structural transformation as it was done in the
data; second, entry is the only driver of aging in the model, while in the data, increasing survival of
younger firms further ages firms.

40For example, the deterioration in anti-trust institutions highlighted in Gutiérrez et al. (2021);
Gutiérrez and Philippon (2019, 2017) or changes in production technologies towards intangible capital
highlighted in Crouzet and Eberly (2018). In Appendix Figure 37 I show that aging of firms may

35



Figure 11: Investment to GDP driven by Startup Rates via Firm Age
Distribution
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Note. Illustrating the main result of this paper, this figure shows changes in firm entry matter for
aggregate investment presenting a counterfactual exercise performed with the model across balanced
growth paths. I calibrate startup ideas growth gMt to target the actual startup rate time series (Figure
10), and solve non-linearly for the resulting BGP. This figure plots the resulting (untargeted) path
of It/Yt implied by the model where the entry rate and the age distribution of firms change over
time. Note here I do not let the interest rate adjust setting gM = gL, and the combination of free
entry and market clearing hold the wage wt = w constant as described in Hopenhayn et al. (2022)
and others in the firm life cycle literature. The source of entry rate data is the BDS (September 2023)
after 1978, historical records from SCB and CBP prior to 1978 as described in section 2.1. Source:
BDS (September 2023) after 1978, historical records from SCB and CBP prior to 1978. See section 2.1
for details.
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Figure 12: Aggregate profitability: Dividends/GDP
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Note. This figure qualitatively shows BGP changes in firm entry affect aggregate profitability: when
entry falls firms get older, investment falls as in Figure 11, and profits rise. Corporate profits after
taxes comes from the BEA as in Figure 1.

4.3 Low Investment Despite High Profitability and Low Rates

The literature has been puzzled on why investment has not increased given rising
corporate profitability and lower interest rates: If firms have higher earnings why
are they not investing more? And how do changes in startup activity and the swings
in investment demand relate to the equilibrium interest rates given the supply and
demand logic in Figure 9?

Life cycle origins of the profitability puzzle. The perfectly competitive neoclassical life
cycle model provides a simple explanation: falling startup rates make the average
firm older, reallocating economic activity towards firms that are more profitable due
to selection (Figure 6) but have less growth potential so invest less intensely as in

have been again one of the forces keeping total investment stagnant despite the rise of intangibles. In
work in preparation, Aragoneses (2023b), I use US Census data to find that the changing composition
of startups (not aging) has been an important driver in the increase of intangible capital: relative
to startups in the past, recent cohorts of firms are significantly more likely to invest in intangible
capital. This suggests that any intangible-related technology that started to become available after
1980 may be affecting the economy through the startup stage. But this is left for future work.
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Figure 13: Interest rate dynamics consistent with startup rate trend
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Note. This figure shows the equilibrium response of (household) interest rates rt (g) and
It/Yt (g) for different levels of sensitivity of firms’ discount rates to the household interest
rate parametrized by m in r f

t = (1−m) r̄ + mrt. Since the 1986, the model is able to generate
70% of the 4.7% absolute decline of interest rates in the data (note investment fell an extra
0.5% in the data relative to the model before 1986). The version of the model that is best
able to match the data is one with m = 0, where firms discount rate is insensitive to interest
rates as argued by Gormsen and Huber (2023). With partial sensitivity as in Gabaix (2020)
with m = 0.2, the investment and rates falls to 50% and 40% relative to the data. In the
extreme case where m = 1, as in Khan and Thomas (2008), small (1%) declines in interest
rates are able to almost completely neutralize the negative effects on investment.

Fact 1. In the model, this generates a natural inverse relation between investment
expenditures and the share of dividends in GDP:

↑ Πt

Yt
= 1− (1− α)θ− ↓ It

Yt
− Xt

Yt

Figure 12 shows the life cycle model can reproduce qualitatively the seemingly
puzzling inverse relation between profitability and investment on aggregate. The
source of the puzzle is that the higher returns are earned by different firms (the old)
than the ones carrying out the investing (the young).

Life cycle origins of the interest rate puzzle. Figure 13 shows the equilibrium response
of the interest rates facing households rt (gt) = gt/β− 1 and the investment share
of GDP It/Yt (gt, rt (gt)) among firms where gt is calibrated to match the path
of the firm startup rate. I plot responses across different levels of sensitivity of
firms’ discount rates to the household interest rate parametrized by m in r f

t =
(1−m) r̄ + mrt. The version of the model that is best able to match the data is one
with m = 0, where firms discount rate is insensitive to interest rates as argued by
Gormsen and Huber (2023) so that It/Yt (gt) only depends on gt through the firm
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age distribution. Under this version, since 1986, the model is able to generate 70%
of the 4.7% absolute decline of interest rates in the data and a decline in investment
of 2% (note investment fell an extra 0.5% in the data relative to the model before
1986 which the model cannot generate). With partial sensitivity, for example due
to inattention as in Gabaix (2020) with m = 0.2, the investment and rates falls to
50% and 40% relative to the data. In the extreme case where m = 1, as in Khan and
Thomas (2008), small (1%) declines in interest rates are able to almost completely
neutralize the negative effects on investment.

As an alternative exercise, I allow for the exogenous component of real rates
r̄t to adjust r f

t = mrt (gM/gL) + (1−m) r̄t to adjust to match the actual path of
investment/GDP in the data; (1−m) r̄t can be thought of as a spread faced by
firms.41 Since rt (gt) = gt/β− 1, this requires that population growth is not the
only driver of the startup deficit. I infer the gMt and r̄t paths that generates the
actual path of startup rates in the model ∫ (gM, r (g)) as well as the actual path of
investment-to-GDP. Figure 38 shows the implied path of household interest rate rt as
well as the one faced by firms r f

t in the model forced to match jointly the startup and
investment-to-GDP dynamics resembles the path of real interest rates in US data.
Through the lens of the neoclassical model, the post 1980 decline in interest rates is
not so puzzling given that the fall in the startup rate has been depressing investment
demand and increasing supply of savings. I find the model requires movements
in r̄t that offset interest rate movements since the 1950s (shown in the Appendix).
Despite rt changing, firm discount rates r f

t do not change much consistent with
Gormsen and Huber (2023).

In conclusion, we should expect times when the average firm age is rising to
exhibit higher dividends/GDP and low interest rates instead of being puzzled about
why these two forces do not incentivize investment and startup activity. Lower
interest rates may be a symptom that startup activity depressing investment and
economic activity while high valuations may be a symptom that the older average
firm is receiving rewards for past investments.

4.4 The Resurgence in Startup Activity across Countries

The firm life cycle channel discussed in this paper predicts that booming startup
activity from 1950 to 1980 increased US aggregate investment and lowered profits
as the average firm turned younger. I now show these relationships arise across
countries.

Early signs of a startup resurgence across countries. Figure 14 shows that the recent
resurgence in startup activity highlighted throughout this paper after the Great
Recession, a finding discussed in Haltiwanger and Decker (2023) and Guzman

41This is inspired by Gormsen and Huber (2023) and the mounting evidence that the interest
rate faced by households is not the same one faced by firms and that firms’ investment are overly
sensitive to interest rates in the neoclassical model.
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Figure 14: Startup surge linked to higher investment and lower profits
across countries

∆T
2010 log

[
Investmentct

GDPct
,

Profitct

GDPct

]
= αc + βX∆T

2010 log (Startup Ratect) + εct

Note. OECD Data on gross physical capital formation and operating surplus relative to aggregate
value added. Startup rate across countries comes from the Total Early-Stage Entrepreneurial Activity
(TEA) indicator from the GEM. The combined dataset features 33 countries and has been weighted
by GDP. 40



and Stern (2020), is a common pattern across countries. Figure 14 plots a positive
trend in the index of Total early-stage Entrepreneurial Activity (TEA) Rate, defined
as the percentage of 18-64 population who are either a nascent entrepreneur or
owner-manager of a new business from the Global Entrepreneurship Monitor, which
has continued to rise even through and after the COVID-19 pandemic.

Concurrently with this rising startup trend across countries, countries where
startup activity increased also saw an increase in investment to GDP measured from
gross capital formation data from the OECD and a decline in aggregate profitability
measured as the share of operating surplus relative to aggregate value added in the
OECD. Although this is not shown here, there has been early signs that interest rates
have been on the rise bringing different economies out of the zero lower bound after
the Great Recession. It is still early to tell, but my work suggests that a resurgence
in rise in firm entry observed after the Great Recession, which especially accelerated
during the COVID pandemic, could be one of the secular forces driving the economy
away from the zero lower bound.

5 Conclusion

The post-1980 US investment slowdown was puzzling because interest rates fell
and corporate profitability increased (which should have stimulated investment
in standard models). I argue falling startup rates go a long way in explaining the
investment puzzle. Lower firm entry (1) depressed aggregate investment while
rising valuations by aging firms and (2) depressed interest rates by lowering output
per capita growth. This mechanism arises in a life cycle model where older firms
have been selected by market forces and are more profitable but younger firms
invest more intensely consistent with restricted-access US Census micro data. In
this framework, firms front-load investment in anticipation of back-loaded profits.

I study what happens when the model experiences shocks to the supply of
business ideas that generate the actual boom and bust in the startup rate observed in
the US since the 1950s. I find the model can rationalize the historical relation between
tangible investment, interest rates, and profitability. It shows aggregate investment
could have fallen after 1980 even without changes in anti-trust institutions or
production technology that the literature argues directly depressed firm investment
incentives.

Indeed, the data presented in this paper shows little signs of an investment
decline at the micro level nor that firms grow any slower over the life cycle. In fact,
younger firms today seem to invest more intensely and survive at higher rates than
firms in the past. In manufacturing, where the most detailed investment data we
have comes from, there has been a 10% investment increase for the average firm
despite a 14.5% decline in aggregate investment.

This missing increase in investment is likely not just happening in manufacturing
for physical capital. In all sectors, one measure correlated with investment, survival
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rates, has increased conditional on age: while 30% of newborn startups exited after
a year in 1980s, only around 20% exit in the 2010s. I also present evidence across
all sectors based on citation-weighted patents per employee. This suggests that just
like for physical capital, intangible investment intensity, which also systematically
decline with firm age, has also experienced an increase conditional on age. Thus,
across different forms of investment, firm aging seems to have overpowered a micro
investment boom, hiding it from the aggregate statistics and creating a puzzling
disconnect between firms and the macroeconomy. This highlights that changes in
the firm age distribution driven by shifts in the startup rate can make micro and
macro trends diverge and go a long way in explaining the dynamics of aggregate
investment since WWII.

The results of this paper do not imply institutional or technological changes
did not take place, but rather that they could indirectly have depressed aggregate
investment through the startup stage, making understanding the startup deficit
all the more important. The literature has pointed to slowing population growth,
business ideas getting harder to find, or rising entry costs as some of the drivers
consistent with my model’s startup supply shock, but more work here remains to
be done.

There is reason for optimism about the years to come. Recent US Census data
and data across OECD countries show the startup decline may have ended, with
startup rates recovering since the Great Recession and even surging throughout the
recent pandemic. Given the population growth continues to slow it is likely that
technical change has accelerated in recent years (e.g., the discovery of remote-work
technologies allowing startups to hire talent globally). I find signs that firm aging
trends have started to reverse. Although it may take time to undo three decades
of aging, the rejuvenation of firms is already delivering an increase in investment
and a decline in profits across countries, consistent with the model presented in this
paper.

This channel presents an opportunity for policymakers such as Mario Draghi
(2024) interested in rising aggregate investment in the European Union. Rather
than trying to incentivize established firms to invest more, policy could be better
targeted towards boosting startup activity to take advantage of the fact that young
firms invest more intensely in search for future profits. Exploring these normative
implications for the cross section of countries is left for future work.
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Figure 15: Capital investment intensity falls with firm age

This figure uses only 2002-2017 data to address censoring; it shows investment/output falls with age.
The data used is from the Census of Manufacturers, ≈ 2.7 million firm-year observations pooling
1977-2017.Variables: total investment expenditures in physical capital (structures, equipment) relative
to value added (the micro counterparts of investment/GDP) by firm age (measured by definition in
LBD used in BDS). Weights: share of the firm in total value added of its age group per equation (1).
It also plots data from Compustat North America on CAPX/SALE for firms in all sectors to show
this declining relation between investment intensity and firm age holds outside of manufacturing.
See Section 2.1 for data details.
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Figure 16: Capital investment intensity increased conditional on age

This figure splits the sample into pre-post 2000, showing that investment to output increased over
time, while strongly declines with age. The data used is from the Census of Manufacturers, ≈ 2.7
million firm-year observations pooling 1977-2017. Variables: total investment expenditures in physical
capital (structures, equipment) relative to value added (the micro counterparts of investment/GDP)
by firm age (measured by definition in LBD used in BDS). Weights: share of the firm in total value
added of its age group per equation (1). See Section 2.1 for data details.
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Figure 17: Younger firms today survive at higher rates than in the
past

Note. This figure shows survival rates (1 - exit rates) among younger firms have been increasing,
exacerbating the aging of firms caused by declining entry. The figure uses Census BDS data on
employment by age across all sectors, but the Data Appendix shows this same pattern holds in the
Manufacturing Census 1977-2017 for output as well as employment. See Section 2.1 for data details.
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Figure 18: CDF changes from 1980 to 2020

Estimate the firm age distribution and firm aging ∆Na/N as changes in p, q from the
following equation that predicts CDFs

LHS = log (− log (1− CDFst (a))) = − log p̂st + q̂st log (a)
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Figure 19: Manufacturing is fairly similar to the average sector in
terms of its scaling of employment by age.

In both manufacturing and economy-wide, firms grow by 4x their workforce by the time
they pass 20 years old. Within each sector/year, calculate the slope of employment by age
in BDS based on the regression where

last

l0st
= γs + γt + β

emp
age a
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Figure 20: The growth over the life cycle for manufacturing and the
aggregate is similar.
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Figure 21: Converting employment to output (value added)

Note that for the formula, what matters is how output increases with age. In many models,
employment and output move one for one, but in the data, output is more concentrated than
employment. To adjust between the two, I estimated the slope of output by age for output
and employment by age inside Census–without constant–so that one can adjust between the
two using the following factor. Output by age is one of my main calibration targets.

λy/l =
βout

age

β
emp
age
≈ 1.6 =⇒ ya

y0
= 1 +

0.238︷ ︸︸ ︷
λy/l β

emp
age a
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Figure 22: Estimating the firm age shift in economic activity

Estimate aging of economic activity ∆Ya/Y requires re-weighting by the distribution accord-
ing to the size by age coefficients to transform aging of firms into aging of activity. The
intuition is what would happen if we held constant the output by age but shifted only the
age composition of firms. To build changes in I/Y due to age composition effects holding
i0/y0 and ia/ya

i0/y0
constant we need to estimate the following change

∆t0→T
aging I/Y = ∑

a

(
(NaT/N0T) ya/y0

∑a (NaT/N0T)ya/y0
− (Nat0 /N0t0) ya/y0

∑a (Nat0 /N0t0)ya/y0

)
i0
y0

(
ia/ya

i0/y0

)
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Table 4: 30 year old firms invest nearly half as intensely as startup
firms on a given year

output y = value added output y = total sales
2002− 2017 1977− 2017 2002− 2017 1977− 2017

Investment to output of 30 year old firms (startup = 1)
i30t/y30t
i0t/y0t

Upper CI 0.6737101 0.6739792 0.70106965 0.7014271
Mean 0.553 0.5737 0.5659 0.5896

Lower CI 0.4322899 0.4734208 0.43073035 0.4777729
Investment to output of 30 year old firms (startup = 1)

iat/yat
i0t/y0t

Slope β
i/y
0 −0.0149 −0.01421 −0.01447 −0.01368

SE σ
i/y
0 (0.002446) (0.002032) (0.002739) (0.002266)

iat

yat
=
(

1 + β
i/y
0 a

) i0t

y0t

Note. See Section 2.1 for data details. Full sample subject to censoring, I prefer the estimates from the
post period only. In the pre-period, some young firms might appear unusually old because they are
really old, minimizing the drop. Upper and lower bounds of the drop by a years old are constructed
as 1 + (β± γc · σ) · a where γc is the critical value for a 90th confidence interval.
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Figure 23: Within-sector variation.

Further, in order to prevent structural changes to affect the age composition and focus
within-sector aging, I hold the sectorial composition of output constant in 1980.

∆
It

Yt
≈∑

s

Ys0

Y0
∑

a
∆t

ysa Nsa

∑α ysaNsa

isa

ysa

use these industry shares to compute the decomposition for years 1980− 2021, re-weighting
sectors “as if” their composition had stayed constant in 1980. This prevents aggregate trends
in aging from being biased by the fact that the economy has been shifting towards services
which have younger firms on average. This weighting, thus, exploits the full extent of
within-sector aging.
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Figure 24: Investment falls with age (Compustat)

This figure uses data from Compustat North America (relative to sales).
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Figure 25: Profits rise with age (Compustat)

This figure uses data from Compustat North America (relative to sales).
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Figure 26: Size increases with age in a stationary way

size outputat employeesat
yat
y0t

βage βtime βage βtime

+.253 −.008 +.159 −.011
(.020) (.016) (.014) (.016)

yat

y0t
= α + βage a + βtime t + Θ′X + ε f at

Note. This table shows size by age has been stationary so firms grow with age but not faster or
slower than in the past in the Manufacturing Census 1977-2017 for output as well as employment.
See Section 2.1 for data details. In the table, I control for censoring by adding a mean for firms in the
1976 cohort whose age is unknown.
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Figure 27: Firms (top) v.s. Establishments (bottom): Employees per
business by age group with (left) and without (right) NAICS 2 industry
fixed effects. Stationarity holds approximately even for establishments
as long as we look within sectors.
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Figure 28: Entry rate has steadily fallen

Note. See Section 2.1 for data details.

Appendix to Chapter ??
Measuring intangible investment intensity
While in the aggregate data from the BEA there are measures of investment that

include or exclude intellectual property, in the US Census micro data are two ways
to measure intangible investment intensity. Each way has it’s own advantages and
dis-advantages given the structure of the data which I discuss below.

Relative to tangible capital, measuring intangible capital is much more difficult
to measure in administrative data. Thus, I collect multiple, all imperfect, proxies of
intangible investment of firms.

Intangible "input" measurement in manufacturing using advertising and non-production
workers data. First, within the Census of Manufacturing (recall, available from 1977
to 2017), I am able to observe spending in communications and advertising as a
share of output. Even though this is a small expense relative to physical capital
investment, it is one of the commonly used proxies for intangible investment (e.g.
marketing) firms use to build their brand. Further, also in manufacturing, I am
able to measure the spending on non-production labor, which potentially includes
managers and R & D workers that increase the firm’s organizational capital and
intellectual property. I measure "input" based intangible investment intensity like I
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Figure 29: Entry fell more in manufacturing

Note. Source: BDS.
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Figure 30: Systematic relation between investment and entry across
sectors

Note. Source: BDS and BEA data.
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Figure 31: Systematic relation between investment and entry across
sectors

Note. Source: BDS and BEA data.
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Table 5: "Output" based intangible investment intensity fall with age
but increase given age

Variable age β period β constant
Citations/emp −0.1194 (0.02677) 0.06012 (0.02696) 16.7 (5.362)

−0.1201 (0.02687) 15.9 (5.95)
Patents/emp −0.005022 (0.0003618) 0.0002715 (0.0003645) 0.5831 (0.07248)

−0.004941 (0.0003618) 0.5228 (0.08011)
N = 1078000

[
i∗c
l

,
i∗p
l

]
a,τ

= α + βperiodτ + βage a + εa,τ

Note. This table shows that patent investment intensity relative to the number of employees
consistently declines with firm age and that increases conditional on age. The NBER patents data
sample covers firms in all sectors of the economy for which information on the SSEL patent match
exists and was able to be matched to the Longitudinal Business Database LBD. While the economic
censuses cover he 1977-2017 period in five year spells, the LBD-NBER patent match in the SSEL is
annual but only covers the 1976-2001 spell.

did for physical capital, as expenditure divided by output both in nominal terms.
Intangible "output" measurement in the entire economy using patent data. In addition,

for all sectors in the economy, I measure patenting activity using what is known as
the “SSEL NBER patent match” and merge it to LBD which contains information on
the number of employees of firms. A major advantage of this data is that it covers
not just manufacturing but also data on services and other sectors. However the data
stops in 2001 and thus, it cannot be used to do the same split-sample longitudinal
analyses as the main investment data. I measure intangible investment intensity
relative to the number of employees i∗a /la in terms of the number of patents granted
to a firm as well as their total forward citations across all patents granted in a year.
This citation-weighted measure captures the fact that not all patents are worth the
same, and thus, weights more heavily more meaningful patents. Even though we
do not know how much firms are spending to get these patents, these measures
provide a sense of how intensively firms of different ages are investing in building
intangible capital through R & D.

I try to measure these forms of intangible investment directly via "input" expen-
ditures in advertising, non-production worker salaries and indirectly via "output" of
expenditures in R & D such as patents granted and the citations of those patents.

Fact 1.7: Intangible investment/output also fall with firm age and rises over
time
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Figure 32: "Input" based intangible investment intensity shifts condi-
tional on age

Note. This data comes from the Census of Manufacturers from 1977 - 2017. The measure on the left
hand side is total advertising expenditures as a fraction of value added. It shows that there has been
an increase in intangible investment intensity over time that has been disproportionately large for
young firms.
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Appendix to Chapter ??
The most up to date version of this appendix can be found in the job market

paper in my Harvard website: https://sites.harvard.edu/martin-aragoneses/job-
market-paper/.

A Explicit aggregation model derivations

Consider the model in section 3.5. The goal of this section is to show that one
can write out aggregate I/Y as a function of the age distribution of firms driven
by growth rates of supply-side forces (technology and the supply of startups and
workers).

Assumptions. Let us simplify the richer quantitative model described above with
(1) exogenous exit only p f t = p f and (2) no adjustment costs κj → 0.

Firms. The stock of firms evolves as

Nt+1 = p f Nt + M̄t

Age. While their age distribution is

Nta = pa
f M̄t−a

Goods markets. Final output is used for consumption and investment

Yt = Ct + It

Production. Firms produce with an exogenous Z̄t and an exogenously driven
idiosyncratic zt. Let θ̄ = θ (1− α)

yt = (Z̄tzt)
1−θ̄

(
l1−α
t kα

t

)θ

Investment problem. Firms enter exogenously with k0 = 0 investing thereafter
k′ = (1− δk) kt + it unless they are forced to exit, in which case k′ = 0. Their
Bellman is

vt (z, k) = (1− δk) k + p f

{
max
lt,k′

yt − wtlt − k′ +
1

1 + r f
t+1

Ez′|z
[
vt+1

(
z′, k′

)]}

Static choice. Optimality yields constant labor shares.

wt = θ̄
yt

lt
, yt − wtlt =

(
1− θ̄

)
yt

Output can be written as a separable function between macro and micro terms

yt = y (z, k) =
(

θ̄

wt

) θ̄
1−θ̄

Z̄tzk
αθ

1−θ̄
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Dynamic choice. Firms choose investment based on first order/envelope condi-
tions

1 + r f
t+1 = Ez′|z∂k′vt+1

(
z′, k′

)
, ∂kvt (z, k) = (1− δk) + p f

(
1− θ̄

)
∂kyt

Capital is driven by productivity kt (zt−1)–with kt+1 (zt) defined similarly

kt =

 p f αθ

r f
t + δk

(
θ̄

wt

) θ̄
1−θ̄

Z̄tEzt|zt−1
zt

 1−θ̄
1−θ

Thus, we can further simplify output as

yt = y (zt, zt−1) =

Z̄t

(
θ̄

wt

) θ̄
1−θ̄

 1−θ̄
1−θ [

p f αθ

r f
t + δk

] αθ
1−θ

ztEz|zt−1
z

AR(1) Process. Notice that if zt follows an AR(1) process κz = e
σ2
2 and

Ezt|zt−1
zt = κzzρ

t−1

yt (zt, zt−1) =

Z̄t

(
θ̄

wt

) θ̄
1−θ̄

 1−θ̄
1−θ [

p f αθκz

r f
t + δk

] αθ
1−θ

z
ρ αθ

1−θ
t−1 zt

kt (zt−1) =

 p f αθκz

r f
t + δk

(
θ̄

wt

) θ̄
1−θ̄

Z̄tz
ρ
t−1

 1−θ̄
1−θ

kt+1 (zt) =

 p f αθκz

r f
t+1 + δk

(
θ̄

wt+1

) θ̄
1−θ̄

Z̄t+1zρ
t

 1−θ̄
1−θ

A.1 Aggregation

The key benefit of this analytical model is that the objects that are common “macro”
(e.g. wt) scale the idiosyncratic “micro” ones (e.g. zt), allowing for linear aggregation.

GDP. Exploiting that Nat = pa
f M̄t−a is the age distribution

Yt = YtZ
y
t

Capital.

Kt =
∫

kµt = KtZ0
t
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Investment. Notice that firms start with zero capital so is
t = 0. Further, because of

exit, only p f firms choose to leave capital for the future.

It = p f Kt+1Z1
t − (1− δk)KtZ0

t

Micro indices. Where the “micro” indices vary by age but not with aggregates,
and summarize all dynamic heterogeneity in the model: (1) capital investment at a
reflects only the current state (2) capital inherited at a reflects prior state, (3) output
today which reflects both today and yesterday’s state.

zy
at =

∫
zt
(
zρ

t−1

) αθ
1−θ̄ µ̄at, zk

at−1 =
∫ [

zρ
t−1

] 1−θ̄
1−θ̄ µ̄at, zk

at =
∫ [

zρ
t
] 1−θ̄

1−θ̄ µ̄at

Zy
t = ∑

a
pa

f M̄t−azy
at, Z0

t = ∑
a

pa
f M̄t−azk

at−1, Z1
t = ∑

a
pa

f M̄t−azk
at

Macro indices. Common technology and general equilibrium variables

Kt =

Z̄t

(
θ̄

wt

) θ̄
1−θ̄ p f αθκz

r f
t + δk

 1−θ̄
1−θ

, Yt =

Z̄t

(
θ̄

wt

) θ̄
1−θ̄

 1−θ̄
1−θ [

p f αθκz

r f
t + δk

] αθ
1−θ

Intuitively, the common capital to output ratio is determined by r:

Kt

Yt
=

p f αθκz

r f
t + δk

A.2 Balanced Growth Path (BGP) in Partial Equilibrium

Consider a BGP where entry grows at a constant rate: M̄t = gt
M M̄. Then M̄t−a =

(gM)t−a M̄. Then, Nt also grows at a constant rate, it must grow with entry.

gM =
Nt+1

Nt
= p f +

(gM)t M̄
Nt

= p f +
M̄
N̄

Entry rate. In this BGP entry is endogenously driven by growth in startup supply

M̄
N̄

(gM) = gM − p f

Output. In the BGP, output is homogenous of degree one with respect to M̄t so
it’s level decreases when entry falls, however, because the age distribution shifts
towards the old (which are larger) average output increases with aging (and there is
concentration)
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Yt = YtM̄t ∑
a

( p f

gM

)a
zy

at

Output-per-firm. Notice along the BGP, we can write output and output per firm
as

Yt

Nt
= Yt

(
gM − p f

)
∑

a

( p f

gM

)a
zy

at

Investment to GDP.

It

Yt
=

It

Kt

Kt

Yt
=

p f
Kt+1

Kt

∑a

(
p f
gM

)a
zk

at

∑a

(
p f
gM

)a
zk

at−1

− (1− δk)

 Kt

Yt

∑a

(
p f
gM

)a
zk

at−1

∑a

(
p f
gM

)a
zy

at

In general, the aggregate can change due to technology or costs

Kt+1

Kt
=

 Z̄t+1

Z̄t

(
wt

wt+1

) θ̄
1−θ̄ r f

t + δk

r f
t+1 + δk

 1−θ̄
1−θ

But in PE, only Z̄t and M̄t change, while GE costs w and r are constant so

Kt+1

Kt
=

Yt+1

Yt
= (gZ)

1−θ̄
1−θ ,

Kt

Yt
=

p f αθκz

r f + δk

Growth. Because the micro-economy does not change, we have that the rate of
growth of the economy depends on technology and entry supply only.

gY =
Yt+1

Yt
=

Yt+1

Yt

M̄t+1

M̄t
= (gZ)

1−θ̄
1−θ gM

In equilibrium given r and w, a decline in productivity growth depresses invest-
ment, while the aging from entry shifts the distribution towards older firms.

It

Yt
(gM, gZ|r, w) =

( p f αθκz

r + δk

)δk + p f (gZ)
1−θ̄
1−θ

∑a

(
p f
gM

)a
zk

at

∑a

(
p f
gM

)a
zk

at−1

− 1

 ∑a

(
p f
gM

)a
zk

at−1

∑a

(
p f
gM

)a
zy

at

Stationary output-per-firm given age. For the result in the data that output per firm
given age is constant, the following condition must hold:

y =
Yt

Nt
= Yt

(
gM − p f

)
∑

a

( p f

gM

)a
zy

at

With constant w and r, this is constant along the BGP if gZ = 1 and so output
growth is driven by entry
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Yt = Y, gY = gM

Which if w and r are fixed can only happen if gZ = 1. Thus, we recover:

It

Yt
(gM|r, w) =

( p f αθκz

r + δk

)δk + p f
∑a

(
p f
gM

)a
zk

at

∑a

(
p f
gM

)a
zk

at−1

− 1

 ∑a

(
p f
gM

)a
zk

at−1

∑a

(
p f
gM

)a
zy

at

Further, the profit share will be inversely related to investment to GDP

Πt

Yt
= 1− θ̄ − It

Yt

No age heterogeneity. Imagine there is no age heterogeneity. Then zat may capture
size heterogeneity. Thus, changes in gM leave I/Y unchanged.

I
Y

=

( p f αθ

r + δk

)(
δk + p f

Z1

Z0 − 1
)

Z0

Zy

A.3 BGP in General Equilibrium of a Small Open Economy

In a SOE, r is fixed, but labor market clearing requires the wage to adjust in order
to meet demand.

wt L̄t = θ̄Yt

Thus, aggregate output solves the fixed point

Yt = Yt (Yt)∑
a

pa
f M̄t−azy

at

Aggregate production function. Yt (Z̄t, L̄t, M̄t)

Yt = [Z̄t]
1−θ̄

1−αθ [L̄t]
θ̄

1−αθ

[
∑

a
pa

f M̄t−azy
at

] 1−θ
1−αθ [ p f αθκz

r f + δk

] αθ
1−αθ

BGP output growth of the economy is driven by technology, labor, and startup
supply.

gY =
[

g1−θ
M g1−θ̄

Z gθ̄
L

] 1
1−αθ

Because r is constant, gM increases competition and lowers the wage. Note this
negative effect of w is offset by the positive mass effect. Since r is fixed

Yt+1

Yt
=

Kt+1

Kt
= (gZ)

1−θ̄
1−αθ [gL]

θ̄
1−αθ [gM]−

θ̄
1−αθ
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Figure 33: At the micro level, older firms grow slower despite being
larger. At macro level, a lower startup rate ages firms, increasing the
TFP level but slowing TFP growth.
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Size-by-age stationarity. Recall our condition that GDP per firm needs to remain
constant so that firms do not shrink with less entry.

Yt = YtM̄t ∑
a

( p f

gM

)a
zy

at, Yt = Y, gY = gM

Because r is fixed, then it must be that wages offset technology

Yt+1

Yt
= constant ⇐⇒ gw = g

1−θ̄
θ̄

Z =⇒ g
1
θ̄
−1

Z gL = gM = gY

Thus, under this scenario, I/Y does not shift with gZ, but it will change with
gM due to aging.

It

Yt

(
gM|r f

)
=

It

Kt

Kt

Yt
=

p f
∑a

(
p f
gM

)a
zk

at

∑a

(
p f
gM

)a
zk

at−1

− (1− δk)

 p f αθκz

r f + δk

∑a

(
p f
gM

)a
zk

at−1

∑a

(
p f
gM

)a
zy

at

Thus, in general equilibrium along the BGP, as long as the “right” micro station-
arity condition holds, we recover the same shift-share without much changes within
age.

A.4 Aggregation in Full General Equilibrium (r changes)

Note that as the economy slows down, r falls. Then

(1 + rt+1) β =

(
ct+1

ct

)ς

=

(
Ct+1

Ct

L̄t

L̄t+1

)ς

Because Yt = Ct + It, Ct must grow with Yt so along the BGP

(1 + rt+1) β =

(
ct+1

ct

)ς

=

(
Yt+1

Yt

L̄t

L̄t+1

)ς

=⇒ (1 + r) β =

(
gY

gL

)ς

so r = 1
β

(
gY
gL

)ς
− 1 becomes endogenous, and varies with growth in per capita

consumption (if the economy moves towards a new GBP where gy is lower, so will
be r).

Wage growth.

wt L̄t = θ̄Yt =⇒ gw =
gY

gL

Output growth. Along a BGP, r is fixed by parameters so it affects the level but
not the growth of Yt directly

Yt = [Z̄t]
1−θ̄

1−αθ (L̄t)
θ̄

1−αθ

[
p f αθκz

r f
t + δk

] αθ
1−αθ

[
∑

a
pa

f M̄t−azy
at

] 1−θ
1−αθ
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gY =
[

g1−θ
M g1−θ̄

Z gθ̄
L

] 1
1−αθ

Stationarity in size-by-age. This requires that output is homogeneous of degree
one with M̄t. Since r is not changing:

Kt+1

Kt
=

Yt+1

Yt
= (gZ)

1−θ̄
1−αθ [gL]

θ̄
1−αθ [gM]−

θ̄
1−αθ = 1 =⇒ gM = (gZ)

1−θ̄
θ̄ gL

Technology-driven rates. Hence, gY = gM. Thus, the real rate simply tracks
technology

(1 + r) β =

(
gY

gL

)ς

=

(
gM

gL

)ς

Investment to GDP. When the economy exhibits both a slowdown in the startup
supply and slowdown in economy-wide TFP, but the TFP slowdown is offset by
wages, this generates the result that (1) the aggregate investment share falls with
aging (due to composition effects), (2) while partially offset by the interest rate
decline due to the slowdown in TFP.

It

Yt
=

It

Kt

Kt

Yt
=↓

p f
∑a

(
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(
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(
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− (1− δk)

∑a

(
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)a
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∑a

(
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gM

)a
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at

Conditional on gM, we would expect the lower gZ to boost investment shares as
what happened in PE. However, this does not take place because the wages adjust.
The only reason It/Yt falls is because of aging. Thus, a slowdown in technology has
been offset by a decline in wages. If technology had slowed down, we would have
seen a decline in micro growth by age. However, the decline in growth has fed back
into a decline in macro interest rates, stimulating investment. At the same time, we
see a second effect that dampened the It/Yt decline: the fall in r.

We can also re-write this as follows

It

Yt
(g) = ∑

a

(
p f
gM

)a
zy

at

∑a

(
p f
gM

)a
zy

at

iat

yat
(g)

iat

yat
=

[
p f

zk
at

zy
at
− (1− δk)

zk
at−1

zy
at

]
p f αθκz

1
β

(
gM
gL

)ς 1−θ̄
θ̄ − 1 + δk

where changes in Z and L feedback into changes in entry: gM = (gZ)
1−θ̄

θ̄ gL.
To summarize: a slowdown in gM (associated with a slowdown in L, Z, both...)

impacts It/Yt in two ways:
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Figure 34: The lower startup rate depresses r while aging firms. r
decline from slower entry generates investment increase conditional
on age.
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Figure 35: Firm aging depresses investment demand despite lower
interest rates. Absent aging effects, the slower startup rate would have
made investment increase.
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(1) Aging depresses investment by reallocating GDP towards firms that invest
less intensely.

(2) Investment increases conditional on age (across all age groups) because r
declines.

Crucial here is that aggregates are homogenous of degree one in M̄t and relatedly
that size-by-age is stationary.

A.5 Perfect foresight transition in general equilibrium.

Transition. This is likely an upper bound on the effects of changes in startup
activity in transition. Due to the backward-looking nature of the distribution,
changes in startup activity will affect the age distribution less dramatically than
what is implied by cross-BGP comparisons. Furthermore, because of the forward-
looking nature of firms, firms expecting increases in general equilibrium prices
will dampen their investment. These backward and forward looking smoothing
forces are common across models with heterogeneous firms. Figure 36 presents the
transitional dynamics in the model using the sequence-space methods in Auclert
et al. (2021a). In this general equilibrium transition, the effect age composition
effects are still present but are smaller, of around 1.3% of GDP, but still explain
around 50% of the 2.6% actual trend. The startup rate path is presented in the
Theory Appendix. Notice importantly that relative to the cross-BGP results, the
aging effects are delayed since it takes time for the age distribution to shift.
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Figure 36: Robustness to transition in general equilibrium
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Note. This figure investment to GDP in the model experiencing a perfect foresight transition between
1950 and 2020 BGPs. I use sequence-space methods in Auclert et al. (2021a) to solve for gMt that
matches the data’s boom and bust of the startup rate, and solve for the linearized transition path of
It/Yt.
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Figure 37: Investment to GDP driven by Startup Rates via Firm Age
Distribution
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Note. This figure qualitatively shows firm aging may have slowed down the effects of intangibles
in the aggregate. Total investment to GDP including intellectual property comes the BEA measure
used in Figure 1. The dashed line is the effects of firm aging reproducing the analyses in Figure 11
but recalibrating the model to match the total investment to GDP. The solid red line shows what the
implied data trend would have been removing this aging effect.

A.6 Application: Why did the Rise of Intangibles not lead to an
Investment Boom?

Thus far the model has been applied to only tangible capital. In this section, I
broaden my view of capital and find that the firm aging force highlighted in this
paper could have been slowing down the aggregate impact of intangibles.

I re-calibrate the model to match the total investment share instead of the tangible
one assuming that the investment-to-output by age relation that holds for tangibles
holds for total investment. I then perform the same exercise of matching the startup
rate dynamics in the data and looking at the implied path of aggregate investment
to GDP. Figure 37 shows that aging of firms may have been again one of the forces
keeping total investment stagnant despite the rise of intangibles. In fact, the figure
shows that if firm aging had not taken place, investment would have continued on
its pre-1980 upward trajectory, increasing by 70% since 1950 instead of by just 30%
as it did in aggregate data.

Consistent with this result, I show in the Appendix that while tangible investment
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to GDP across sectors is very correlated with the sector-level entry rate since the
1980, intangible-inclusive investment is less correlated with entry. This suggests
that there has been an increase in intangible investment given age among US firms,
which is the “wedge” highlighted by Crouzet and Eberly (2018). This would be
consistent with my empirical finding that investment to output increased given age
(Fact 1).

In a companion paper, Aragoneses (2023b), I investigate the life cycle dimension
of the rise in intangibles using the same confidential data from the US Census used
in this paper. I find that the changing composition of startups has been an important
driver in the increase of intangible capital. Relative to startups in the past, recent
cohorts of firms are significantly more likely to invest in intangible capital. This
suggests that any intangible-related technology that started to become available
after 1980 may be affecting the economy through the startup stage.
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Figure 38: Interest rate dynamics consistent with startup and invest-
ment time series
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Note. This qualitatively shows BGP changes in firm entry matter for interest rates: intuitively, since
the BGP interest rate is tied to the growth in per capita income, rt (gt) = gt/β− 1, whenever gM ̸= gL

a boom and bust in entry growth will translate into a rise and fall in interest rates as we have seen in
historical data, which comes from Rogoff et al. (2022).

A.7 Interest rate dynamics consistent with startup and investment
time series
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