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In this seminar, we will revise a series of works concerning the problem of
determination of functions. It is well-known, as a consequence of the fundamen-
tal theorem of calculus, that for two differentiable functions f, g : Rn → R, one
has that

∇f(x) = ∇g(x),∀x ∈ Rn =⇒ f = g + cst.

We will refer to this type of result as a determination result: a “first order
information” about the function determines it completely, up to an additive
constant.

In the first part of the seminar, we will revise some literature concern-
ing determination results. The determination result of Rockafellar for convex
functions [13], the determination result of Monotone operators of Brézis [3],
and the first metric determination result for C2-convex functions of Boulmeza-
oud,Cieutat, and Daniilidis [2]: For any two convex functions over a Hilbert
space f, g : H → R, of class C2 and bounded from below, one has that:

∥∇f(x)∥ = ∥∇g(x)∥,∀x ∈ H =⇒ f = g + cst.

This last result, quite unexpected at the time, can be interpreted as a uniqueness
result for the eikonal equation

∥Du∥ = f(x).

By means of metric differentiation, we will discuss some recent advances in ex-
istence and uniqueness of the eikonal equation in metric spaces. After quickly
visiting the seminal results of Crandall and Lions [4] and Ishii [10], we will
discuss three notions of metric viscosity solutions of the eikonal equation: Am-
brosio and Feng [1], afterward generalized by Gangbo and Święch [8]; Giga,
Hamamuki and Nakayasu [9]; and Liu, Shanmugalingam, Zhou [11]. In a broad
setting, it is shown in [11] that the three approaches are in fact equivalent.

In the second part of this presentation, we will visit the recent contributions
in the problem of determination of functions: First, we will discuss the convex
case studied in [12] and [14], and then its extension for nonconvex inf-compact
functions [7]. Both results are based on the metric slope.

Finally, we will discuss about an abstraction of metric slopes, that we call
Descent Modulus. We will visit how, following a descent method approach, a
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Descent Modulus can determine functions. We will first study the case of inf-
compact functions [5] and then, the case of continuous functions in complete
metric spaces [6]. We will discuss how to interpret our results in both contexts:
determination of functions, and uniqueness of solutions of the eikonal equation.
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