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Abstract

In this paper we estimate the sparse dependence structure in the tail region of a multivariate

random vector, potentially of high dimension. The tail dependence is modeled via a graphical

model for extremes embedded in the Hüsler-Reiss distribution (Engelke and Hitz, 2020). We

propose the extreme graphical lasso procedure to estimate the sparsity in the tail dependence,

similar to the Gaussian graphical lasso method in high dimensional statistics. We prove its

consistency in identifying the graph structure and estimating model parameters. The efficiency

and accuracy of the proposed method are illustrated in simulated and real examples.

Keywords and phrases: graphical lasso; graphical models; multivariate extreme value statistics; high dimensional

statistics; Hüsler-Reiss distribution;
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1 Introduction

Consider a random Gaussian vector with mean zero and covariance matrix Σ. In a Gaussian

graphical model, the precision matrix Θ := Σ−1 encodes the conditional dependence structure

among the variables – variables i and j are conditionally independent given the rest of the variables

if and only if Θij = 0 (Lauritzen, 1996).

Given an estimate of the covariance Σ̂, the graphical lasso method estimates a sparse Θ using

L1-regularization by

argminΘ

− log |Θ|+ tr
(
Σ̂Θ
)
+ γn

∑
i ̸=j

|Θij |

 ;

see, e.g. Yuan and Lin (2007), Banerjee et al. (2008) and Friedman et al. (2008). The advantage

of the graphical lasso method is two folds. First, it reveals the conditional dependence among the

underlying random variables by producing a sparse estimate of Θ. Second, it provides a reliable

estimation of Θ and Σ in the high dimensional case where classical covariance estimation fails. The

theoretical properties of the graphical lasso procedure were investigated in Rothman et al. (2008)

and Ravikumar et al. (2011).
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In this paper, we aim to estimate the sparse dependence structure in the tail region among

high dimensional random variables. With the characterization of tail dependence, one can further

conduct statistical risk assessment of extreme (co-)occurrences, such as systemic banking failures

(e.g. Zhou (2010)) or compound environmental events (e.g. Coles and Tawn (1991)). Our ap-

proach is built on the framework of Engelke and Hitz (2020), which introduces graphical models

for extremes by defining the conditional dependence in the tail distribution.

A parametric distribution family that can accommodates sparse graphical models for extremes

is the Hüsler-Reiss (HR) distribution (Hüsler and Reiss, 1989). The class of HR distributions de-

scribes the non-trivial limiting tail distributions of Gaussian triangular arrays. Similar to Gaussian

distribution, its parametrized by bilateral relations. More specifically, a d-dimensional HR graph-

ical model can be parametrized by a precision matrix Θ ∈ Rd×d, such that the variables i and j

are conditionally independent in the extremes given the rest of the variables if and only if Θij = 0

(Engelke and Hitz, 2020, Hentschel et al., 2022).

Unlike the Gaussian case, the precision matrix Θ in the HR model is not of full rank. As

a consequence, existing statistical inference procedures for estimating Θ in a HR model require

conditioning on a chosen dimension being above a high threshold. In turn, one can only estimate

Θ(k) ∈ R(d−1)×(d−1), the submatrix of Θ where the k-th row and k-th column are removed (Engelke

and Hitz, 2020). Estimating a HR graphical model is therefore challenging when a sparse Θ is

desired: a sparse estimate of Θ(k) does not guarantee sparsity on the omitted k-th row and column.

Hentschel et al. (2022) proposed an estimation procedure for Θ using matrix completion when the

sparsity structure of Θ was known. To date, the only sparse estimation for Θ without knowing

the sparsity structure ex-ante was proposed by Engelke et al. (2022). They achieved this goal by

aggregating sparse estimates of Θ(k) for all k = 1, . . . , d using a majority vote to decide whether or

not each entry of Θ should be zero. In other words, their estimation procedure requires estimating

d graphical models which can be computationally intensive for large d.

In this paper, we propose a direct estimate of Θ with a built-in option for sparse estimation via

L1-regularization. We term it the extreme graphical lasso. The core idea is as follows. We show

that by adding a positive constant c to each entry of Θ, the matrix

Θ∗ := Θ + c11T

is the inverse of a covariance matrix Σ∗ which can be estimated consistently from observations.

To impose sparsity on the entries of Θ, we only need to shrink the off-diagonal entries of Θ∗ to c,

which can be achieved in the optimization

argminΘ∗

− log |Θ∗|+ tr
(
Σ̂∗Θ∗

)
+ γn

∑
i ̸=j

|Θ∗
ij − c|

 .

The extreme graphical lasso method requires solving only one opimization problem and therefore

is efficient in handling high dimensional situations. In addition, it results in both graph structure

identification and parameters estimation simultaneously. The efficiency and accuracy are the main

advantages of this novel method.
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We provide the finite sample theory and asymptotic theory for the extreme graphical lasso

method. In particular, we show a consistent identification of the graph and accurate estimation

of the non-sparse parameters in Θ. Empirically, we argue that in the high dimensional case, the

extreme graphical lasso method can be further simplified by dropping the constant c, coinciding

with the classical graphical lasso algorithm. We apply the extreme graphical lasso to a real data

example to illustrate its usefulness in uncovering the underlying dependence structure of extreme

events.

The remainder of the paper is structured as follows. The background for HR graphical models

is introduced in Section 2. We present our extreme graphical lasso method in Section 3. The

non-asymptotic and asymptotic theories are shown in Section 4. Finally, the performance of the

method is illustrated in Section 5.

1.1 Notation

We will use the following notations. Let 0 and 1 denote vectors whose elements are all 0’s and all

1’s respectively. For simplicity, with a slight abuse of notation, we may let them denote vectors

of different length in different contexts. For the norms for matrices: ∥ · ∥∞ is the element-wise

L∞-norm, both for vectors and matrices; ||| · |||∞ is the l∞-operator norm for matrices, i.e. the

row-maxima of L1-norms applied to each row. We note the following properties of these norms:

• Both ∥ · ∥∞ and ||| · |||∞ are norms.

• For matrix A and vector v, ∥Av∥∞ ≤ |||A|||∞∥v∥∞.

• For matrices A and B with compatible dimensions, |||AB|||∞ ≤ |||A|||∞|||B|||∞.

2 Hüsler-Reiss graphical models

In this section, we describe the class of HR graphical models and the corresponding statistical

inference procedure in existing literature.

2.1 Graphical models for extremes

Consider a random vector X = (X1, . . . , Xd). Denote X̃k = 1
1−Fk(Xk)

, where Fk is the marginal

distribution function of Xk. Then X̃ = (X̃1, . . . , X̃d) is a random vector with standard Pareto

marginals and summarizes the dependence structure of X. Following multivariate extreme value

theory, we assume that X̃ belongs to the domain of attraction of a multivariate extreme value

distribution, i.e. the limit of its component-wise maxima converges to a non-degenerate distribution.

Specifically, given i.i.d. copies of X̃, X̃i = (X̃i
1, . . . , X̃

i
d), i ∈ N, there exists a random vector Z =

(Z1, . . . , Zd) such that

P (Z ≤ z) := lim
n→∞

P

(
max

i=1,...,n
X̃i

1 ≤ nz1, . . . , max
i=1,...,n

X̃i
d ≤ nzd

)
= G(z), (2.1)
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where each marginal distribution of G, Gk, is Fréchet distributed Gk(zk) = exp(−1/zk). By writing

G(z) = exp (−Λ(z)) ,

where Λ(z) is shorthand for Λ([0,∞)d\[0, z]), Λ is a Radon measure on the cone E = [0,∞)d\{0}.
The measure Λ is known as the exponent measure and characterizes the dependence strucure of X

in the tail region.

The domain of attraction condition (2.1) can be equivalently expressed in terms of threshold

exceeding. Consider the exceedances of X̃ where its L∞-norm ∥X̃∥∞ is higher than a certain

threshold. Then there exists a random vector Y such that

P (Y ≤ z) := lim
u→∞

P

(
X̃

u
≤ z

∣∣∣∣∣ ∥X̃∥∞ > u

)
=

Λ(z ∧ 1)− Λ(z)

Λ(1)
. (2.2)

Here the random vector Y is defined with support on the L-shaped set L = {x ∈ E : ∥x∥∞ > 1}.
Its distribution is known as a multivariate Pareto distribution.

Engelke and Hitz (2020) proposed the framework of graphical models for extremes, by consid-

ering the conditional independence of the threshold exceedance limit Y in (2.2). Since Y is defined

on the L-shaped set L = {x ∈ E : ∥x∥∞ > 1} which is not a product space, the notion of conditional

independence is instead defined on the subspace Lk = {x ∈ L : xk > 1} for each k.

Let G = (V,E) be a graph defined by a set of nodes V = {1, . . . , d} and a set of undirected

edges between pairs of distinct nodes E ⊂ V × V . Define the random vector Yk d
= Y|Yk > 1.

A graphical model for extremes based on graph G has a multivariate Pareto distribution Y that

satisfies

∀k ∈ {1, . . . , d} : Y k
i ⊥⊥ Y k

j |Yk
\{i,j} ⇔ {i, j} /∈ E, (2.3)

where Yk
\{i,j} indicates all other dimensions in Yk excluding {i, j}. In short, we denote the condi-

tional independence in extremes as

Yi ⊥⊥e Yj |Y\{i,j} ⇔ {i, j} /∈ E.

2.2 Hüsler-Reiss graphical models

A d-dimensional HR model is parametrized by a variogram matrix Γ ∈ Rd×d, such that Γij =

E(Wi −Wj)
2 for some centered multivariate Gaussian random vector W = (W1, . . . ,Wd). It is

the class of distributions describing the non-trivial tail limiting distribution of Gaussian triangular

arrays (Hüsler and Reiss, 1989). Specifically, for any k = 1, . . . , d, the exponent measure Λ(·) of

the HR model admits the density

λ(y) = y−2
k

∏
i ̸=k

y−1
i ϕd(ỹk; Σ̃

(k)),

where ϕd(·; Σ̃(k)) is the density of a centered d-dimensional Gaussian distribution with covariance

matrix Σ̃(k), ỹk = {log(yi/yk) + Γik/2}i=1,...,d, and

Σ̃(k) =
1

2
{Γik + Γjk − Γij}i,j ∈ Rd×d. (2.4)
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Note that Σ̃(k) is degenerate on the k-th row and the k-th column.

Let Σ(k) be the (d − 1) × (d − 1) matrix constructed by removing the k-th row and the k-th

column from Σ̃(k). For convenience we index the rows and columns of Σ(k) using the original row

and column numbers from Σ̃(k). Then the following relation holds (Engelke and Hitz, 2020):

Yi ⊥⊥e Yj |Y\{i,j} ⇔
(
Σ(k)

)−1

ij
= 0, ∀k ̸= i, j.

Consequently, a zero element in Θ(k) :=
(
Σ(k)

)−1
corresponds to a non-edge in G. In other words,

Θ(k) serves as the precision matrix for the graph G excluding the node k.

To summarize the graph structure for all dimensions, there exists a precision matrix Θ ∈ Rd×d

such that removing the k-th column and the k-th row from Θ results in Θ(k) (Hentschel et al.,

2022). Based on the precision matrix Θ, we have that

Yi ⊥⊥e Yj |Y\{i,j} ⇔ Θ
(k)
ij = 0, i, j ̸= k ⇔ Θij = 0.

We can also reconstruct Θ given a single Θ(k) via

Θij = Θ
(k)
ij , if i, j ̸= k;

Θik = −
∑
l ̸=k

Θ
(k)
il , if i ̸= k and j = k;

Θkk =
∑
m,l ̸=k

Θ
(k)
ml , if i = k and j = k.

Note that Θ1 = 0, which implies that Θ is not of full rank.

2.3 Statistical inference for the HR model

The standard statistical inference for the HR model relies on the following result. Let Y be the

multivariate Pareto distribution from a HR model with variogram Γ. Engelke et al. (2015) showed

that

(logY−k − log(Yk) · 1) |Yk>1 ∼ N(Γ·k/2,Σ
(k)). (2.5)

Given i.i.d. observations Xi = (Xi
1, . . . , X

i
d), 1 ≤ i ≤ n drawn from X, an empirical counterpart of

(logY−k − log(Yk) · 1) |Yk>1 can be constructed as follows. Define the transformed observations

X̂i
k =

1

1− F̂k(X
i
k)
,

where F̂k(x) = 1
n+1

∑n
i=1 I{Xi

k ≤ x} is the empirical distribution function based on Xi
k’s and I

is the indicator function. Then X̂i = (X̂i
1, . . . , X̂

i
d) resembles a sample of X̃ = (X̃1, . . . , X̃d) with

X̃k = 1
1−Fk(Xk)

, albeit not i.i.d.

Consider an intermediate sequence kn such that kn → ∞ and kn/n → 0 as n → ∞. Then as

n→∞, ∥X̂i∥∞ > n
kn

mimicks the condition ∥X̃∥∞ > u with u→∞. Therefore,

kn
n
X̂i

∣∣∣∣∥X̂i∥∞ >
n

kn
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approximately follows the same distribution as Y.

Let I = {i : ∥X̂i∥∞ > n
kn
} =: {i1, . . . , im}, wherem = |I|, indicating the index set corresponding

to ∥X̂i∥∞ > n
kn
. Denote Ŷj =

kn
n X̂ij for all j = 1, . . . ,m. Let

Ŵ
(k)
i = log Ŷi,−k − log(Ŷik) · 1,

and Ik be the index set that Ik = {i : Ŷik > 1} (note that |Ik| = kn) for each dimension k = 1, . . . , d.

Then Σ(k) can be estimated by

Σ̂(k) :=
1

kn

∑
i∈Ik

Ŵ
(k)
i −

1

kn

∑
i∈Ik

Ŵ
(k)
i

Ŵ
(k)
i −

1

kn

∑
i∈Ik

Ŵ
(k)
i

T

, (2.6)

which is the sample covariance matrix using Ŵ
(k)
i conditional on Ŷik > 1.

Theoretically an estimate of Θ can be constructed via Θ̂(k) =
(
Σ̂(k)

)−1
. To achieve sparsity

in Θ(k), any sparse inverse covariance matrix estimation technique can be applied here. However,

reconstruction of Θ from a sparse Θ̂(k) does not guarantee sparsity on the omitted k-th row and

column. Engelke et al. (2022) proposed to estimate a sparse Θ̂(k) for each k and then to use a

majority vote to decide whether or not each entry of Θ should be zero. This approach is shown

to be effective in recovering the sparse structure of Θ, when the number of dimension is at low or

moderate level. For high dimensional case, tuning d graphical lasso models can be cumbersome.

In the following, we propose a one-step estimation of Θ. The advantage is two folds. First,

our computation requirement is significantly lower, especially in the case where d is large. Second,

we simuteneously estimate the graph structure and the non-zero elements in Θ. Theoretically, we

provide concentration bounds for the estimate Θ̂, which would otherwise be difficult to recover

through the approach of majority vote.

3 The extreme graphical lasso

3.1 One-step estimation of Θ

Recall that for a HR distribution parametrized by a variogram Γ, there exists a centered Gaussian

random vector W such that

E(Wi −Wj)
2 = Γij .

Here the choice of W is not unique. However, by considering W′ = W−W̄ ·1 with W̄ = 1
d

∑d
i=1Wi,

for any such W, then W′ is a centered Gaussian random vector with unique covariance matrix

Σ := −1

2

(
I − 1T1

d

)
Γ

(
I − 1T1

d

)
. (3.1)

Here Σ is not of full rank since Σ1 = 0. Hentschel et al. (2022) showed that Σ and Θ satisfy

lim
M→∞

(
Σ+M11T

)−1
= Θ.

In the following proposition, we generalize this result to any fixedM > 0. The proof is postponed

to Appendix A.
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Proposition 3.1. For any M > 0,(
Σ+M11T

)−1
= Θ+

1

d2M
11T .

As a result of Proposition 3.1, given any consistent estimator of Σ and M > 0, we can directly

retrieve a consistent estimator of Θ.

To estimate Σ, we use the following proposition which shows the link between Σ(k) and Σ. This

relationship was noted in Hentschel et al. (2022). For the completeness of this paper, we provide a

formal proof in Appendix A.

Proposition 3.2. Recall the definition of Σ̃(k) in (2.4) where Σ̃(k) ∈ Rd×d is the augmented matrix

of Σ(k) ∈ R(d−1)×(d−1). Also recall the definition of Σ in (3.1). We have

1

d

d∑
k=1

Σ̃(k) = Σ+MΣ11
T ,

where

MΣ =
1

d3

d∑
k=1

1T Σ̃(k)1.

Based on the estimators for Σ(k)’s in (2.6) and Proposition 3.2, we estimate Σ by

S :=
1

d

d∑
k=1

Σ̂(k) −

(
1

d3

d∑
k=1

1T Σ̂(k)1

)
11T . (3.2)

According to Proposition 3.1, for any fixed M > 0, Θ can be estimated by

Θ̂ :=
(
S +M11T

)−1 − 1

d2M
11T . (3.3)

3.2 Interpretation as aggregated MLE

Given any fixed M > 0, denote

Σ∗ = Σ+M11T ,

Θ∗ = Θ+
1

d2M
11T ,

and

S∗ = S +M11T .

Then the estimator in (3.3) is equivalent to estimating Θ∗ by (S∗)−1, which can also be viewed as

the optimizer of the following problem:

argminΘ∗ {− log |Θ∗|+ tr (S∗Θ∗)} . (3.4)

We remark that (3.4) is equivalent to an “aggregated MLE” when considering all partial optimiza-

tions in estimating Θ(k) as follows.
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The pseudo-MLE derived from (2.5) (‘pseudo’ because the mean of the Gaussian distribution

is pre-estimated) is

argminΘ(k)

{
− log |Θ(k)|+ tr

(
Σ̂(k)Θ(k)

)}
.

Combining all k, one can solve for Θ that optimizes

argminΘ

d∑
k=1

{
− log |Θ(k)|+ tr

(
Σ̂(k)Θ(k)

)}
. (3.5)

The following proposition shows that the solution to this aggregated MLE is exactly the same as

the estimator Θ̂ defined in (3.3).

Proposition 3.3. For any fixed M > 0,

1

d

d∑
k=1

{
− log |Θ(k)|+ tr

(
Σ̂(k)Θ(k)

)}
= − log |Θ∗|+ tr (S∗Θ∗) + log(M)− tr(S∗)

d2M
.

Consequently, the optimization problems (3.4) and (3.5) result in the same solution for Θ.

3.3 Sparse estimation of Θ

We aim to estimate a sparse Θ where some off-diagonal elements are zero. Note that each zero

entry of Θ corresponds to an entry of Θ∗ with value 1
d2M

. We therefore propose the following

extreme graphical lasso algorithm by shrinking off-diagonal entries of the matrix Θ∗ towards 1
dM2 :

Θ̂∗ := argminΘ∗

− log |Θ∗|+ tr (S∗Θ∗) + γn
∑
i ̸=j

∣∣∣∣Θ∗
ij −

1

d2M

∣∣∣∣
 , (3.6)

where γn is a suitably chosen penalty parameter. The sparse estimator for Θ is then:

Θ̂lasso := Θ̂∗ − 1

d2M
11T . (3.7)

We term this estimation procedure as the extreme graphical lasso method.

4 Theoretical results

In this section, we establish the finite sample and asymptotic theories for the extreme graphical

lasso method in (3.6). The goal is to learn the graphical structure for extremes and estimate the

non-zero parameters in Θ simultaneously. We start with theoretical results for the estimation of Σ

by S, related to existing theory on the estimation of Γ in Engelke et al. (2022).

4.1 Conditions for estimating Σ

Recall S as an estimator for Σ in (3.2). We first present the assumptions needed for the finite

sample theory of S. The assumptions are in line with those needed in Theorem 3 in Engelke et al.

(2022).

The following condition is needed regarding the tail behavior of X̃ = (X̃1, . . . , X̃d).
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Condition 4.1 (Assumption 3 in Engelke et al. (2022)). Assume that all marginal distributions

of the original random vector X, F1, . . . , Fd are continuous. In addition, there exists ξ′ > 0 and

K ′ <∞ independent of d such that for all J ⊂ {1, . . . , d} with |J | ∈ {2, 3} and q ∈ (0, 1],

sup
x∈[0,1/q]2×[0,1]

∣∣∣∣∣∣1qP
(⋂

i∈J

{
X̃i >

1

qxi

})
−

P
{⋂

i∈J Ỹi >
1
xi

}
P(Y1 > 1)

∣∣∣∣∣∣ ≤ K ′qξ
′
.

Condition 4.1 is a standard second order condition quantifying the speed of converegence of the

tail distribution of X̃ towards the limiting distribution Y on bounded sets. It has been imposed

in other asymptotic theories in multivariate extreme value statistics, see e.g. Einmahl et al. (2012)

and Engelke and Volgushev (2022).

Next, we assume that the variogram in the HR distribution Γ has bounded entries.

Condition 4.2 (Bounded entries). Assume that the variogram Γ satisfies that 0 < λ < infi ̸=j

√
Γij ≤

supi ̸=j

√
Γij < λ, with λ and λ independent of d.

Condition 4.2 implies the boundedness in the density of the exponent measure, see Assumption

2 in Engelke et al. (2022): this condition is required for establishing concentration bounds for

estimators of Γ. In addition, this condition implies that for any pair (i, j) with i ̸= j, Xi and Xj

are asymptotically dependent.

Then we have the following proposition. Its proof is postponed to Appendix B.

Proposition 4.1. Assume that Conditions 4.1 and 4.2 hold. Then for any ξ < ξ′, there exists

positive constants C1, C2 and C3, depending on ξ, ξ′, λ and λ, independent of d, such that for any

ε ≥ εn := C2d
3 exp{− C3kn

(logn)8
},

P (∥S − Σ∥∞ > δn) ≤ ε, (4.1)

where

δn := C1


(
kn
n

)ξ (
log

(
kn
n

))2

+
1 +

√
1
C3

log(C2d3/ε)
√
kn


and ∥S − Σ∥∞ refers to the element-wise maximum error in the estimation.

In addition, assuming that (log n)4
√

log d
kn
→ 0 as n→∞, we have, as n→∞,

∥S − Σ∥∞ = OP

((
kn
n

)ξ (
log

(
kn
n

))2

+

√
log d

kn

)
.

We remark that this theorem does not require a fixed d and we allow for d = dn →∞ as n→∞
in the second half of the Proposition. Nevertheless, the condition (log n)4

√
log d
kn
→ 0 as n → ∞

provides an upper bound for the diverging speed of dn towards infinity. It depends not only on n

but also on the intermediate sequence kn.
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4.2 Conditions for graph identification

Recall that (V,E) denotes the set of nodes and edges in the graph. DenoteD = max1≤i≤d
∑d

j=1 1(i,j)∈E

as the maximum degree of all nodes. If the dimension d = dn → ∞ as the sample size n → ∞,

we can potentially have D → ∞ and |E| → ∞. Nevertheless, we always have D = O(d) and

|E| = O(d2).

Here we list the conditions required for learning the graph structure. The first condition concerns

the structure of the graph reflected in the matrix Σ.

Condition 4.3 (Mutual incoherence). Given M > 0, define Ω = Σ∗⊗Σ∗ where ⊗ is the Kroneker

product. We assume that there exists 0 < α < 1 such that

|||ΩEcE(ΩEE)
−1|||∞ < 1− α,

where ΩEE ∈ R|E|×|E| is the submatrix
(
Ω(i,j),(k,l)

)
(i,j)∈E,(k,l)∈E and ΩEcE is defined similarly.

Note that the mutual incoherence condition (sometimes referred to as the irrepresentatbility

condition) is comparable with Assumption 1 in Ravikumar et al. (2011). Such a condition is

often needed for theory regarding lasso-type penalization algorithms. Given a graph structure and

a matrix Σ, the validity of our mutual incoherence condition depends on the choice of M . We

illustrate this in Section 5.1 with two examples.

The next condition concerns the tuning parameter γn. In order to identify the graphical struc-

ture precisely, the tuning parameter should be neither too high nor too low. A low γn will result in

non-edges not being penalized to zero while a high γn will penalize true edges to zero. Therefore,

we need both an upper and a lower bound for γn. The following condition is formulated for a fixed

constant ϵ > 0 to be specified in Condition 4.5.

Condition 4.4. Assume that the tuning parameter γn satisfies Cγ(δn) ≤ γn ≤ Cγ, where

Cγ :=
(1− ϵ)α(1− α)

D|||Σ∗|||∞|||(ΩEE)−1|||∞ [(1− ϵ)α+ |||Σ∗|||2∞|||(ΩEE)−1|||∞]
, (4.2)

Cγ(δn) :=
1− α

ϵα
· δn, (4.3)

where δn quantifies the estimation error for S − Σ as in Proposition 4.1.

The upper bound Cγ is a constant related to the parameters of the graphical model only. The

lower bound is a linear function of δn. In the asymptotic setup, it tends to 0 as n→∞.

The last condition ensures that the above bounds can be achieved, that is Cγ ≤ Cγ . Note that

this condition will be satisfied when n is sufficiently large.

Condition 4.5. There exists an ϵ > 0 such that

δn ≤
(1− ϵ)ϵα2

D|||Σ∗|||∞|||Ω−1
EE |||∞

[
(1− ϵ)α+ |||Σ∗|||2∞|||Ω−1

EE |||∞
] ,

where δn quantifies the estimation error in S − Σ as in Proposition 4.1.
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4.3 Main theorem

We first present the concentration bounds for Θ̂lasso for fixed n. The proof is shown in Appendix

C.

Theorem 4.2. Assume that Conditions 4.1–4.3 holds. For some ε ≥ εn with εn defined in Propo-

sition 4.1, further assume that Conditions 4.4–4.5 hold with δn defined in Proposition 4.1. Then on

an event Aε with P(Aε) > 1− ε, the extreme graphical lasso algorithm specified in (3.6) and (3.7)

has a unique solution Θ̂∗ and Θ̂lasso. In addition, for this solution, denote the estimated edges as

Ê := {(i, j) : Θ̂lasso,ij ̸= 0}. We have that on Aε,

Ê ⊂ E

and

∥Θ̂lasso −Θ∥∞ ≤
||| (ΩEE)

−1 |||∞
1− α

· γn =: rn. (4.4)

In particular, if min{∥Θij∥; (i, j) ∈ E, i ̸= j} > rn, then we have that Ê = E on Aε.

Next, we present the asymptotic theory when n→∞. Notice that by assuming kn/n→ 0 and

(log n)4
√

log d
kn
→ 0 as n → ∞, we have δn → 0. Then for any ϵ > 0, Condition 4.5 is satisfied for

sufficiently large n. To achieve the lowest estimation error, we choose the lowest possible tuning

parameter γn = Cγ(δn) as in (4.3). This implies that both γn = O(δn) and rn = O(δn) as n→∞.

The following asymptotic result follows immediately from Theorem 4.2.

Theorem 4.3. Assume that Conditions 4.1–4.3 holds. Choose the tuning parameter γn = Cγ(δn)

as in (4.3). Assume that min{∥Θij∥; (i, j) ∈ E, i ̸= j} > r > 0 with some constant r independent

of d. Then as n → ∞, with probability tending to 1, the solution for Θ̂∗ and Θ̂lasso is unique. In

addition,

Pr(Ê = E)→ 1 and ∥Θ̂∗ −Θ∗∥∞ = OP

{(
k

n

)ξ (
log

n

k

)2
+

√
log d

k

}
.

5 Simulations and a real data example

In this section, we demonstrate the performance of the extreme graphical lasso method in both the

low dimensional (d = 4) and high dimensional (d = 20 and d = 200) cases. In addition, we show a

data example of river discharge data, also used in Engelke and Hitz (2020).

5.1 Simulations in low dimensional cases (d = 4)

For d = 4, we investigate two theoretical examples. In particular, we focus on the Mutual Incoher-

ence condition

|||ΩEcE(ΩEE)
−1|||∞ < 1,

and demonstrate how the validity of this condition depends on the choice of M .
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Figure 1 shows the graph structures for the two examples, the star graph and the diamond

graph. The Mutual Incoherence condition for these two graphs in the classical graphical lasso

setting was studied in Ravikumar et al. (2011).

X1

X2 X3

X4

X1

X2 X3

X4

(a) (b)

Figure 1: (a) Star graph; (b) Diamond graph.

5.1.1 Star graph

Notice that the precision matrix Θ in the HR model satisfies the constraint Θ1 = 0, which leaves

limited options for Θ given a certain sparsity structure. We consider the following parameterization

Θ =


3 −1 −1 −1
−1 1 0 0

−1 0 1 0

−1 0 0 1

 ,

which reflects the Star graph in Figure 1(a).

We plot the values of |||ΩEcE(ΩEE)
−1|||∞ against the values of M on the left panel of Figure 2.

The figure shows that the Mutual Incoherence condition is satisfied when M ∈ (0, 0.2768].
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Figure 2: The curves of |||ΩEcE(ΩEE)
−1|||∞ versus M for the star graph and the diamond graph.

We simulate 100 samples with various sample sizes n: ranging from 103 to 106. For each sample

we simulate data from the following multivariate Pareto distribution

X = Y exp{W − σ2(W)/2},

where W follows a zero-mean Gaussian distribution with a covariance matrix Σ calculated based

on Proposition 3.1, and Y follows a standard Pareto distribution and is independent of W. Here

σ2(W) is the diagonal vector of Σ. Note that the choice of M here is irrelevant to the calculation

of Σ . The multivariate Pareto distribution used in the simulation is in the domain of attraction

of a HR model with precision matrix Θ.

We apply the extreme graphical lasso method to estimate the graphical structure of Θ. More

specifically, for the estimator Σ̂, we use kn = 0.05n. For the extreme graphical lasso, we choose

M = 0.25 which ensures the Mutual Incoherence condition and a penalty parameter γn = 0.2.

Here the optimization problem (3.6) is convex and can be solved with a block coordinate descent

algorithm similar to Mazumder and Hastie (2012), see Appendix D.

After obtaining Θ̂ we further consider a thresholding by 0.01: if an estimated off-diagonal

element has an absolute value less or equal to 10−2, it will be set to zero. The last step is purely

for computational reason. For each simulated sample, we consider it as a “success” if the estimated

graph coincides with the true graph. The left panel of Figure 3 shows the “success rates” in 100

simulated samples versus the sample sizes.

We observe that the success rate of the extreme graphical lasso method approaches 100% as n

increases, indicating that the graph can be consistently identified. Note that here kn is the effective

sample size and corresponds to 5% of n, e.g. kn = 500 corresponding to n = 10000.
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Figure 3: The success rates vesus sample sizes based on 100 samples

5.1.2 Diamond graph

We now consider the diamond graph in Figure 1(b) corresponding to the following precision matrix

Θ =


2 −1 −1 0

−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

 .

Again we plot the values of |||ΩEcE(ΩEE)
−1|||∞ against the values of M on the right panel

of Figure 2. The figure shows that the Mutual Incoherence condition is satisfied when M ∈
[0.0224, 0.1588].

We conduct simulations for the diamond graph with the same setup as in Section 5.1.1. In

the extreme graphical lasso estimation, we choose M = 0.15 and γn = 0.1. The results for the

success rate are shown on the right panel of Figure 3. Again the graph structure can be consistently

identified for sample sizes starting from n = 5000 corresponding to an effect sample size kn = 250.

Compared to identifying the Star graph, identifying the Diamond graph is relatively easier.

5.2 Simulations in high dimensional cases (d = 20 and d = 200)

We demonstrate the performance of the extreme graphical lasso method in higher dimensional

situations.

If the dimension d is high, the extreme graphical lasso method can be simplified to a standard

graphical lasso method as follows. Recall the extreme graphical lasso procedure in (3.6) and (3.7).

In the optimization step, we shrink off-diagonal entries of the matrix Θ∗ towards 1
d2M

. When d is

large, the term 1
d2M

is close to zero. Therefore, we can replace the optimization step (3.6) by

Θ̂mlasso := argminΘ∗

− log |Θ∗|+ tr (S∗Θ∗) + γn
∑
i ̸=j

∣∣Θ∗
ij

∣∣ ,
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potentially with a diffrerent penalization parameter γn. This practical proposal performs the classi-

cal graphical lasso procedure only once. In the estimation, we use the R package glasso in Friedman

et al. (2008) for the optimization. We term it as the modified extreme graphical lasso method.

We first demonstrate that the modified extreme graphical lasso procedure results in similar

graphs as the extreme graphical lasso method for d = 20. For that purpose, we simulate observations

following a multivariate Pareto distribution with d = 20. The multivariate Pareto distribution is

in the domain of attraction of a HR model with a specific precision matrix goverend by a graph.

The true graph is presimulated by a preferential attach model as in Albert and Barabási (2002),

see Figure 4(a). Given the graph, the simulation of the observations is achieved by using the R

package graphicalExtremes in Engelke and Hitz (2020). We simulate 100 samples with sample size

5000.

Across the 100 samples, we apply the extreme graphical lasso method to estimate the graph

structure with kn = 250, M = 1 and γn = 2.4. In the extreme graphical lasso method, we shrink

the off-diagonal elements of Θ̂∗ towards c = 1/(d2M). For each pair of nodes, we count the number

of samples for which an edge is identified. Figure 4(b) shows the aggregation of 100 estimated

graphs, where the thickness of each edge reflects the proportion of times an edge is identified.

Next, we apply the modified extreme graphical lasso method based on the same estimated Σ.

Here we use γn = 1.2. The aggregation of 100 estimated graphs is shown in Figure 4(c).

The two graphs in the panels (b) and (c) of Figure 4 are virtually the same, with the modified

procedure identifying slightly more wrong edges. Both graphs are comparable with the true graph

in panel (a), indicating the applicability of both procedures.
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True

(a) True Graph

Estimated (shrink to c)

(b) Estimated Graph: extreme graphical lasso

Estimated (shrink to zero)

(c) Estimated Graph: modified procedure

Figure 4: The true and estimated graphs for d = 20 (100 samples)

Now we demonstrate the efficiency of the modified extreme graphical lasso in a very high

dimensional case d = 200. We perform a simulation for d = 200 with n = 100000. The simulation

setup is similar to the d = 20 case, while in the estimation we use the modified extreme graphical

lasso procedure with kn = 5000 and γn = 1.9. Here the penalization parameter is chosen at the

highest level for which the estimated graph is connected. The true graph and the aggretaged graph

from 10 simulations are shown in Figure 5.
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We particularly focus on the efficiency of the algorithm.1 The average time for running each

of the 10 iteration is 3.23 min. Per iteration, the majority time is devoted to simulating the data

(0.378 min) and estimating the Σ matrix (2.848 min), while the time to perform the modified

extreme graphical lasso method is only 0.0037 min, about 0.22 second. Considering that this is for

d = 200, the modified extreme graphical lasso method has great potential for handling even higher

dimensional cases.

True

(a) True Graph

Estimated (shrink to zero)

(b) Estimated Graph

Figure 5: The true and estimated graphs for d = 200 (10 samples)

5.3 Real data example: river discharge

We apply the modified extreme graphical lasso method to the river discharge data in the upper

Danube basin. This dataset was first analyzed in Asadi et al. (2015) and subsequently studied

in Engelke and Hitz (2020). The data contain river discharge at d = 31 stations with a sample

size 428 after declustering. The physical locations of the stations and the altitude of the area

are shown in Figure 6. 2 We refer interested readers to Asadi et al. (2015) for more information

about the dataset and the declustering procedure. We use kn = 64 in the estimation, and vary the

penalization parameter γn to obtain different estimated graphs.

In Figure 7, the top left panel shows the physical connection of the stations following the

Danube basin. The other three panels in the figure show different estimated graphs using different

values of γn. With increasing γn the estimated graph contains fewer edges and eventually turns to

disconnected graphs. Nevertheless, such a graph will be useful for practitioners to understand the

1This simulation is run on a Dell XPS 9320 laptop, with 16 cores (i7-1260P) and 32GB memory. Operating

system: Ubuntu 22.04.2. R version: 4.3.1.
2We are grateful to Sebastian Engelke for providing the figure.
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most related extreme river discharge across the stations.

For instance, we observe that the extreme river discharge at Station 1 is more related to the

stream from Station 13, intead of the other stream from Station 2. The stream from Station 13 is

the downstrem of the river Salzach, originally starting in the Alps, while the stream from Station

2 is the Danube river flowing over a plain area. Similarly, the extreme river discharge at Station 2

is more related to the main stream from Station 3 (the Danube river) instead of the branch from

Station 14 (the Isar river).

To conclude, by applying the (modified) extreme graphical lasso method to the Danube river

discharge data, we obtain insights regarding the interrelations of extreme river discharges at a large

number of stations spanning in a large spatial area.
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Figure 6: The river map of the upper Danube basin. Courtesy of Asadi et al. (2015).
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Figure 7: The physical flow connection and estimated graphs for the Danube river discharge data.
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A Proof of propositions in Sections 3

We first prove Proposition 3.2 and then use the result to prove Proposition 3.1.

Proof of Proposition 3.2. Note that the (i, j)th element of 1
d

∑d
k=1 Σ̃

(k) is equal to(
1

d

d∑
k=1

Σ̃(k)

)
i,j

=
1

2

1

d

d∑
k=1

(Γik + Γjk − Γij)

= −1

2

(
Γij −

1

d

d∑
k=1

Γik −
1

d

d∑
k=1

Γjk

)
.

Hence

1

d

d∑
k=1

Σ̃(k) = −1

2

(
Γ− 1

d
Γ11T − 1

d
11TΓ

)
= −1

2

(
Γ− 1

d
Γ11T − 1

d
11TΓ +

1

d2
11TΓ11T

)
+

1

2d2
11TΓ11T

= −1

2

(
I − 1T1

d

)
Γ

(
I − 1T1

d

)
+

(
1TΓ1

d2

)
· 11T

= Σ+

(
1TΓ1

d2

)
· 11T .

Summing up the elements of the matrices on both sides, we have

1T

(
1

d

d∑
k=1

Σ̃(k)

)
1 = 1TΣ1+ 1T

((
1TΓ1

d2

)
· 11T

)
1

= 0 + 1TΓ1.

Plugging in the value for 1TΓ1 back into the previous equation, we obtain that

1

d

d∑
k=1

Σ̃(k) = Σ+
1

d2
1T

(
1

d

d∑
k=1

Σ̃(k)

)
1 · 11T = Σ+

1

d3

(
d∑

k=1

1T Σ̃(k)1

)
· 11T .

Proof of Proposition 3.1. Using the property Σ1 = 0 and Θ1 = 0 and the fact that Σ and Θ are

both symmetric, we get

(
Σ+M11T

)
·
(
Θ+

1

d2M
11T

)
= Σ ·Θ+M11T ·Θ+Σ · 1

d2M
11T +M11T · 1

d2M
11T

= Σ ·Θ+M1 · (Θ1)T +
1

d2M
· Σ1 · 1T + (M · 1

d2M
) · 11T · 11T

= Σ ·Θ+
1

d
· 11T
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From Proposition 3.2, we can write the first term as

Σ ·Θ =

(
1

d

d∑
k=1

Σ̃(k) −MΣ11
T

)
·Θ

=
1

d

d∑
k=1

Σ̃(k) ·Θ−MΣ11
T ·Θ

=
1

d

d∑
k=1

Σ̃(k) ·Θ

= Id×d −
1

d
· 11T .

Therefore (
Σ+M11T

)
·
(
Θ+

1

d2M
11T

)
= Id×d.

In order to prove Proposition 3.3, we make use of the following lemma.

Lemma A.1. For any k,

|Θ∗| = 1

M
|Θ(k)|.

Proof of Lemma A.1. We will first show that for k ̸= k′,

|Θ(k)| = |Θ(k′)|.

Note that

Θ(k) = AT
kΘAk,

where Ak ∈ Rd×(d−1), Ak[, k] = 0 and Ak[,−k] = I(d−1)×(d−1). In other words, Ak takes the

(d− 1)× (d− 1) identity matrix and insert an extra k-th row with zero entries. On the other hand,

we have

Θ = BkΘ
(k)BT

k ,

where Bk ∈ Rd×(d−1), Bk[, k] = −1 and Bk[,−k] = I(d−1)×(d−1). In other words, Bk takes the

(d− 1)× (d− 1) identity matrix and insert an extra k-th row with −1 entries. Therefore we have

Θ(k′) = AT
k′BkΘ

(k)BT
k Ak′

and

|Θ(k′)| = |AT
k′Bk| · |Θ(k)| · |BT

k Ak′ |.

Now we claim that |AT
k′Bk| = 1 for any k, k′. We have

AT
k′Bk =

d∑
h=1

Ak′ [, h]
TBk[h, ]
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=
∑
h̸=k′

Ak′ [, h]
TBk[h, ] +Ak′ [, k

′]TBk[k
′, ]

= Ak′ [,−k′]TBk[−k′, ] +Ak′ [, k
′]TBk[k

′, ]

= I(d−1)×(d−1)Bk[−k′, ] + 0TBk[k
′, ]

= Bk[−k′, ].

For example, assume that k = 1 and k′ = d, then

B1[−d, ] =



−1 −1 · · · −1 −1
1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0


and it is easy to see that |B1[−d, ]| = 1.

It can be shown by the calculation of determinant that |Bk[−k′, ]| = 1 for any k ̸= k′. Therefore

|AT
k′Bk| = 1, k ̸= k′,

and

|Θ(k)| = |Θ(k′)|, k ̸= k′.

Now to show that |Θ∗| = 1
M |Θ

(k)|, it suffices to prove it for one value of k. We will show it for

k = d.

Note that we have
1

M
|Θ(d)| =

∣∣∣∣∣
(

Θ(d) 0

0T 1
M

)∣∣∣∣∣ .
We establish the following transformation(

I 0

−1T 1

)(
I 1

d1

0T 1

)(
Θ(d) 0

0T 1
M

)(
I 0

1
d1

T 1

)(
I −1
0T 1

)

=

(
I 0

−1T 1

)(
Θ(d) + 1

d2M
11T 1

dM 1
1

dM 1T 1
M

)(
I −1
0T 1

)

=

(
Θ(d) + 1

d2M
11T −Θ(d)1+ 1

d2M
1

−1TΘ(d) + 1
d2M

1T 1TΘ(d)1+ 1
d2M

)
= Θ+

1

d2M
11T

= Θ∗.

Since ∣∣∣∣∣
(

I 0

−1T 1

)∣∣∣∣∣ =
∣∣∣∣∣
(

I 0
1
d1

T 1

)∣∣∣∣∣ = 1,
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we have

|Θ∗| =

∣∣∣∣∣
(

Θ(d) 0

0T 1
M

)∣∣∣∣∣ = 1

M
|Θ(d)|.

Proof of Proposition 3.3. The aggregated negative log-likelihood function can be written as

1

d

d∑
k=1

{
− log |Θ(k)|+ tr

(
SkΘ

(k)
)}

=
1

d

d∑
k=1

{
− log |Θ(k)|+ tr

(
S̃kΘ

)}
=

1

d

d∑
k=1

{
− log |Θ(k)|

}
+ tr

((
1

d

d∑
k=1

S̃k

)
Θ

)

= − log |Θ∗|+ log(M) + tr

((
1

d

d∑
k=1

S̃k −

(
1

d3

d∑
k=1

1T S̃k1

)
11T +M · 11T

)
Θ

)

= − log |Θ∗|+ log(M) + tr

(
S∗
(
Θ∗ − 1

d2M
11T

))
.

B Proof of Proposition 4.1

Proof of Proposition 4.1. We intend to apply Theorem 3 in Engelke et al. (2022). For that purpose,

we first verify all assumptions needed for that theorem, namely Assumptions 1 and 2 therein.

We handle Assumption 1 first. Based on Lemma S3 in Engelke et al. (2022), Condition 4.2

implies that for any ξ′′ > 0, there exists Kξ′′ > 0 depending on λ and λ, but independent of d, such

that Assumption 4 therein holds. Denote K = K ′ + 2Kξ′′ and ξ = ξ′ξ′′/(1 + ξ′ + ξ′′). Together

with Condition 4.1, we get that Assumption 1 in Engelke et al. (2022) holds. In particular, one can

choose ξ′′ sufficiently large such that ξ can be any constant satisfying ξ < ξ′.

Next, Assumption 2 in Engelke et al. (2022) holds automatically for all non-degenerate HR

distribution satisfying our Condition 4.2. Therefore, we can then apply Theorem 3 therein to

obtain that there exists positive constants C1, C2 and C3, independent of d, such that for any

kn ≥ nξ and λ ≤
√
kn/(log n)

4,

P

(
max
1≤k≤d

∥Σ̂(k) − Σ(k)∥∞ > C1

{(
kn
n

)ξ (
log

(
kn
n

))2

+
1 + λ√

kn

})
≤ C2d

3e−C3λ2
. (B.1)

Notice that the constant C1 here equals to 3
2C in Theorem 3 in Engelke et al. (2022) because we

are estimating the matrix Σ instead of the variogram Γ.

For any ε ≥ C2d
3 exp{− C3kn

(logn)8
}, one can choose λ =

√
1
C3

log(C2d3/ε) ≤
√
kn

(logn)4
in (B.1) to

obtain the element-wise bound for the estimation error Σ̂(k) − Σ(k) uniformly for all 1 ≤ k ≤ d.
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Since

S − Σ =
1

d

d∑
k=1

(Σ̂(k) − Σ(k))− 1

d

d∑
k=1

(
1

d2
1T (Σ̂(k) − Σ(k))1

)
11T ,

which implies that ∥S−Σ∥∞ ≤ 2max1≤k≤d ∥Σ̂(k)−Σ(k)∥∞, we immediately get the inequality (4.1)

with replacing C1 by 2C1. W.l.o.g., we continue using C1.

For the asymptotic statement, note that if (log n)4
√

log d
kn
→ 0 as n→∞, then the lower bound

for ε, εn → 0 as n→∞. The asymptotic statement follows immediately.

C Proof of Theorem 4.2

Proof of Theorem 4.2. We shall work with the event

Aε = {∥S − Σ∥∞ < δn},

which satisfies P(Aε) > 1− ε following Proposition 4.1. Denote c := 1
d2M

. Then

Θ∗ = Θ+ c11T .

Here we omit M in the notation for simplicity.

Recall that Θ̂∗ is the solution to the following graphical lasso problem

Θ̂∗ := argminΘ∗

− log |Θ∗|+ tr(S∗Θ∗) + γn
∑
i ̸=j

|Θ∗
ij − c|


and Θ̂lasso := Θ̂∗ − c11T . The estimated edge set is Ê := {(i, j) : Θ̂lasso,ij ̸= 0}.

We aim to prove that on Aε, Ê ⊂ E, and

∥Θ̂lasso −Θ∥∞ ≤ rn,

which is equivalent to proving

∥Θ̂∗ −Θ∗∥∞ ≤ rn.

We first show that the solution Θ̂∗ exsits and is unique. The proof follows the same lines as that

for Lemma 3 in Ravikumar et al. (2011). Note that the estimator S∗ is positive definite with all

diagonal elements being positive. The rest of the proof follows exactly the same arguments therein.

Next, the solution Θ̂∗ must satisfy the following KKT condition.

−
(
Θ̂∗
)−1

+ S∗ + γnẐ = 0, (C.1)

where

Ẑij =


0 if i = j,

sign(Θ̂∗
ij − c) if i ̸= j and Θ̂∗

ij ̸= c,

∈ [−1, 1] if i ̸= j and Θ̂∗
ij = c.
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We shall construct a “witness” precision matrix Θ̃∗ as follows. Let Θ̃∗ be the solution to the

following optimization problem,

Θ̃∗ := argmin{Θ∗:Θ∗
ij=c,(i,j)∈Ec} − log |Θ∗|+ tr(S∗Θ∗) + γn

∑
i ̸=j

|Θ∗
ij − c|. (C.2)

This is the same optimization but constrained to a smaller domain. Let Ẽ denote the graph

recovered from Θ̃∗. Clearly, Θ̃∗ satisfies: Θ̃∗
ij = c for (i, j) ∈ Ec, i.e. Ẽ ⊂ E.

We shall show that under the conditions in Theorem 4.2,

• Θ̃∗ satisfies the above KKT condition;

• ∥Θ̃∗ −Θ∗∥∞ ≤ rn.

Then by uniqueness, Θ̃∗ = Θ̂∗ and satisfies the goal that we are aiming to prove.

With a similar argument regarding the existence and uniqueness of the original optimization

problem, the solution to the problem (C.2) also exists and is unique. In addition, it satisfies a

similar KKT condition as follows,

−
(
Θ̃∗
)−1

ij
+ S∗

ij + γnZ̃ij = 0, (i, j) ∈ E,

where

Z̃ij =

sign(Θ̃∗
ij − c) if Θ̃∗

ij ̸= c,

∈ [−1, 1] if Θ̃∗
ij = c.

Note that this coincides with the KKT condition (C.1), but only on entries indexed by E. As a

matter of fact, Z̃ is only defined on E. In order to argue Θ̃∗ as a candidate for Θ̂∗ and satisfies the

full KKT condition, we will now extend the definition of Z̃ to Ec as well.

Define

Z̃ij :=
1

γn

((
Θ̃∗
)−1

ij
− S∗

ij

)
, (i, j) /∈ E.

Then the pair (Θ̃∗, Z̃) satisfies the original KKT equation (C.1). What remains to be proved is

that Z̃ also satisfies

|Z̃ij | ≤ 1, (i, j) /∈ E.

To summarize, in order to complete the proof of Theorem 4.2, we will show that on the set Aε,

Goal 1: |Z̃ij | ≤ 1, (i, j) /∈ E.

Goal 2: ∥Θ̃∗ −Θ∗∥∞ ≤ rn.

In the rest of the proof we denote

∆ := Θ̃∗ −Θ∗.

Note that for (i, j) /∈ E, Θ̃ij = c by definition and Θij = c. Therefore, ∆Ec = 0 and Goal 2 above

can be translated to

∥∆E∥∞ ≤ rn.
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To handle the KKT condition for Θ̃∗, we start with handling
(
Θ̃∗
)−1

as follows:

(
Θ̃∗
)−1

= (Θ∗ +∆)−1

= (Θ∗(I +Σ∗∆))−1

= (I +Σ∗∆)−1Σ∗ =: JΣ∗.

Now in the case where |||Σ∗∆|||∞ < 1, we can expand J as

J =
∞∑
k=0

(−1)k(Σ∗∆)k = I − Σ∗∆+ (Σ∗∆)2J.

Inspired from this relation, we can use Σ∗ − Σ∗∆Σ∗ to approximate
(
Θ̃∗
)−1

and define

R :=
(
Θ̃∗
)−1
− (Σ∗ − Σ∗∆Σ∗),

as the approximation error. Note that R is defined regardless of whether |||Σ∗∆|||∞ < 1.

Recall that Σ∗ = Σ+M11T and S∗ = S +M11T . Define

R′ := S∗ − Σ∗ = S − Σ.

On the set Aε, we have that ∥R′∥∞ ≤ δn.

Rewrite the KKT condition as

Σ∗∆Σ∗ −R+R′ + γnZ̃ = 0.

We vectorize it using the notation ·̄ as the vectorization of a matrix. Then the vectorized KKT

condition is

Σ∗∆Σ∗ −R+R′ + γnZ̃ = 0.

Note that

Σ∗∆Σ∗ = (Σ∗ ⊗ Σ∗)∆ =: Ω∆,

where Ω := Σ∗ ⊗ Σ∗ denotes the Kronecker product of Σ∗ with itself. Then we have

Ω∆−R+R′ + γnZ̃ = 0.

By examining the rows of Ω indexed by E and Ec separately and noting that ∆Ec = 0, we get

ΩEE∆E −RE +R′
E + γnZ̃E = 0, (C.3)

ΩEcE∆E −REc +R′
Ec + γnZ̃Ec = 0. (C.4)
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Proof of Goal 2

To prove Goal 2, we shall show that for any pre-specified ∥Z̃E∥∞ ≤ 1, there exists a solution to ∆

which satisfies:

• − (Θ∗ +∆)−1
E + S∗

E + γnZ̃E = 0;

• ∆Ec = 0;

• ∥∆E∥∞ ≤ rn.

With the statement above proven, given the Z̃E produced from the KKT condition for Θ̃∗, a

solution ∆ exists and coincides with Z̃E . Then this is the unique solution. Hence ∥Θ̃∗−Θ∗∥∞ ≤ rn

which concludes Goal 2.

Now we construct such a solution ∆. Recall that ∆Ec = 0, we only need to construct a suitable

∆E by utilizing the Brouwer fixed point theorem.

The solution ∆E satisfies (C.3), which can be rewritten as

∆E = (ΩEE)
−1
(
RE −R′

E − γnZ̃E

)
.

We regard

R =
(
Θ̃∗
)−1
− (Σ∗ − Σ∗∆Σ∗)

as a function of ∆ or eventually a function of ∆E . To stress this point we define it as R = R(∆E).

Also recall that R′ = S∗ − Σ∗ does not depend on ∆E . Then we can write the above equation as

∆E = (ΩEE)
−1
(
RE(∆E)−R′

E − γnZ̃E

)
:= F (∆E).

Consider the closed ball B(rn); = {x ∈ R|E| : ∥x∥∞ ≤ rn}. If F is a continuous mapping from

B(rn) onto itself, then there exists a fixed point ∆E on B(rn) such that ∆E = F (∆E) following the

Brouwer fixed point theorem. This is exactly the desired solution. Since F is clearly continuous,

we only need to show that F projects B(rn) onto itself, that is, for any ∆E satisfying ∥∆E∥∞ ≤ rn,

we have ∥F (∆E)∥∞ ≤ rn.

Assume that ∥∆E∥∞ ≤ rn. We write

∥F (∆E)∥∞ ≤ |||(ΩEE)
−1|||∞

(
∥R∥∞ + ∥R′∥∞ + γn∥Z̃E∥∞

)
≤ |||(ΩEE)

−1|||∞
(
∥R∥∞ + ∥R′∥∞ + γn

)
,

due to the fact that ∥Z̃E∥∞ ≤ 1

We first handle ∥R∥∞. Recall that

R :=
(
Θ̃∗
)−1
− (Σ∗ − Σ∗∆Σ∗) =

∞∑
k=2

(−1)k(Σ∗∆)kΣ∗ = (Σ∗∆)2JΣ∗,

where

J = (I +Σ∗∆)−1 =
∞∑
k=0

(−1)k(Σ∗∆)k,
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provided that |||Σ∗∆|||∞ < 1. To ensure this condition, note that

|||Σ∗∆|||∞ = |||Σ∗(Θ̃−Θ)|||∞ ≤ D|||Σ∗|||∞ · rn,

where D is the maximum degree in the graph. Therefore |||Σ∗∆|||∞ < 1 holds by requiring that

D|||Σ∗|||∞ · rn ≤ C4 < 1. (C.5)

The upper bound C4 implies that |||JT |||∞ ≤ 1
1−C4

.

With the condition (C.5), we can further derive an upper bound for ∥R∥∞. Consider one specific

element in R. With denoting ei as a vector with all zero elements except a one element at the i−th
dimension, we have that

Rij = eTi (Σ
∗∆)2JΣ∗ej ≤ ∥eTi (Σ∗∆)2∥∞∥JΣ∗ej∥1 ≤ ∥(Σ∗∆)2∥∞|||Σ∗JT |||∞.

By considering all possible (i, j) we get that,

∥R∥∞ ≤ ∥(Σ∗∆)2∥∞|||Σ∗JT |||∞
≤ |||Σ∗∆|||∞∥Σ∗∆∥∞|||JT |||∞|||Σ∗|||∞

≤ D|||Σ∗|||∞ · rn · |||Σ∗|||∞rn ·
1

1− C4
· |||Σ∗|||∞

< C5 · r2n,

where C5 =
D

1−C4
|||Σ∗|||3∞.

Next, since R′ = S∗ − Σ∗ = S − Σ, we have that on Aε, ∥R′∥∞ ≤ δn. Combining the upper

bounds for ∥R∥∞ and ∥R′∥∞, we get that on Aε,

∥F (∆E)∥∞ ≤ |||(ΩEE)
−1|||∞(C5 · r2n + δn + γn) ≤ rn,

by requiring that

C5 · r2n + δn + γn ≤
1

|||(ΩEE)−1|||∞
· rn (C.6)

If the two required conditions (C.5) and (C.6) hold, we achieve Goal 2 by utilizing the Brouwer

fixed point theorem.

Proof of Goal 1

To prove Goal 1, we shall show that with the constructed soluition above, we have

∥Z̃Ec∥∞ ≤ 1.

We rewrite the equation (C.4) as

Z̃Ec = − 1

γn
ΩEEc∆E +

1

γn
REc − 1

γn
R′

Ec ,
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and the substitute ∆E above using (C.3) to get that

Z̃Ec = − 1

γn
ΩEEc(ΩEE)

−1
(
−RE +R′

E + γnZ̃E

)
+

1

γn
REc − 1

γn
R′

Ec .

The upper bound for ∥Z̃Ec∥∞ is then

∥Z̃Ec∥∞ ≤
1

γn
|||ΩEEc(ΩEE)

−1|||∞
(
∥R∥∞ + ∥R′∥∞ + γn∥Z̃E∥∞

)
+

1

γn
∥R∥∞ +

1

γn
∥R′∥∞.

Using the same upper bounds derived in the proof of Goal 2, we have

∥Z̃Ec∥∞ ≤ 1

γn
|||ΩEEc(ΩEE)

−1|||∞
(
δn + C5 · r2n + γn

)
+

1

γn
(δn + C5 · r2n)

= |||ΩEEc(ΩEE)
−1|||∞ +

1

γn

(
|||ΩEEc(ΩEE)

−1|||∞ + 1
) (

δn + C5 · r2n
)
.

Since Condition (4.3) ensures that |||ΩEEc(ΩEE)
−1|||∞ < 1 − α, To satisfy ∥Z̃Ec∥∞ ≤ 1, we only

need to further require

δn + C5 · r2n ≤
α

1− α
γn. (C.7)

To conclude, the theorem is proven provided that the three conditions (C.5)–(C.7) hold. The

last step is to verify these three relations under the conditions in Theorem 4.2.

Recall that rn is defined in (4.4)

rn :=
||| (ΩEE)

−1 |||∞
1− α

· γn.

Clearly, this definition together with (C.7) implies (C.6). Hence we only need to verify the conditions

(C.5) and (C.7).

We write the two conditions in terms of δn and γn:

D|||Σ∗|||∞
|||(ΩEE)

−1|||∞
1− α

· γn ≤ C4

δn +
D

1− C4
|||Σ∗|||3∞ ·

(
|||(ΩEE)

−1|||∞
1− α

)2

· γ2n ≤ α

1− α
· γn.

where C5 is substituted by D
1−C4

|||Σ∗|||3∞:

Note that the lower bound for γn in (4.3) ensures that δn ≤ ϵ α
1−αγn for some 0 < ϵ < 1, we thus

need to require that

D

1− C4
|||Σ∗|||3∞ ·

(
|||(ΩEE)

−1|||∞
1− α

)2

· γn ≤ (1− ϵ)
α

1− α
,

which guarantees the second condition. Together with the first condition, we have obtained an

upper bound for γn as

γn ≤ min

{
C4(1− α)

D|||Σ∗|||∞|||(ΩEE)−1|||∞
,
(1− C4)(1− ϵ)α(1− α)

D|||Σ∗|||3∞|||(ΩEE)−1|||2∞

}
.
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We choose C4 such that the two terms in the minimum are equal. That is

C4 =
(1− ϵ)α

(1− ϵ)α+ |||Σ∗|||2∞|||(ΩEE)−1|||∞
< 1,

which leads to

γn ≤
(1− ϵ)α(1− α)

D|||Σ∗|||∞|||(ΩEE)−1|||∞ [(1− ϵ)α+ |||Σ∗|||2∞|||(ΩEE)−1|||∞]
.

This is exactly the required upper bound for γn in (4.2).

D Blockwise coordinate descent algorithm

For the sake of clarify, we abuse the notations in this section by using Θ for Θ∗ and S for S∗. We

describe the algorithm to solvethe minimization problem:

min
Θ≥0
− log |Θ|+ tr(SΘ) + γ

∑
i ̸=j

|Θij − c|.

Here Θ is the precision matrix to be estimated and S is an estimated covariance matrix guaranteed

to be positive definite.

Similar to classical graphical lasso, the objective function is convex. Searching for the optimum

is equivalent to solving the KKT condition

−Θ−1 + S + γZ = 0,

where Z is a matrix of component-wise signs of Θ− c11T:

zii = 0 if i = j

zij = sign(θij − c) if i ̸= j, θij ̸= c

zij ∈ [−1, 1] if i ̸= j, θij = c.

In the following we will demonstrate a blockwise coordinate descent approach to solve this

problem. A primative version is used for the conventional graphical lasso problem for c = 0 in

Friedman et al. (2008) and implemented in the R package glasso. However, to apply that algorithm

to our generalized problem, an additional matrix inversion of a (d− 1)× (d− 1) matrix is required

at each iteration step. By contrast, the algorithm in this appendix can be seen as the dual problem

of that in Friedman et al. (2008). Similar to Mazumder and Hastie (2012), no matrix inversion is

needed in our algorithm.

D.1 The idea

Let us consider solving for Σ = Θ−1. Then the KKT condition becomes

−Σ+ S + γZ = 0. (D.1)
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Since zii = 0 for each i, we first get that

σ̂ii = sii, ∀i = 1, . . . , d.

Let us write

Σ =

(
Σ11 σ1d

σT
1d σdd

)
, Θ =

(
Θ11 θ1d

θT
1d θdd

)
, Z =

(
Z11 z1d

zT1d zdd

)
.

In the following, we aim to update Σ by keeping Θ11 fixed. We iterate through the columns (rows)

of Θ until a convergence is reached.

From Σ ·Θ = I, we have the following two presentations of Σ:(
Σ11 σ1d

σT
1d σdd

)
=

(
(Θ11 − θ1dθ

T
1d)

−1 −θ−1
dd Σ11θ1d

· θ−1
dd − θ−2

dd θ
T
1dΣ11θ1d

)
(D.2)

=

 Θ−1
11 +

Θ−1
11 θ1dθ

T
1dΘ

−1
11

θdd−θT
1dΘ

−1
11 θ1d

− Θ−1
11 θ1d

θdd−θT
1dΘ

−1
11 θ1d

· 1
θdd−θT

1dΘ
−1
11 θ1d

,

 (D.3)

where · denotes the mirroring of elements in the upper triangle. The proofs can be found in

Section D.2. The same formula can be applied for a representation of Θ using Σ.

Consider the last column of (D.1), we get

−σ1d + s1d + γz1d = 0.

Plugging in (D.3), we have

σddΘ
−1
11 θ1d + s1d + γz1d = 0,

where σdd is known. Now set β = (θ1d − c1)σdd. Then the above equation becomes

Θ−1
11 (β + cσdd · 1) + s1d + γz1d = Θ−1

11 β + cσdd ·Θ−1
11 1+ s1d + γz1d = 0, (D.4)

where we aim to solve for β. Note that

z1d = sign(θ1d − c1) = sign((θ1d − c1)σdd) = sign(β).

Then solving for (D.4) is equivalent to the standard quadratic lasso problem:

min
β

f(β; Θ11, σdd, s1d, γ) =
1

2
βTΘ−1

11 β + βT (cσdd ·Θ−1
11 1+ s1d) + γ∥β∥1, (D.5)

which can be solve efficiently using elementwise coordinate descent if we know Θ−1
11 .

At each iteration, we aim to update Θ and then Σ. Given Θ and Σ from the previous iteration,

we proceed as follows:

• Calculate Θ−1
11 from

Θ−1
11 = Σ11 − σ−1

dd σ1dσ
T
1d.

This is the opposite representation of (D.3).
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• Update θ1d: Solve for β̂ from (D.5) and update

θ1d ← σ−1
dd β̂ + c1.

• Update θdd:

θdd = σ−1
dd + θT

1dΘ
−1
11 θ1d.

This comes from the representation in (D.3).

• Update the entire Σ matrix from representation (D.3) using the fixed Θ−1
11 and the updated

θ1d and θdd.

The algorithm is summarized in Algorithm 1.

Algorithm 1 Graphical lasso algorithm for extremes

Input c, S and γ.

1. Initialize Σ = S and Θ = S−1.

2. In each iteration, update Σ while keeping a (d− 1)× (d− 1) submatrix of Θ fixed. Iterate

through the columns repeatedly on the following steps until convergence.

(a) Rearrange the rows/columns such that the target column is last (implicitly).

(b) Calculate

Θ−1
11 = Σ11 − σ−1

dd σ1dσ
T
1d.

(c) Solve for (D.5)

β̂ = argmin
β

f(β; Θ11, σdd, s1d, γ)

(d) Update θ1d:

θ1d ← σ−1
dd β̂ + c1.

(e) Update θdd:

θdd = σ−1
dd + θT

1dΘ
−1
11 θ1d.

(f) Update the entire Σ matrix from representation (D.3) using the fixed Θ−1
11 and the

updated θ1d and θdd.

D.2 Proofs

We will now prove the equations (D.2) and (D.3).

From Σ ·Θ = I, we get the following equations.

Σ11Θ11 + σ1dθ
T
1d = I (D.6)

Σ11θ1d + θdd · σ1d = 0 (D.7)

σT
1dΘ11 + σdd · θT

1d = 0T (D.8)
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σT
1dθ1d + σdd · θdd = 1. (D.9)

From (D.7), we have

σ1d = −θ−1
dd Σ11θ1d.

From (D.9), we have

σdd = θ−1
dd (1− σT

1dθ1d) = θ−1
dd + θ−2

dd θ
T
1dΣ11θ1d.

From (D.6), we have

Σ−1
11 = Θ11 +Σ−1

11 σ1dθ
T
1d = Θ11 − Σ−1

11 θ
−1
dd Σ11θ1dθ

T
1dd = Θ11 − θ−1

dd θ1dθ
T
1d

This proves (D.2).

Now consider (D.3). From (D.6) and (D.8), we have

Σ11 = Θ−1
11 − σ1dθ

T
1dΘ

−1
11 (D.10)

σ1d = −σddΘ−1
11 θ1d (D.11)

Plug (D.11) into (D.9), we get

σddθdd − σddθ
T
1dΘ

−1
11 θ1d = 1

and hence

σdd =
1

θdd − θT
1dΘ

−1
11 θ1d

.

Plugging in (D.11), we have

σ1d = − Θ−1
11 θ1d

θdd − θT
1dΘ

−1
11 θ1d

.

Plugging in (D.10), we have

Σ11 = Θ−1
11 +

Θ−1
11 θ1dθ

T
1dΘ

−1
11

θdd − θT
1dΘ

−1
11 θ1d

.

This proves (D.3).
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