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Abstract
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1 Introduction

The change in spending resulting from health insurance coverage is typically referred to as moral

hazard.1 This empirical definition—a change in spending—is often paired with a welfare interpre-

tation: moral hazard is considered “excess” spending that individuals value less than its full cost

due to a distortion in incentives (Pauly, 1968). The dominant modeling frameworks used in the

analysis of the value of health insurance imply that moral hazard lowers welfare (Einav et al., 2013;

Finkelstein et al., 2019; Marone and Sabety, 2022).

We revisit this interpretation of moral hazard and build on insights from De Meza (1983), Nyman

(1999b), and Chetty (2008) that for liquidity constrained individuals, moral hazard can actually be

efficient and welfare increasing. We emphasize how insurance provides both a risk-protection benefit

and access to financing: while insured expenses are often concentrated in a particular consumption

period, the cost of insurance via premiums is typically spread across multiple consumption periods.

An important feature of health insurance is that it can smooth expenditures across time, not merely

across states (e.g. Ericson and Sydnor, 2018; Gross et al., 2022), and that this can quantitatively

and qualitatively change patterns of insurance demand and spending.

Accounting for liquidity constraints is important, particularly for evaluating expansions of insur-

ance to low-income individuals. Many individuals face liquidity constraints (either the inability to

borrow or high interest rates) and have high marginal-propensities to consume out of income shocks

(Parker et al., 2013). As a result, macroeconomic models often treat a large share of individuals as

living essentially hand-to-mouth, consuming all liquid resources in a given period (Kaplan et al.,

2014; Lee and Maxted, 2023; Aguiar et al., 2024). Moreover, because of holdings in illiquid assets,

hand-to-mouth behavior can describe even wealthy, optimizing individuals (Kaplan et al., 2014).

Further, even if people ultimately have access to liquidity, if they have behavioral biases that lead

them to act “as-if” they were hand-to-mouth (Olafsson and Pagel, 2018; Lee and Maxted, 2023),

those perceived liquidity constraints will distort spending when uninsured.

In this paper we analyze the welfare implications of ex-post moral hazard in light of liquidity

constraints. Our setting is health insurance, which has been the focus of a substantial body of

literature on moral hazard (Einav and Finkelstein, 2018), but the model is broadly applicable

to various types of insurance. Standard models of ex-post moral hazard in (health) insurance

are one-period models in which premiums, cost-sharing, and consumption all occur in the same

consumption period. Our innovation, which closely follows the approach in Ericson and Sydnor

(2018) is to introduce multiple underlying consumption periods within the insurance period. The

cost of insurance via premiums is spread equally across all N consumption periods within the

insurance policy term. Uninsured medical expenses, however, are spread across K ≤ N periods.

In this way we introduce a portable extension of the standard model, in which K = N embeds the

1 For instance, Einav and Finkelstein (2018) write “we follow decades of health insurance literature and use
the term “moral hazard” to refer to the responsiveness of healthcare spending to insurance coverage”. For a
discussion of the history of the term and alternative definitions, see Rowell and Connelly (2012).
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standard model that implicitly assumes perfect liquidity within the insurance-contract duration,

while K = 1 is the full hand-to-mouth case, in which all uninsured expenses are borne in a single

consumption period. This framework was previously used by Ericson and Sydnor (2018) to examine

the value of insurance under liquidity constraints in the absence of moral hazard. The current paper

explicitly focuses on moral hazard and the endogenous decision of medical spending.

We also innovate on existing discussions of moral hazard by explicitly defining the efficient level

of medical spending for a given level of insurance coverage. We define efficient spending as the

medical spending the individual would choose if they maximized ex-ante utility fully internalizing

how their medical spending decision, when sick, would affect insurance premiums given the level

of insurance. In other words, this represents the spending level they would select if they could

contractually commit to a specific amount, paying for it through higher premiums. This efficient

benchmark can then be compared to two alternative scenarios: the level of medical spending

chosen when uninsured, and the level chosen when insured but taking the premiums for insurance

as given (i.e., sunk). The chosen level of spending under insurance will be higher than the efficient

level, because premiums are fixed for a contract period and insureds do not internalize the impact

additional spending has on premiums. The innovation of this paper is to show how the uninsured

level of spending can be below the efficient level for those with liquidity constraints.

Our framework allows us to present simple definitions decomposing moral hazard into both

inefficient and efficient components. We develop intuitive graphical depictions of the model that

allow us to illustrate the welfare impact of moral hazard and how it depends on liquidity constraints.

This framework makes it clear how the welfare impacts of efficient and inefficient moral hazard can

be quantified using the same data on medical spending chosen under different levels of insurance

that have previously been used to evaluate the impact of moral hazard in empirical studies (e.g.,

Finkelstein et al., 2019).

Our theory first considers the standard intuition that moral hazard is inefficient in the absence

of liquidity constraints. When the loss is certain to happen, that standard intuition holds: adding

insurance increases expenditure, and this expenditure is not valued by individuals at its full cost.

The level of spending that individual would contract on is invariant to the insurance level, meaning

the privately chosen uninsured spending level was optimal. As a result, increasing insurance lowers

welfare for the unconstrained.

For liquidity-constrained individuals, the results are quite different. The level of spending that

an individual and insurer would jointly contract on now depends on the level of insurance, since

insured spending (ultimately borne via premiums) is smoothed over consumption periods but cost-

sharing hits in only a subset of periods. The efficient level of spending increases with the level of

insurance. As a result, when spending increases with an expansion of insurance, this can increase

rather than reduce welfare. Since insurance distorts prices, the individual will choose more than

the efficient level of spending when insured, but the benefits of increases in efficient moral hazard

can outweigh the inefficient moral hazard.
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We show in numerical simulations that the net welfare impacts of moral hazard can be sig-

nificantly positive for individuals living hand-to-mouth. This updated welfare interpretation of

moral hazard is relevant for setting the optimal level of cost-sharing. Since moral hazard can be

net positive for those with liquidity constraints, the optimal level of insurance can also be much

higher for them. In standard theory, when demand is more responsive to price– when there is more

moral hazard– optimal cost-sharing should be higher (Zeckhauser, 1970; Pauly and Blavin, 2008).

However, if environments with more moral hazard are settings where people have more liquidity

constraints, the standard intuition could be backward.

Our framework also makes it possible to revisit an important insight from De Meza (1983) and

Nyman (1999a): even in the absence of liquidity constraints, moral hazard is not entirely inefficient.

These papers highlight that there is an income effect from insurance when the probability of illness

is less than one. The main benefit of insurance comes from the ex-ante value of reducing spending

risk into a sure premium. However, ex-post, when an individual is sick, they are also receiving a

transfer from those who did not get sick and the optimal level of spending will be higher than when

uninsured due to the income value of that transfer.2 Our definitions of efficient and inefficient moral

hazard and our graphical framework make it possible to intuitively visualize this “de Meza-Nyman

income effect” and to quantify the welfare value of moral hazard given this income effect.3

We compare how liquidity constraints and the de Meza-Nyman income effect impact the value

of moral hazard both theoretically and in simulations. Those with liquidity constraints get both

a liquidity benefit and the de Meza-Nyman income effect from insurance, so the value of moral

hazard is always more positive for those with liquidity constraints. In our simulations, for those

without liquidity constraints the de Meza-Nyman income effect is generally not strong enough to

make the net value of moral hazard positive.4 For those living hand-to-mouth, however, the net

value of moral hazard is significantly positive in many scenarios. Moreover, even for individuals

with perfect liquidity, the de Meza-Nyman income effect becomes more important for very high

levels of risk aversion and the net value of moral hazard becomes positive in some of our simulations

with low-probability events for the highly risk averse. While it may be tempting to conclude, then,

that one can think of liquidity constraints simply as a case of very high effective risk aversion, we

2 This “de Meza-Nyman income effect” is different than the effect of an increase in permanent income on uninsured
spending decisions. The “de Meza-Nyman income effect” depends on the probability of suffering illness and is
stronger when that probability is low since that increases the share of spending that is transferred from non-sick
states/individuals.

3 While related, our definition of “efficient moral hazard” differs from the one presented in Nyman (1999a). Nyman
defines it based on the difference between medical spending that would occur under a lump-sum transfer equal
to the amount of insured spending under insurance and spending chosen when uninsured. We show in Appendix
Appendix B that this lump sum amount is greater than what would induce the efficient spending level under
our definition.

4 This finding is naturally sensitive to the parameters of our simulations. Our simulations focus on modeling the
overall value of health insurance over a range of parameters broadly similar to those in studies such as Finkelstein
et al. (2019). It is quite plausible that for some types of coverage, especially protection against rare diseases for
which there is little value of (or possibility of) treatment at lower levels of spending, that the net value of moral
hazard can be positive, given the de Meza-Nyman income effect.
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note that this is not the case because the de Meza-Nyman income effect relies on the likelihood of

the sick state being low, while the liquidity benefit of insurance does not.

We use our framework to revisit Finkelstein et al. (2019)’s estimate of the value of Medicaid.

Finkelstein et al. (2019) develop a framework for welfare analysis. Using data from the Oregon

Health Insurance Experiment, they find that the willingness to pay for insurance by Medicaid

recipients is well below the cost to the government. A key part of that analysis is a quantification

of the value of the increased medical spending resulting from gaining insurance– the value of moral

hazard. We revisit this analysis using our framework and analyze how the conclusions would

be change if instead of assuming perfect liquidity during the insured policy year, we assumed

that those receiving Medicaid were in hand-to-mouth situations and could not easily spread out

uninsured spending across consumption periods. We find that the overall value of Medicaid would

be more than twice as high if Medicaid members are living fully hand-to-mouth and experience

their medical spending shocks in a single month. While the biggest part of the value of Medicaid

comes from its risk and financing value without moral hazard, we estimate that the valuation of

the moral hazard component of spending is substantially higher for the hand-to-mouth. We explore

alternative assumptions about the concentration of medical spending across time. In our baseline

model, the medical spending shock occurs in a single month, and only about the highest 25% of

shocks are given payment plans to smooth across time. We also show, though, that if all uninsured

medical spending instead is paid across three months, there are still very large increases in the

value of Medicaid to those living hand-to-mouth. Ultimately, these estimates provide what we

think are useful benchmarks to counterbalance the original estimates that implicitly assume no

liquidity constraints within the insurance year. Given that there is ample evidence that low-income

individuals often live in hand-to-mouth situations, this alternative estimate of the potential value

of the program is important to consider. Moreover, this exercise shows how it is practically feasible

to update the welfare estimates of health insurance under moral hazard to account for liquidity

constraints.

Our paper is closely related to Chetty (2008), which examines how unemployment durations

respond to unemployment insurance benefits. Chetty’s key insight is that while a portion of these

responses are inefficient moral hazard driven by distorted incentives, part of the response can

be efficient if it results from overcoming liquidity constraints. Our paper echoes this point and

provides a new way of visualizing and developing intuition for it. The primary difference between

our paper and Chetty (2008) lies in how we model and quantify the liquidity value of insurance.

Chetty derives a formula for the optimal benefit levels that depends on two different elasticities:

a response to lump-sum cash and a response to incentives on the margin. A strength of this

approach is that it relies on information from an empirical response, which itself can be consistent

with various combinations of underlying liquidity constraints and preferences of optimizing agents.

While this approach could be conceptually extended to analyze moral hazard in health insurance,

Chetty and Finkelstein (2013) highlight that it requires developing quasi-experimental strategies

for identifying lump-sum payments in health insurance that identify the liquidity effect. Although
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there is now some direct evidence that medical spending is liquidity sensitive (Gross et al., 2022),

the liquidity effect of insurance has not been incorporated into analysis of moral hazard in health

insurance. Our approach is an extension of the models currently used in the health insurance

literature (e.g., Finkelstein et al., 2019). The benefit of this approach is that, as our empirical

example shows, the same types of data and assumptions used in recent empirical analysis of moral

hazard can be extended to incorporate liquidity constraints. A secondary point of differentiation

between our work and Chetty (2008) is that Chetty’s framework starts from the presumption that

the individual is unemployed and abstracts from the risk-protection benefits of insurance, while we

do not. Incorporating the uncertainty in whether the sick state will happen allows us to identify

and distinguish the de Meza-Nyman income effect from the liquidity effect of insurance and to

examine the magnitude of the net moral hazard value relative to the risk-protection and financing

value of insurance. We see our work as providing a new way of visualizing and quantifying the

key insight about the liquidity-effect component of moral hazard in a way that is closely linked to

existing frameworks in health insurance.

2 Model

2.1 Layout

In our model, individuals live N periods5 and have lifetime utility consisting of consumption and

health components, U =
∑N

t=1 δ
t−1 (u(ct) + h(mt, θt)). We assume the exponential discount factor

δ = 1 throughout to highlight the role of liquidity constraints apart from time preference; with

horizons less than a year, δ should be near 1 (Ericson and Laibson, 2019).

Consumption utility in each period t is given by u(ct), with u(·) continuous, u′ > 0 and u′′ < 0

and following the standard Inada conditions. Individuals receive total income y, paid in equal

installments each period.

Utility from health is separable from consumption and is given each period by h(mt, θt), where

θt indexes the individual’s health state and mt indexes the level of medical spending in period t.

We make a set of simplifying assumptions for our our baseline model. We assume there are two

health states: θ = sick and θ = healthy. With probability 1 − π the individual is healthy for all

N periods. With probability π the individual is sick in one of the N periods. We assume that

the realization of the health state occurs at the beginning of the first period, so before choosing

consumption the individual knows whether and when they will be sick.6

5 This model and exposition build on Ericson and Sydnor (2018), adding the possibility of choosing medical
spending as in Finkelstein et al. (2019). In contrast to the Finkelstein et al. (2019) model, we assume N
consumption periods in a policy period rather than just one.

6 This simplifying assumption eliminates the need to consider more complicated dynamics related to the potential
timing of when a sick state might arise during the N periods that would affect consumption decisions for
individuals that can borrow and save across consumption periods. For individuals that are fully constrained
to live hand-to-mouth and can neither borrow nor save, this assumption can be relaxed without complicating
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In the healthy state, health is unaffected by medical spending and h(m,healthy) is normalized

to be zero. In the sick state, medical spending initially generates a positive but decreasing marginal

benefit. We suppress the θ argument when sick and write that h′(m) > 0 and h′′(m) < 0 for all

values of m smaller than m̄. The function gives benefits of medical spending up to a point. Once

m̄ is reached, more medical spending has a negative effect on health such that h′(m) < 0 and

h′′(m) < 0. This is in line with the models of Einav et al. (2013) and Marone and Sabety (2022)

and captures the idea that after reaching a certain health state additional medical spending is either

useless (but still leads to detriments due the associated hassle costs) or actively harmful.

As a result of these assumptions, an individual’s utility is simply U =
∑N

t=1 u(ct) if healthy and

U = h(m) +
∑N

t=1 u(ct) if sick. The individual chooses their consumption vector c and the level of

medical spending m after observing the realization of the health state subject to budget constraints.

This choice process is described in more detail below as we describe two types of individuals varying

in their liquidity constraints.

Before period 1, the individual enters into an insurance plan Z = (p, α) characterized by a total

insurance premium p and proportional insurance level α. That is fraction α of medical spending is

covered by insurance, leaving the individual with out-of-pocket costs (1−α)m. Note that the level

of insurance α will affect the level of medical spending optimally chosen by the individual– this

allows for the possibility of moral hazard. We assume in our baseline analysis that premiums are

actuarially fair such that p = παm and reflect the endogenously chosen level of medical spending

in the sick state.7 As in most models incorporating the possibility of moral hazard, the individual

will choose medical spending taking the level of premium as fixed and not internalizing the impact

of medical spending on premiums.

2.2 Types of individuals

We consider two types of individuals i ∈ {PL,HTM}. The first, denoted PL, has “perfect liquid-

ity”, which means they can allocate their total income toward consumption, premium payments

and medical spending across periods, and simply must satisfy a lifetime budget constraint; they

can costlessly to borrow from future income, and their savings earn no rate of return.

Given these assumptions the optimal decision for the individual with “perfect liquidity” will

be to perfectly smooth consumption across all periods. As such, the ex-ante expected utility for

individuals with perfect liquidity is given by:

EUPL = π

[
Nu

(
y − (1− α)m(α)− p

N

)
+ h(m(α))

]
+ (1− π)Nu

(
y − p

N

)
. (1)

the model. Ericson and Sydnor (2018) show that this assumption– termed perfect foresight– is necessary for an
individual with no liquidity constraints to be represented with a standard static expected utility model.

7 This assumption that premiums reflect the chosen level of medical spending could imply either that they are set
with correct expectations of how individuals will respond to their insured incentives or could be thought of as a
longer-run equilibrium result where premiums and spending decisions adjust to be mutually consistent.
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This utility function is equivalent to static expected utility model used in prior work on health

insurance and moral hazard, including Finkelstein et al. (2019).

The second type of individual, denoted HTM , has liquidity constraints and lives hand-to-mouth

– they cannot move resources between periods. They consume all available resources each period.8

They have to pay any medical spending spread over K < N consumption periods. We assume that

premium payments are made smoothly over time, such that they pay a 1/N th of the premium in

each period.9 For these individuals the ex-ante expected utility is given by:

EUHTM = π

[
(N −K)u

(
y − p

N

)
+Ku

(
y − p

N
− (1− α)m(α)

K

)
+ h(m(α))

]
+(1−π)Nu

(
y − p

N

)
.

(2)

The key difference from the perfect-liquidity case is that the cost of uninsured medical expenses

(1−α)m(α) is born in only K periods instead of being spread across all N periods. K = 1 describes

the extreme case in which the individual receives a medical treatment in a given consumption period

and has to pay for it immediately. K > 1 can appear if the medical treatment and associated bills

are spread over several periods, or the providers allow for a payment plan of the bills. Setting

K = N yields the perfect liquidity case above and has been the implicit assumption in applied

work so far.

2.3 Defining Moral Hazard

We distinguish between the chosen and efficient level of medical spending for a given amount of

insurance coverage. The level of medical spending chosen when sick to maximize ex-post utility for

an individual of type i with insurance coverage α is m∗
i (α). When an individual has no insurance,

their chosen medical spending is denoted m∗
i (0). The individual will select this amount of coverage

m∗
i (α) taking the premium cost of insurance as given.

The efficient (i.e., optimal) level of medical spending is denoted by mE
i (α). This is the level of

medical spending that individuals of type i, taking the level of insurance α as given, would commit

to ex-ante if this commitment was binding and the individuals would internalize the full effect of

this medical spending on their premiums. The efficient level of medical spending, for a given level

of insurance, is thus the level of m that maximizes expected utility subject to the constraint that

p(m,α) = παm, that is mE
i (α) = argmaxmEUi(m, p(m,α), α).

The crucial difference between chosen m∗
i (α) and efficient mE

i (α) is that m
∗
i (α) is chosen holding

fixed the level of premiums, while mE
i (α) is chosen accounting for its effect on the cost of insurance.

8 The stark hand-to-mouth case facilitates developing theoretical results. As shown in Ericson and Sydnor (2018),
the same insights translate to a more computationally difficult model in which individuals can borrow at high
interest rates.

9 This assumption of smooth premium payments matches the empirical situation that is typical for health insurance
contracts in the United States. See Ericson and Sydnor (2018) for a discussion of alternative premium-payment
timing.
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In the next section we explore the first order conditions that govern the efficient and chosen levels

of spending.

Note that the level of efficient spending will depend on the level of insurance. As we will show,

if spending were contractible, the amount individuals would contract on would depend on their

insurance level. Efficient spending is defined for any insurance level; this definition applies even if

the individual does not have the optimal level of insurance (e.g. was assigned to a plan or made a

mistake).

Our definition of efficient spending differs from the definition used by Nyman (1999b) and

summarized in Nyman et al. (2018). Nyman defines efficient spending as the level that would arise

from receiving a lump-sum transfer when sick of the amount the individual would have spent under

insurance (see also Chetty, 2008). In Appendix B we present a deeper discussion and derivation

of the differences between our measure and the lump-sum measure. Setting the lump sum amount

equal to the amount the individual would spend under insurance will not achieve the efficient level

of spending, as we define it. The problem is that the total amount being spent when insured is

inefficient and hence the lump-sum transfer is too large. Lump-sum contingent transfers could be

used in theory to achieve the efficient level of spending, but the amount of the lump sum transfer

would need to be chosen to yield mE
i (α) as the result of the individual’s maximization problem.

We believe our definition of efficient spending is the correct one, since it is derived from the full

internalization of the utility cost of spending given the level of insurance.

Having set up these definitions, we can now define:

1. Observed moral hazard: MHi(α) = m∗
i (α)−m∗

i (0)

2. Efficient moral hazard: MHE
i (α) = mE

i (α)−m∗
i (0)

3. Inefficient moral hazard: MHI
i (α) = m∗

i (α)−mE
i (α)

The first empirical object MHi(α) is the total observed change in medical spending when an

individual has insurance level α versus when they are uninsured. The observed moral hazard

can be disentangled into an efficient (MHE
i (α)) and inefficient (MHI

i (α)) component. Note that

MHi(α) = MHE
i (α)+MHI

i (α). The efficient component of moral hazard is the change in spending

that the individual would optimally choose, while the inefficient component of moral hazard is the

“excess” spending.

2.4 Defining the Value of Insurance

These concepts allow us to decompose the value of insurance into a component resulting from moral

hazard, and a separate component from its effect on risk and financial smoothing. The total value

of insurance for an individual of type i ∈ {PL,HTM} at coverage level α is the change in expected

utility relative to no insurance:

Vi(α) = EUi(α,m
∗
i (α))− EUi(0,m

∗
i (0)), (3)
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where each of the expected utility terms are evaluated at the actuarially fair premiums consistent

with the chosen level of medical spending (m∗
i (α) and m∗

i (0), respectively).

This total value can be split into the moral hazard value and a “risk and financing value” such

that Vi(α) = V MH
i (α) + V RF

i (α), where

V RF
i (α) =EUi(α,m

∗
i (0))− EUi(0,m

∗
i (0)) and (4)

V MH
i (α) =EUi(α,m

∗
i (α))− EUi(α,m

∗
i (0)). (5)

The risk and financing value V RF
i is the change in utility from buying actuarially fair insurance,

but holding fixed the medical spending at the uninsured level m∗
i (0). This entails using insurance

to reduce risk and finance spending but not to change spending.10

The moral hazard value V MH
i (α) is the change in utility from the individual choosing medical

spending ex-post with insurance (m∗
i (α)) versus having medical spending fixed at the uninsured

level m∗
i (0). This value can be further decomposed into the value of efficient moral hazard, V MHE

i ,

and the value of inefficient moral hazard, V MHI
i as follows:

V MHE
i (α) =EUi(α,m

E
i (α))− EUi(α,m

∗
i (0)) and (6)

V MHI
i (α) =EUi(α,m

∗
i (α))− EUi(α,m

E
i (α)). (7)

where such that V MH
i (α) = V MHE

i (α) + V MHI
i (α). While it is typically assumed that V MH

i (α) is

negative, our next section will show that it can be positive.

3 Model Results

In what follows, we first begin with an intuitive discussion of how the analysis of moral hazard

changes when we consider the liquidity and income-effects of insurance. We develop a set of

simple graphical depictions that make it possible to visualize both the moral-hazard and welfare

implications of insurance. We then present results of numerical simulations that help to highlight

the potential magnitude of the differences in insurance value and specifically the impact of moral

hazard. In the final subsection, we present formal theoretical propositions under more general

conditions with proofs provided in the appendix. Some readers with less interest in the technical

formalities may choose to skip this final subsection without losing intuitions for the core results.

3.1 Graphical Analysis and Intuition

We begin with an intuitive discussion of the key results. We highlight the following key points:

10 As Ericson and Sydnor (2018) discuss and we highlight in the next section, for those with perfect liquidity
insurance has only a risk-reducing benefit, but has an additional financing benefit for those with liquidity
constraints.
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1. The liquidity benefits of insurance lead part of observed moral hazard to be efficient for hand-

to-mouth agents. There can be positive moral hazard value from insurance for hand-to-mouth

agents even when the sick state is sure to occur.

2. When the sick state is not sure to occur, there is also an income effect of insurance (“de

Meza-Nyman income effect”). This leads part of observed moral hazard to be efficient for

both perfectly liquid and hand-to-mouth agents.

3.1.1 Illustrating the liquidity effect using the sure-loss case (π = 1)

When losses are sure to occur (π = 1), the perfect-liquidity case conforms to the standard economic

intuition introduced by Pauly (1968). For those with perfect liquidity, the efficient level of spending

is the level that would be chosen when uninsured. To see this, recall the expected utility for the

perfect liquidity case from Equation 1:

EUPL = π

[
Nu

(
y − (1− α)m(α)− p

N

)
+ h(m(α))

]
+ (1− π)Nu

(
y − p

N

)
. (8)

First, consider the efficient level of spending. Since premiums are defined by p = παm and π = 1

here, the above equation reduces simply to:

EUPL = Nu

(
y −m

N

)
+ h(m). (9)

This equation does not depend on the level of insurance α, since any increase in spending must

be paid for fully either via uninsured spending or insurance premiums. As such, the first order

condition implicitly determining the optimal level of spending when uninsured (m∗
PL(0)) and the

efficient level of spending (mE
PL(α)) is the same and given by:

FOCE
PL = FOC0

PL : u′
(
y −m

N

)
= h′(m). (10)

Insurance, though, reduces the perceived price of spending and leads to inefficient moral hazard.

The reason is that the individual takes the premium as given when deciding on the optimal level

of insured spending (m∗
PL(α)), which results in the following first order condition:

FOC∗
PL : (1− α)u′

(
y −m

N

)
= h′(m). (11)

Figure 1 gives a graphic illustration of this standard case of inefficient moral hazard for an

individual with perfect liquidity. The vertical axis is the marginal utility cost and benefit of

additional medical spending. The horizontal axis is the level of medical spending. The marginal

benefit (MB) of spending is given by h′(m), which is downward sloping given our assumptions on

h(m).
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Figure 1 – Standard Analysis of Moral Hazard (Perfect Liquidity)
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Note: Schematic illustration. Assumes perfect liquidity and π = 1.

We then plot the marginal costs (MC) of medical spending, which is the marginal consumption

utility given the level of medical spending (i.e., the left-hand side of the first-order conditions in

Equations 10 and 11). These MC lines slope upward due to the concavity of the utility function

(u′′ < 0)). The line MC(α=0) is the marginal utility cost of foregone consumption with medical

spending m when uninsured. Next, MCE is the marginal cost of additional medical spending

accounting for the additional premiums induced by that spending. Here it lies directly on top of

MC(α=0), as noted above. The uninsured and efficient levels of spending coincide: m∗(0) = mE(α).

The dashed line, MCα > 0, is the marginal utility cost of foregone consumption through out-of-

pocket costs given insurance α at medical spending level m. It is shifted down, since insurance

means out-of-pocket costs are lower for any given amount of medical spending. As a result, the

medical spending m∗(α) chosen when insured is higher, with the additional spending representing

inefficient moral hazard (MHI
PL(α)). The shaded area represents the negative welfare cost of

inefficient moral hazard (V MHI).

The analysis is different for those living hand to mouth. In their case, there is a difference

between the marginal consumption-utility cost of medical spending in the uninsured case and the

efficient case with insurance. To see this, we recall the expected utility for the hand-to-mouth

individuals from Equation (2), which setting π = 1 and focusing on the full hand-to-mouth case

12



with K = 1 we can write as

EUHTM =

[
(N − 1)u

(
y − αm

N

)
+ u

(
y − αm

N
− (1− α)m(α)

)
+ h(m(α))

]
. (12)

The first order condition for medical spending when insured is:

FOC0
HTM : u′

( y

N
−m

)
= h′(m). (13)

The difference from the perfect-liquidity case in Equation (10) is that those living hand to mouth

with K = 1 must absorb the entire medical spending in a single period rather than spreading it

across N consumption periods.

The first order condition for the efficient spending level for the hand-to-mouth individuals is

FOCE
HTM :

(1− α)u′
(
y − αm

N
− (1− α)m

)
︸ ︷︷ ︸
Marginal consumption-utility

cost of medical spending born

through out-of-pocket costs

−α

(
1

N
u′

(
y − αm

N
− (1− α)m

)
+

N − 1

N
u′

(
y − αm

N

))
︸ ︷︷ ︸

Marginal consumption-utility

cost of medical spending born

through premiums

= h′(m).

(14)

For hand-to-mouth individuals, the marginal consumption-utility costs of medical spending are

lower with insurance, resulting in the efficient level of spending being higher than uninsured spend-

ing. The key reason is that the insured portion of spending, αm, is spread out across all N

consumption periods.11

At the same time, there will still be some level of inefficient moral hazard in the hand-to-mouth

case. When choosing actual medical spending, the individual takes premiums as given. The first

order condition for the chosen level of insurance only includes the first term on the left-hand side

of Equation 14 and is given by

FOC∗
HTM : (1− α)u′

(
y − αm

N
− (1− α)m

)
= h′(m). (15)

Figure 2 shows the hand-to-mouth case graphically. The full marginal cost under insurance

accounting for its impact on premiums (MCE) lies in between the uninsured marginal cost and

the marginal cost under insurance. This implies that there is both efficient and inefficient moral

hazard.

11 As such, the marginal consumption-utility cost in the period experiencing the loss is lower with insurance.
In addition, the (N − 1) consumption periods where no loss is experienced and only premiums are paid have
higher levels of consumption and thus lead to a lower average marginal consumption-utility cost for premi-
ums than for uninsured spending. Mathematically we have that: 1

N
u′ ( y−αm

N
− (1− α)m

)
+ N−1

N
u′ ( y−αm

N

)
<

u′ ( y−αm
N

− (1− α)m
)
< u′ ( y

N
−m

)
.
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Figure 2 – Analysis of Moral Hazard for Hand-to-Mouth Individuals
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Note: Schematic illustration. Assumes hand-to-mouth behavior and π = 1.

There are now three shaded regions denoting the welfare impacts of insurance and moral hazard

specifically. The V MHI area shaded in pink is the same inefficiency of moral hazard as we saw in

the perfect liquidity case–resulting from the fact that the level of spending chosen when insured is

higher than the efficient level of spending. However, we also have the green-shaded area V MHE ,

which represents the utility value of the efficient portion of moral hazard – resulting from the fact

that the efficient level of spending is higher than the uninsured level. Moreover, we see the shaded

dashed area V RF is the risk and financing value. This represents the welfare improvement holding

fixed spending at the uninsured level m∗
HTM (0) that comes from being able to insure against that

spending. It is positive (even though π = 1) because of the financing benefit of insurance for the

liquidity constrained. Each dollar of spending has a lower impact on consumption utility when it

is spread out evenly as insurance premiums across N consumption periods.

This illustration shows a visual example where the net welfare value of moral hazard is positive,

since the welfare gain from efficient moral hazard is larger than the welfare loss from inefficient

moral hazard. This will not always be the case in the hand-to-mouth case, but there will always

be an efficient level of moral hazard that helps to offset the inefficient moral hazard.

An intuitive explanation of these results is as follows. For someone who has perfect liquidity,

optimization implies that they are indifferent between a dollar more of medical spending and a dollar

more of consumption on the margin. Thus, when they become insured and face a lower marginal

price, the benefit of medical spending is of lower value than an additional dollar of consumption.

The analysis is different for the liquidity constrained. When uninsured, they are indifferent on

the margin between a dollar more of medical spending and a dollar of consumption in that period
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when they are sick. However, forgoing a dollar of premiums spread out over multiple consumption

periods is not as painful as forgoing that dollar of consumption in the single sick period. Thus, an

additional dollar of medical spending will be more valuable than the cost of financing that with

spending with a dollar of premiums. Thus, some of the increased medical spending has higher

value to the individual than the full cost to finance it via premiums. Is this fact, that insurance

premiums have financing built in, that leads to some of the observed moral hazard being efficient.

3.1.2 Illustrating the income effect using the full-insurance case (α = 1)

When the sick state is not sure to happen (π < 1), there is an additional benefit of insurance that

we refer to as the “income effect” following Nyman (1999a).12 The income effect creates efficient

moral hazard for both the hand-to-mouth and perfect-liquidity types. The key idea is that every

dollar of insured spending only ends up affecting consumption by its expected costs π via premiums

that are shared across those in the sick state (π share) and the non-sick states ((1− π) share). We

provide formal propositions for the general case in Section 3.3, but here we illustrate the intuition

under full insurance.

At full insurance the expected utility coincides for both types. Because premiums are paid

smoothly over all N periods and there are no uninsured cost-shocks, the hand-to-mouth individuals

in our model become essentially perfectly liquid. That is, we have

EUPL(α = 1) = EUHTM (α = 1) = π

[
Nu

(
y − πm(1)

N

)
+ h(m(1))

]
+ (1− π)Nu

(
y − πm(1)

N

)
. (16)

It is straightforward to show that the efficient level of spending mE(1), which will be the same for

both types, will be govered by the first order condition

FOCE : u′
(
y − πm

N

)
= h′(m). (17)

Full insurance guarantees that consumption is steady and based on income minus premiums at
y−πm

N in every period, regardless of whether the loss occurs or not. As such, the efficient spending

level is determined by where the marginal consumption utility from paying premiums equals the

marginal health benefit. This level of marginal consumption-utility cost is lower than the uninsured

levels.

Figure 3 shows the full insurance case graphically. The income effect for the perfect-liquidity case

is generated by the difference between the uninsured marginal consumption-utility cost u′
(y−m

N

)
(Equation (10)) and the efficient marginal cost, u′

(y−πm
N

)
. This difference comes from sharing

the medical spending costs with uninsured states through premiums. The gap is bigger when the

probability of the sick state π is smaller. The efficient level of spending at full insurance mE(1) is

higher than the uninsured spending, implying that there is efficient moral hazard for the perfect-

12 See Appendix Appendix B for a discussion of the differences in our definition of efficient moral hazard from the
approach used in Nyman (1999a).
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Figure 3 – Analysis of Moral Hazard for Both Types under Full Insurance
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Note: Schematic illustration. Assumes full insurance α = 1. Note that the subscript PL denotes the
perfect-liquidity type and subscript HTM is the hand-to-mouth type. Curves, spending levels, and
moral hazard ranges without subscript are the same for both the PL and HTM .

liquidity case. The positive welfare value of the efficient moral hazard is given by the darker green

shaded region V MHE
PL . At the same time, because the individual perceives no cost to medical

spending under full insurance, they over-consume at the point m∗(1), leading to inefficient moral

hazard. In this graphical representation, the net welfare value of moral hazard for the liquidity

constrained individual is negative since the losses from inefficient moral hazard are larger than the

gains from efficient moral hazard. There can be situations, however, where the efficiency gains

from the income effect lead to positive net moral hazard value for those with perfect liquidity. We

give conditions for that to happen in the general case in our formal propositions below and provide

numerical examples in the final subsection.

The moral hazard benefits of insurance are larger for the hand-to-mouth individuals because they

have both the liquidity effect and the income effect of insurance. The liquidity effect can be seen in

the figure by comparing the lines for uninsured marginal cost for the hand-to-mouth u′
( y
N −m

)
to

the lower uninsured marginal cost under perfect liquidity. The liquidity effect spreads the medical

spending across consumption periods, while the income effect spreads the costs across sick and

non-sick states via premiums. The level of efficient moral hazard is greater for the hand-to-mouth

case because the uninsured level of spending is lower, and the corresponding size of the welfare

gain from efficient moral hazard V MHE
HTM (denoted by the larger light green region) is larger. The

level of inefficient moral hazard is the same for hand-to-mouth types as it is for those with perfect

liquidity because the chosen level of spending is the same under full insurance. As we show in the
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formal propositions, because the hand-to-mouth types have both the liquidity effect and income

effect, the net value of moral hazard is more likely to be positive for the hand-to-mouth types. An

implication is that a benevolent social planner would typically set a higher level of insurance for

hand-to-mouth types than for perfect-liquidity types.

3.2 Numerical examples

This subsection provides numerical examples to help quantify the plausible size of the welfare

effects of moral hazard and to draw out a few other important comparisons related to the results

highlighted so far.

We use a set of linear approximations to the marginal consumption-utility costs in the first-

order conditions that govern uninsured, efficient, and chosen levels of spending. We use first-order

Taylor expansions of the marginal consumption utility terms around the marginal utility at baseline

consumption u′
( y
N

)
. We then normalize the entire first order condition by dividing by u′

( y
N

)
. This

results in a set of linear marginal (consumption-utility) cost curves that are in monetary units with

intuitive functional forms. Appendix C provides the full set of derivations for general levels of

insurance and probability of sickness.

The linear approximations to the first-order conditions governing uninsured spending in the

perfect-liquidity and hand-to-mouth cases (with K = 1) are:

1 + r
mPL(0)

N
≈ H ′(mPL(0)) (18)

1 + rmHTM (0) ≈ H ′(mHTM (0)). (19)

The left-hand side of these equations is the marginal consumption-utility cost of medical spending.

The slope of the marginal costs are governed in part by r, which is the Arrow-Pratt measure of

absolute risk aversion at baseline consumption (r = −u′′( y
N )

u′( y
N )

). We see that without insurance, the

marginal cost of medical spending grows with m at a rate of r
N in the perfect-liquidity case and at

a rate of r in the hand-to-mouth case. The marginal consumption-utility cost is N times steeper

for the hand-to-mouth individuals who have to absorb the entire spending in one period.

Next, examine the first-order condition for efficient spending under full insurance. As we high-

lighted in the prior subsection, under full insurance, this condition is the same for the perfect-

liquidity and hand-to-mouth cases, so we can suppress the type subscript on mE(1). The first

order condition for efficient spending in the linear approximation is:

1 + πr
mE(1)

N
≈ H ′(mE(1)) (20)

The efficient marginal cost under full insurance rises with m at a rate of π r
N . The income effect

of insurance generates efficient moral hazard for the perfect-liquidity case by lowering the slope of

the marginal cost relative to the uninsured case by a factor of π. For the hand-to-mouth case, the
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efficiency of moral hazard under full insurance arises because the marginal cost under full insurance

is reduced by both π and 1
N .

For our numerical example we pin down these approximate marginal cost curves by assuming

r = 0.0006. This is the level of absolute risk aversion that corresponds to a Constant Relative Risk

Aversion utility function u = c(1−ρ)

(1−ρ) with ρ = 3 and evaluated at baseline consumption for annual

income y = $60, 000 and monthly consumption periods N = 12.

The H ′ terms on the right-hand side of the first-order conditions are the marginal health benefit

of medical spending (h′) normalized by dividing by u′
( y
N

)
. We assume that the marginal health

benefit is linear. Under this linearity assumption, the H ′ curve can be pinned down if we know

two levels of spending. For our numerical example we assume that uninsured spending for those

with perfect liquidity is m∗
PL(0) = $3, 000 and that the spending by those individuals under full

insurance would be m∗(1) = $4, 000. With all of the curves pinned down, the welfare values of

moral hazard illustrated in the shaded regions of Figures 1 to 3 become triangles that can be easily

quantified.

Figure 4 plots the resulting total moral hazard value (V MH
i = V MHE

i + V MHI
i ) for insurance

levels ranging from no (α = 0) to full insurance (α = 1) and for four different levels of the probability

of sick state ranging from a 1 percent chance to a sure sick state. Panel a) plots the results for

individuals with perfect liquidity. We see that for this numerical example, the total moral hazard

value is negative for those with perfect liquidity and worse as the level of insurance gets higher. At

higher levels of insurance, moral hazard reduces welfare by around $300 to $600. Due to the income

effect there is some level of efficient moral hazard when π < 1, which can be seen by noting that

the total value of moral hazard at every level of insurance is higher for lower values of π. However,

the value of efficient moral hazard is low relative to the losses from inefficient moral hazard, leading

to negative moral hazard value across the range of values explored here.

For hand-to-mouth individuals, however, the value of moral hazard is often significantly positive.

In this example, the value of moral hazard peaks at relatively high levels of insurance, around 80%

insurance for probabilities of sickness of 10% or less. Noting that the risk and financing value is

rising with the level of insurance, this implies that the optimal level of insurance will be close to

full insurance for the hand-to-mouth. The value of moral hazard can be quite significant, reaching

over $300 for higher levels of insurance against lower probabilities of sickness. We also note that

even when the sick state is sure to arise, the net value of moral hazard is positive up to nearly

full insurance (crossing to be negative around 95% insurance). This means that in this example,

hand-to-mouth individuals derive positive moral hazard benefits from insurance that helps them

finance medical expenditures they are sure to need and that it can be beneficial to finance nearly

all such expenditures. This is true even despite the fact that insurance generates some degree of

inefficient spending due to distortions in the perceived price of care.

It might be tempting to think about liquidity constraints as simply representing a case of very

strong risk aversion, but there is an important distinction between the moral hazard value of

insurance under liquidity constraints and under high risk aversion but perfect liquidity. The effi-
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Figure 4 – Numerical Examples of Moral Hazard Value
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(a) Perfect Liquidity K = N
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(b) Hand to Mouth K = 1

Note: These figures show the net value of moral hazard for different levels of insurance (α) and prob-
ability of sick state (π). We use the linear approximation to the marginal utility of consumption
outlined in this subsection. The parameters governing the numerical exercise are that a) the number
of consumption periods N = 12, b) the Arrow-Pratt measure of absolute risk aversion rA = 0.0006,
c) the uninsured spending under perfect liquidity is m∗

PL(0) = $3, 000, and d) the maximum spending
observed under full insurance is m∗(1) = $4, 000. As described in the text, we assume a linear marginal
utility of health function h′(m) = c − bm and the parameters are pinned down by the assumptions
about m∗

PL(0) and m∗(1). Panel a) shows the perfect liquidity case where K = N and Panel b) shows
the full hand-to-mouth case where K = 1.
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ciency gains of moral hazard under insurance arise in the hand-to-mouth case because the marginal

consumption-utility cost curve is very steep when uninsured relative to when insured. It is also

true that a much higher level of absolute risk aversion can generate a similarly steep marginal cost

curve when uninsured for those who have perfect liquidity. Very high levels of absolute risk aversion

would arise for those with low annual incomes or when the cost of medical care is high, such that

medical spending is traded off against very essential consumption. However, the efficiency benefits

without liquidity constraints arise only from the income effect, which depends on a low probability

of the sick state. For those with perfect liquidity, as the probability of the sick state approaches

1, the uninsured spending approaches the efficient level of spending. However, for those who are

hand-to-mouth, the uninsured spending stays below the efficient level even for π = 1.

Figure 5 – Numerical Example Perfect Liquidity and High Risk Aversion
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Note: This figure shows the net value of moral hazard for different levels of insurance (α) and probability
of sick state (π) for the perfect-liquidity case where K = N . We use the linear approximation to the
marginal utility of consumption outlined in this subsection. The parameters governing the numerical
exercise are that a) the number of consumption periods N = 12, b) the Arrow-Pratt measure of absolute
risk aversion rA = 0.0072, c) the uninsured spending under perfect liquidity is m∗

PL(0) = $3, 000, and
d) the maximum spending observed under full insurance is m∗(1) = $4, 000. As described in the text,
we assume a linear marginal utility of health function h′(m) = c− bm and the parameters are pinned
down by the assumptions about m∗

PL(0) and m∗(1).

Figure 5 provides an example of this. For this figure we repeat the numerical analysis from

Figure 4 for the perfect liquidity case but under the assumption that absolute risk aversion is

12 times the original absolute risk aversion in the prior figure (r′A = 12rA=0.0072). As such, in

this example the uninsured marginal consumption-utility cost for the perfect liquidity individual

is now the same as the uninsured marginal consumption-utility cost for the hand-to-mouth in the

numerical example in Figure 4 panel b. We use here also the same calibrated marginal utility of
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health function H ′(m) from the prior numerical example, so the uninsured spending in this case

matches the uninsured spending for the hand-to-mouth individuals from the prior figure. We see

now that the net value of moral hazard is positive at low levels of π. In particular, if the likelihood

of the sick state were 1%, the highly-risk-averse individual with perfect liquidity derives up to

around $300 in value from moral hazard at moderately high level of insurance and significantly

positive value from moral hazard even under full insurance. However, as the likelihood of the sick

state rises, the value of moral hazard falls dramatically and becomes substantially negative. Those

with high absolute risk aversion benefit from moral hazard when premium costs are low, but as the

likelihood of sickness rises and premiums go up, the impact of moral hazard is even worse than it

would be if the individual were less risk averse (compare Figure 5 to Figure 4 panel a). In contrast,

when the high sensitivity to uninsured spending costs comes from the lack of liquidity, as in Figure

4 panel b, the moral hazard value of insurance comes primarily from its liquidity benefit and is

much less sensitive to the chance of the sick state.

3.3 Formal propositions

In this section, we develop a set of formal propositions that describe the behavior of perfect liquidity

and hand-to-mouth individuals, and the results that hand-to-mouth individuals have a higher value

of moral hazard and thus a higher level of optimal insurance. All proofs are provided in the

appendix.

3.3.1 Perfect-liquidity Individuals

First, Proposition 1 describes individuals with perfect liquidity. Part 1 establishes the result that

the efficient level of medical spending increases with the level of insurance. Part 2 confirms the

standard intuition that individuals with insurance choose a higher level of medical spending than

is efficient. Part 3 establishes the result discussed in Section 3.1.1: when the sick state is sure to

happen, the efficient level of spending is the uninsured level of spending. Finally, Part 4 covers a

different result, known from Nyman (1999a): the efficient level of medical spending is larger than

the level that would be chosen if the individual were uninsured.

Proposition 1. For individuals with perfect liquidity

1. u′′′ ≥ 0 is a sufficient condition for
∂mE

PL(α)
∂α > 0 ∀ π ∈]0, 1[,

2. m∗
PL(α) > mE

PL(α) ∀ α ∈]0, 1], π ∈]0, 1],

3. if π = 1, mE
PL(α) = m∗

PL(0) ∀ α ∈]0, 1], and

4. u′′′ ≥ 0 is a sufficient condition for mE
PL(α) > m∗

PL(0) ∀ α ∈]0, 1] if π ∈]0, 1[.

Next, Proposition 2 examines the value of insurance and its components. Part 1 shows that

when losses are certain to appear, individuals with perfect liquidity have a negative total value of

insurance: there is no risk and financing value (V RF
PL (α) = 0) since there is no uncertainty, and the
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moral hazard value of insurance is negative, as the efficient level of medical spending is the level

that would be chosen when uninsured. That is, insurance simply brings a distortion in this case.

If we introduce risk to the decision-situation, two effects appear. Insurance now has a positive

risk and financing value (Part 2). Further, there is some level of efficient moral hazard (Part 3).

Then, drawing on the result on efficient spending from Proposition 1, Part 4 lets us state the

argument of Nyman (1999a) formally: there can be situations in which insurance has a positive

moral hazard value. The inequality in equation (21) shows a condition sufficient to yield positive

moral hazard value. Note that the condition is more likely to be satisfied if π gets smaller. This

reflects the argument in Nyman (1999a) that smaller probabilities of getting sick lead to higher

transfers of healthy people to sick people through the insurance system. Finally, Part 5 shows that

if the condition from Part 4 holds, there is a range of insurance levels where the total value of

insurance is positive.

Proposition 2. For individuals with perfect liquidity

1. For π = 1, V RF
PL (α) = 0, V MH

PL (α) < 0 and VPL(α) < 0 ∀ α ∈ ]0, 1].

2. For π ∈]0, 1[, V RF
PL (α) > 0;∀ α ∈ ]0, 1].

3. For π ∈]0, 1[, u′′′ > 0 is a sufficient condition for V MHE
PL (α) > 0;∀ α ∈ ]0, 1].

4. For π ∈]0, 1[, there exists α̂ such that V MH
PL (α) > 0;∀ α ∈ ]0, α̂] if it holds that

(1− 2π)u′
(
y −m∗

PL(0)

N

)
− 2(1− π)u′

( y

N

)
> m∗

PL(0)(1− π)
1

N
u′′

(
y −m∗

PL(0)

N

)
. (21)

5. For π ∈]0, 1[, there exists α̂′ > α̂ such that VPL(α) > 0;∀ α ∈ ]0, α̂′] if Condition (21) holds.

3.3.2 Hand-to-mouth Individuals

Next, we consider the case of an individual who lives hand-to-mouth. Proposition 3 below begins by

analyzing optimal spending levels. Part 1 unsurprisingly shows that insurance leads hand-to-mouth

individuals to choose a higher level of medical spending than is efficient. However, Part 2 shows a

key difference between this case and perfect liquidity: there is efficient moral hazard even if there

is no risk, as the socially optimally level of spending is higher than the level that would be chosen

when uninsured even at π = 1.13

Proposition 3. For hand-to-mouth individuals and with π ∈ ]0, 1],

1. m∗
HTM (α) > mE

HTM (α) ∀ α ∈ ]0, 1],

2. u′′′ ≥ 0 is a sufficient condition for mE
HTM (α) > m∗

HTM (0) ∀ α ∈ ]0, 1].

13 We assume u′′′ ≥ 0, which is sufficient but not necessary. Most commonly used utility functions, including
CARA and CRRA, satisfy this condition (Brockett and Golden, 1987).
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The reason for this result is that insurance provides financing to spread medical spending across

more consumption periods, allowing spending to be borne in lower marginal utility periods than

when uninsured. Both items of the proposition taken together show that for hand-to-mouth indi-

viduals, independent of the probability of loss, privately optimal medical spending is higher than

the socially efficient medical spending at the same level of insurance, which is in turn higher than

the uninsured level of medical spending.

The next proposition considers how the results on efficient spending carry over to the value of

insurance and its individual components.

Proposition 4. For π ∈ ]0, 1], hand-to-mouth individuals have

1. V RF
HTM (α) > 0 ∀ α ∈ ]0, 1],

2. u′′′ ≥ 0 is a sufficient condition that V MHE
HTM (α) > 0 ∀ α ∈ ]0, 1].

3. there exists α̂ > 0 such that for α ∈ ]0, α̂], V MH
HTM (α) > 0 if it holds that

(N−2Kπ)u′
(

y

N
−

m∗
HTM (0)

K

)
−2(N−Kπ)u′

( y

N

)
> m∗

HTM (0)
N −Kπ

K
u′′

(
y

N
−

m∗
HTM (0)

K

)
.
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4. there exists α̂′ > α̂ such that for α ∈ ]0, α̂′], VHTM (α) > 0 if Condition (22) holds.

First, Part 1 of Proposition 4 considers the “risk and financing” value that holds fixed medical

spending at the uninsured level. It is positive even for π = 1 when there is no uncertainty and thus

no standard risk-reduction value from insurance. It becomes positive for the same reason efficient

spending with insurance is higher than m∗
HTM (0) even if π = 1: insurance enables the financing of

medical payments across all periods, allowing expenses to be borne in periods with lower marginal

utility of consumption.

We now consider the moral hazard induced by the insurance coverage. We show in Part 2 of

Proposition 4 that individuals with liquidity constraints have a positive value of efficient moral

hazard. Part 3 shows a sufficient condition for the entire moral hazard value of insurance to be

positive (note this result does not rely on π < 1 and it is independent of that shown by Nyman,

1999a). Finally, when the value of moral hazard is positive, it also the case there is a range of

insurance levels where the total value of insurance is positive (Part 4).

3.3.3 Comparing the Types of Individuals

In what way does living hand-to-mouth change the value of insurance for individuals? Propositions 1

to 4 answer this question for the case of certain losses. When there is no uncertainty, under perfect

liquidity, insurance only decreases the welfare of the individual. For hand-to-mouth individuals,

on the other hand, the value of insurance can indeed be positive. Intuitively, hand-to-mouth

individuals benefit from the financing provided by insurance coverage while this benefit does not

exist for perfect liquidity.
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When introducing risk, the comparison gets more complicated. There is now the potential of

efficient moral hazard for individuals with perfect liquidity due to the effect described by Nyman

(1999a): insurance serves as a redistribution system from the healthy to the sick, making consump-

tion higher in the sick state. This state has high marginal utility of consumption for uninsured

individuals because medical spending has lowered consumption. Thus, the redistribution increases

expected utility. This effect gets stronger with lower loss probabilities and higher medical spending.

Because medical spending is higher for individuals with perfect liquidity, this effect is larger for

them than it is for hand-to-mouth individuals.

We can nevertheless make certain comparisons. Proposition 5 quickly results from the different

ways in which individuals can finance their medical spending. At any level of positive cost-sharing

(including being fully uninsured), hand-to-mouth individuals will choose less medical spending than

perfectly liquid individuals:

Proposition 5. For K < N , m∗
HTM (α) < m∗

PL(α) for all α ∈ [0, 1[.

At full insurance, the experience of hand-to-mouth and perfectly liquid individuals is the same–

smooth premium payments and no out-of-pocket medical costs. Thus, the chosen level of medical

spending will be the same for the two types (m∗
HTM (1) = m∗

PL(1)), as well the efficient level of

medical spending ( mE
HTM (1) = mE

PL(1)). Then, Corollary 1 follows from the definitions of V MH

and V MHE , and says that for the hand-to-mouth individual, the value of both moral hazard and

efficient moral hazard, will be higher than for the perfectly liquid individual.

Corollary 1. For K < N and α = 1, V MHE
HTM > V MHE

PL and V MH
HTM > V MH

PL .

While Corollary 1 shows that, at full insurance, the value of moral hazard is higher for hand-

to-mouth individuals, that value may still be negative. The next proposition considers the range

of insurance values for which the value of moral hazard is positive. After making a simplifying

assumption on the health benefits function, Proposition 6 shows that hand-to-mouth individuals

have a larger range of insurance values for which moral hazard value is positive, than do perfect

liquid individuals.

Proposition 6. Assume that K < N , u′′′ ≥ 0, and that benefits from medical spending are approx-

imately linear in the relevant ranges of mi. If for both types there exists an α̂i ∈ ]0, 1[ such that

V MH
i (α) > 0 if and only if α ∈ ]0, α̂], then α̂HTM > α̂PL.

Finally, we consider the optimal level of insurance α∗
i that an individual would choose for them-

selves, given that they faced actuarially fair premiums. (This is also the level of insurance that a

social planner, with the goal to maximize individual welfare, would choose.) We define this optimal

level as α∗
i = argmaxα∈[0,1]EUi(α) subject to the constraint that premiums p = απm∗

i (α).

Proposition 7 shows that the optimal level of insurance coverage is higher for hand-to-mouth

individuals than for those with perfect liquidity. (For an extended discussion see Appendix D.)

Proposition 7. For K < N , if benefits from medical spending are approximately linear in the

relevant ranges of mi and the optimal insurance coverage is characterized by an interior solution,

then α∗
HTM > α∗

PL.
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4 Revising Estimates of the Value of Medicaid

4.1 Model

To assess how liquidity constraints impact our interpretation of moral hazard, we adapt the frame-

work developed by Finkelstein et al. (2019) (hereafter, FHL) for evaluating the welfare consequence

of the Medicaid expansion using data from the Oregon Health Insurance Experiment. When we

adapt their framework to our model with monthly consumption periods, we reproduce their results

when K = N and individuals have perfect liquidity. However, derive new adjustments to their key

equations when K < N and individuals have liquidity constraints (i.e. live hand-to-mouth). We

use those adjustments and data from the Oregon Health Insurance Experiment to re-estimate the

value of a year of Medicaid to recipients, focusing specifically on how assumptions about liquidity

affect individuals’ implied valuation of empirical moral hazard.

We follow the “consumption-based optimization approach” laid out by FHL (they lay out a va-

riety of other approaches as well). Our baseline model and FHL’s consumption-based optimization

approach share common assumptions: people select a continuous level of health spending given a

realized health shock by optimally trading off medical spending and consumption, which is sep-

arable between health and consumption. FHL discuss limitations of approach: e.g. individuals

may make mistakes in allocating health spending, or health spending may be lumpy such that the

first order conditions do not hold. These limitations apply to our analysis as well. Neither our

results below nor the original FHL analysis using this approach are perfect measures of the value

of Medicaid to recipients. Our goal, however, is to examine how the estimates would change if

Medicaid recipients live hand-to-mouth rather than having perfect liquidity.

We use the same notation as introduced in Section 2 and only adjust it where necessary to fit

the new context. In the FHL model, individuals have utility over consumption c and health h,

where health is a function of medical spending m: U(c, h) = u(c) + h(m). Health status is indexed

by θ.14 Finally, the level of insurance is α ∈ {0, 1}, where α = 1 is insured and α = 0 is uninsured.

We must introduce one additional concept to relate our analysis to FHL. While up until now,

the out-of-pocket price of medical care has simply been 1 − α, FHL account for the potential of

charity care. Thus, out-of-pocket spending on medical care is x(α; θ) = ρ(α)m(α; θ), where ρ(α)

is the effective price to the individual. FHL find that charity care covers 79% of expenses, so

implement ρ(0) = 0.21; at full insurance, ρ(1) = 0. In the FHL model (and thus ours), moving

from being uninsured to having Medicaid is, from the individual’s perspective, akin to moving from

79% insurance to 100% insurance.15

14 Consistent with our modeling framework and the implicit assumptions of static models like those used in FHL,
we assume that the realization of the health state occurs at the start of the insured period so that the individual
with perfect liquidity can fully smooth consumption across periods in the insured year.

15 In practice, marginal prices may vary depending on the severity of the health shock, the magnitude of expendi-
ture, and the individual’s liquidity constraints. If hand-to-mouth individuals faced lower prices when uninsured,
they would benefit less from becoming insured . However, perfectly liquid individuals must then have faced a
higher uninsured price to maintain the same average. We explore the sensitivity of our estimates to allowing for
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The key object in the FHL setup is γ(α), which is a measure of Medicaid recipients’ willingness

to pay for insurance and can be thought of as the premium that if paid would lead to the same

utility level as being uninsured. Let V (α) be the indirect utility of insurance level α:

V (α) = max
m(α;θ)

Eθ

[
(N −K)u

(
y − γ(α)

N

)
+ (K)u

(
y − γ(α)

N
− x(α; θ)

K

)
+ h(m(α; θ))

]
Then, γ(α) is defined so that V (α) = V (0). Note that the equation for V (α) is almost identical to

that in FHL, except that we let the payments (γ) be spread across N periods and let the annual

medical spending be spread across K periods. When K = N (perfect liquidity), our version reduces

to the FHL model. When K = 1, we have the hand-to-mouth case.

The value of K in this analysis can be thought of as a joint assumption about the arrival of

medical bills over time and the individual’s underlying liquidity position. When K = N , we are

assuming equivalently that either individuals can fully smooth their consumption through costless

borrowing and saving during the insured year or that bills for medical spending are spread out evenly

throughout the year on a full payment plan. When K = 1, we are assuming that the individual

must pay for all medical spending in a single consumption period and is unable to borrow from or

save in other consumption periods to help absorb the shock. Neither the implicit assumption of

perfect liquidity in FHL (K = N) nor the full hand-to-mouth case K = 1 is perfectly accurate. In

reality, medical spending shocks can arrive in a variety of temporal patterns and sizes throughout

the year. In addition, even those with strong liquidity constraints may be offered payment plans and

grace periods that provide some degree of financing for medical bills; we discuss how we account for

that in the section below. The results for K = N using the original FHL approach and for K = 1

for hand-to-mouth provide two different views of the potential value of Medicaid to recipients.

To determine willingness to pay for insurance, γ(1), FHL approximate the integral of the

marginal value of insurance at each point. We follow the derivation in FHL, adapted to the

possibility of spreading premiums and medical expenses across different numbers of periods. Then

willingness to pay, γ, changes with insurance in the following way:

dγ(α)

dα
=

E[u′L]
E
[
N−K
N u′NL + K

N u′L
](ρ(0)− ρ(1))E[m(α; θ)]

+ Cov

[
u′L

E
[
N−K
N u′NL + K

N u′L
] , (ρ(0)− ρ(1))m(α; θ)

]
, (23)

where u′NL is the marginal utility of consumption in the consumption periods where no out-of-pocket

costs are incurred, so u′NL = u′
(
y−γ(α)

N

)
. Similarly, u′L is the marginal utility of consumption in

the periods where out-of-pocket costs are incurred, so u′L = u′
(
y−γ(α)

N − x(α;θ)
K

)
. Note that when

differences between hand-to-mouth and perfect liquidity individuals, and find that they are relatively insensitive.
Appendix E provides details).
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K = N , Equation (23) reduces to FHL’s Equation (13) with income and spending values translated

to the consumption period (i.e., monthly) level.

When accounting for hand-to-mouth behavior withK < N , we see in Equation (23) that the first

term is multiplied by a ratio of marginal utilities. The numerator, E[u′L], is the expected marginal

utility in periods when out-of-pocket medical costs are paid– that is, the benefit of lowering out-

of-pocket spending via insurance. The denominator, E
[
N−K
N u′NL + K

N u′L
]
, is the expected average

marginal utility across all periods – that is, the utility cost of that insurance born across all

consumption periods via increased premiums. This multiplier can be quite large, because the

expected marginal utility in the one period when people must pay for losses can be much larger

than the average marginal utility. The second term in Equation (23) will also likely be larger than

its perfect liquidity counterpart, as the first term in the covariance, the ratio of marginal utility in

the periods suffering a loss to expected marginal utility, will be larger.

Finally, to get the value of full insurance, we follow FHL and integrate this equation over α

from 0 to 1. Since intermediate values of α are not observed, they approximate that value by

assuming γ(1) ≈ 1
2

(
dγ(0)
dα + dγ(1)

dα

)
. We do the same here. Using this approximation and reflecting

the full coverage from Medicaid by setting ρ(1) = 0, we can express the total willingness to pay for

Medicaid as

γ(1) = ρ(0)E[m(0; θ)]︸ ︷︷ ︸
γT

+
E[u′L]− E[u′NL]

E
[
N−K
N u′NL + K

N u′L
]N −K

N
ρ(0)E[m(0; θ)]︸ ︷︷ ︸

γF

+
1

2
Cov

[
u′L

E
[
N−K
N u′NL + K

N u′L
] , ρ(0)m(0; θ)

]
︸ ︷︷ ︸

γR

+
E[u′L]

E
[
N−K
N u′NL + K

N u′L
] 1
2
ρ(0)E[m(1; θ)−m(0; θ)]︸ ︷︷ ︸

γMH

. (24)

Here, the first term, γT , evaluates the transfer of resources due to insurance. The second term,

γF , constitutes the financing value of insurance and is unique to hand-to-mouth individuals; it is

zero when K = N . A share of N−K
N of the expected loss is distributed from the loss consump-

tion periods to the no loss consumption periods. γF results from multiplying this share by the

difference in marginal utility between these two consumption periods. The third term, γR, reflects

the risk reduction function of insurance.16 The last term, γMH , evaluates the increase in medical

consumption due to insurance and thus corresponds to the moral hazard value of insurance.

16 Analogous to here, the risk and financing value of insurance, V RF
i as introduced in Section 2.4, can also be decom-

posed into a risk value and a financing value. To do so, we can introduce a hypothetical insurance contract which
concentrates all premium payments into the K loss consumption periods. This would lead to expected utility

EUH
i (α,m) = π

[
(N −K)u

(
y
N

)
+Ku

(
y
N

− p+(1−α)m
K

)
+ h(m(0))

]
+ (1− π)

[
(N −K)u

(
y
N

)
+Ku

(
y
N

− p
K

)]
.

We can then define V R
i (α) = EUH

i (α,m∗
i (0)) − EUi(0,m

∗
i (0)) and V F

i (α) = EUi(α,m
∗
i (0)) − EUH

i (α,m∗
i (0)).
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4.2 Large Bills and Payment Plans

Medicaid bills larger than the resources available to a person cannot be paid; individuals must have

some baseline consumption. To account for this, FHL guarantee each individual a consumption

floor of minimal consumption, regardless of the medical bills they face. We adapt their approach

to an environment with liquidity constraints.

For the perfect liquidity case, we follow FHL and impose an annual consumption floor of $1,977
(relative to starting annual income per person of $9,505). As such, the largest medical spending

loss for the uninsured is capped at about $7,500 out of pocket.

However, things are more complicated with liquidity constraints. With N = 12 periods, an indi-

vidual at the annual consumption floor would have monthly consumption $164.75. To maintain this

consumption floor, the maximum medical spending an individual can bear in a given consumption

period is $625. The distribution of annual out-of-pocket medical expenses from FHL, though, has

a fair number of losses much higher than $625 (all the way to $7,500).
Thus, we model individuals with liquidity constraints as having access to a “payment plan”. We

assume that in cases where the individual faces a medical bill over $625, the losses “spill over” to

the next period. So for example, take the K = 1 case. If annual spending is $1,500, then we would

have two periods of medical spending of $625, one period with medical spending of $250, and 9

periods of no medical spending. Nevertheless, we always assume that the relevant marginal utility

then is the marginal utility at that per-period consumption floor.17

Thus, even hand-to-mouth individual have access to liquidity in this model; we term the case

K = 1 as “minimal liquidity.” The fraction of individuals who take advantage of these payment

plans is non-trivial: 25.9% of individuals in our data will face a medical bill larger than the 1-

month consumption ceiling and 8.8% face a medical bill larger than the 3-month consumption

ceiling. This implicitly allows for a degree of financing or payment plans for larger hospital bills in

cases where the medical spending pushes the individual to the consumption floor. This is a rough

approximation to hospital financing plans provided to the uninsured with low incomes. In practice,

hospital financing may be more generous in providing a longer smoothing period, but may be less

generous in that they still may demand large upfront payments from the uninsured before elective

care is given.

4.3 Data

In order to estimate the values in Equation (23), it is necessary to have data on medical spending

under Medicaid and for the same population when uninsured. FHL use data from the Oregon

This differentiation has the sensible properties V R
i + V F

i = V RF
i , V R

i ≥ 0 ∀ i, V F
HTM > 0, V F

PL = 0, and
V R
i (α) = 0 ∀ α, i if π = 1.

17 We implement this last assumption to avoid issues with “loss periods” having different consumption levels and
hence different marginal utilities. This is in line with a similar assumption in FHL by which they assume that
medical losses in excess of $7,500 lead to the same marginal utility as $7,500 even though one could assume that
such losses are never paid by the individual and thus have no marginal effect on consumption utility.
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Health Insurance Experiment on medical spending and the randomization within that experiment

to estimate the difference in spending due to insurance.

For our multiplier on the transfer term, it is necessary to observe the distribution of out-of-

pocket spending for the Medicaid population when uninsured. In addition, to estimate both the

original “pure insurance” term in FHL and our modification of it, it is necessary to have data on

the joint distribution of consumption and out-of-pocket spending for the uninsured.

FHL use two approaches for this and we follow their simpler approach, which they call the

“consumption proxy approach”. In this approach, they start with an average value of consumption

for the low-income uninsured from the Consumer Expenditure Survey (CEX), that they estimate

at $9,214 for the time period and sample they use. They then add to that the average per-capita

out-of-pocket spending for the uninsured in the Oregon Health Insurance Experiment to get a total

baseline average income level of y = $9,505. They then use the distribution of reported out-of-

pocket spending for the uninsured in the Oregon Health Insurance Experiment and assume that

the only variation in consumption comes from absorbing these out-of-pocket costs when uninsured.

With Medicaid offering full insurance, the assumption in FHL is that the fully insured will all have

fixed annual consumption at the baseline $9,505.
The resulting distribution of consumption per year for the uninsured is plotted as Figure 1 in

FHL. We used the replication packet available through the Journal of Political Economy to extract

the underlying distribution used to make that plot. We use that information and the assumption

about baseline income from FHL described above to estimate the values for γ and its decomposition

into subcomponents. We follow FHL in assuming that the consumption utility function takes the

constant relative risk aversion (CRRA) form with coefficient of relative risk aversion of 3. We

further estimate E[m(1; θ)−m(0; θ)] using a counterfactual TSLS approach, as done by FHL. In it,

the treatment in the Oregon Health Insurance Experiment serves as the instrument for Medicaid

coverage.

4.4 Estimates

Our main results on how liquidity constraints affect the value of Medicaid are given in Table 1. The

first column shows the results for the perfect liquidity K = N case using our data and estimation.

The next column shows a case of partial liquidity with K = 3, and the last with minimal liquidity

and K = 1.

Under perfect liquidity, we estimate an overall willingness-to-pay of $2,447. This matches closely

the number FHL report under similar assumptions.18 The careful reader will note, though, that our

number is higher than FHL’s headline number of $1,421. While their headline number is generated

under the assumption of a model of household risk and income sharing, all of our results assume

18 See FHL’s Appendix Table 4. Small differences persist, because our Matlab implementation uses a slightly
different numerical procedure than the original paper.
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Table 1 – Impact of Liquidity Constraints on Value of Medicaid

Perfect Liquidity Partial Liquidity Minimal Liquidity
K = 12 K = 3 K = 1

γ, Estimated WTP 2447 4170 5307
γT , WTP for transferred resources 605 605 605
γF , WTP for financing motive 0 683 1838
γR, WTP for risk motive 1750 2678 2467
γMH , WTP for moral hazard motive 92 203 397

Moral hazard cost at uninsured prices 185 185 185
Ratio of γMH to moral hazard cost 50% 110% 215%

Note: Source: Authors’ calculations from Finkelstein et al. (2019) data. All values are in $US and correspond
to the values given in Equation (24). As in FHL, we set ρ(0) = 0.21, and assume that consumption utility has a
CRRA utility function with a coefficient of relative risk aversion equal 3. N is always set to 12. Uninsured out-
of-pocket spending ρ(0)m(0; θ) is distributed according to the calibrated distribution for out-of-pocket expenses by
FHL. E[m(1; θ)−m(0; θ)] is calculated based on a counterfactual TSLS estimation. Both Partial Liquidity and Min-
imal Liquidity models allow individuals to access payment plans for large bills as discussed in Section 4.2.

the individual in question bears both the full benefits and the full costs of Medicaid. This allows

us to avoid difficult decisions about how to account for children in household risk sharing.

We next examine the decomposition of the estimated willingness-to-pay in the perfect liquidity

case. The largest portion ($1,750) is attributable to the reduction in risk faced by the individual,

followed by $605 in transferred resources (the expected change in out-pocket medical spending).

There is no financing motive, as the individual has perfect liquidity.

Finally, willingness-to-pay for the induced utilization is 50% on the dollar. Access to medicaid led

to an average increase in medical spending of $879 compared to being uninsured. When uninsured,

the out-of-pocket price for this spending would have been 0.21 × 879 = $185 due to charity care.

The individual’s value for this additional spending that would have been $185 out of pocket is

only 92.3. The final row in the table thus shows the willingness-to-pay for the additional spending

divided by the cost of the additional spending to the individual when uninsured, which here is

50%– the standard case of wasteful moral hazard.

Once we leave the assumption of perfect liquidity and consider K < N , the estimated willingness

to pay for Medicaid increases strongly. We discuss the results for the minimal liquidity (K = 1) case;

the partial liquidity (K = 3) is simply intermediate. The total willingness to pay for individuals

with minimal liquidity is more than twice as large as the original estimate. As explained above,

this is because Medicaid provides funds in consumption periods when marginal utility is very high

and consumers value this transfer accordingly.

Examining the decomposition, the transferred resources component is the same. What is dif-

ferent with minimal liquidity, is a substantial willingness to pay from the financing motive. The

willingness to pay from the risk motive is also increased under minimal liquidity.

Turning to moral hazard, we see the willingness to pay for the moral hazard motive is more than

four times higher under minimal liquidity than in the perfect liquidity case. This is a reflection
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Figure 6 – Value of Medicaid by Share of Hand-to-Mouth Households

Note: The figure displays the value of γ, the estimated willingness to pay for Medicaid, as it is reported
in the top row of Table 1 for possible shares of hand-to-mouth (K = 1) households in the population.
All other households are assumed to have perfect liquidity (K = 12). The vertical lines show the
values of potential indicators for this share from the Survey of Consumer Finances and the Survey of
Household Economics and Decision-making as they are defined in Appendix F.

of our earlier argument: with hand-to-mouth individuals, moral hazard does not have to be an

inefficient adjustment, but can rather reflect the possibility of financing health care costs across

more consumption periods than the one in which the costs appear.

To interpret the magnitude of the moral hazard results, the individual with minimal liquidity

is willing to pay $397 for the additional medical spending that would have cost them $185 out-of-

pocket when uninsured; they value this spending at more than 200% of its cost, but did not spend

it when uninsured because they could not pay for it in a smooth way.

These results show that the value of Medicaid is substantially higher if the recipients of Medicaid

are liquidity constrained. Evidence on liquidity-sensitivity of medical utilization (e.g. Gross et al.,

2022) suggests that these constraints do in fact matter.

While we lack data on the full distribution of liquidity constraints and borrowing costs that this

population faces, we can provide a range of estimates. Figure 6 illustrates how the average value of

Medicaid changes depending on the assumed fraction of Medicaid recipients that is hand-to-mouth

versus perfectly liquid. Using data from the Survey of Consumer Finances and Survey of Household

Economics and Decision-making, we estimate what fraction of the population below 138% of the

federal poverty level (a population similar to those eligible for Medicaid) satisfies various conditions

that proxy for being liquidity constrained. The vertical lines indicate the fraction of individuals

meeting criteria such as having zero liquid assets (27%), having less than $500 in liquid assets (59%),

31



or lacking $400 in emergency savings in cash or cash equivalents (69%). Appendix F provides more

detail on these measures. Note as another point of comparison that Aguiar et al. (2024) classify

about 40% of the PSID (all income levels) as hand-to-mouth, and that Appendix F shows that

low-income individuals are much more likely to display indicators of hand-to-mouth status.

The valuation of Medicaid depends heavily on the fraction of individuals subject to liquidity con-

straints. For instance, if individuals with zero liquid assets are assumed to be hand-to-mouth (and

all others have perfect liquidity), Medicaid’s average value is about $3300, whereas assuming those

without $400 in emergency funds behave as hand-to-mouth yields an average valuation of roughly

$4500. The variation, and the result that the interpretation of moral hazard’s welfare impact

changes under the hand-to-mouth assumption suggests there would be substantial policy value to

additional data on the recipients’ of different government insurance programs liquidity constraints

and the underlying patterns of medical spending and consumption so that policy recommendations

can reflect the value of insurance under liquidity constraints.

Finally, note that our results will depend on the distribution of out-of-pocket medical expenditure

across time for the low-income uninsured. We do not know this distribution, but it is likely to be

more concentrated in time than the spending of the insured, as uninsured people will screen out

lower value care and spend more on urgent health needs. With K = 1, our payment plan approach

implies that the average fraction of expenses in the highest expenditure month is about 0.77. We

can compare this to the distribution of healthcare spending across time in a wealthier sample of

people who have employer-sponsored insurance. We use the 2018 Truven Marketscan sample of

24-64 year olds continuously enrolled in insurance (as described in Ericson and Sydnor Ericson and

Sydnor (2018)). In this sample, the average fraction of total expenses in the highest expenditure

month is 0.54; for smaller expenses, that is higher, about 0.67 for expenses under $1000. Actual

OOP expenses are likely more concentrated overtime (e.g. once an individual reaches the maximum

out-of-pocket amount, there will be no more cost-sharing), but that will depend on the insurance

plan an individual is in. We do not attempt to model those insurance plans because what matters

for our sample is the structure of charity care provided for the uninsured, about which there is

little data. We thus think our payment plan approach is a reasonable approximation to modeling

the concentration of expenses across time for the uninsured.

5 Conclusion

This paper reexamines the interpretation of observed moral hazard from health insurance in the

presence of liquidity constraints. We introduce a framework that decomposes moral hazard into

efficient and inefficient components for a given level of insurance coverage. In contrast to the

traditional view of moral hazard as being wasteful and valued at less than cost, we highlight that

because insurance effectively offers a way to smoothly finance lumpy expenditures, the socially

optimal amount of spending will increase when an individual with liquidity constraints gets access

to insurance.
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Accounting for liquidity constraints is important when evaluating the value of expanding insur-

ance programs, particularly for low-income populations. Our reevaluation of the value of Medicaid

expansion shows that liquidity constrained recipients would receive a much higher benefit than

previously estimated. This would affect the normative evaluation of the expansion, underscoring

the importance of accurately modeling liquidity constraints in cost-benefit analyses of Medicaid

and similar programs

Our empirical application shows that in the hand-to-mouth model, efficient moral hazard is quite

large and meaningfully changes our normative interpretation of results. The hand-to-mouth model

is a reasonable model for many low-income individuals, but further work could examine both the

role of high borrowing costs as well as behavioral biases, such as present-focus or overconfidence.

Our model changes the interpretation of moral hazard. Our empirical application considers

access to Medicaid– a move from uninsurance to insurance that requires virtually no cost-sharing.

Our results could also be applied to examine the optimal level of insurance in different markets,

trading off the costs (and benefits) of additional moral hazard against the risk protection gains.

Accounting for liquidity constraints is also necessary to determine the optimal level of cost-sharing

in many different health insurance programs, and our approach will generally imply a different level

of optimal coverage for people with liquidity constraints.

Finally, while prior work on liquidity and moral hazard has focused on unemployment insurance

(see Chetty (2008)) and we have extended to health insurance, liquidity constraints are likely

important and affect the interpretation of moral hazard in many other insurance domains, such

as auto insurance (see Cummins and Tennyson (1996)) and workers’ compensation insurance (see

Dionne and St-Michel (1991)). Combining data on the liquidity constraints that individuals face

with models of insurance in these domains could offer new insights for their optimal design.
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Appendix A Proofs

A.1 Proof of Proposition 1

Proof. Item 1 : Define A(m) = y−απm
N and B(m) = y−(1−α)m−απm

N . Then, mE
PL(α) is implicitly

defined by

h′(mE
PL(α))− (1− π)αu′(A(mE

PL(α)))− (1− α(1− π))u′(B(mE
PL(α))) = 0. (A1)

We label Equation (A1) as F and apply the implicit function theorem to obtain
∂mE

PL(α)
∂α = −

∂F
∂α
∂F
∂m

.

By assumption it holds that u′′ < 0 and h′′ < 0. Thus from

∂F

∂m
= h′′(mE

PL(α)) +
1− π

N
α2πu′′(A(mE

PL(α))) +
(1− α(1− π))2

N
u′′(B(mE

PL(α))) < 0 (A2)

we know that sgn
(
∂mE

PL(α)
∂α

)
= sgn

(
∂F
∂α

)
where sgn(·) denotes the sign of an expression. Taking

the partial derivative and rearranging renders

∂F

∂α
=(1− π)[u′(B(mE

PL(α)))− u′(A(mE
PL(α)))]− (1− π)(1− α)

m

N
u′′(B(mE

PL(α)))

+ (1− π)πα
m

N
[u′′(A(mE

PL(α)))− u′′(B(mE
PL(α)))]. (A3)

The first and second terms are positive from u′′ < 0. The third term is positive if u′′′ > 0 and 0 if

u′′′ = 0. This establishes u′′′ ≥ 0 as a sufficient condition for
∂mE

PL(α)
∂α > 0.

Item 2 : We abbreviate EUPL(α,m
E
PL(α)) as EUE

PL for legibility. Note that πF =
∂EUE

PL
∂m . Thus,

by Equation (A2), the second order condition for mE
PL(α) is fulfilled. Further, m

∗
PL(α) is implicitly

defined by

h′(m∗
PL(α))− (1− α)u′(B(m∗

PL(α))) = 0. (A4)

We evaluate
∂EUE

PL
∂m at m∗

PL(α) and obtain:

∂EUE
PL

∂m

∣∣∣∣
m∗

PL(α)

= −π(1− π)u′(A(m∗
PL(α)))− π2αu′(B(m∗

PL(α))) < 0. (A5)

It follows that m∗
PL(α) > mE

PL(α) ∀ α ∈]0, 1].
Item 3 : Considering Equation (A4), m∗

PL(0) is defined by h′(m∗
PL(0)) − u′(B(m∗

PL(0)) = 0.

When setting π = 1, Equation (A1) becomes h′(mE
PL(α)) − u′(B(mE

PL(α))) = 0. Thus, both

m∗
PL(0) and mE

PL(α) are defined equivalently for π = 1, implying m∗
PL(0) = mE

PL(α) ∀ α ∈]0, 1]
when sickness is certain.

Item 4 : Setting α = 0 in Equation (A1) shows that mE
PL(0) = m∗

PL(0). Item 4 then follows

from item 1.
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A.2 Proof of Proposition 2

Proof. Item 1 : From Proposition 1 we know that under perfect liquidity and π = 1, it holds that

m∗
PL(0) = mE

PL(α) ∀ α ∈]0, 1]. We can thus express V MH
PL (α) as

V MH
PL (α) = EUPL(α,m

∗
PL(α))− EUPL(α,m

E
PL(α)). (A6)

Further, mE
PL(α) is the level of m that at coverage level α maximizes expected utility if p = παm.

Since we know from Proposition 1 thatm∗
PL(α) ̸= mE

PL(α), EUPL(α,m
∗
PL(α)) < EUPL(α,m

E
PL(α))

and thus V MH
PL (α) < 0. Further, because for π = 1, EUPL(α,m

∗
PL(0)) = Nu

(
y−(1−α)m∗

PL(0)−αm∗
PL(0)

N

)
+

h(m∗
PL(0)) = Nu

(
y−m∗

PL(0)
N

)
+ h(m∗

PL(0)) = EU(0,m∗
PL(0)) it follows that V RF

PL (α) = 0. Thus

VPL(α) < 0.

Item 2 : We rearrange V RF
PL (α) and utilize u′′ < 0 to obtain

V RF
PL (α) = πN

[
u

(
y − (1− α(1− π))m∗

PL(0)

N

)
− u

(
y −m∗

PL(0)

N

)]
+ (1− π)N

[
u

(
y − απm∗

PL(0)

N

)
− u

( y

N

)]
(A7)

> m∗
PL(0)απ(1− π)N

[
u′
(
y − (1− α(1− π))m∗

PL(0)

N

)
− u′

(
y − απm∗

PL(0)

N

)]
> 0

(A8)

Item 3 : From Proposition 1 we know that u′′′ ≥ 0 is sufficient for mE
PL(α) > m∗

PL(0) ∀ α ∈ ]0, 1]

when π ∈ ]0, 1[. Because mE
PL(α) maximizes expected utility for coverage level α, it follows that

EUPL(α,m
E
PL(α)) > EUPL(α,m

∗
PL(0)) and thus V MHE

PL (α) > 0.

Item 4 : From Equation (5), we can see that V MH = 0 if α = 0. Abbreviating παm∗
PL(α) as pα

and παm∗
PL(0) as p0, we have

∂V MH

∂α
=π

[(
m∗

PL(α)−
∂pα
∂α

−
∂m∗

PL(α)

∂α
(1− α)

)
u′(B(m∗

PL(α))) +
∂m∗

PL(α)

∂α
h′(m∗

PL(α))

]
− (1− π)

∂pα
∂α

u′(A(m∗
PL(α)))− π

(
m∗

PL(0)−
∂p0
∂α

)
u′(B(m∗

PL(0)))

− (1− π)
∂p0
∂α

u′(A(m∗
PL(0))) (A9)

Substituting the first order condition for m∗
PL(α), we obtain

∂V MH

∂α
=π

(
m∗

PL(α)−
∂pα
∂α

)
u′(B(m∗

PL(α)))− (1− π)
∂pα
∂α

u′(A(m∗
PL(α)))

− π

(
m∗

PL(0)−
∂p0
∂α

)
u′(B(m∗

PL(0)))− (1− π)
∂p0
∂α

u′(A(m∗
PL(0))) (A10)
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At α = 0, ∂pα
∂α = 0∂m∗(α)

∂α π +m∗(0)π = ∂p0
∂α . Thus, ∂V MH

∂α

∣∣∣
α=0

= 0. Further

∂2V MH

∂α2
=π

(
∂m∗

PL(α)

∂α
− ∂2pα

∂α2

)
u′(B(m∗

PL(α)))

− π

(
m∗

PL(α)−
∂pα
∂α

)(
∂m∗

PL(α)

∂α
(1− α)−m∗(α) +

∂pα
∂α

)
1

N
u′′(B(m∗

PL(α)))

− (1− π)

[
∂2pα
∂α2

u′(A(m∗
PL(α)))−

(
∂pα
∂α

)2 1

N
u′′(A(m∗

PL(α)))

]

+ π

[
∂2p0
∂α2

u′(B(m∗
PL(0)))−

(
m∗

PL(0)−
∂p0
∂α

)2 1

N
u′′(B(m∗

PL(0)))

]

− (1− π)

[
∂2p0
∂α2

u′(A(m∗
PL(0)))−

(
m∗

PL(0)−
∂p0
∂α

)2 1

N
u′′(A(m∗

PL(0)))

]
(A11)

Observe ∂2pα
∂α2 = 2

∂m∗
PL(α)
∂α π + α

∂2m∗
PL(α)

∂α2 π and ∂2p0
∂α2 = 0. Evaluating at α = 0 and again using that

in this case ∂pα
∂α = ∂p0

∂α we can see that

∂2V MH

∂α2

∣∣∣∣
α=0

=π
∂m∗

PL(α)

∂α

[
(1− 2π)u′(B(m∗

PL(0)))−m ∗PL (0)(1− π)
1

N
u′′(B(m∗

PL(0)))

]
− π

∂m∗
PL(α)

∂α
2(1− π)u′(A(m∗

PL(0))) (A12)

If V MH is zero with slope zero at α = 0, then it must be positive for some values of α to the right

of 0 if it is convex at α = 0. From Equation (A4) and the implicit function theorem, we can see

that
∂m∗

PL(α)

∂α
= −

u′(B(m∗
PL(α)))− (1− α)mN u′′(B(m∗

PL(α)))

h′′(m∗
PL(α)) +

(1−α)2

N u′′(B(m∗
PL(α)))

> 0. (A13)

Thus, ∂2V MH

∂α2

∣∣∣
α=0

is positive if Condition (21) is fulfilled.

Item 5 : Follows immediately from VPL = V RF
PL + V MH

PL and items 2 and 3.

A.3 Proof of Proposition 3

Proof. Item 1 : For the hand-to-mouth individuals we abbreviate y−απm
N = A(m) and y−απm

N −
(1−α)m

K = B(m).19 We further abbreviate EUHTM (α,mE
HTM (α)) as EUE

HTM for legibility. To find

the efficient level of medical spending, we maximize the expected utility of the individual, including

the influence of medical spending on the insurance premium. The first order condition for this level

19 We do not index for the type of individual for legibility unless it is necessary.
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is given by

∂EUE
HTM

∂m
=πh′(mE

HTM (α))− (1− π)απu′(A(mE
HTM (α)))

− π

[
N −K

N
απu′(A(mE

HTM (α))) +

(
απK

N
+ (1− α)

)
u′(B(mE

HTM (α)))

]
= 0.

(A14)

The second order condition is fulfilled as can be seen by

∂2EUE
HTM

∂m2
=π

[
(N −K)

(απ
N

)2
u′′(A(mE

HTM (α))) +K

(
απ

N
+

1− α

K

)2

u′′(B(mE
HTM (α)))

]
(A15)

+ πh′′(mE
HTM (α)) + (1− π)

(απ)2

N
u′′(A(mE

HTM (α))) < 0.

We now evaluate
∂EUE

HTM
∂m at m∗

HTM (α) which is implicitly defined by

h′(m∗
HTM (α))− (1− α)u′(B(m∗

HTM (α))) = 0 (A16)

and obtain

∂EUE
HTM

∂m

∣∣∣∣
m∗

HTM (α)

=− π2α

[
N −K

N
u′(A(m∗

HTM (α))) +
K

N
u′(B(m∗

HTM (α)))

]
− (1− π)u′(A(m∗

HTM (α))) < 0 (A17)

Because this expression is negative, EUE
HTM (α) achieves its maximum to the left of m∗

HTM (α) and

thus m∗
HTM (α) > mE

HTM (α) ∀ α ∈]0, 1].
Item 2 : From the implicit function theorem, we can then infer that sgn

(
∂mE

HTM (α)
∂α

)
= sgn

(
∂2EUE

HTM
∂m∂α

)
.

The relevant expression is

∂2EUE
HTM

∂m∂α
=− π

[(
N −K

N
π + (1− π)

)
u′(A(mE

HTM (α))) +

(
K

N
π − 1

)
u′(B(mE

HTM (α)))

]
+ u′′(A(mE

HTM (α)))mE
HTM (α)π

[
π2α

N −K

N2
+ (1− π)πα

1

N

]
− u′′(B(mE

HTM (α)))mE
HTM (α)π

[
πα

N −Kπ

N2
+ (1− α)

N −Kπ

NK

]
. (A18)

The first line equals π
(
1− K

N π
)
(u′(B(mE

HTM (α)))−u′(A(mE
HTM (α)))) and is thus positive due to

u′′ < 0. From u′′′ > 0, we know that u′′(B(mE
HTM (α))) < u′′(A(mE

HTM (α))). For the second and

third line to be positive, it thus remains to be shown that π2αN−K
N2 +(1−π)πα 1

N ≤ παN−Kπ
N2 +(1−

α)N−Kπ
NK . This expression reduces to 0 ≤ (1− α)N−Kπ

NK which is true for α ∈ [0, 1]. Thus u′′′ > 0 is

sufficient for
∂mE

HTM (α)
∂α > 0. For any α > 0, it follows that mE

HTM (α) > mE
HTM (0) = m∗

HTM (0).
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A.4 Proof of Proposition 4

The proof to this proposition follows the same steps as that for the corresponding items in the

proof to Proposition 2. When the proofs differ, the steps are nevertheless stated for completeness.

Proof. Item 1 : By virtue of u′′ < 0, it follows that

V RF
HTM (α) = EUHTM (α,m∗

HTM (0))− EUHTM (0,m∗
HTM (0)) (A19)

= π

[
(N −K)

[
u

(
y − παm∗

HTM (0)

N

)
− u

( y

N

)]
+ Ku

(
y − παm∗

HTM (0)

N
−

(1− α)m∗
HTM (0)

K

)
− u

(
y

N
−

m∗
HTM (0)

K

)]
+ (1− π)N

[
u

(
y − παm∗

HTM (0)

N

)
− u

( y

N

)]
(A20)

> αm∗
HTM (0)

(
1− πK

N

)[
u′
(

y

N
−

m∗
HTM (0)

K

)
− u′

(
y − παm∗

HTM (0)

N

)]
(A21)

This expression is positive, because u′
(

y
N − m∗

HTM (0)
K

)
> u′

(
y−παm∗

HTM (0)
N

)
by u′′ < 0.

Item 2 : Proof is analogous to item 3 in Proposition 2.

Item 3 : As in the PL case, we can see from Equation 5 that V MH
HTM = 0 if α = 0. Using the

definitions of A(m) and B(m) as above and abbreviating παm∗
HTM (α), we write

∂V MH
HTM

∂α
=− π

[
N −K

N

∂pα
∂α

u′(A(m∗
HTM (α))) +K

(
1

N

∂pα
∂α

+
1− α

K

∂m∗
HTM (α)

∂α

− 1

K
m∗

HTM (α)

)
u′(B(m∗

HTM (α)))

]
− (1− π)

∂pα
∂α

u′(A(m∗
HTM (α)))

+ π
∂m∗

HTM (α)

∂α
h′(m∗

HTM (α)) + (1− π)πm∗
HTM (0)u′(A(m∗

HTM (0)))

+ πm∗
HTM

[
N −K

N
π(0)u′(A(m∗

HTM (0))) +K

(
π

N
− 1

K

)
u′(B(m∗

HTM (0)))

]
(A22)

We substitute the first-order condition for m∗
HTM (α) and obtain:

∂V MH
HTM

∂α
=− π

[
N −K

N

∂pα
∂α

u′(A(m∗
HTM (α))) +K

(
1

N

∂pα
∂α

− 1

K
m∗

HTM (α)

)
u′(B(m∗

HTM (α)))

]
− (1− π)

∂pα
∂α

u′(A(m∗
HTM (α))) + (1− π)πm∗

HTM (0)u′(A(m∗
HTM (0)))

+ πm∗
HTM

[
N −K

N
π(0)u′(A(m∗

HTM (0))) +K

(
π

N
− 1

K

)
u′(B(m∗

HTM (0)))

]
(A23)
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At α = 0, ∂pα
∂α = πm∗

HTM (0) and thus
∂V MH

HTM
∂α

∣∣∣
α=0

= 0. Further

∂2V MH
HTM

∂α2
=π

N −K

N

∂2pα
∂α2

u′(A(m∗
HTM (α))) + π

N −K

N

(
∂pα
∂α

)2

u′′(A(m∗
HTM (α)))

− πK

(
1

N

∂2pα
∂α2

− 1

K

∂m∗
HTM (α)

∂α

)
u′(B(m∗

HTM (α)))

+ πK

(
1

N

∂pα
∂α

−
m∗

HTM (α)

K

)(
1

N

∂pα
∂α

+ (1− α)
1

K

∂m∗
HTM (α)

∂α
−

m∗
HTM (α)

K

)
u′′(B(m∗

HTM (α)))

− (1− π)
∂2pα
∂α2

u′(A(m∗
HTM (α))) + (1− π)

(
∂pα
∂α

)2 1

N
u′′(A(m∗

HTM (α)))

− π
N −K

N2
(πm∗

HTM (0))2u′′(A(m∗
HTM (0)))− (1− π)

1

N
(πm∗

HTM (0))2u′′(A(m∗
HTM (0)))

− πK

(
πm∗

HTM (0)

N
−

m∗
HTM (0)

K

)2

u′′(B(m∗
HTM (0))) (A24)

Observe that as in the PL case ∂2pα
∂α2 = 2

∂m∗
HTM (α)
∂α π + α

∂2m∗
HTM (α)

∂α2 π. Evaluating at α = 0 and

again using that in this case ∂pα
∂α = πm∗

HTM (0) we can see that

∂2V MH
HTM

∂α2

∣∣∣∣
α=0

=π
∂m∗

HTM (α)

∂α

[
(N − 2Kπ)u′(B(m∗

HTM (0)))− 2(N −Kπ)u′(A(m∗
HTM (0)))

−N − πK

K
u′′(B(m∗

HTM (0)))

]
(A25)

Note that from the implicit definition of m∗
HTM (α) we can show

∂m∗
HTM (α)

∂α
= −

u′(B(m∗
HTM (α)))− (1− α)mKu′′(B(m∗

HTM (α)))

h′′(m∗
HTM (α)) + (1−α)2

K u′′(B(m∗
HTM (α)))

> 0. (A26)

We can thus conclude that
∂2V MH

HTM
∂α2

∣∣∣
α=0

> 0 if and only if Condition (22) holds.

Item 4 : Follows immediately from VHTM = V RF
HTM + V MH

HTM and items 1 and 3.

A.5 Proof of Proposition 5

We consider the first order condition for m∗
HTM (α) in Equation (A16) and evaluate it at m∗

PL(α)

as implicitly defined in Equation (A4). We obtain

(1− α)

[
u′
(
y − απm∗

PL(α)− (1− α)m∗
PL(α)

N

)
− u′

(
y − απm∗

PL(α)

N
−

(1− α)m∗
PL(α)

K

)]
.

(A27)

From
y−απm∗

PL(α)−(1−α)m∗
PL

N >
y−απm∗

PL(α)
N − (1−α)m∗

PL
K and u′′ < 0, we know that the above expres-

sion is negative. The second order condition for m∗
HTM (α) is fulfilled as can be seen by

h′′(m∗
HTM (α)) +

(1− α)2

K
u′′

(
y − απm∗

HTM (α)

N
−

(1− α)m∗
HTM

K

)
< 0. (A28)
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Thus we can conclude that m∗
PL(α) > m∗

HTM (α).

A.6 Proof of Proposition 6

We again refrain from indexing individual types for brevity. All equations below pertain to hand-

to-mouth individuals. We abbreviate y−απm∗(α)
N = A(m∗), y−απm∗(0)

N = A(m0), y−απm∗(α)
N −

(1−α)m∗(α)
K = B(m∗), and y−απm∗(0)

N − (1−α)m∗(0)
K = B(m0). We consider how the critical value

of α̂ changes in K. To do this, we implicitly define α̂ as V MH(α̂) = 0. We then apply the implicit

function theorem such that ∂α̂
∂K = −∂V MH

∂K /∂V MH

∂α̂ . From the proof of Proposition 4 we know that if

α̂ exists in ]0, 1[, then V MH(α) crosses the x-axis from above at α̂. As such, ∂V MH

∂α̂ < 0. The sign

of ∂α̂
∂K is thus equivalent to that of ∂V MH

∂K . Because h(m) is approximately linear, we approximate

it as φm.

∂V MH

∂K
=π[u(B(m∗))− u(A(m∗))] + π(N −K)

∂A(m∗)

∂K
u′(A(m∗)) + πK

∂B(m∗)

∂K
u′(B(m∗))

+ πφ
∂m∗(α)

∂K
+ (1− π)N

∂A(m∗)

∂K
u′(A(m∗))− π[u(B(m0))− u(A(m0))]

− π(N −K)
∂A(m0)

∂K
u′(A(m0))− πK

∂B(m0)

∂K
u′(B(m0))− πφ

∂m∗(0)

∂K

− (1− π)N
∂A(m0)

∂K
u′(A(m0)) (A29)

From the abbreviations, we know that ∂A(m∗)
∂K = −απ

N
∂m∗(α)

∂K , ∂A(m0)
∂K = −απ

N
∂m∗(0)
∂K , ∂B(m∗)

∂K =

−απ
N

∂m∗(α)
∂K − (1−α)

∂m∗(α)
∂K

K−(1−α)m∗(α)

K2 , and ∂B(m0)
∂K = −απ

N
∂m∗(0)
∂K − (1−α)

∂m∗(0)
∂K

K−(1−α)m∗(0)

K2 . To

determine ∂m∗(α)
∂K and ∂m∗(0)

∂K , we rely on the implicit definitions of m∗(α) and m∗(0) and apply the

implicit function theorem. m∗(α) is implicitly defined by F = φ− (1− α)u′(B(m∗)) = 0. Thus

∂m∗(α)

∂K
= −

∂F
∂K
∂F

∂m∗(α)

= −−(1− α)2m∗(α)K−2u′′(B(m∗))

(1− α)2K−1u′′(B(m∗))
=

m∗(α)

K
. (A30)

Similarly
∂m∗(0)

∂K
= −

∂F
∂K
∂F

∂m∗(0)

= −−m∗(0)K−2u′′(B(m0))

K−1u′′(B(m0))
=

m∗(0)

K
. (A31)

This establishes ∂A(m∗)
∂K = ∂B(m∗)

∂K = −απm∗(α)
NK and ∂A(m0)

∂K = ∂B(m0)
∂K = −απm∗(0)

NK . We substitute

these results into Equation (A29) to obtain

∂V MH

∂K
=π[u(A(m0))− u(A(m∗))] + π[u(B(m∗))− u(B(m0))] +

πφ

K
(m∗(α)−m∗(0))

+
απ(π(N −K) + (1− π)N)

NK
(m∗(0)u′(A(m0))−m∗(α)u′(A(m∗))

+ π
απ

N
(m∗(0)u′(B(m0))−m∗(α)u′(B(m∗)). (A32)
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We substitute the implicit definition of α̂: (π(N − K) + (1 − π)N)[u(A(m0)) − u(A(m∗))] −
πK[u(B(m∗))− u(B(m0))] = πφ(m∗ −m0) to obtain

∂V MH

∂K
=
N

K
[u(A(m0))− u(A(m∗))] + απ

N − πK

NK
[m∗(0)u′(A(m0))−m∗(α)u′(A(m∗))]

+ απ
π

N
[m∗(0)u′(B(m0))−m∗(α)u′(B(m∗))]. (A33)

From Proposition 1, we know that m∗(α) > m∗(0) and thus A(m∗) < A(m0). By u′′ < 0, we

can ascertain that

∂V MH

∂K
< απ

N

NK
u′(A(m∗))[m∗(α)−m∗(0)] + απ

N − πK

NK
[m∗(0)u′(A(m0))−m∗(α)u′(A(m∗))]

+ απ
π

N
[m∗(0)u′(B(m0))−m∗(α)u′(B(m∗))] (A34)

=
απ

K

[
u′(A(m∗))[m∗(α)−m∗(0)] + [m∗(0)u′(A(m0))−m∗(α)u′(A(m∗))]

+
πK

N
[m∗(0)u′(B(m0))−m∗(α)u′(B(m∗))−m∗(0)u′(A(m0)) +m∗(α)u′(A(m∗))]

]
(A35)

<
απ

K

[
u′(A(m∗))[m∗(α)−m∗(0)] + [m∗(0)u′(A(m∗))−m∗(α)u′(A(m∗))]

+
πK

N
[m∗(0)u′(B(m0))−m∗(α)u′(B(m∗))−m∗(0)u′(A(m0)) +m∗(α)u′(A(m∗)]

]
(A36)

=
απ2K

NK
[m∗(0)u′(B(m0))−m∗(α)u′(B(m∗))−m∗(0)u′(A(m0)) +m∗(α)u′(A(m∗))]

(A37)

<
απ2K

NK
m∗(α)[u′(B(m0))− u′(B(m∗))− u′(A(m0)) + u′(A(m∗))]. (A38)

The last inequality follows, because B(m0) < A(m0) and thus m∗(0)(u′(B(m0)) − u′(A(m0))) <

m∗(α)(u′(B(m0))− u′(A(m0))). We know that B(m0)−B(m∗) = (m∗(0)−m∗(α))
(
απ
N + 1−α

K

)
>

(m∗(0) −m∗(α))απN = A(m0) − A(m∗). Thus, by B(m∗) < A(m∗), u′′ < 0 and u′′′ ≥ 0 it follows

that u′(B(m0)) − u′(B(m∗)) ≤ u′(A(m0)) − u′(A(m∗)). As a consequence, the right-hand-side of

Equation (A38) is negative or zero and it follows that ∂V MH

∂K < 0. Thus, as long as α̂ exists, it is

decreasing in K and this includes the case of K = N . This concludes the proof.

A.7 Proof of Proposition 7

We abbreviate y−απm
N as APL(m) or AHTM (m), y−απm−(1−α)m

N = BPL(m), and y−απm
N − (1−α)m

K =

BHTM (m). Because h(m) is approximately linear, we approximate it as φm. m∗
i (α) is implicitly

defined by φ − (1 − α)u′(Bi(m
∗
i (α))) = 0. This implies BPL(m

∗
PL(α)) = BHTM (m∗

HTM (α)) and
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thus m∗
PL(α) =

απ+(1−α)N
K

απ+(1−α) m∗
HTM (α) < N

Km∗
HTM (α) which obviously implies m∗

PL(α) > m∗
HTM (α)

for K < N .

We abbreviate the premium as pi = απm∗
i (α) and state the first order condition for the coverage

level of individuals with perfect liquidity as

∂EUPL

∂α
=− π

∂pPL

∂α
u′(BPL(m

∗
PL(α))) + πm∗

PL(α)u
′(BPL(m

∗
PL(α)))− π(1− α)

∂m∗
PL(α)

∂α
u′(BPL(m

∗
PL(α)))

+ π
∂m∗

PL(α)

∂α
φ− (1− π)

∂pPL

∂α
u′(APL(m

∗
PL(α))). (A39)

Substituting the implicit definition of m∗
PL(α) and rearranging renders

πu′(BPL(m
∗
PL(α))) =

∂pPL

∂α

πu′(BPL(m
∗
PL(α))) + (1− π)u′(APL(m

∗
PL(α)))

m∗
PL(α)

. (A40)

Similarly, we consider the first order condition for hand-to-mouth individuals and substitute the

implicit definition of m∗
HTM (α) to obtain

∂EUHTM

∂α
=m∗

HTM (α)πu′(BHTM (m∗
HTM (α)))− ∂pHTM

∂α

[
π
N −K

N
u′(AHTM (m∗

HTM (α)))

+ π
K

N
u′(BHTM (m∗

HTM (α))) + (1− π)u′(AHTM (m∗
HTM (α)))

]
(A41)

We now evaluate ∂EUHTM
∂α at α∗

PL. From BPL(m
∗
PL(α)) = BHTM (m∗

HTM (α)):

∂EUHTM

∂α

∣∣∣∣
α=α∗

PL

= m∗
HTM (α)

∂pPL

∂α

πu′(BPL(m
∗
PL(α))) + (1− π)u′(APL(m

∗
PL(α)))

m∗
PL(α)

− ∂pHTM

∂α

[
π
N −K

N
u′(AHTM (m∗

HTM (α))) + π
K

N
u′(BHTM (m∗

HTM (α)))

+ (1− π)u′(AHTM (m∗
HTM (α)))

]
(A42)

The sign of this expression is equivalent to the sign of

F =
∂pPL
∂α

m∗
PL(α)

πu′(BPL(m
∗
PL(α))) + (1− π)u′(APL(m

∗
PL(α)))

−
∂pHTM

∂α

m∗
HTM (α)

[
π
N −K

N
u′(AHTM (m∗

HTM (α))) + π
K

N
u′(BHTM (m∗

HTM (α)))

+ (1− π)u′(AHTM (m∗
HTM (α)))

]
(A43)

We now note that ∂pi
∂α = πm∗

i (α) + απ
∂m∗

i (α)
∂α . Applying the implicit function theorem to the

definitions of the optimal medical spending (noting that second order conditions are fulfilled) ren-
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ders
∂m∗

PL(α)

∂α
=

Nu′(BPL(m
∗
PL(α)))− (1− α)m∗

PL(α)u
′′(BPL(m

∗
PL(α)))

−(1− α)2u′′(BPL(m∗
PL(α)))

(A44)

and

∂m∗
HTM (α)

∂α
=

Ku′(BHTM (m∗
HTM (α)))− (1− α)m∗

HTM (α)u′′(BPL(m
∗
HTM (α)))

−(1− α)2u′′(BHTM (m∗
HTM (α)))

. (A45)

We thus know that

∂pPL
∂α

m∗
PL(α)

= π + απ

N
m∗

PL(α)
u′(BPL(m

∗
PL(α)))− (1− α)m∗

PL(α)u
′′(BPL(m

∗
PL(α)))

−(1− α)2u′′(BPL(m∗
PL(α)))

. (A46)

Applying m∗
PL(α) <

N
Km∗

HTM (α) renders

∂pPL
∂α

m∗
PL(α)

> π + απ

N
N
K
m∗

HTM (α)
u′(BPL(m

∗
PL(α)))− (1− α)m∗

PL(α)u
′′(BPL(m

∗
PL(α)))

−(1− α)2u′′(BPL(m∗
PL(α)))

(A47)

= π + απ

K
m∗

HTM (α)u
′(BPL(m

∗
PL(α)))− (1− α)m∗

PL(α)u
′′(BPL(m

∗
PL(α)))

−(1− α)2u′′(BPL(m∗
PL(α)))

(A48)

=
∂pHTM

∂α

m∗
HTM (α)

(A49)

We can apply this relationship to Equationa (A43) and see that

F >
∂pHTM

∂α

m∗
HTM (α)

πu′(BPL(m
∗
PL(α))) + (1− π)u′(APL(m

∗
PL(α)))

−
∂pHTM

∂α

m∗
HTM (α)

[
π
N −K

N
u′(AHTM (m∗

HTM (α))) + π
K

N
u′(BHTM (m∗

HTM (α)))

+ (1− π)u′(AHTM (m∗
HTM (α)))

]
(A50)

The sign of the right-hand-side is equivalent to

G = πu′(BPL(m
∗
PL(α))) + (1− π)u′(APL(m

∗
PL(α)))−

[
π
N −K

N
u′(AHTM (m∗

HTM (α)))

+ π
K

N
u′(BHTM (m∗

HTM (α))) + (1− π)u′(AHTM (m∗
HTM (α)))

]
(A51)

= (1− π)[u′(APL(m
∗
PL(α)))− u′(AHTM (m∗

HTM (α)))]

+ π
N −K

N
[u′(BPL(m

∗
PL(α)))− u′(AHTM (m∗

HTM (α)))] (A52)

From m∗
PL(α) > m∗

HTM (α) and u′′ < 0 it follows that APL(m
∗
PL(α)) < AHTM (m∗

HTM (α)) and thus

u′(APL(m
∗
PL(α))) > u′(AHTM (m∗

HTM (α))). Because BPL(m
∗
PL(α)) < APL(m

∗
PL(α)), then also

BPL(m
∗
PL(α)) < AHTM (m∗

HTM (α)) and thus u′(BPL(m
∗
PL(α))) > u′(AHTM (m∗

HTM (α))). Thus
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G > 0 and in consequence
∂pPL
∂α

m∗
PL(α)

> 0, implying α∗
HTM > α∗

PL if we assume an interior solution

and thus second-order conditions to hold.
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Appendix B Comparison of Our Efficient Spending Definition to

the Lump-Sum Approach of Nyman (1999a)

Here we compare the approach of Nyman (1999a) to our approach of defining efficient spending,

focusing on individuals with perfect liquidity. Nyman (1999a) defines efficient moral hazard as the

difference between mL(α) and m∗(0). For Nyman, mL is the amount of medical spending optimally

chosen by an individual who faced the full marginal cost of spending but who received a lump-sum

payment L. The lump-sum payment is designed to capture the income transfer a sick individual

receives, and is equal to the amount of medical spending that an insured individual would have

chosen, minus premiums paid: L = (1 − π)αm∗(α). In terms of our model, we can define mL

implicitly through

h′(mL)− u′
(
y + (1− π)αm∗(α)−mL

N

)
= 0. (B1)

This concept is not exactly equal to our definition of efficient medical spending, which we term

mE . We exemplify this for full insurance (α = 1) and show that the lump-sum approach’s spending

is higher than the efficient level (mL > mE). For α = 1, mE is defined by

h′(mE)− u′
(
y − πmE

N

)
= 0. (B2)

To see that mL > mE , evaluate the first-order condition for mE at mL. This gives

u′
(
y + (1− π)m∗(1)−mL

N

)
− u′

(
y − πmL

N

)
. (B3)

given that the second-order condition for mE is fulfilled, mL > mE is equivalent to the above

expression being negative. Rearranging and realizing that u′′ < 0 renders

y + (1− π)m∗(1)−mL

N
>

y − πmL

N
(B4)

This is equivalent to m∗(1) > mL(1). We know this is true. m∗(α) is defined by h′(m∗(α)) = 0

and because u′
(
y+(1−π)αm∗(α)−mL

N

)
> 0, it will always be the case that h′(mL) > 0 and thus

m∗(α) > mL.

Thus, mL > mE which means that the Nyman (1999b) definition overstates the amount of

efficient moral hazard compared to our definition. This is because the cash transfer of the lump-

sum insurance contract is too large. m∗(α) includes the price effect, which needs to be excluded to

calculate the correct amount. Our definition arises naturally, because we simply assume an efficient

market without any information asymmetries.
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Appendix C Simplified First-Order Conditions for Intuitive Illus-

tration

The following appendix utilizes Taylor approximations to derive linear versions of the first-order

conditions used in the results of the papers. These linear approximations are not used to show any

additional results, but simply illustrate the mechanisms explored in the paper using simple and

thus intuitive functional forms.

C.1 Perfect Liquidity Individuals

We use the first-order conditions in Equations (A1) and (A4) to show how the three levels of medical

spending, m∗
PL(0), m

E
PL(α) and m∗

PL(α), can be approximated using linear equations.

We begin with optimal medical spending in the absence of insurance. From

u′
(
y −m∗

PL(0)

N

)
= h′(m∗

PL(0)) (C1)

we use a first-order Taylor approximation of u′(·) around the base income y
N to obtain

⇒ u′
( y

N

)
− u′′

( y

N

) m∗
PL(0)

N
≈ h′(m∗

PL(0)) (C2)

⇔ 1 + rA
m∗

PL(0)

N
≈ H ′(m∗

PL(0)). (C3)

Here, rA is the coefficient of absolute risk aversion and H ′(m) = h′(m)/u′
( y
N

)
is a normalized

version of the marginal utility from health. Because the left-hand side of (C3) is in monetary

terms, H ′(m) is approximately in monetary terms, too. This is intuitive, because the marginal

utility derived from medical spending is divided by that derived from monetary consumption.

For efficient medical spending of insured individuals, we again start at the first-order condition

and use a first-order Taylor approximation of u′(·) around the base income y
N to obtain

((1− α) + πα)u′
(
y − (1− α)mE

PL(α)− παmE
PL(α)

N

)
+ (1− π)αu′

(
y − παmE

PL(α)

N

)
= h′(mE

PL(α)) (C4)

⇒ ((1− α) + πα)

[
u′
( y

N

)
− [(1− α) + πα]u′′

( y

N

) mE
PL(α)

N

]
+ (1− π)α

[
u′
( y

N

)
− παu′′

( y

N

) mE
PL(α)

N

]
≈ h′(mE

PL(α)) (C5)

⇔ 1 + (1− (1− π)α(2− α)) r
mE

PL(α)

N
≈ H ′(mE

PL(α)) (C6)
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Comparing Equations (C3) and (C6), we can see item 4 of Proposition 1, namely that mE
PL(α) >

m∗
PL(0) for α > 0. This is because 1 − (1 − π)α(2 − α) < 1 and we thus know that the slope for

the efficient spending with insurance is lower than that in the case without insurance.

Lastly, we consider medical spending under moral hazard. We again start at the first order

condition, apply the approximation and rearrange.

(1− α)u′
(
y − (1− α)m∗

PL − παm∗
PL

N

)
= h′(m∗

PL) (C7)

⇒ (1− α) +
(
1− (2− π)α+ (1− π)α2

)
r
m∗

PL(α)

N
≈ H ′(m∗

PL). (C8)

Thus, for the linearized definition of m∗
PL(α), both the intersection with the y axis and the slope is

smaller than for the line defining efficient medical spending. As a result, m∗
PL(α) > mE

PL(α) ∀ α ∈
]0, 1], π ∈]0, 1], which is item 2 of Proposition 1.

C.2 Hand-to-mouth Individuals

The process here is the same as above. For optimal medical spending, we begin at the first-order

condition defined in Equation (A16) and apply the first-order Taylor approximation to u′(·) around
the base income y

N . Thus

u′
(

y

N
−

m∗
HTM (0)

K

)
= h′(m∗

HTM (0)) (C9)

⇒ 1 + r
m∗

HTM (0)

K
≈ H ′(m∗

HTM (0)). (C10)

Because K < N , we know that the slope is steeper for HTM individuals than for PL individuals.

This lets us conclude that m∗
HTM (0) < m∗

PL(0), as is the consequence of Proposition 5.

For the efficient medical spending of insured individuals, we follow the same process as above,

using the first-order condition in Equation (A14). Abbreviating mE
HTM (α) as m in the first two

lines for legibility, we obtain

N −K

N
απu′

(
y − απm

N

)
+

(
απK

N
+ (1− α)

)
u′
(
y − απm

N
− (1− α)m

K

)
+ (1− π)αu′

(
y − απm

N

)
= h′(m) (C11)

⇒ N −K

N
απu′

( y

N

)
− N −K

N
(απ)2u′′

( y

N

) m

N
+

(
K

N
απ + (1− α)

)
u′
( y

N

)
−
(
K

N
απ + (1− α)

)
απu′′

( y

N

) m

N
−
(
K

N
απ + (1− α)

)
(1− α)u′′

( y

N

) m

K

(1− π)αu′
( y

N

)
− (1− π)α2πu′′

( y

N

) m

N
≈ h′(m) (C12)

⇔ 1 +

(
(2− α)απ

K

N
+ (1− α)2

)
r
mE

HTM (α)

K
≈ H ′(mE

HTM (α)). (C13)
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With K < N , it is obvious that (2− α)απK
N + (1− α)2 < 1 and thus mE

HTM (α) > m∗
HTM (0), as is

described in item 2 of Proposition 3.

Lastly, we again consider medical spending under moral hazard. Using the same procedure as

above renders

(1− α)u′
(
y − παm∗

HTM (α)

N
− (1− α)m

K

)
= h′(m∗

HTM (α)) (C14)

⇒(1− α)−
(
(1− α)πα

K

N
+ (1− α)2

)
r
m∗

HTM (α)

K
≈ H ′(m∗

HTM (α)) (C15)

Interpretations are the same as for the perfect liquidity case. The intersection with the y axis is

lower and the slope is smaller because (2−α)απK
N +(1−α)2−

(
(1− α)παK

N + (1− α)2
)
= απK

N > 0

for α > 0. Thus m∗
HTM (α) > mE

HTM (α) ∀ α ∈]0, 1] as is stated in item 1 of Proposition 3.

C.3 Specific scenarios

The two scenarios for certain losses (that is, π = 1) and full insurance (that is, α = 1) are

particularly helpful to build intuition. We cover both of them below.

C.3.1 Certain losses: π = 1

The three medical spending levels for perfect liquidity individuals are described by

1 + r
m∗

PL(0)

N
≈ H ′(m∗

PL(0)) (C16)

1 + r
mE

PL(α)

N
≈ H ′(mE

PL(α)) (C17)

(1− α) + (1− α) r
m∗

PL(α)

N
≈ H ′(m∗

PL(α)). (C18)

We can easily see that m∗
PL(0) = mE

PL(α) ∀ α. Further, slope and intersect are lower for medical

spending under moral hazard such that m∗
PL(α) > mE

PL(α). This implies that for perfect liquidity

individuals, under certain losses there is no value of efficient moral hazard, V MHE
PL (π = 1) = 0,

while the value of inefficient moral hazard is negative, V MHI
PL (π = 1) < 0 and thus the total moral

hazard value will always be negative: V MH
PL (π = 1) < 0.

Considering HTM individuals, we see that

1 + r
m∗

HTM (0)

K
≈ H ′(m∗

HTM (0)) (C19)

1 +

(
(2− α)α

K

N
+ (1− α)2

)
r
mE

HTM (α)

K
≈ H ′(mE

HTM (α))) (C20)

(1− α)−
(
(1− α)α

K

N
+ (1− α)2

)
r
m∗

HTM (α)

K
≈ H ′(m∗

HTM (α)). (C21)
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This lets us see relatively easily that m∗
HTM (α) > mE

HTM (α) > mHTM (0). The latter relationship

contrasts the HTM and PL cases.20 From it, it is obvious that even in the presence of certain losses,

there is a positive value of efficient moral hazard for hand-to-mouth individuals, V MHE
HTM (π = 1) > 0.

Combined with the negative value of inefficient moral hazard, the sign of the total moral hazard

value is undetermined for the hand-to-mouth case.

C.4 Full insurance: α = 1

The case of full insurance is particularly informative to compare the medical spending of both types

of individuals. We restate the definition of medical spending without any insurance as

1 + r
mPL(0)

N
≈ H ′(mPL(0)) (C22)

1 + r
mHTM (0)

K
≈ H ′(mPL(0)). (C23)

Because of K < N , we know that mPL(0) > mHTM (0).

Under moral hazard, both types will show the same spending with full insurance

0 = H ′(m∗
PL(α)) = H ′(m∗

HTM (α)). (C24)

This result obtains, because full insurance makes hand-to-mouth individuals act as if they had

perfect liquidity. Thus, both types also have the same efficient medical spending as can be seen by

1 + πr
mE

PL(α)

N
≈ H ′(mE

PL(α)) (C25)

1 + πr
mE

HTM (α)

N
≈ H ′(mE

HTM (α)). (C26)

For full insurance, the two types only differ in their counterfactual of no insurance. This differ-

ence has implications for the difference in the values of efficient moral hazard. Because all other

levels of medical spending are the same, we know that V MHE
HTM (α = 1) > V MHE

PL (α = 1) and thus

V MH
HTM (α = 1) > V MH

PL (α = 1). This illustrates Corollary 1.

20 We can see this from (2 − α)αK
N

+ (1 − α)2 < (2 − α)α + (1 − α)2. The latter expression is 1 at α = 1 and
increasing in α so will be smaller 1 as α decreases.
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Appendix D Insurance Coverage and Demand Elasticity

Starting with Zeckhauser (1970) and formalized by Besley (1988), optimal health insurance coverage

has been connected to the price elasticity of demand for medical care. Our model allows for a similar

connection and we can see how the connection differs for hand-to-mouth individuals in comparison

to individuals with perfect liquidity.

We abbreviate y−απm
N as APL(m) or AHTM (m), y−απm−(1−α)m

N = BPL(m), and y−απm
N −

(1−α)m
K = BHTM (m). Starting with individuals with perfect liquidity, we can form the first-order

condition for the optimal level of coinsurance and substitute the first-order condition for optimal

medical spending to have

πm∗
PL(α

∗)u′(BPL) =
∂pPL

∂α
N

(
πu′(BPL) + (1− π)u′(APL)

)
. (D1)

Here pPL = παm∗(α)
N is the premium for individuals with perfect liquidity. From ∂pPL

∂α = π
Nm∗

PL(α)+
π
Nα

∂m∗
PL(α

∗)
∂α , we rearrange the above to obtain

1 +
α∗

m∗
PL(α

∗)

∂m∗
PL(α

∗)

∂α
=

u′(BPL)

πu′(BPL) + (1− π)u′(APL)
. (D2)

Note that α∗

m∗
PL(α

∗)
∂m∗

PL(α
∗)

∂α is the alpha elasticity of demand for medical care, which we denote

eαPL. Because we have normalized the price of medical care to 1 for uninsured individuals, it is

1− α when people have insurance. eαPL is thus an inverse version of the price-elasticity of demand

for medical care.

The equation

1 + eαPL =
u′(BPL)

πu′(BPL) + (1− π)u′(APL)
(D3)

lets us make similar conclusions as Besley (1988). When demand is perfectly unelastic and eαPL = 0,

then the right-hand-side must be equal one, which implies APL = BPL and thus α = 1 and full

insurance. As the demand becomes more elastic, eαPL will become positive and the fraction on the

right-hand-side has to be larger than one, which is the case when there is only partial insurance.

For hand-to-mouth individuals, the relationship looks similar as can be seen by

1 + eαHTM =
u′(BHTM )

πN−K
N u′(AHTM ) + πK

N u′(BHTM ) + (1− π)u′(AHTM )
. (D4)

The difference between the two types of individuals lies in the magnitude of the reaction of the

optimal coinsurance level. For a given measured value of eα, the right-hand side of Equation (D4)

dictates a higher level of coinsurance than that of Equation (D3). This mirrors our result from

Proposition 7.
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Appendix E Robustness: Alternative Uninsured Prices

Our main calibration for new estimates of the value of Medicaid in Section 4 assumes that all indi-

viduals, whether hand-to-mouth or with perfect liquidity, face the same marginal price of medical

care when uninsured. For this, we use the empirical average of 0.21. However, it is possible that

this price is different for the different types of individuals.

To explore this, we repeat the analysis allowing for different marginal prices for both groups.

We assume three marginal prices lower than 0.21 for the hand-to-mouth individuals, namely 0.15,

0.1 and 0.05. Note, however, that the empirical average still has to hold for the overall population.

Thus, if the share of hand-to-mouth individuals is ζ and their price is pHTM , then the price for

individuals with perfect liquidity needs to be pPL = 0.21−ζpHTM
1−ζ . Given a value for pHTM , this

limits the maximum share of hand-to-mouth individuals to some number smaller than 1, if we

impose that pPL ≤ 1. Because we do not know who in the data of FHL is liquidity constrained,

we calculate the average value of Medicaid for the entire population with both prices and calculate

the final average population value according to γ = ζγ(pHTM ] + (1− ζ)γ(pPL).

Figure E1 – Alternative Uninsured Price Assumptions for Hand-to-mouth Individuals

Note: The figure displays the value of γ, the estimated willingness to pay for Medicaid, for possible
shares (ζ) of hand-to-mouth (K = 1) households in the population when those households face a
marginal price of medical care of pHTM . All other households are assumed to have perfect liquidity
(K = 12) and face price pPL = 0.21−ζpHTM

1−ζ
. The vertical lines show the values of potential indicators

for this share from the Survey of Consumer Finances and the Survey of Household Economics and
Decision-making as they are defined in Appendix F.

Results in Figure E1 show that changing pHTM to a value lower than 0.21 has very little influence

on the average value of Medicaid. While this value decreases for hand-to-mouth individuals, the

value increases for those with perfect liquidity, such that the effect is almost completely offset, even

if we assume a low value such as pHTM = 0.05.
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Appendix F Proxies for Hand-to-Mouth Status

Figure F1 – Hand-to-Mouth Indicators by Income Relative to the Federal Poverty Line

Note: Data are from a pooled analysis of the 2013, 2016, 2019 and 2022 waves of the Survey of Consumer
Finances (SCF, N = 85,785) except for the question on having emergency savings or credit, which was
only asked in 2022, 2019, and 2016 (N = 53,267). Data on having $400 in emergency funds which is
taken from the 2023 wave of the Survey of Household Economics and Decisionmaking (SHED, N =
8,390).

It is difficult to get estimates of the fraction of people who are liquidity constrained, and more

explicitly, who act as if they are hand-to-mouth. We therefore get a range of empirical proxies. To

do so, we turn to two different surveys. First, we use the Survey of Consumer Finances (SCF),

pooling across the 2013, 2016, 2019 and 2022 waves, totaling N=17,157. We supplement this with

the data on having $400 in emergency funds which is taken from the 2023 wave of the Survey of

Household Economics and Decisionmaking (SHED, N = 8,390). We want to describe the experience

of low-income individuals who are most likely to be eligible for Medicaid. We therefore split the

sample based on whether the individual is in a household that is above or below 138% of the Federal

Poverty Level. Data on the federal poverty line for the respective years is taken from the Poverty

Guidelines for 48 Contiguous States provided by the Office of the Assistant Secretary for Planning

and Evaluation.21

Figure F1 displays the fraction of the sample displaying each of the following criteria:

21 In the SHED, a household is categorized as being below 138% of the poverty line, if it reports an income in a
category where the lower bound is below this threshold. This slightly understates the prevalence of liquidity
indicators for poorer households.
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1. Has zero or negative savings in the last calendar year (in blue)

2. Would not pay an unexpected $400 expense in cash or equivalent (in maroon),

3. Answered negatively to the question “In an emergency could you (or your {husband/wife/partner})
get financial assistance of $3,000 or more from any friends or relatives who do not live with

you?” (in green)

4. Has liquid assets less than $500, defined as the sum of reported (market) values of all checking

accounts, saving accounts, certificates of deposit, money market accounts, mutual funds,

bonds, and stocks owned by the household (in yellow),

5. Answers “Don’t save” to the question “Which of the following best describes your saving

habits?” (in gray),

6. Answers “Postpone bills”, “get an extra job”, or “other” to the question “If tomorrow you

experienced a financial emergency that left you unable to pay all of your bills, how would

you deal with it? Would you borrow money, would you spend out of savings or investments,

would you postpone paying bills, work more or get an extra job, or would you do something

else?” (in red),

7. Has no liquid assets, defined as the sum of reported (market) values of all checking accounts,

saving accounts, certificates of deposit, money market accounts, mutual funds, bonds, and

stocks owned by the household (in lavender)
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