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Abstract

Competing research lines start and grow as information is gradually uncovered by

scientists who choose their fields driven by career incentives. We build a strategic exper-

imentation framework in which agents irreversibly specialize in one of two risky fields,

and information updates arrive more frequently as more agents specialize in a field. We

describe the equilibrium forces that determine the size, shape, and length of such “re-

search waves.”In the ‘bad news’case, all researchers specialize in one field, generating a

unique bandwagon wave. As the difference in priors increases, such wave starts earlier and

grows more slowly. In the ‘good news’case, both fields can be explored in equilibrium

in two sequential surges. The probability of both fields being investigated increases in

the researchers’mass and in the effi cacy of technology. Finally, we assess the impact of

citations’benefits, tenure clocks, and grants on the structure of the equilibrium waves.
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1 Introduction

Driven by career incentives, researchers sort themselves into different fields of investigation.

Along their career paths, motives such as scientific grants, tenure and promotion decisions,

salary increases, as well as reputation and legacy, can all potentially influence how scientists

choose their research topics.1 When they are evaluated for promotion, the opinion of more

established colleagues, or the number of citations that their work has generated constitute a

significant part of this assessment. As a result, researchers have an incentive to specialize in

fields that are perceived to be relevant by the profession at large.

The fact that the perception of others affects scientists’investigation choices complicates our

understanding of how science evolves. This is because such opinions depend on the intensity

with which alternative scientific approaches have been explored before. As more and more

research output is produced and published in one field, the community obtains more information

on how valuable that particular methodology is. In contrast, less information is available about

the viability of other fields that have been explored by relatively fewer researchers. As a result,

the endogeneity of information uncovered in different fields and the relative speeds at which

such information grows play a crucial role in understanding young scientists’incentives to shift

their attention towards areas that are new and relatively under-explored.

In this paper, we study the equilibrium forces that determine the size, shape, and length

of such endogenous “research waves.”We construct a continuous-time Poisson bandit model

(similar to the classic setup of Keller, Rady, and Cripps, 2005) in which: (i) agents decide at

which point in time to join one of two risky research fields, A or B, and (ii) once the choice of

joining a field is made by an agent, it is irreversible. The first assumption allows us to analyze

how researchers sort themselves into alternative lines of investigation. The second assumption

relates to the cost of specializing in a particular scientific field. By taking such a cost to infinity,

the analysis becomes significantly more tractable.

Agents have prior beliefs about whether each field is ‘viable’or not, and, while the two

fields are symmetric in any other dimension, we assume that field A is initially perceived to

be viable with a higher probability than B. As time passes, research output conveys further

information about the fields’viability. As more researchers generate more output, we assume

1The organization of science has been often discussed by scholars over the decades. In 1918, in his “Science
as Vocation”lecture, Max Weber discusses the choices of research fields made by young scholars. Kuhn (1962)
refers to the phase in which scholars produce research within a mainstream paradigm as “normal science,”
until overwhelming evidence arises to challenge this perception. More recently, Sunstein (2001) highlights how
reputational concerns affect researchers’choices, leading to scientific fads.
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that each field’s information arrival rate at any given time increases in the total mass of agents

that joined that field before.

We capture the researchers’ incentives by assuming that, once an agent joins a field, she

enjoys a flow payoff that depends on the perceived viability of that field in the future. This

feature of the model captures the idea that scientists’future rewards increase in the reputation

of the field they are in. Initially, we abstract away from any other consideration that may affect

researchers’incentives. For example, scientists might benefit from working in more populated

fields to align themselves with the interests of established scholars (see Akerlof and Michaillat,

2017, and Siniscalchi and Veronesi, 2021), or alternatively, they could suffer from working in

a crowded field where their contributions are less likely to be critical. Also, scientists could

be rewarded for being ‘first movers’into a new field as they might benefit from the citations

that their field generates in the future. Later in the paper, we explore how some of these

considerations affect our results.

An important feature of our model is the nature of the information that is revealed as more

research output is generated. We study the two information environments that the literature

has focused on, the “bad news” case and the “good news” case.2 In the “bad news” case,

information arrives in the form of negative updates about the viability of a field. In this case,

in the absence of news, the posterior beliefs about the field’s viability increase over time. This

scenario fits a research environment such as the pharmaceutical one, where, even if its benefits

are minor, a new drug is granted FDA approval as long as its side effects are not too severe. As

the new drug navigates through the sequence of experimental rounds required to be approved,

the beliefs on its market viability increase over time.3

In the “good news” case, the information arrival conveys positive updates about the viab-

ility of a field. Therefore, in the absence of news, the posterior beliefs about the field’s viability

decrease over time. This environment fits lines of research characterized by positive break-

throughs, such as scenarios in which scientists aim to turn a theoretical idea into a practical

solution or a new product. One example is the development of vaccines (or other drugs) derived

from the technology of producing proteins by introducing cells in a mixture of fat and mRNA,

which was an idea first raised in the late 1980s.4 While hundreds of scientists worked on this
2As common in this literature, to make the analysis simpler, we focus on conclusive information arrival: in

the bad news case, since a viable field cannot generate bad news, the first arrival determines the non-viability
of the field, and similarly for the good news case.

3The ‘bad news’case is also reminiscent of Popper (1999)’s falsification hypothesis, stating that a scientific
theory can only be proven false but never truly confirmed.

4For more detail, see a recent news feature on Nature 9/14/2021 (available at
https://www.nature.com/articles/d41586-021-02483-w).
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concept for decades, hopes were fading, and the scientific community started regarding mRNA

as too unreliable to be used to develop new drugs or vaccines. Until, of course, the breakthrough

during the Covid-19 pandemic proved the technology conclusively viable.5 Another recent class

of examples are A.I. applications such as large language models or neural networks; The recent

Physics Nobel laureate, Geoffrey Hinton, has been described as having “dogged persistence with

which he continued to believe in the potential of neural networks as a key to artificial intelligence

long after the idea had been discredited by the discipline. Given how academia works, especially

in a fast-developing discipline like computer science, that required exceptional determination

and self-confidence.”6

We show how the nature of the information environment affects the emergence and growth

of research fields. In the bad news case, there is a unique equilibrium in which, as long as no

bad news arrives on field A early enough, all researchers specialize in that field, implying that

field B is not explored. The intuition is simple. As long as no agent joins either field, field A

is perceived more likely to be viable. As a result, the first time agents join a field, they surely

select field A. As more agents join A, more information is generated in that field and, unless

bad news arrives on A, the beliefs about its viability will increase faster than the beliefs about

B’s viability. Thus, the more researchers join A, the more others want to join the “bandwagon.”

We characterize the dynamic structure of the equilibrium information arrival rate in field A as

one slow research wave. If agents are patient enough, the research wave into A starts slowly,

and accelerates over time. In fact, we show that as the population size grows arbitrarily large,

the length of the equilibrium wave is bounded above. Finally, we show that as the difference

between the fields’prior beliefs increases, the wave starts earlier, grows more slowly, and lasts

longer.

In the good news case, there is also a unique equilibrium which, for some parameters,

involves the exploration of both A and B in two sequential surges. As long as no agent has

joined any field, field A is still perceived more likely to be viable than B. Therefore, field

A must still be the one attracting the first agents joining a field. Specifically, we show that

the equilibrium involves an immediate surge—i.e., an atom of researchers—into field A. Once

field A starts being populated, the posterior beliefs about its viability decrease faster than the

5Indeed, research on new vaccines or drugs may be best characterized by an initial “good news”phase, when
the project goes from a theoretical idea into actual development, and a subsequent “bad news”phase, when the
new drug is tested for the presence of significant side effects on human subjects.

6See https://www.theguardian.com/commentisfree/2024/oct/12/nobel-winner-geoffrey-hinton-is-the-
godfather-of-ai-heres-an-offer-he-shouldnt-refuse
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posterior beliefs about B, until a reversal of the posterior beliefs’ranking occurs. Then, some

time after such reversal occurs, a surge into field B arises in equilibrium, immediately followed

by more agents joining B gradually. Notably, despite the ranking reversal, the total mass of

agents specializing in field B remains bounded above by the size of the initial surge into A.

This equilibrium upper bound on the size of field B has two significant implications. First, no

further posteriors’ranking reversal can occur in equilibrium implying that, as long as no good

news arrives on A, field B remains the most promising. Second, field B’s equilibrium upper

bound entails that some agents may wait for news indefinitely. Also, our results suggest that

the likelihood of the exploration of field B increases in the agents’total pool size and in the

effi cacy of the information-production technology.

We discuss how scientists’career incentives can influence the structure of the equilibrium

research waves. First, we consider an extension of the model in which researchers enjoy a first-

mover advantage from joining a field early—for example, because future citations may improve

their reputation and facilitate promotions. We also consider the tenure-clock system, which is

prevalent in U.S. academic institutions, in which researchers have a limited horizon to produce

research output that demonstrates their competence. This setup can be thought as a deadline

within which a cohort of scientists is forced to choose a risky field, rather than wait for more

information working in a ‘safer’investigation area. Finally, we consider direct incentives, such

as grants or other subsidies, provided by the wider community (i.e., research institutions, or

the government) to promote research in specific areas.

In general, in the bad news case, we find that the bandwagon structure of the equilibrium

and the implied lack of research diversification are very robust, and persist across models.

Specifically, citation benefits and deadlines cause the bandwagon wave into A to accelerate,

while scientific grants can cause the bandwagon wave to switch to B, but never yield research

diversification.

In the good news case, first, we find that citations’benefits always make the equilibrium

diversification of agents’specializations into both fields that can arise in the standard model

less likely to occur. Second, we find that the introduction of a deadline has more nuanced

implications on the equilibrium structure. Specifically, since a deadline forces agents to take

action rather than to delay, its presence may allow equilibrium diversification to arise in en-

vironments in which all agents would have waited for news indefinitely otherwise (i.e., when

they are relatively patient). When agents are less patient, we show that introducing a deadline

is always detrimental to achieve research diversification in equilibrium. Finally, we find that
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well-designed scientific grants also have subtle effects on the equilibrium structure, and they can

both expand the environments in which diversification arise, and influence the fields’relative

equilibrium sizes.

Related Literature. Methodologically, our paper builds on the experimentation with

bandits settings, first introduced by Thompson (1933) and Gittins (1979). Our specific setup

is closer to the strategic social experimentation models explored in Bolton and Harris (1999),

Keller, Rady, and Cripps (2005), Keller and Rady (2010) and Keller and Rady (2015). In all of

these papers, once an agent experiments with a risky arm, she provides information externalities

to others. Our model departs from this literature as we consider a choice between two risky

arms. Moreover, in our setting, agents’decisions are irreversible, in the sense that once an agent

commits to use one risky arm, she cannot switch to the other later on. The presence of two

risky arms, which is natural for our application, has a substantial impact on the equilibrium

analysis (particularly in the good news case) as well on the comparative statics and normative

implications of our results. The assumption of irreversibility simplifies the analysis in the sense

that, given the equilibrium behavior of others, each agent’s best response becomes an optimal

stopping problem.

Other recent papers that account for the presence of two risky arms are Bardhi, Guo, and

Strulovici (2024), who study an equilibrium application to workers’discrimination, and Lizzeri,

Shmaya, and Yariv (2024), where a unique decision-maker is allowed to separate exploration

from exploitation. Forand (2015) also analyzes two risky projects in a good-news environment,

and also focuses on a single decision-maker rather than on equilibrium analysis. In the context of

social experimentation with one risky project, Laiho, Murto, and Salmi (2023a and 2023b) also

assume choices’irreversibility.

Thematically, this paper relates to two strands of the literature. The first one is the

work on R&D adoption, innovation, and research collaboration. For recent examples, see

Halac, Kartik, and Liu (2017), Fonseca (2024), Hopenhayn and Squintani (2021), Bonatti and

Horner (2011), Callander, Lambert, and Matouschek (2023), and Bobtcheff, Lévy, and Mariotti

(2024).7Cetemen, Urgun, and Yariv (2022) analyze exit waves in collective search environments.

Second, as discussed above, starting from Kuhn (1962), a large literature on the philosophy of

science has addressed how knowledge is created. Kitcher (1990) discusses the individual vs.

optimal division of scientific labor across competing themes. Brock and Durlauf (1999) high-

7Chen et al. (2024) and Knoepfle and Salmi (2024) investigate different aspects of the problem of a central au-
thority deciding how much information to release to the public to overcome free riding in social experimentation
environments.
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light how conformity may play a role in scientists’ specialization choices, which is an idea

explored more recently, as mentioned above, by Akerlof and Michaillat (2017), and Siniscalchi

and Veronesi (2021).8 More recent work on how new scientific ideas arise include Bramoullé and

Saint-Paul (2010), Bobtcheff, Bolte, and Mariotti (2017), and Carnehl and Schneider (2024).

These papers explore questions different from ours.

Finally, a few papers in the social learning literature examine information aggregation out-

comes in settings where agents decide at what time to take an irreversible action when they

observe the actions taken by others, but not their private information (see for example Gul and

Lundholm, 1995, Rosenberg, Solan, and Vieille, 2007, and Murto and Välimäki, 2011). Clearly,

despite a similar trade-off in taking action vs. waiting for more information, the information

structure and the focus of this work is different from ours.

2 The Model

Consider a continuous-time, infinite horizon setting, with t ∈ [0,∞) and a mass m > 0 of

identical agents present from the onset. There are two independent, risky fields, A and B, each

with flow value v > 0 if viable, and zero if not viable. We denote the prior beliefs of viability

of the fields at t = 0 as pA0 and pB0 , respectively, and without loss of generality, we assume

pA0 > pB0 > 0. At any time t, each agent can wait, or irreversibly join a field i = A,B, getting

a flow payoff piτv, with τ ≥ t, from then on, where piτ is the posterior belief of field i at τ .

This assumption captures the idea that the current beliefs about her field’s viability affect a

researcher’s promotion chances, salary, and so on. As long as an agent does not join any field,

she obtains a flow payoff of zero. This is a normalization that captures the gains from working

in a ‘safe’research field or an older research agenda which turned out to be not viable. The

common discount rate is r > 0.

For i = A,B, let mi
t be the mass of agents who already joined field i at time t. Naturally,

at any point in time mA
t +mB

t ≤ m, and the irreversibility assumption implies that mi
t weakly

increases in t. The information arrival is endogenous, and determined by mass of agents who

already joined a field. Specifically, news on viability of each field i = A,B arrives over time

t ∈ [0,∞) following a Poisson process with arrival rate λ(mi
t), which is strictly increasing,

continuous, and twice differentiable in mi
t. The function λ(·) is a primitive of the environment

8Recent work, such as Dossi (2024), Dossi and Morando (2023), Koning et al. (2021), and Einio et al. (2023),
documents that scientists’attributes such as gender and race might also influence their specialization choices.
Also, Adda and Ottaviani (2023) highlight drawbacks in awarding grants based on relative performances.
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and represents how the research technology maps agents working in a field into information

production. We denote λ(0) ≡ λ ≥ 0, and λ(m) ≡ λ > λ, so that λ and λ are the information

arrival rates when nobody has joined the field, and once all agents have joined the same field,

respectively. When no confusion occurs, we use λit to denote λ(mi
t), and since there is a one-to-

one correspondence between mi
t ∈ [0,m] and λ(mi

t) ∈
[
λ, λ
]
, we interchangeably refer to λit ≥ λ

as the arrival rate at time t for field i, and also as the total mass of agents necessary in a field

at t to generate the arrival rate λit—that is, λ
−1(λit).

As common in this class of models, we assume that a viable field can only generate positive

updates (“good news”), while a non-viable field can only generate negative updates (“bad

news”), so that the first information arrival is conclusive evidence of the viability, or non-

viability, of a field. To streamline the analysis further, we focus on two simplified information

environments separately. Specifically, in the “bad news case,”a viable field does not generate

any news, so information only arrives as negative updates. Hence, in the absence of news,

the posteriors pit increase over time. In particular, given an arrival rate λ
i
t, it is easy to see

that in our setting pit evolves according to the Bayesian updating process ṗ
i
t = λitp

i
t(1− pit) for

i = A,B. In the “good news case,”a non-viable field generates no news, so information only

arrives as positive updates. Therefore, in the absence of news, the posteriors pit decrease over

time, according to the process ṗit = −λitpit(1− pit).9

In each of these information environments, agents’ strategies consist of an optimal stop-

ping rule—that is, when to join a field—and a choice of a field to join. We focus our analysis

on Markov Perfect Equilibria in which agents’ strategies only depend on the state variables

{pAt , pBt ,mA
t ,m

B
t }. Thus agents’strategies and utilities depend on others’behavior only through

the effects of others’information externalities and hence the evolution of the posteriors. We spe-

cify expected utilities and strategies more formally for each information environment analyzed

below.

We conclude this section with two simple lemmas that apply to both the bad news and the

good news case. The first one is an immediate consequence of the law of iterated expectations.

Lemma 1 (Value of Joining a Field) In both the bad news and the good news case, when

an agent joins a field i = A,B at time t ≥ 0, her expected continuation payoff is pit
v
r
.

9One could consider a more general setting in which, for any fixed mass mi
t of agents in field i, negative news

(conditional on non-viability) and positive news (conditional on viability) arrive at rates λB(mi
t) and λ

G(mi
t),

respectively, with λB(mi
t) > λG(mi

t) for the bad news case, and vice-versa for the good news case. Since as
long as no news arrives, posteriors still increase in the bad news case and decrease in the good news case, the
analysis would qualitatively follow our setup, while the specific results would depend on the assumptions made
on the functions λB(·) and λG(·).
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Lemma 1 guarantees that, despite the fact that the flow payoffs an agent receives after

joining a field depend on the future evolution of that field’s posterior, an agent’s expected

payoff upon joining a field does not depend on the other agents’ future behavior (and the

information they will generate). In particular, Lemma 1 implies that, conditional on joining a

field at a given time t ≥ 0, it is always optimal to join the one with the highest current posterior

pit.

Lemma 2 (Ranking of Posterior Beliefs) In both the bad news and the good news case, if

no news have arrived, and no positive mass of agents have joined any field up to t > 0

(i.e., λAt = λBt = λ), then pAt > pBt .

Lemma 2 ensures that, as long as no positive mass of agents have joined any field yet (and

therefore the information arrival rate is still λ for both fields), the posterior beliefs processes{
pAt
}
and

{
pBt
}
cannot cross, implying that their ranking remains the same as the initial one.

Lemma 1 and Lemma 2 together imply that, since pA0 > pB0 , the first field to be explored in

equilibrium is always field A.

3 The Bad News Case

3.1 Equilibrium Analysis in the Bad News Case

In the bad news case, once bad news arrives on a field i = A,B at time t, all remaining agents

join the other, and, by Lemma 1, obtain an expected continuation payoff of p−it
v
r
. Given that

the optimal actions upon arrival of bad news on either field are straightforward, we only need

to characterize the agents’equilibrium behavior when no news on either field has arrived yet.

We fix the strategies followed by others, which generate the arrival processes
{
λAt
}
and{

λBt
}
. Given irreversibility, the only possible plan of action for an agent is to wait until time

s ≥ 0, and then, in the absence of news, by Lemma 1, to join the field with the highest posterior

pis. The utility from such a strategy evaluated at t = 0 is

V (s) ≡ v

r

s∫
0

[
(1− pAt )λAt p

B
t + (1− pBt )λBt p

A
t

]
e−

∫ t
0 [r+(1−pAz )λAz +(1−pBz )λBz ]dzdt

+
v

r

[
e−

∫ s
0 [r+(1−pAz )λAz +(1−pBz )λBz ]dz

]
max
i=A,B

pis. (1)

8



To see how this utility is constructed, note that the first term is associated with the arrival of

bad news on a field before time s, when the agent immediately joins the other field. Specifically,

bad news arrives on field i = A,B at any time t < s with probability (1− pit)λit, at which point
the agent joins −i and obtains the expected utility p−it v

r
. The second term captures the scenario

in which no news has arrived by period s, and the agents joins the field with the highest

posterior, obtaining the expected utility v
r

maxi=A,B p
i
s.

Proposition 1 characterizes the unique equilibrium arising in the bad news environment. In

particular, let r ≡ λpB0 (1−pA0 )

pA0
. We have

Proposition 1 (Bad News - Bandwagon Wave) In the bad news case, unless bad news

about A arrives early enough, no agent ever joins field B. Specifically, we have:

1. If r ≤ r, the unique equilibrium is characterized by t, t, with t > t ≥ 0, such that,

unless bad news arrives, (i) All agents wait until t; (ii) In the interval
[
t, t
]
agents

gradually join field A; (iii) At t, everybody has joined A.

2. If r > r, the unique equilibrium is characterized by t ≥ 0, such that, unless bad news

arrives, (i) An atom of agents λ̂ ∈ (0, λ] joins field A at t = 0; (ii) If there are

agents left, they gradually join field A in the interval (0, t]; (iii) At t, everybody has

joined A.

In the “bandwagon wave”equilibrium described in Proposition 1, unless bad news about A

arrives before t, field B is not explored at all. To see why, note that Lemmas 1 and 2 imply

that as long as no agents have joined a field yet, if an agent joins a field, she always joins A.

Hence, the arrival rates are such that λAs > λBs = λ, implying that field A’s posterior increases

faster than field B’s one. Then, joining A becomes increasingly more attractive relative to B,

creating the “bandwagon”equilibrium feature—that is, early researchers’exploration of field A

“encourages”others to join the same field later.

Since conditional on joining a field, an agent always prefers to join field A, the only reason

to wait is to find out whether bad news about A arrive, which would cause a swap of the chosen

field from A to B. This incentive is reflected in the equilibrium conditions characterizing the

agents’optimal behavior, as we show below. This observation also implies that in equilibrium

there is force limiting the presence of large atoms of agents joining field A at the same time. To

see why, observe that an atom of agents joining A causes a discrete increase in the information

arrival rate in field A, and, if such increase is large enough, it may induce an agent in the atom

9



to deviate and wait for the information benefit generated by the others instead. This suggests

that the equilibrium must involve some gradual entry into A.

Specifically, agents must be indifferent between joining A over the interval [t, t̄], implying

V (s) being equal to a constant—that is, V (s) = κ for any s ∈ [t, t̄]. Furthermore, we must have

λt = λ and V (t) ≤ κ for any t ≤ t, and λt = λ and V (t) ≤ κ for any t ≥ t̄. To guarantee a

constant V (s) in the interval [t, t̄] , we set V ′(s) = 0, yielding the ODE for any s ∈ [t, t̄]

ṗAs
(pAs )2

=
r

pBs
. (2)

To see how the ODE reflects the agents’incentives described above, using ṗAs = λAs p
A
s (1−pAs ),

(2) can be written as

λAs (1− pAs )
pBs v

r
= pAs v. (3)

Consider an agent evaluating an infinitesimal increase in the wait s, ∆s. The LHS of (3)

represents the benefit of such additional wait: with probability (1−pAs )λAs ∆s, the agent receives

bad news about field A during that time, which induces her to switch her decision from joining

field A to joining field B instead, yielding an expected payoff of pBs
v
r
rather than zero. However,

while waiting ∆s, the agent is foregoing the income pAs v∆s. Hence, the RHS of (3) represents

the cost of such an additional wait. Using (2) at the lower cutoff, we obtain the time at which

the bandwagon wave starts:

t =
1

λ
ln

[(
1− pA0

)
λ

rpA0
− 1− pB0

pB0

]
≥ 0. (4)

From (4), it is apparent that t ≥ 0 if and only if r ≤ r. If this is the case, we obtain

the equilibrium processes λAs and p
A
s for s ∈ [t, t̄], and we use λAs to obtain the ending time

of the wave by finding the t at which all agents have joined field A—that is, λt = λ.10 If

r > r, agents are more impatient and they start joining field A at t = 0. Therefore, by setting

λ̂ = min
{

rpA0
(1−pA0 )pB0

, λ
}
, we obtain an equilibrium in which an atom λ̂ of agents join A at t = 0,

and, if there are agents left, they join A gradually according to a process similar to Part 1.

Note that this scenario always occurs when λ = 0, and therefore in equilibrium pBt = pB0 for all

t.

We use the equilibrium characterization of λAs to describe the shape of the equilibrium

research wave in the following corollary (whose proof is presented in the Supplemental Ap-

10See (15), (16), and (14) in the Appendix for the equilibrium characterizations of λAs , p
A
s , and t.
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pendix).11

Corollary 1 (Bad News-Wave Properties) We have:

1. The equilibrium λAs is convex over the interval
(
t, t
]

;12

2. There is a finite t̃ > t such that limλ→∞ t = t̃.

To see the intuition of the convexity in Part 1 of Corollary 1, consider a fixed delay in

joining A early vs. later in the wave, and for simplicity, consider λ → 0, so that pBt ' pB0 for

all t. From (3), since λAs is increasing in s, the change in
1−pAs
pAs
, and therefore the change in the

cost of delaying joining A relative to B is higher later on. Therefore, to maintain indifference,

researchers need to be compensated with increased information—that is, a larger change in λAs —

later in the wave, resulting in a convex equilibrium pattern of λAs . Note that when p
B
t increases

over time (i.e., λ > 0), the option of waiting becomes increasingly more desirable, and the

needed change in λAs relatively smaller. Corollary 1 guarantees the resulting pattern of λ
A
s still

to be convex.

To understand Part 2 of Corollary 1, note that neither (4), nor the equilibrium processes

λAs , or p
A
s (see (15) and (16) in the Appendix) depend on λ. Hence, as λ grows, the starting time

t and the structure of the equilibrium wave remain exactly the same, but its length increases—

that is, t increases. Nevertheless, Part 2 of Corollary 1 guarantees that as λ grows large, the

length of the wave is bounded above by t̃− t, yielding a arbitrarily fast wave. This is because
as pAs grows closer to 1, the relative impact of the same change in λAs is lower, and there is a

strong incentive to join A. Therefore, to maintain indifference between joining A and waiting,

agents need to be compensated with a large amount of additional information, generated by

arbitrarily large increases in λAs .

To conclude, it is instructive to compare the results of this section to the previous bandit

literature that has analyzed the case of one risky arm with reversible investments in the bad

news case. Since in our equilibrium agents have an incentive to wait before joining A only

because they can potentially receive bad news about field A (and in that case, switch entry

to field B), there is no substantial strategic interaction between the two fields. Therefore, the

equilibrium behavior in our setup is qualitatively similar to the literature with one risky arm.

11Note that convexity pattern and the wave properties described in Corollary 1 and Proposition 2 are expressed
in terms of the equilibrium process λAs . The equilibrium mass of researchers joining A over time can be derived

as
{
λ−1(λAs )

}
, whose pattern depends on the specific assumptions made on the function λ (·).

12From Part 2 of Proposition 1, if r ≥ r, we have t = 0.
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The only implication of the second field being risky is the fact that the expected payoffobtained

from switching to B increases over time. As mentioned above, this affects the length and speed

of the wave, as a more attractive prospect for B generates a greater incentive to wait for bad

news about A, and therefore an increasingly slower (and longer) bandwagon wave than in a

scenario in which the second field’s payoff is fixed at a ‘safe’ level pB0 v. The nature of the

strategic interaction between the two risky fields is substantially different, and affects the result

in a qualitative way, in the good news case, as we explore in Section 4.

3.2 Comparative Statics in the Bad News Case

The next result illustrates how the bandwagon research wave characterized in Proposition 1

changes in response to changes in the prior beliefs about the fields’viability. Here we focus on

the case of agents that are relatively patient—that is, r ≤ r, while in the Supplemental Appendix

we present the r > r case.13

Proposition 2 (Bad News - Comparative Statics for low r) When r ≤ r, as pA0 increases

or pB0 decreases locally, we have:

1. t decreases (wave starts earlier);

2. pAt decreases (wave starts at a lower posterior cutoff );

3. For any k > 0, λAt+k and p
A
t+k decrease (slower wave);

4. t− t increases (longer wave).

Proposition 2 states that if agents are relatively patient, as the fields’ prior beliefs are

increasingly further apart, the bandwagon wave described in Part 1 of Proposition 1 starts

earlier and at a lower posterior’s cutoff, grows more slowly, and lasts longer. To understand

the intuition behind this result, consider p̃A0 > pA0 , while still maintaining r ≤ r (hence, we are

considering a local change around pA0 ). Also, recall that, from Part 1 of Proposition 1 and (3),

at any point along the wave, the equilibrium processes have to satisfy

λAs (1− pAs )

pAs
=

r

pBs
. (5)

First, consider (5) at s = t, when the arrival rate is λAs = λ. As seen previously, at t = 0,

the LHS of (5) is higher than the RHS, and, as the posteriors increase, they are both moving

13The proof of of Proposition 2 is also presented in the Supplemental Appendix.
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Figure 1: Effect of an Increase in pA0 on the Equilibrium
{
λAs
}
in the Bad News Case

downward. A higher prior p̃A0 decreases the LHS, resulting in a shorter time to reach the point

t̃ at which this condition is satisfied. Therefore, since r
pBs
is decreasing at a exogenous rate, the

intersection corresponds to a higher λ(1−pAs )
pAs

, yielding a lower cutoff posterior pA
t̃
< pAt .

Consider now a fixed amount of time elapsed in the wave, k > 0, and consider an agent

considering a small delay in joining A. Since t̃ < t, and the process
{
pBs
}
is fixed, pB

t̃+k
< pBt+k,

resulting in a higher RHS in (5)—that is, a higher incentive to join A immediately rather than

waiting, because waiting for bad news on A and joining B became relatively less appealing.

Hence, in order to maintain indifference, the relative appeal of joining A has to decrease as well,

resulting in pA
t̃+k

< pAt+k. Moreover, since the rate of increase of the RHS is lower than the rate

of increase of
1−pAt+k
pAt+k

, to maintain equality, λAt+k has to go down. Similar arguments apply to a

decrease in pB0 .
14 Figure 1 illustrates the effect of an increase of pA0 on the equilibrium process

λAs .

As mentioned above, in the Supplemental Appendix, we fully characterize the equilibrium

wave in the r > r case and we present the comparative statics analysis associated with this

case.

14Note also that since r ≡ λpB0 (1−p
A
0 )

pA0
, a substantial increase in pA0 or decrease in p

B
0 may induce the equilibrium

to switch from the scenario described in Part 1 to the one in Part 2 of Proposition 1—i.e, the earlier start of
the wave caused by a significant increase of pA0 or decrease of p

B
0 may cause the wave to start with an atom of

agents joining A at t = 0.
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4 The Good News Case

4.1 Equilibrium Analysis in the Good News Case

The analysis of the good news case departs from the bad news case in two main aspects. First,

recall that, by Lemmas 1 and 2, the first field to be joined by any agent must be A. In the good

news case, as agents join field A, its posterior starts decreasing at a higher rate than field B’s

posterior, so that their ranking can potentially reverse. This suggests that in the good news

case field B may be explored even in the absence of news arriving on either field.

Second, when an agent is planning to join a field i = A,B, the incentives to wait stem from

the potential arrival on good news on the other field, −i. In fact, the arrival of such news would
induce the agent to switch course and join −i instead. Therefore, the analysis of the good news
case features a strategic interaction between the two fields that is absent from the bad news

case, as the information arrival process of field −i influences the incentives to join field i.
We start by noting that, once good news arrives on a field, all the remaining agents join that

field and obtain the continuation value v
r
. Therefore, as before, we only need to characterize

the equilibrium strategies of the agents while they wait for any news to arrive.

Given the strategies followed by others, which generate the processes
{
λAs
}
and

{
λBs
}
, we

consider an agent’s strategy of waiting until s (unless news arrives), and then, by Lemma 1,

join the field with the highest current posterior pis. The value of such a strategy evaluated at

t = 0 is

V (s) ≡ v

r

s∫
0

(
pAt λ

A
t + pBt λ

B
t

)
e−

∫ t
0 (r+pAz λ

A
z +pBz λ

B
z )dzdt

+
v

r

(
e−

∫ s
0 (r+pAz λ

A
z +pBz λ

B
z )dz
)

max
i=A,B

pis. (6)

Similarly to the bad news case, the first term of (6) captures the benefits arising if good

news about one of the fields arrive before s. Specifically, good news arrives on field i = A,B at

time t < s with probability pitλ
i
t. Then, the agent joins that field and obtains

v
r
. The second

term captures the scenario in which no news has arrived by time s, and the agent joins the field

with the highest current posterior.

We are now ready to construct the equilibrium in the good news case. Suppose that no agent

joins any field initially, so that both posteriors start decreasing under the information arrival

14



rate λ. Since pA0 > pB0 , by Lemmas 1 and 2, if an agent decides to join a field in this initial

period, she always selects field A. In particular, suppose that, similarly to the bad news case,

as long as no news arrives, agents gradually join field A along some interval
[
t, t
]
. Following

techniques similar to the bad news case, it is easy to show that the indifference condition for

any s ∈
[
t, t
]
would amount to

λpBs (1− pAs )
v

r
= vpAs . (7)

The LHS of (7) captures the benefits of a small delay, ∆s, in joining A. As discussed above,

the benefit of waiting in this phase is associated with the possibility of receiving good news on

field B, which occurs with probability λpBs ∆s. In this case, such news allows an agent to switch

away from her default plan of joining field A, yielding a net benefit of (1 − pAs )v
r
. The RHS

represents the flow utility forgone while waiting before joining A, vpAs ∆s. As λ is fixed and

the evolution of pBs depends on it, for agents to gradually join A, we need the process λ
A
s to

be constructed so that the induced pAs satisfies (7). As it turns out, (7) implies that p
A
s would

need to decrease more slowly than pBs , which is not possible since λ
A
s > λ. Thus, if agents join

field A at all, they must join it all together as an atom of some size λA > λ.

Suppose that an atom of agents of size λA > λ join A at t = 0. For any fixed posteriors’

level, field A’s posterior decreases faster than the posterior of B, causing the two posteriors to

cross at some finite ŝ(λA) > 0, and, from then on, their ranking to reverse.15 Via Lemma 1,

this opens the door to the potential exploration of B at some s ≥ ŝ(λA) despite no good news

arriving on it. Proposition 3 characterizes the (unique) equilibrium in the good news case.16

Proposition 3 (Good News - Equilibrium) There exists r̃ > r such that

1. If r < r̃, all agents wait indefinitely for news;

2. If r > r̃, there exists λ̂
A
> λ such that:

(a) If λ̄ ≤ λ̂
A
, all agents join field A at t = 0;

(b) If λ̄ > λ̂
A
, then (i) An atom of agents λ̂

A
joins A at t = 0; (ii) An atom of

agents λ̂
B
< λ̂

A
joins B at some t∗ > ŝ(λ̂

A
); (iii) If there are agents left, they

join B gradually in the interval [t∗, t), with t ∈ (t∗,∞] and λBs < λ̂
A
for all

s ∈ (t∗, t); (iv) If t = ∞, a remaining atom of agents waits indefinitely for

news.
15See Lemma A1 in the Appendix for the characterization of the crossing time ŝ(λA).
16For uniqueness, we ignore the non-generic case r = r̃, for which both equilibria described in Parts 1 and 2

of Proposition 3 exist.
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To describe the construction of the equilibrium in Proposition 3, for any λA, λB ≥ λ, let us

define as Vj(s|λA, λB) the utility of waiting until time s > 0 (unless good news arrives), and

then joining field j = A,B—that is, V (s) defined in (6)—when the information arrival rates in

the fields A and B are held constant at λA and λB, respectively, from t = 0 to s.17 Then, we

let t∗(λA) be the lowest t that satisfies

VB(t|λA, λ) = sup
s>0

VB(s|λA, λ).

In words, fixing the information arrival rates λA and λ in fields A and B, respectively, t∗(λA)

is the (earliest) time at which the value of joining field B peaks.

To understand Part 1 of Proposition 3, assume that no other agent joins either field unless

good news arrives. Lemma 2 implies that if an agent joins a field, the field of choice must be A.

Note also that if at any point in time s an agent is not willing to join A—that is, V ′A(s|λ, λ) > 0—

since pAs decreases over time, the incentive to join A becomes even lower later on, implying

that the agent would rather wait indefinitely for news. Hence, if V ′(0) > 0, or, recalling that

r ≡ λpB0 (1−pA0 )

pA0
, r ≤ r, everybody has an incentive to wait indefinitely for news. Moreover, if

V ′(0) = λpB0 (1 − pA0 )v
r
− vpA0 < 0, or r > r, then V (s|λ, λ) is maximized either at s = 0, or at

s =∞. Since the rate r̃ makes an agent indifferent between these two choices, for any r < r̃ in

equilibrium, all agents wait indefinitely for news.

In Part 2 of Proposition 3, since r > r̃ > r, we have V ′A(0|λ, λ) < 0—that is, agents are

willing to join A as an atom at s = 0 rather than wait any small amount of time. As noted

above, for any atom of agents λ̂
A
that join A at s = 0, there is a time in the future ŝ(λ̂

A
) > 0

at which the posteriors cross, and their ranking reverses.

Next, note that for any agent to join B at any time t > 0, such agent must be indifferent

between doing that and join A at t = 0, together with the agents in the atom λ̂
A
. Hence,

the size of the atom λ̂
A
must be chosen to guarantee such indifference. Fixing s > 0, note

that VB(s|λA, λ) increases in λA. This is intuitive, since the more agents join A at s = 0, the

more information becomes available for agents waiting to join B in the future, yielding, keeping

everything else constant, an increase in the value of the strategy of planning to join B at any

s > 0. Then, we define λ̂
A
to be such that VB(t∗(λ̂

A
)|λ̂

A
, λ) =

pA0 v

r
. In words, we set λ̂

A
so that

the peak of VB(s|λ̂
A
, λ) yields exactly the same utility as joining field A at t = 0. If λ̄ < λ̂

A
,

all agents join A at s = 0, and the game ends. However, if λ̄ > λ̂
A
, we let an atom of size

17For a formal definition of Vj(s|λA, λB), see (17) in the Appendix.
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λ̂
A
of agents join A at t = 0. Hence, by construction, agents are indifferent between joining A

at s = 0 and joining B at some time t∗(λ̂
A

) in the future, when VB(s|λ̂
A
, λ) reaches its peak.

Note that this process simultaneously determines λ̂
A
and the time of joining B, t∗ ≡ t∗(λ̂

A
). To

guarantee agents to be willing to join B at t∗ rather than A, we also show that t∗ occurs after

the posteriors’crossing ŝ(λ̂
A

).

Next, we quantify the atom of agents λ̂
B
joining B at t∗, and we address the possibility

that more posteriors’ranking reversals could potentially occur in equilibrium. For agents to be

willing to join B at t∗ it must be the case that V ′B(t∗|λ̂
A
, λ̂

B
) ≤ 0, or, equivalently, λ̂

A
pAt∗(1 −

pBt∗)
v
r
− vpBt∗ ≤ 0. This requires pBt∗ not to decrease (under the rate λ̂

B
) too fast with respect to

pAt∗ (under the rate λ̂
A
) after t∗. We show (see Lemma A4 in the Appendix) that this condition

amounts to λ̂
B
≤ λ̂

A
(1− pAt∗) < λ̂

A
. It could be the case that the agents left in the market after

λ̂
A
joined A are below such an upper bound for λ̂

B
. If that is the case, all remaining agents join

B at t∗ and the game ends. However, if after an atom λ̂
B

= λ̂
A

(1− pAt∗) of agents join B at t∗,

there are still agents left on the market, they must gradually join field B after t∗. To guarantee

indifference in joining B over an interval of time [t∗, t], we need

V ′(s) = λ̂
A
pAs (1− pBs )

v

r
− vpBs = 0

to be satisfied for any s ∈ [t∗, t]. As seen before (again, see Lemma A4 in the Appendix), this

requires the trickling into B to be governed by the condition λBs = λ̂
A

(1 − pAs ) < λ̂
A
for all

s ∈ [t∗, t). As t grows arbitrarily large, if the pool of agents is not exhausted before, pAs converges

to zero, and therefore λBs converges to λ̂
A
. Since the gradual entry into B is bounded above by

λ̂
A
, if the total mass of agents in the market is large (i.e., m > 2λ−1(λ̂

A
)), the remaining agents

that have joined neither A nor B wait indefinitely for news on either field. The trickling into

field B extended to infinity guarantees indifference to be satisfied at the limit.18 ,19 Moreover,

as a last step in this construction, note that λBs < λ̂
A
for any s ≥ 0 guarantees the posteriors

beliefs induced by λ̂
A
and

{
λBs
}
do not cross again, ruling out further atoms of agents joining

any field after the ones we described. In turn, this implies that no more posteriors’ ranking

reversals are possible in equilibrium.

Finally, note that a necessary condition for field B to be explored in equilibrium is r ≥ r.

Recall from Proposition 1 that, in the bad news case, this set of parameters is associated with

18The proof in the Appendix shows that the equilibrium is unique, and the cases accounted for in Proposition
3 exhaust all parameters.
19As r grows arbitrarly large, it is easy to see that λ̂

A
becomes arbitrarly large as well. Then, Proposition 3

implies that all agents join field A at t = 0.
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an atom of agents joining A at t = 0, followed by the remaining agents to trickle gradually

into A. In the good news case, it is precisely the fact that some agents are willing to join A

immediately, that causes that field’s ultimate “downfall,” resulting in other agents switching

away from A and exploring B instead. Put simply, since the agents that join A increase the

rate of arrival of good news in that field, absent the arrival of such news, at some point field

B is bound to become more attractive than A. Expecting this, some agents do not join A

immediately and wait instead, planning to join B at some point in the future if no news arrives

before. The value of the information accrued until that point compensates them for the loss of

the flow payoff they could have earned in the meantime. However, in the good news case, if no

agent is willing to join field A initially, nobody ever will. Then field B never catches up, and

all agents wait indefinitely for good news on either field.

4.2 Comparative Statics in the Good News Case

4.2.1 Population Size and Information-Production Technology

From the equilibrium construction in Proposition 3, it is apparent that the population size m

(or equivalently, the information-production technology λ(·)) ultimately determines the extent
to which field B is explored. If m is small (i.e., m ≤ λ−1(λ̂

A
)), all agents join field A at t = 0,

and field B remains unexplored. For intermediate levels of m (i.e. λ−1(λ̂
A

) < m ≤ 2λ−1(λ̂
A

))

all agents that have not joined A initially join B either at t∗, or gradually after t∗. If m is large

(i.e., m > 2λ−1(λ̂
A

)), field B asymptotically converges to the same size of A, and the remaining

agents wait indefinitely for news.

Also, the shape of the information-production technology λ(·) affect the relative sizes of the
agents’groups that join field A field B, or wait indefinitely for news in equilibrium, denoted

by mA, mB, and m−mA −mB, respectively.20 Specifically, given m and λ, consider a convex

λ(·), as in the left panel of Figure 2. For example, in the hard sciences, a convex λ(·) captures
laboratories needing some critical mass of personnel overlooking the day-to-day operations

before being able to conduct research. In such a scenario, many agents need to join A before

reaching λ̂
A
, leaving scarce room for field B to grow. Alternatively, consider a concave λ(·)

(as in the right panel of Figure 2), in a field in which there are decreasing return of scale to

information production. Then, a relatively smaller mass of agents is required to reach λ̂
A
,

implying that field B could eventually grow to the same size of A. However, there may be a

20Formally, mj = limt→∞mj
t for j = A,B.
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Figure 2: Impact of Information-Production Technology on Equilibrium with Good News

significant amount of agents waiting indefinitely for news.

4.2.2 Prior Beliefs on Fields’Viability

The next result (whose proof is in the Supplemental Appendix) studies the impact of a change

in priors on the structure of the equilibrium characterized in Proposition 3.

Proposition 4 (Good News - Change in Prior Beliefs) We have

1. If r < r̃, a local change in pA0 or p
B
0 has no effect on the equilibrium structure;

2. If r ≥ r̃, as pB0 increases locally, λ̂
A
decreases.

Part 1 of Proposition 4 follows immediately from the fact that, from Part 1 of Proposition

3, if r < r̃ all agents wait indefinitely for news. Any change in the priors pA0 and pB0 which

preserves r < r̃ does not affect the equilibrium structure. Consider now r ≥ r̃, for which

the equilibrium follows the structure in Part 2 of Proposition 3. Note that an increase of pB0
does not affect VA(0), but, everything else held constant, shifts VB(s|λ̂

A
, λ) up for all s > 0.

This implies that, in order to guarantee the agents being indifferent between joining field A at

t = 0 and waiting to join B later, the peak of VB(s|λ̂
A
, λ) has to decrease. This is achieved by

decreasing the information the agents receive waiting for news—that is, by decreasing λ̂
A
. Note

that a decrease of λ̂
A
constitutes a double-edged sword with respect to the exploration of field
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B: On the one hand, it makes it more likely to occur, as a smaller λ̂
A
is less likely to exhaust

all agents on the market. On the other hand, since in equilibrium, in the absence of news, the

size of field B is bounded above by the size of field A (i.e. λBs < λ̂
A
for all s ≥ 0), a decrease

of λ̂
A
reduces the maximal size that field B can reach without good news arriving on it.

5 Research Incentives

In this section we consider several policies that are common in the scientific community and we

evaluate their impact on our results.

5.1 First-Mover Advantage

Researchers who enter early into a new field of investigation tend to obtain more recognition.

This can occur, for example, by using citations’counts as a measure to assess the impact of a

researcher’s work and to determine their promotions or salary increases. Consider the following

simple model of citations, or more in general, first-mover advantage for joining an unexplored

field first. Suppose that if a researcher joins a field i = A,B at time t ≥ 0, and no positive

mass of agents joined i before, her flow utility from then onward is piτγv for τ ≥ t, where γ > 1.

If a researcher joins a field where a positive mass of researchers is already present, her payoffs

are the same as in the standard model described in Section 2 (which corresponds to the γ = 1

case). For simplicity, we assume that if multiple researchers join field i first at the same time

they each receive the flow utility piτγv—that is, there are no congestion externalities.
21 We focus

the analysis of this section on a large enough γ.

Citations with Bad News. At first glance, one could conjecture that after a positive

mass of agents joined A, since joining A does not entail the benefit γ any longer, while B still

does, it becomes more attractive for others to join B. Then, according to this intuition, a large

enough first-mover advantage—that is, a large γ—may break the bandwagon wave illustrated in

Proposition 1, and introduce research diversification in the bad news case. As we show in the

next result (whose proof is in the Supplemental Appendix), it turns out that this is not the

case.

Proposition 5 (Bad News - Citations) In the presence of a first-mover advantage, if γ is

large enough, all equilibria are as follows: for any s ∈ [0, t] there is an equilibrium in

21At the end of this section, we discuss how the congestion externalities affect the analysis.
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which all agents join A at s. Therefore, unless bad news about A arrives early enough,

no agent ever joins field B.

Proposition 5 illustrates the multiplicity of equilibria generated by the coordination element

present in this environment. Nonetheless, the result guarantees that all equilibria are charac-

terized by one surge into A, and it rules out both slow waves into A and, unless bad news on

A arrives early enough, any exploration of B.22 To see why, note that agents must still join

field A first. Then, consider an agent who, once a positive mass of agents have joined A, plans

to join B at some point in the future. For such an agent, the cost of increasing the wait by

∆s is the foregone flow payoff vγpBs ∆s. However, with probability (1 − pBs )λ∆s, the potential

arrival of bad news about B induces the agent to switch her plan and join A instead, yielding,

since joining A does not entail the benefit γ any longer, a payoff of pAs
ν
r
rather than zero, and

therefore an expected marginal benefit of the additional wait of pAs
ν
r
(1 − pBs )λ∆s. Hence, for

a large enough γ, the marginal cost of waiting is larger then the marginal benefit, implying

that, if a positive mass of agents joins A, any entry into B must occur at the same time as the

entry into A. However, at that time, joining field A along with the others dominates joining

B, making entry into B not feasible in equilibrium. Hence, in equilibrium, all agents must

join A together. As seen in Section 3, since the utility obtained from joining A when nobody

else has joined peaks at t, there cannot be an equilibrium in which all agents join A at any

time after t (as any agent would have a profitable deviation in joining A slightly before the

others). However, since the utility from joining A increases over [0, t], for any s ∈ [0, t] there is

an equilibrium in which all agents join A together at s—constituting a coordination failure for

any s < t.

Citations with Good News. Considerations similar to the ones illustrated in the bad

news case prevent entry into B in the good news case also. Therefore, the potential exploration

of both fields illustrated in Proposition 3 ceases to exist when γ is large enough. Similarly to

the bad news case, at any s such that VA(s|λ, λ) is increasing, we can sustain an equilibrium in

which all agents join A at s. In addition, if r is low enough, there is an equilibrium in which

all agents wait for news indefinitely.23

Proposition 6 (Good News - Citations) In the presence of a first-mover advantage, if γ

22The timeline for the arrival of bad news on A to allow exploration of B is tighter than in Proposition 1.
In the γ = 1 case, as long as bad news on A arrives before the end of the wave, t, some exploration of field B
occurs in equilibrium. Here, bad news arriving before t < t is a necessary condition for any exploration of B to
occur.
23The proof of Proposition 6 is in the Supplemental Appendix.
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is large enough, agents either all join A at the same time, or all wait for news indefinitely.

To summarize, Propositions 5 and 6 imply that in the presence of a large first-mover ad-

vantage (e.g., citations’benefits), the bandwagon wave into field A persists and accelerates in

the bad news case, and the exploration of both fields is prevented in the good news case.

Finally, note that we have deliberately modeled the first-mover advantage in a very stark

manner, as (i) only the very first movers receive an advantage (i.e., there is no advantage in

joining a field immediately after a positive mass of first movers), and (ii) the size of the first-

mover advantage does not depend on how many agents obtain it (i.e., there are no congestion

externalities). Note that the dynamic insights uncovered in Propositions 5 and 6 are robust to

the introduction of some congestion externalities: As discussed, the incentives to wait for news

before joining B are diminished because A is already populated, and congestion externalities

present in field A would tend to lower such incentives even further.24In Section 6.1, we briefly

discuss a more nuanced way to introduce citations in our model, as a direction for further

research.

5.2 Deadlines

Under a tenure-clock system, researchers are on a track leading to a “up or out”promotion

decision. Hence, they face a urgency to select their specialization early enough to be able to

build a record in their chosen field before their “clock”expires. To explore the implications of

such a policy, we now introduce a deadline 0 < T < ∞, such that if an agent does not join
either A or B by time T , they receive a zero flow payoff from that point on.

In the bad news case, the effect of introducing the deadline T is mechanical: in the absence

of news arriving in any field, any agents who did not join A before T , joins A at T . The

equilibrium characterization preceding the deadline is completely unchanged with respect to

Proposition 1. Since this result is straightforward, we present it in the Supplemental Appendix.

We now describe how in the good news case, introducing a deadline has a substantial impact

on the equilibrium structure before its expiration. Recall that λ̂
A
and t∗ are the size of the

atom of agents joining field A at t = 0, and the time at which an atom of agents join field B,

respectively, in the equilibrium described in Part 2 of Proposition 3. Then, we have:

Proposition 7 (Good News - Deadlines) In the presence of a deadline 0 < T <∞, there
exist r̃(T ) > r strictly increasing in T, such that the unique equilibrium is as follows:

24However, the presence of congestion externalities may facilitate an equilibrium where all agents join the two
fields at the same time, with the relative sizes of the atoms joining each field equalizing their respective utilities.
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1. If r < r̃(T ), all agents join field A at T .

2. If r ≥ r̃(T ), and T ∈ (0, t∗) , then the equilibrium takes one of the following forms:

(a) All agents join field A, either all at t = 0, or some at t = 0 and all others at

t = T ;

(b) An atom λ̃
A
< λ of agents join field A at t = 0, and all others join field B at

t = T. For r ≥ r̃, we have λ̃
A
> λ̂

A
;

3. If r ≥ r̃(T ), and T ≥ t∗, the equilibrium follows Part 2 of Proposition 3, except that

if there are agents still remaining at T, they all join field B at t = T .

First, it could be the case that, when everybody else waits, agents are patient enough to

prefer waiting for the deadline to expire than joining A before it. This occurs when r < r̃(T ),

with r̃(T ) making an agent indifferent between v
r
pA0 and VA(T |λ, λ). If that is the case, in the

only equilibrium all agents join A at T (Part 1 of Proposition 7).

Let us focus now on the case in which agents are willing to join A at t = 0 rather than

wait (Parts 2 and 3 of Proposition 7). In the presence of a deadline, this can happen for two

reasons: either (i) because VA(s|λ, λ) decreases initially, and then reaches its initial level back

again at some s̃ > 0, but the deadline T expires before such s̃ (i.e. r ∈ (r̃(T ), r̃)), or (ii) because

VA(s|λ, λ) stays below its initial value, v
r
pA0 , for any s > 0 (i.e., r ≥ r̃, as in Part 2 of Proposition

3).

In case (i), Part 1 of Proposition 3 guarantees that, in the absence of a deadline, in equilib-

rium all agents wait for news indefinitely. Hence, the presence of a deadline induces agents to

be willing to join A at t = 0, and makes equilibrium diversification possible in environments in

which agents would have waited for news indefinitely otherwise.

Let us now focus on case (ii) above, which captures the same environments of Part 2 of

Proposition 3.25 In general, to sustain equilibrium diversification, some time has to elapse

between the two surges into fields A and B, respectively, so that the posterior of field B can

“catch up” on the posterior of A, and field B can be perceived as the most promising one.

Surely, if the deadline T expires after t∗, the sizes of the surges λ̂
A
and λ̂

B
are the same as in

Proposition 3, and the gradual entry into B after t∗ occurs following the same process, until

either the deadline expires, or no agent remains (Part 3 of Proposition 7).

25While in this discussion we distinguish cases (i) and (ii) to compare the equilibrium outcomes to Proposition
3, the proof of Proposition 7 is constructive, and includes a unified algorithm to identify the (unique) equilibrium,
and the conditions for diversification to arise, for both cases (i) and (ii).
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Moving backwards, consider the range T ∈
(
ŝ(λ̂

A
), t∗
)
, where recall that ŝ(λ̂

A
) is the time

of the posteriors’ crossing in Part 2 of Proposition 3. From Proposition 3, we know that

in this range, VA(T |λ̂
A
, λ) < VB(T |λ̂

A
, λ) < VB(t∗|λ̂

A
, λ). Hence, to restore the indifference

between joining field A at t = 0 (and obtaining pA0 v

r
), and joining field B at T , the size of the

atom of agents joining A at t = 0 has to be increased past λ̂
A
, to some λ̃

A
> λ̂

A
such that

VB(T |λ̃
A
, λ) =

pA0 v

r
. This implies an increased chance of exhausting all agents on the market

and leaving no agents available to explore B. Therefore, under scenario (ii) above, the presence

of the deadline reduces the likelihood of diversification to arise. At the same time, since in

the presence of a deadline no agent can wait for news indefinitely, if diversification arises, all

remaining agents join B at T, implying that the size of field B is no longer bounded above by

the size of field A.

For relatively shorter deadlines (i.e., expiring before ŝ(λ̂
A

)), for diversification to occur in

equilibrium, we still need to guarantee the posteriors to cross before T.When this is not feasible

(because the deadline is too short, or the priors are too far from each other), in equilibrium we

might have either all agents joining A at t = 0, or two sequential surges of agents joining A,

the first at t = 0, and the second at the deadline expiration T. The latter equilibrium structure

is more likely to occur when the total pool of agents is large enough.

To summarize, Proposition 7 shows that the presence of a deadline has nuanced effects

on the equilibrium structure in the good news case. On the one hand, in environments in

which agents are relatively impatient, and diversification can arise in the absence of a deadline,

introducing a deadline always makes diversification less likely to occur. We show that, in such

environments, a shorter deadline is more harmful to equilibrium diversification than a longer

one. On the other hand, when agents are relatively more patient, from Proposition 3 we know

that, in the absence of a deadline, they all wait for news indefinitely. Clearly, the presence of a

deadline prevents this equilibrium outcome and, for well-chosen deadlines, it may also facilitate

equilibrium diversification.

5.3 Subsidies

Research-funding institutions such as the NSF or the NIH often influence future directions of

investigation by specifying field-based priorities according to which subsidies, such as scientific

grants, are assigned. We now consider the possibility that researchers are awarded grants in

one of their potential fields of specializations.

A natural way to model scientific grants is for them to modify the researchers’flow payoffs,
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by improving scientists’ reputations, or by directly increasing their salaries.26 Formally, we

assume that when a grant or subsidy is awarded to one of the two fields j = A,B, a researcher

who joins j at time s ≥ 0, receives an expected flow payoff θpjtv at any t ≥ s, for some θ > 1.

Clearly, the θ = 1 case corresponds to the standard case described in Section 2. In general, the

presence of a subsidy increases the cost of waiting before joining the subsidized field. However,

if an agent is waiting to join the non-subsidized field, the benefit from waiting increases (since

receiving news may induce the agent to switch course and join the subsidized field instead).

Also, if a subsidy for field j is such that θpj0 > 1, all agents always prefer joining j at t = 0

and receiving θpj0
v
r
, rather than waiting and receiving at most v

r
in the future. Hence, in what

follows we focus on θpj0 ≤ 1.

Grants with Bad News. It is easy to see that if the subsidy is awarded to field A, the

equilibrium structure of Proposition 1 remains the same, as the incentives to join field B are

reduced even further. Note however that the cost of waiting to join field A is now higher while

the benefits of waiting remain the same. This implies that the bandwagon wave into field

A starts earlier and is faster than in Proposition 1, resulting in a shorter wave (to maintain

indifference, the incentives to wait need to be increased by increasing the information received

while waiting, i.e.,
{
λAs
}
).

Consider now a subsidy awarded to B. If the subsidy is such that θpB0 > pA0 , then the

initial ranking of the fields swaps, generating an equilibrium bandwagon wave into B. As it

turns out, the equilibrium may still entail a bandwagon wave into B even if θpB0 < pA0 but

pA0 − θpB0 is relatively small. In fact, as both posteriors pAs and pBs increase, the difference

between them decreases over time, so that θ could compensate for the difference between them

at some point in the future. If such a reversal occurs early enough, a bandwagon wave into B

arises in equilibrium. Finally, if the subsidy is very small, then the bandwagon wave into A

persists, but, since the benefit of waiting for bad news about A is higher, it becomes slower than

in the θ = 1 case. Hence, the presence of the subsidy may alter which field individuals join, but

the bandwagon feature of the equilibrium with bad news persists. These results are summarized

in the following result (whose proof is in the Supplemental Appendix).

Proposition 8 (Bad News - Grants) In the bad news case with grants ( θ > 1), the unique

equilibrium is as follows:

1. If the grant is awarded to A, unless news arrives, all agents gradually join field A.
26Alternatively, we could model research funding by assuming that it affects the shape of the function λ(·)

(e.g., scientific grants may allow labs to automate some tasks). We illustrate these effects in Section 4.2.2.

25



Such bandwagon wave starts earlier and is faster than in the θ = 1 case.

2. If the grant is awarded to B, there exists a K > 0 such that a bandwagon wave into

B arises in equilibrium if and only if pA0 − θpB0 ≤ K. Otherwise a bandwagon wave

into A arises, and it is slower than in the θ = 1 case.

Grants with Good News. In the good news case, scientific grants do not substantially

change the structure of the equilibrium described in Proposition 3, but affect both the envir-

onments in which research diversification arises, and the relative sizes of the two fields. As

mentioned above, a grant awarded to field i = A,B makes agents relatively less patient when

they plan to join i (both because the opportunity cost of joining i increases, and the relative

benefit if good news on −i arrives decreases), and more willing to wait when they are planning
to join −i (because the relative benefit if good news about i arrives increases). Hence, if a grant
is awarded to field A, since field A must still be the first one to be explored, the equilibrium

outcome in which all agents wait indefinitely for news is less likely to arise as θ grows, and the

scenario in which an atom of agents join A at t = 0 is more likely to occur. Note that, since

the payoff from joining A at t = 0 increases in θ, to maintain indifference between joining A at

t = 0 and joining B later, such atom must increase in θ—that is, as discussed in Section 4.2.1,

it is more likely that all agents join A at t = 0, but when this is not the case, more exploration

of field B can occur in equilibrium.

Next, consider a grant awarded to field B. If such grant is such that θpB0 > pA0 , the

same implications just described for a grant awarded to field A hold, with the fields’ roles

reversed. However, in the case of a smaller grant (i.e., θpB0 < pA0 ), field A remains the first

one to be explored, but the atom of agents joining A at t = 0 decreases in θ, making research

diversification increasingly more likely to arise. These considerations are summarized in the

following result, whose proof is in the Supplemental Appendix.

Proposition 9 (Good News - Grants) In the good news case with grants, the unique equi-

librium is as follows:

1. If a grant is awarded to field A, there is r̃A(θ) decreasing in θ such that the equilib-

rium follows Proposition 3, with λA(θ) increasing in θ.

2. If a grant is awarded to field B, we have:

(a) If θpB0 > pA0 , there is r̃
B(θ) decreasing in θ such that the equilibrium follows

Proposition 3, with the fields’roles reversed and λB(θ) increasing in θ;
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(b) If θpB0 < pA0 , there is r̂
B(θ) increasing in θ such that the equilibrium follows

Proposition 3, with λA(θ) decreasing in θ.

6 Conclusion

6.1 Extensions and Further Research

We study a strategic experimentation setting in which researchers irreversibly choose their

specialization between two risky fields over time. The information arrival in each field depends

on the mass of researchers who have specialized in that field in the past. We characterize

the unique equilibrium in both the bad news and the good news case, highlighting in which

environments research diversification occurs.

Several insights follow from our analysis. First, in the bad news case, the unique equilibrium

is characterized by a “bandwagon wave”in the dominant field at the offset, implying that no

diversification arises unless bad news on that field is uncovered early enough to make the

exploration of the second field possible. Such bandwagon wave starts slow, and become faster

over time. Moreover, as the priors of the two fields grow further apart, the bandwagon wave

starts earlier and becomes increasingly slower.

Second, in the good news case, research diversification can arise in equilibrium when either

the agents’pool, or the information-production technology effi cacy, are large enough. The fields

are investigated in two sequential surges, the first into the dominant field, and the second into

the other field. The second surge is more gradual than the first one, and it is bounded above

by the size of the first.

Methodologically, our framework provides a tractable setup to study strategic exploration

in research. There are several directions in which our study can be extended. Other than

the policy tools considered in Section 5, other mechanisms can be implemented to influence

scientists’ choices. For example, scientific journals play a critical role in determining what

researchers work on. Editorial choices focusing on “breakthroughs”vs. “breakdowns”are one

margin of such influence. In our model this would translate into endogenizing the nature of

the information arrival in the two fields, and also possibly mixing good news and bad news.

Also, as wider fields splinter into more specialized smaller ones, one can expect the viability of

such subfields to become positively correlated, rather than independent as we assumed. Our

framework can be easily altered to account for all these variations and study their impact.27

27For example, with positive correlation, our qualitative results would not change in the bad news case, while
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While the model we study in Section 5.1 is deliberately simplified, as an alternative way to

incorporate citations’benefit into our model, consider a more nuanced setting in which, once

an agent joins a field i = A,B at time t ≥ 0, his flow payoff is piτ (1 + f(mi
τ −mi

t)) v for all

τ ≥ t, with f(·) strictly increasing, continuous, twice differentiable, and such that f (0) = 0.

The function f(·) captures the benefit generated, via citations, by the flow of subsequent agents
joining the same field. In the bad news case, a bandwagon wave into field A still emerges in

equilibrium, where agents have a stronger incentive to join field A earlier with respect to our

standard setting (corresponding to the f = 0 case), as they lose citations if they wait, resulting

in a faster equilibrium wave. Moreover there can be an additional coordination equilibrium

in which, unless news arrive, nobody ever joins field A, and a bandwagon wave into field B

arises.28 The analysis of this alternative citations’model in the good news case is more subtle

and a promising topic for future research.

In our setup all agents are ex-ante identical. Naturally, any agents’ heterogeneity that

makes some better suited or more inclined to join a field rather than others would affect the

equilibrium indifference conditions both in the bad news and the good news case, and result

in such agents to be more likely to explore their preferred field. The relative sizes of these

exogenous subgroups, and their preferences’intensities are likely to affect the structure of the

resulting equilibria.29 Also, one could consider a setting in which agents are compensated for

their ‘added value,’in the sense that they enjoy an additional benefit from being already in a

field when news arrives, compared to joining after. While this variation is beyond the scope of

this paper, it is an interesting direction for exploration.

Finally, note that our model follows a cohort of researchers over time, and is character-

ized by a symmetric ‘baseline’ arrival rate for the two fields, λ ≥ 0. One could think of a

intergenerational model with potentially asymmetric rates λA ≥ λ and λB ≥ λ, which capture

the information uncovered by more senior researchers who made their specialization choices in

the past, and are still actively engaged in research. As news arrives about one or both fields,

new research ideas can potentially emerge with information arrival rates ‘reset’at λ ≥ 0, until

some young researchers start their exploration. Such extension could yield intergenerational

in the good news case, in the context of the equilibrium studied in Proposition 3, it would delay the crossing of
the posteriors and lower VB(·), making field B less likely to be explored.
28For such equilibrium to exists, the posteriors must cross before the end of the wave, otherwise late agents,

who expect fewer citations, have no incentives to join B rather than A. This is possible for pA0 − pB0 small
enough, or large enough λ.
29Note that in our setup a strictly positive ‘baseline’information arrival rate λ > 0 can capture the presence

of some agents (who remain outside the model), whose inclination for a field is so strong that they prefer to
specialize in it from the offset.
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bandwagon waves in the bad news case, or, in the good news case, to scenarios in which,

since λA > λB at the offset of a new generation, the choices made by more senior scientists

spontaneously yield diversification in the future.

6.2 Welfare

In this paper we have taken a positive approach and analyzed a model in which researchers,

driven by career concerns, sort themselves into fields of investigation. The natural next step in

this research agenda is to study the normative properties of our model. The standard normative

approach in the strategic experimentation literature is a utilitarian one, which considers the

aggregate utility of all researchers, and accounts for the information externalities they impose

on each other. In our application, this approach amounts to taking the perspective of an

academic or professional association, which is tasked with maximizing the aggregate utilities

of the scientists over their careers. In general, information externalities cause the equilibrium

speed of the specializations’ choices to be too slow with respect to the utilitarian optimal

solution.

However, in our view, our application requires a wider approach to welfare analysis. In

particular, scientific research generates externalities to the society at large which go far beyond

the boundaries of the researchers’community. This is the reason why governments are substan-

tially engaged in research funding, directly through public institutions, or indirectly through

grants and other channels.

Of course, the speed, or intensity, at which research is generated, is still relevant from a

broader social perspective. Yet, when we think of the society at large, an additional critical

aspect of welfare is that of research diversity, or its breadth. Researchers may not necessarily

internalize the social value of developing a diverse portfolio of research methodologies, each of

which could be useful to face a future social crisis, such as environmental issues, or a poten-

tial viral pandemic. In other words, society might want to hedge optimally through different

research fields.30

The equilibria in this paper have very different properties with respect to research diversific-

ation. Specifically, our results suggest that ensuring diversification is particularly problematic

to achieve in the bad news case, where, as long as no bad news arrive, only one research field is

30As an example, consider research about vaccines: Since it is uncertain which virus will be the source of the
next pandemic, it could be optimal from a social perspective to conduct parallel research agendas on vaccines
against, say, virus A and virus B. For the optimality of policies that can mitigate multiple social catastrophes,
see Martin and Pindyck (2015).
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ever explored. Such lack of diversification persists in the presence of citation benefits, deadline

effects, and scientific grants awarded to minor fields. In the good news scenario, potentially both

fields can be explored in equilibrium, but societal ineffi ciencies may still arise in terms of the

scope and the timing of the fields’exploration. Such potential diversification may be harder to

achieve after the introduction of citation benefits and tenure clocks, while well-designed grants

can promote diversification and affect the equilibrium relative sizes of the fields, potentially

bringing them closer to the socially optimal research portfolio.31

7 Appendix

In this section we present the proofs of the main results of the paper. All remaining proofs can be

found in the Supplemental Appendix (at https://mariagiovannabaccara.com/Appendix_RW.pdf).

7.1 Proofs for the Bad News Case

Proof of Proposition 1: (1) Let r ≤ r, and conjecture an equilibrium as the one described

in the proposition. In such equilibrium, pAt > pBt for all t ≥ 0, and therefore, by Lemma 1,

nobody has an incentive to ever join field B. Since we need agents to be indifferent between

joining A at any s ∈
[
t, t
]
, we need (1) to be constant over the interval—that is, V (s) = κ for

all s ∈
[
t, t
]
. A necessary condition for this to be true is V ′(s) = 0. After some algebraic steps,

such condition yields the ODE

ṗAs
(pAs )2

=
r

pBs
, (8)

with solution

pAs =
1

−
∫

r
pBs
ds− C

(9)

for some constant C. We can use (9) to solve for the equilibrium λAs , obtaining

λAs =
ṗAs

pAs (1− pAs )
=

r

−pBs
(∫

r
pBs
ds+ C + 1

) . (10)

31Recent work by Hill and Stein (2023 and 2024) empirically quantifies the impact of scientists’incentives on
breadth and depth of research.
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Using pBt =
pB0

(1−pB0 )e−λt+pB0
, we can express pAs and λ

A
s as a function of C and primitives, as

pAs (C) =
λpB0

−λpB0 rs+ r (1− pB0 ) e−λs − λpB0 C
,

and

λAs (C) =
−rλ

[(
1− pB0

)
e−λs + pB0

]
rsλpB0 − re−λs(1− pB0 ) + λpB0 (C + 1)

. (11)

Next, note that condition (8) needs to be satisfied at the two interval extremes. At t, (8)

implies
λ(1−pAt )

pAt
= r

pBt
. From

pjt

1−pjt
=

pj0
1−pj0

e
∫ t
0 λdz =

pA0 e
tλ

1−pA0
for j = A,B, we obtain

rpA0
λ(1− pA0 )− rpA0 etλ

=
pB0

1− pB0
, (12)

which, solving for t, yields (4), where the last inequality is guaranteed by r ≤ r. Next, (11) at

t implies

C(t) = − r
λ
− rt+

r
(
1− pB0

)
e−λt

pB0

(
1

λ
− 1

λ

)
− 1.

Finally, to find t and C, note that (8) at t implies

λpB0
λpB0 + r

[
pB0 + (1− pB0 )e−tλ

] =
pA0

pA0 + (1− pA0 )e

−λt−

t̄∫
t

rλ[(1−pB0 )e−λz+pB0 ]
−rλpB0 z+r(1−p

B
0 )e−λz−λpB0 (C+1)

dz

.

Since

∂ ln(−rλpB0 z + r(1− pB0 )e−λz − λpB0 (C + 1))

∂z
=

−rλ
[(

1− pB0
)
e−λz + pB0

]
−rλpB0 z + r(1− pB0 )e−λz − λpB0 (C + 1)

,

we have
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pA0

pA0 + (1− pA0 )e

− ln

[
(1−pA0 )λ
rpA0

− 1−pB0
pB0

]
+

t̄∫
t

−rλ[(1−pB0 )e−λz+pB0 ]
−rλpB0 z+r(1−p

B
0 )e−λz−λpB0 (C+1)

dz

=
pA0

pA0 + (1− pA0 )
(−rλpB0 t̄+r(1−pB0 )e−λt̄−λpB0 (C+1))

(−rλpB0 t+r(1−pB0 )e−λt−λpB0 (C+1))
e−λt

.

Therefore, we obtain the condition

λpB0 (1− pA0 )
[
−rλpB0 t+ r(1− pB0 )e−λt − λpB0 (C + 1)

]
e−λt

= pA0 r
[
pB0 + (1− pB0 )e−tλ

] [
−rλpB0 t+ r(1− pB0 )e−λt − λpB0 (C + 1)

]
.

Since

C(t) = − r
λ
− rt+

r
(
1− pB0

)
e−λt

pB0

(
1

λ
− 1

λ

)
− 1,

the condition above becomes

pB0
(
1− pA0

)
pA0

=
−rλpB0 t+ r(1− pB0 )e−λt − r

(
1− pB0

) (
1− λ

λ

)
e−λt + λpB0 rt+ λ

λ
rpB0

λe−λt
. (13)

Recall that (12) implies

λ(1− pA0 )pB0
pA0

= etλrpB0 + r(1− pB0 ).

Hence, (13) becomes

rpB0 = −rλpB0 t− λpB0

[
− r
λ
− rt+

r
(
1− pB0

)
e−λt

pB0

(
1

λ
− 1

λ

)]
,

which is equivalent to the following condition to identify t

[
pB0 +

(
1− pB0

)
e−λt

](
1− λ

λ

)
= λpB0 (t− t). (14)

Note that the LHS of (14) decreases in t, and the RHS increases in t. At t, it is easy to see
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that
[
pB0 +

(
1− pB0

)
e−λt

] (
1− λ

λ

)
> 0, while for t→∞,

lim
t→∞

λpB0 (t− t) > lim
t→∞

[
pB0 +

(
1− pB0

)
e−λt

](
1− λ

λ

)
.

Therefore, (14) identifies a unique solution for t. In particular, such solution satisfies t =

t+ (λ−λ)

λλpB
t

. From here, we can get expressions for the equilibrium processes. From (13), we have

rpB0 = −rλpB0 t − λpB0 [C + 1] , implying C + 1 = −r(λt+1)
λ

and C = −r(λt+1)−λ
λ

. Therefore, from

(11), we obtain, for s ∈
[
t, t
]
λAs =

λ
[(

1− pB0
)
e−λs + pB0

]
e−λs(1− pB0 )− pB0 λ (s− t) + pB0

(15)

and pAs =
λpB0

r (1− pB0 ) e−λs − pB0 rλ(s− t) + pB0 r + λpB0
. (16)

To guarantee that this is an equilibrium, we check the second order conditions. In particular,

we must have V (s) < κ for any s < t and s > t. To do so, we will show that dV (s)
ds

> 0 for s < t,

and that dV (s)
ds

< 0 for s > t. By continuity, this implies that V (s) attains it maximum when
dV (s)
ds

= 0, which justifies our first-order conditions approach. For s < t, we have:

V (s) = v
r

[∫ s
0

[
(1− pAt )λpBt + (1− pBt )λpAt

]
e−

∫ t
0 (r+(1−pAz )λ+(1−pBz )λ)dzdt+

(e−
∫ s
0 (r+(1−pAz )λ+(1−pBz )λ)dz)pAs

]
,

yielding

dV (s)
ds

= v
r

[
(1− pAs )λpBs + (1− pBs )λpAs

]
e−

∫ s
0 (r+(1−pAz )λ+(1−pBz )λ)dz

+v
r
ṗAs e

−
∫ s
0 (r+(1−pAz )λ+(1−pBz )λ)dz

−v
r
pAs
[
r + (1− pAs )λ+ (1− pBs )λ

]
e−

∫ s
0 (r+(1−pAz )λ+(1−pBz )λ)dz.

After some algebra, it is easy to check that dV (s)
ds

> 0 if and only if p
B
s (1−pAs )
pAs

> r
λ
. From (12),

we have λpBt (1− pAt )− pAt r = 0, which is equivalent to
pBt (1−pAt )

pAt
= r

λ
.Therefore, dV (s)

ds
> 0 if and

only if
pBs (1− pAs )

pAs
>
pBt (1− pAt )

pAt
⇔ pBs

pBt
>
pAs (1− pAt )

pAt (1− pAs )
.

The last condition is equivalent to

pB0 + (1− pB0 )e−tλ

pB0 + (1− pB0 )e−sλ
>

(pA0 + (1− pA0 )e−tλ)

(pA0 + (1− pA0 )e−sλ)

(1−pA0 )e−tλ

pA0 +(1−pA0 )e−tλ

(1−pA0 )e−sλ

pA0 +(1−pA0 )e−sλ

,
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which, in turn, is equivalent to e−sλ > e−tλ, which holds for s < t. For s > t, dV (s)
ds

< 0 if and

only if (1− pAs )λpBs − pAs r < 0. Recall that (11) at t implies
pB
t

(1−pA
t

)

pA
t

= r
λ
. Therefore, dV (s)

ds
< 0

if and only if

pBs (1− pAs )

pAs
<
pB
t

(1− pA
t

)

pA
t

⇔ pBs
pB
t

<
pAs (1− pA

t
)

pA
t

(1− pAs )
.

The last condition is equivalent to

pB
t

pB
t

(
pB
t

+ (1− pB
t

)e−(s−t)λ
) <

pA
t

pA
t

(pA
t

+ (1− pA
t

)e−(s−t)λ)

(1− pA
t

)

(1−pA
t

)e−(s−t)λ

pA
t

+(1−pA
t

)e−(s−t)λ

⇔

e−(s−t)λ < pBt + (1− pBt )e−(s−t)λ,

which is equivalent to e−(s−t)λ < 1, which holds for s > t. Finally, for equilibrium uniqueness,

note that if r ≤ r, and therefore, V ′(0) ≥ 0, since r > 0, as long as λAs = λBs = λ, V (s) must

reach a peak at a finite t ≥ 0. If an atom of agents joins A at t, (3) implies that V ′(t) > 0, and

therefore any agent in the atom would have an incentive to wait rather than to join A. For

the same reason, we cannot have an atom of agents joining A at any s ∈ (t, t]. Hence, the one

described in Part 1 of Proposition 1 is the only equilibrium possible.

(2) Suppose that r > r, so that, from (4), we obtain t < 0. Let λ̂ > λ solve: λ̂(1−pA0 )

rpA0
= 1

pB0
.

Since r > r implies V ′(0) < 0, an atom of agents is willing to join field A at t = 0 and takes the

arrival rate from λ to λ̂. From there, the equilibrium pAt , λ
A
t , and t can be obtained following a

construction similar to Part 1. We present such construction in detail, and we fully characterize

the equilibrium processes for r > r in the Supplemental Appendix. Since V (s) is constant for all

s ∈ (0, t], this is an equilibrium. Moreover, since lims→0+ V (s) = pA0
v
r
, the agents in the initial

atom are indifferent between joining immediately (and obtain pA0
v
r
), and waiting to join later

in the interval. Finally, for uniqueness, note that if a larger atom λ̃ > λ̂ joins A at t = 0, (3)

would imply V ′(0) > 0, generating a profitable deviation for any agent in the atom. Also, any

atom of agents joining A at any s ∈ (0, t] would create a similar profitable deviation. Therefore,

the only equilibrium possible if there are agents left on the market after an atom of size λ̂ joins

A, is for them to join gradually after the initial atom. �

7.2 Proofs for the Good News Case

We start with a series of Lemmas which are useful in the subsequent proofs.
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Lemma A1 In the good news case, if λAt = λA > λ and λBt = λ for any t ≥ 0, there exists

ŝ(λA) > 0 such that pA
ŝ(λA)

= pB
ŝ(λA)

, and pAs < pBs for any s > ŝ(λA). In particular,

ŝ(λA) =
1(

λA − λ
) ln

[
pA0 (1− pB0 )

pB0 (1− pA0 )

]
.

Proof of Lemma A1: The claim follows immediately from the fact that ŝ(λA) satisfies

pAs =
pA0

pA0 + (1− pA0 )esλ
A =

pB0
pB0 + (1− pB0 )esλ

= pBs .

�

Lemma A2 For j = A,B, for any s ≥ 0, we have:

1. sign
[
V ′j (s|λA, λB)

]
= sign

[
p−js λ−j(1− pjs)− rpjs

]
, and

2. sign
[(

p−js (1−pjs)
pjs

)′]
= sign

[
λj − λ−j(1− p−js )

]
.

Proof of Lemma A2: For Part 1, for j = A,B,

Vj(s|λA, λB) ≡ v

r

[∫ s

0

[
pAt λ

A + pBt λ
B
]
e−

∫ t
0 (r+pAz λ

A+pBz λ
B)dzdt+ pjse

−
∫ s
0 (r+pAz λ

A+pBz λ
B)dz

]
(17)

implies

V ′j (s|λA, λB) =
v

r

[[
pAs λ

A + pBs λ
B
]
e−

∫ s
0 (r+pAz λ

A+pBz λ
B)dz + ṗjse

−
∫ s
0 (r+pAz λ

A+pBz λ
B)dz

−pjs
(
r + pAs λ

A + pBs λ
B
)
e−

∫ s
0 (r+pAz λ

A+pBz λ
B)dz
]
.

Therefore, sign
[
V ′j (s|λA, λB)

]
= sign

[
p−js λ−j(1− pjs)− rpjs

]
. To verify Part 2, note that

sign

[(
p−js (1− pjs)

pjs

)′]
= sign

[
(1− pjt)

ṗ−jt

pjt
− (1− pjt)

p−jt ṗjt(
pjt
)2 −

p−jt

pjt
ṗjt

]
= sign

[
λj − λ−j(1− p−jt )

]
.

�

Lemma A3 When λA and λB are fixed, and λA > λB, lims→∞ V
′
B(s|λA, λB) < 0.
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Proof of Lemma A3: By Lemma A2 (1), sign
[
V ′B(s|λA, λB)

]
= sign

[
λA(1− pBs ) p

A
s

pBs
− r
]
.

Observe that

pAs
pBs

=

pA0 e
−λAs

1−pA0 +pA0 e
−λAs

pB0 e
−λBs

1−pB0 +pB0 e
−λAs

→ 1− pB0
1− pA0

pA0
pB0
e(λB−λA)s → 0

implies that λA(1− pBs ) p
A
s

pBs
− r is negative for large s. �

Lemma A4 Suppose that, fixing λA and λB as constant from t = 0, there is an interval of

time, starting at t > 0 and ending at t > t, along which there is a continuous trickle into

one field i = A,B. Then: (i) Vi(t|λA, λB) is at its max, i.e.,
λ−i(1−pit)

pit
= r

p−it
; (ii) pit > p−it

for any t ∈
[
t, t
]
; (iii) λit = λ−i(1 − p−is ) for any t ∈

[
t, t
]
; (iv) λ−i(1−pit)

pit
< r

p−it
for some

t ∈ (t̄, t̄+ ε).

Proof of Lemma A4: Assume that there is an interval
[
t, t
]
in which agents gradually join a

field, and suppose, without loss of generality, that such field is B. (i) For any t ∈
[
t, t
]
, it must

be the case that

λA(1− pBt )

pBt
=

r

pAt
. (18)

Note that along this interval, λA is fixed. So at the initial time, t, we need (18) to be

satisfied, implying that VB(t|λA, λB) is at its max at t. (ii) pBt > pAt for any t ∈
[
t, t
]
is an

immediate consequence of Lemma 1. To show (iii), since by Part 2 of Lemma A2, we have that

sign

[(
(1−pBt )

pBt
pAt

)′]
= sign

[
λBt − λA(1− pAt )

]
. Hence, to sustain (18), we need λBt = λA(1−pAt )

which implies that λBt < λA for all t ∈
[
t, t
]
. Hence, in the interval

[
t, t
]
, we must have pBt > pAt

and λBt < λA, including at the end of the interval. After time t̄, as pAt is decreasing, we have that

λBt̄ − λA(1− pAt ) < 0 for any t ∈ (t̄, t̄+ ε) (ε chosen so that there are no other atoms of agents

joining the fields within (t̄, t̄+ ε) ). By Part 2 of Lemma A2, this implies that (
(1−pBt )

pBt
pAt )′ < 0

so that, by Part 1 of Lemma A2, λ
A(1−pBt )

pBt
< r

pAt
for t ∈ (t̄, t̄+ ε). �

Lemma A5 For any λB ≥ λ, s > 0, both VA(s|λA, λB) and VB(s|λA, λB) strictly increase in

λA.
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Proof of Lemma A5: Consider VA(s|λA, λB) first. For any fixed λB ≥ λ, consider the

derivative of VA(s|λA, λB) with respect to s. From Part 1 of Lemma A2, we have

∂VA(s|λA, λB)

∂s
= λB(1− pAs )pBs − rpAs .

Note that for any s, and any λA > λ̂
A
, if pAs and p̂

A
s are the posteriors at s under λ

A and

λ̂
A
, respectively, we have pAs < p̂As , implying

∂VA(s|λA,λB)
∂s

> ∂VA(s|λ̂A,λB)
∂s

. Since VA(0|λA, λB) =

VA(0|λ̂A, λB), the claims follows. Next, consider VB(s|λA, λB). Note that VB(s) r
v
can be rewrit-

ten as

VB(s) r
v

= pA0 p
B
0

 s∫
0

(
λAt + λBt

)
e−

∫ t
0 (r+λAz +λBz )dzdt+ (pBs )e−

∫ s
0 (r+λAz +λBz )dz


+pA0 (1− pB0 )

 s∫
0

λAt e
−
∫ t
0 (r+λAz )dzdt+ pBs e

−
∫ s
0 (r+λAz +λBz )dz


+pB0 (1− pA0 )

 s∫
0

λBt e
−
∫ t
0 (r+λBz )dzdt+ pBs e

−
∫ s
0 (r+λBz )dz


+(1− pB0 )(1− pA0 )pBs e

−rs.

The last two terms do not depend on λA. Setting λBz = λB and λAz = λA and simplifying,

the first two terms can be written as

pA0 p
B
0

[(
λA + λB

) 1− e−(r+λA+λB)

(r + λA + λB)
+ e−(r+λA)se−λ

Bs

]
+ pA0 (1− pB0 )λA

s∫
0

e−(r+λA)tdt

The last term is proportional to that of a c.d.f. of an exponential distribution with frequency

λA, which increases in λA. Finally, consider then the derivative of the expression

H(λA) ≡
(
λA + λB

) 1− e−(r+λA+λ)

(r + λA + λB)
+ e−(r+λA)se−λ

Bs

with respect to λA, which is

H ′(λA) =
r(

r + λA + λB
)2 (1− e−s(r+λA+λB)(1 + s(r + λA + λB))) > 0,

as for any κ > 0, 1− e−κ(1 + κ) > 0. �
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Proof of Proposition 3:

Proof of Part 1. First, assume that r <
λpB0 (1−pA0 )

pA0
. Then, Part 1 of Lemma A2 implies

sign [V ′A(0)] = sign
[
λpB0 (1−pA0 )

r
− pA0

]
> 0. Moreover, by Part 2 of Lemma A2,

sign

[(
(1− pAt )

pAt
pBt

)′]
= sign

[
λ− λ(1− pBt )

]
> 0,

implying V ′A(s|λ, λ) > 0 for any s ≥ 0. By Lemma 2, since pAt > pBt for any t ≥ 0, we have

VA(t|λ, λ) > VB(t|λ, λ), and therefore all agents wait for news indefinitely. Next, assume that

r ≥ λpB0 (1−pA0 )

pA0
but that VA(s|λ, λ) >

pA0 v

r
for some s > 0. Since VA(0) =

pA0 v

r
, this must imply

that V ′A(s′|λ, λ) > 0 at some s′ < s. As noted above, by Part 2 of Lemma A2, this implies

V ′A(s|λ, λ) > 0 for all s > s′. At the limit, we have

lim
s→∞

VA(s|λ, λ) =
v

r
λ

[
2pA0 p

B
0

r + 2λ
+
pA0 + pB0 − 2pA0 p

B
0

r + λ

]
.

Therefore, lims→∞ VA(s|λ, λ) ≥ v
r
pA0 is equivalent to

pA0 r
2 + rλ

(
2pA0 − pB0

)
− 2λ2pB0

(
1− pA0

)
≤ 0. (19)

Since the LHS of (19) is increasing in r, consider r = r =
λpB0 (1−pA0 )

pA0
, and note that (19) is

satisfied for such r. Then, consider

pA0 r
2 + rλ

(
2pA0 − pB0

)
− 2λ2pB0

(
1− pA0

)
= 0. (20)

Since the LHS of (20) is increasing for r > 0, such equation cannot have two positive

solutions. Therefore, letting r̃ be the (only) positive solution of (20), we have r̃ > r =
λpB0 (1−pA0 )

pA0
,

and therefore we can conclude that all agents wait indefinitely for news for any r < r̃.

Proof of Part 2. Assume that r > r̃, where r̃ is defined as in the proof of Part 1. From the

discussion above, this implies r ≥ λpB0 (1−pA0 )

pA0
and VA(s|λ, λ) <

pA0 v

r
for all s. Note that, by Lemma

2, VB(s|λ, λ) < VA(s|λ, λ) for all s ≥ 0. Suppose further that λ̄ is such that

max

{
sup
s>0

VA(s|λ̄, λ), sup
s>0

VB(s|λ̄, λ)

}
<
pA0 v

r
,

implying that all agents join A immediately. Next, assume that r ≥ λpB0 (1−pA0 )

pA0
, VA(s|λ, λ) <

pA0 v

r

for all s > 0, and that
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sup
s>0

VA(s|λ̄, λ) >
pA0 v

r
> sup

s>0
VB(s|λ̄, λ).

By Lemma A1, if λA = λ̄, there exists some ŝ for which the posteriors cross, and hence

for all s ≥ ŝ, VB(s|λ̄, λ) > VA(s|λ̄, λ). Note that V ′A(0|λ̄, λ) < 0, and also, by definition,

VA(0|λ̄, λ) =
pA0 v

r
. Thus, it has to be that from some point s′ onwards, V ′A(s′|λ̄, λ) > 0, and

in particular for s′′ for which VA(s′′|λ̄, λ) =
pA0 v

r
. As a result, it has to be that there exists

s̄ > max{s′′, ŝ} for which VB(s̄|λ̄, λ) >
pA0 v

r
, in contradiction with our assumption. Hence, the

only scenario left to check is when r ≥ λpB0 (1−pA0 )

pA0
, VB(s|λ, λ) < VA(s|λ, λ) <

pA0 v

r
for all s > 0,

and sups>0 VB(s|λ̄, λ) >
pA0 v

r
. In particular, defining λ̄∗ to be such that sups>0 VB(s|λ̄∗, λ) =

pA0 v

r
,

our assumptions imply λ̄ > λ̄
∗
. In the remaining of the proof, we characterize the unique

equilibrium that arises in this case.

(1) Next, we argue that if any agent ever joins a field in equilibrium, an atom of them has to

join A at s = 0. By Lemmas 1 and 2, the first agents to join a field must always join A. Lemma

A4 implies that a gradual entry into A is not possible, as it would require λAt = λ(1− pBs ) < λ.

Then, VA(s|λ, λ) has to peak where an atom of agents join A. By Lemma A2, the sign of

V ′A(s|λ, λ) is the same as the sign of λ(1 − pAt )
pBt
pAt
− r, and

(
(1−pAt )

pAt
pBt

)′
= λ − λ(1 − pBt ) > 0.

This implies that VA(s|λ, λ) has its peak either at s = 0 or at s =∞, proving our claim that if

any agent joins a field ever in equilibrium, an atom of them has to join A at s = 0.

(2) Note that we cannot have an equilibrium in which an atom of agents join A at s = 0,

and the rest wait indefinitely. Indeed, for s high enough, by Lemmas A1 and A3, we have

VB(s|λA, λ) > VA(s|λA, λ), and V ′B(s|λA, λ) < 0. If some individuals join A and some wait

indefinitely, it has to be that lims→∞ VB(s|λA, λ) =
pA0 v

r
, but if lims→∞ V

′
B(s|λA, λ) < 0 then we

have a contradiction as it must mean that VB(s|λA, λ) >
pA0 v

r
for some s, implying that some

agents should have joined B instead.

(3) Next, we show that there cannot be a second atom of agents joining A following the

first atom at s = 0. Again, this is because, by Lemma A2, the sign of V ′A(s|λA, λ) is the same

as λ(1 − pAt )
pBt
pAt
− r and (

(1−pAt )

pAt
pBt )′ = λA − λ(1 − pBt ) > 0. Hence, there cannot be a second

atom of agents joining A as VA(s|λA, λ) does not peak for any finite s > 0.

(4) We are now ready to proceed with the only remaining possibility—that is, equilibria

in which at s = 0 an atom of agents joins A, and then some other agents join B (followed

potentially by some other entry into either field).
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Let λB(λA) ≡ λ(m−λ−1(λA))—that is, λB(λA) is the information arrival rate for field B when

λA is the arrival rate generated by the atom of agents that joined field A, and all remaining

agents have joined B. Also, let V (∞|λA, λB) be the utility from waiting forever under the

(constant) arrival rates λA and λB, and note that such function is increasing in both λA and

λB. We now show that there is an equilibrium with: (i) An initial atom of agents joining A,

yielding the arrival rate λ̂
A
. (ii) After the crossing where pA

ŝ(λ̂
A

)
= pB

ŝ(λ̂
A

)
(see Lemma A1), at a

point in time t∗ ∈ (ŝ(λ̂
A

),∞) where VB(t∗|λ̂
A
, λ) = sups VB(s|λ̂

A
, λ) = v

r
pA0 , there is an atom of

agents λ̂
B
that join B, where (a) If λB(λ̂

A
)−λ̂

A
(1−pAt∗) ≤ 0 (implyingm being low enough) then

we set λ̂
B

= λB(λ̂
A

). Hence, all remaining agents join B at t∗. (b) If λB(λ̂
A

)− λ̂
A

(1− pAt∗) > 0,

then set the atom of agents joining B at λ̂
B

= λ̂
A

(1−pAt∗). Some of the remaining agents join B
gradually, so that λBt for t > t∗ is such that the posteriors satisfy λ̂A(1− pBt )

pAt
pBt

= r. For this to

be possible, by Lemma A4 we need λBt < λ̂
A
, which implies that this process may last forever.

To guarantee that the one described above is an equilibrium, recall that we are under the

assumption sups VB(s|λ, λ) < v
r
pA0 < sups VB(s|λ̄, λ). Because of Lemma A3, sups VB(s|λ̄, λ) is

achieved either at s = 0, or at some finite s in which case sups VB(s|λ̄, λ) = maxs VB(s|λ̄, λ).

Now, by Lemma A3, when λA and λB are fixed, and such that λA > λB, sups VB(s|λA, λB) =

maxs VB(s|λA, λB), i.e., arg sups VB(s|λA, λB) includes only finite elements. Therefore, by con-

tinuity and Lemma A5, there exists λ̂
A
< λ̄ such that maxs VB(s|λ̂

A
, λ) = v

r
pA0 . If t

∗ is defined

to be the lowest element in arg maxs VB(s|λ̂
A
, λ), we have guaranteed that agents are indiffer-

ent between joining A at t = 0 and joining B at t∗, which is necessary for this equilibrium to

hold. Therefore, λ̂
A
< λ̄ is the arrival rate generated by the atom of agents joining field A at

t = 0—that is, in equilibrium the atom of agents mA
0 = λ−1(λ̂

A
) < m joins field A at t = 0. Next

note that for the parameters we consider, V ′A(0|λ̂
A
, λ) < 0 and so it is indeed sustainable for an

atom of agents to join A at t = 0.

By Lemma 1, for any agent to be willing to join B at t∗, it must be the case that pAt∗ ≤ pBt∗ .

We already know that VA(s|λ̂
A
, λ) can only have corner maximizers at either s = 0 or s =∞.

Since

sup
s
VB(s|λ̂

A
, λ) =

v

r
pA0 ≥ lim

s→∞
VB(s|λ̂

A
, λ) = lim

s→∞
VA(s|λ̂

A
, λ),

implying that as long as there is no new atom of agents in B, VA(s|λ̂
A
, λ) ≤ v

r
pA0 for all s. Since

VB(s|λ̂
A
, λ) ≥ VA(s|λ̂

A
, λ) if and only if pAs ≤ pBs , it must be the case that at t

∗, where

VB(t∗|λ̂
A
, λ) =

v

r
pA0 ≥ VA(t∗|λ̂

A
, λ),

40



we have that pAt∗ ≤ pBt∗—that is t
∗ occurs after the crossing ŝ(λ̂

A
). Also, for this to be an

equilibrium, we need VB(s|λ̂
A
, λ̂

B
) to be weakly decreasing after t∗. A suffi cient condition for

this is λBt ≤ λ̂
A

(1 − pAt ) for any t > t∗, as pAt is decreasing in t. Such condition is satisfied by

our construction.

(5) Finally, we show that there is no equilibrium with further atoms of agents joining any

field. For agents to joinB, we need VB(s|λ̂
A
, λ) to have a peak at t∗ such thatmaxVB(t∗|λ̂

A
, λ) =

v
r
pA0 , i.e., λ̂

A
(1 − pBt∗)

pA
t∗
pB
t∗

= r. Then, VB(t|λ̂
A
, λBt ) is going to weakly decrease for any t > t∗,

ruling out the possibility of additional atoms of agents joining B. In particular, note that by

Lemma A2, once V ′B(t|λ̂
A
, λBt ) ≤ 0, we cannot have another peak of VB(t|λ̂

A
, λBt ). Moreover, as

λBt < λ̂
A
for all t ≥ 0, the posteriors cannot cross again. Hence, VB(t|λ̂

A
, λBt ) > VA(t|λ̂

A
, λBt )

for all t > t∗, ruling out any further entry into A. �

Proof of Proposition 7: (1) If r < r, by Part 2 of Lemma A2, V ′A(s|λ, λ) > 0 for all

s ≥ 0. Hence, it is optimal for all agents to wait until the deadline T . Next, assume that

r ≥ λpB0 (1−pA0 )

pA0
but that VA(s|λ, λ) >

pA0 v

r
for some s ∈ (0, T ]. Since VA(0) =

pA0 v

r
, this must imply

that V ′A(s′|λ, λ) > 0 at some s′ < s. As noted above, by Part 2 of Lemma A2, this implies

V ′A(s|λ, λ) > 0 for all s > s′, so that the highest value of VA(s|λ, λ) is achieved at the deadline

T. Therefore, define r̃(T ) to be such that VA(T |λ, λ) = v
r
pA0 . From the discussion above, we

have r ≤ r̃(T ) for all T. Hence, for any r < r̃(T ), all agents join A at the deadline T. To

see that r̃(T ) is increasing in T, consider T ′ < T, and r̃(T ) such that VA(T |λ, λ) = v
r
pA0 . For

such a r̃(T ), we have VA(T ′|λ, λ) < VA(T |λ, λ). Therefore, to obtain VA(T ′|λ, λ) = v
r
pA0 , since

VA(T |λ, λ) decreasing in r, we need r̃(T ′) < r̃(T ).

(2) Assume that r > r̃(T ) (implying that for all s ∈ (0, T ], VA(s|λ, λ) <
pA0 v

r
), and T ∈

(0, t∗) . Recall that ŝ(λ) is the posteriors’crossing time when λ > λ agents are in A, and λ are in

B from t = 0. Also, recall that we denote by λ̂
A
and t∗ the equilibrium size of the atom joining

A at t = 0, and the time of the atom joining B in Proposition 3, respectively. Also, define

µAA(T ) be such that VA(T |µAA(T ), λ) = v
r
pA0 and µAB(T ) be such that VB(T |µAB(T ), λ) = v

r
pA0 .

Let us construct the equilibrium following Steps 1 and 2 below, which provide an algorithm to

identify the (unique) equilibrium for each set of parameters.

Step 1: Suppose that VA(T |λ, λ) > v
r
pA0 , or equivalently, by Lemma A5, λ > µAA(T ). Then,

two cases are possible:

(a) if ŝ(µAA(T )) > T, then in equilibrium µAA(T ) agents join A at t = 0, and the remaining

agents join A at T . To see that this equilibrium is unique, note that if more agents join A at

t = 0, agents would prefer to join A at T instead. If fewer agents join A at t = 0, then the
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remaining agents would prefer to join A at t = 0 themselves.

(b) If ŝ(µAA(T )) < T, then we must have VB(T |µAA(T ), λ) > VA(T |µAA(T ), λ) = v
r
pA0 , implying

that, by Lemma A5, we need µAB(T ) < µAA(T ) to achieve VB(T |µAB(T ), λ) = v
r
pA0 . Then in the

(unique) equilibrium an atom λ̃
A

= µAB(T ) joins A at t = 0, and the remaining agents join B at

T. Such equilibrium is unique for arguments similar to Step 1(a) (note that in the non-generic

case ŝ(µAA(T )) = T, both equilibria described in Steps 1(a) and 1(b) exist).

Step 2: Suppose that VA(T |λ, λ) ≤ v
r
pA0 , or equivalently, λ ≤ µAA(T ). Then, two cases are

possible: (a) If VB(T |λ, λ) < v
r
pA0 , then all agents join A at t = 0; (b) If VB(T |λ, λ) > v

r
pA0 , then

λ̃
A

= µAB(T ) agents join A at t = 0, and the remaining join B at T. Again, note that in the

non-generic case VB(T |λ, λ) = v
r
pA0 , both equilibria in Steps 2(a) and 2(b) exist.

Finally, note that in Steps 1(b) and 2(b) above, in which field B is explored in equilibrium,

since in Proposition 3, for r > r̃, VB(s|λ̂
A
, λ) peaks at t∗, we must have λ̃

A
> λ̂

A
.

(3) If r ≥ r̃(T ), and T ≥ t∗, the (unique) equilibrium follows Proposition 3, except that is

at T there are still agents left, they all join B at T . �
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