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Abstract

We propose a flexible rolling window estimation procedure which improves forecasting

accuracy of misspecified linear autoregressive models. The method assigns different

weights to data points in the observed sample which can be useful in the presence

of data generating processes featuring structural breaks, complex nonlinearities, or

other time-varying properties which cannot be easily captured by model design. We

show how the window can be regularized by means of cross-validation. In a set

of Monte Carlo experiments we reveal that the estimation method can significantly

improve the forecasting accuracy of autoregressive models. In an empirical study, we

achieve higher forecasting accuracy for U.S. Industrial Production during the great

recession by giving more weight to observations from past recessions. Similar findings

are found for other macroeconomic time series and for the 2008-2009 global financial

crisis and the COVID-19 recession in 2020.
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1 Introduction

Linear autoregressive models have been used for the analysis and forecasting of time series

observations in the vast majority of empirical studies in economics and finance of the last

five decades. The flexibility of the model specification allows these models to describe

relatively complex dynamics in a remarkably simple manner. From short-run temporal

dependence with seasonal dynamics to long-run persistency generated by stochastic trends,

the basic autoregressive model is often able to provide a better in-sample fit and a more

accurate out-of-sample forecast, when compared to more intricate and complex dynamic

models. Given the simplistic structure of linear reduced-form models, and the complexity

of data generating processes for large market economies, it is likely that these models

may suffer from some form of model misspecification. A typical way in which model

misspecification can manifest itself is parameter instability. There is substantial evidence

of parameter instability in economic and financial empirical studies and applications; see

Stock and Watson (1996, 2007) in macroeconomic forecasting, and Wolff (1987), Schinasi

and Swamy (1989) and Goyal and Welch (2003) in financial forecasting. As also discussed

by Inoue et al. (2017), parameter instability is widely recognized as a crucial issue that

significantly hampers the forecasting performance of econometric models; see, for example,

Stock and Watson (1996), Clements and Hendry (1998), Goyal and Welch (2003), Koop

and Potter (2004), Paye and Timmermann (2006), Giacomini and Rossi (2009), and Rossi

(2013). Several methods have been proposed to improve forecasting performance in the

presence of parameter instability. Rolling-window estimation is among the most popular

with important applications in finance, see Goyal and Welch (2003), in macroeconomics,

see Swanson (1998), and in exchange rate forecasting, see Molodtsova and Papell (2009),

among others. Using a window of observations for estimation can be regarded as a basic

weighting scheme for the observations, whereby recent observations are assigned weight one
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by the estimation loss function, and observations far in the past are assigned weight zero

and are effectively discarded from estimation.

We propose a new flexible rolling-window estimation procedure for the unknown parameters

of the autoregressive distributed lag (ADL) model. We allow for an optimal combination of

multiple windows which possibly feature different lengths, different start and end points in

the data set, as well as for different importance being assigned to different data points within

a given window. Overall, our procedure finds features of the flexible window such that the

forecasting performance of the misspecified linear autoregressive model is optimized. We

refer to this procedure as flexible rolling-window (FRW) estimation.

The FRW procedure can be applied generally for the analysis, modeling, and forecasting

of economic and financial time series. The features of the rolling windows are regularized by

cross-validation. This regularization procedure automatically identifies the important data

points in the observed data set and adjusts the FRW features to deliver optimal out-of-

sample forecasting accuracy for the ADL model. Further, we show that the regularization

by cross-validation ensures that the FRW estimator converges to the classical MLE when

the ADL model is correctly specified. In this special case, the FRW estimator converges to

the ‘true’ time-invariant parameter vector, which is optimal for forecasting. At the same

time, if the ADL model is misspecified, then the cross-validation procedure will establish

FRW features that are optimal for forecasting. In this case, the FRW provides time-

varying parameter estimates for the ADL model which significantly improve the forecasting

accuracy of the classical MLE method.

Our FRW estimator is closely related to the estimator introduced in Oh and Patton

(2024), which exploits information from a state variable to improve forecasts from imperfect

models. Oh and Patton (2024) find significant performance gains in applications by

leveraging a state variable which introduces weights in the loss function. They optimize

hyperparameters over a grid, which can sometimes be challenging when the dimensionality
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of the hyperparameter space exceeds one. While Oh and Patton (2024) focus mostly

on financial applications, Dendramis et al. (2020), who proposed a novel method for

forecasting that exploits similarities, document small gains over the benchmark AR(1)

model in macroeconomic applications. In our approach, we simultaneously estimate the

parameters of the ADL model and the features of the rolling windows by means of the

profile regularization criterion, without explicit connection to a state variable or a grid

search for continuous hyperparameters. Furthermore, we provide theoretical justifications

for the estimation procedure and discuss forecast comparison tests in applications. Our

method, which is not limited to forecasting based on similarity as in Dendramis et al. (2020),

provides substantial and often significant gains over linear counterparts in macroeconomic

applications.

This paper is organized as follows. Section 2 summarizes the basic concepts of rolling

windows and establishes its relation to FRW. Section 3 introduces the FRW estimation

procedure and its regularization by cross-validation. Section 4 investigates the theoretical

aspects of FRW. In particular, we show its asymptotic equivalence to MLE, provide conditions

for optimal forecasting performance, and show the asymptotic validity of the Giacomini-

White test for the comparison of forecasting accuracy. For a selection of empirical illustrations

in Section 6, we show that the optimal weight functions can take intuitive forms that

would be difficult to obtain from time-varying parameter models. Section 7 concludes and

discusses possible directions for future research.

2 ADL model and flexible rolling windows

2.1 Classical rolling windows

We consider the linear autoregressive distributed lag (ADL) model in our treatment of

FRW estimation. The ADL(p, q) model assumes that the time series {Yt}t∈Z is generated
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by the dynamic stochastic process

Yt = α0 + α1Yt−1 + ...+ αpYt−p + β1Xt−1 + ...+ βqXt−q + ϵt, t ∈ Z, (1)

where {Xt}t∈Z is an exogenous stochastic process, p ∈ N+ and q ∈ N+ are the lag-orders of

Yt and Xt, respectively, {ϵt}t∈Z is a sequence of iid innovations with density pϵ(λ) indexed

by the vector of parameters λ. For simplicity, we collect all parameters in the vector

θ := (α,β,λ) where α := (α0, . . . , αp) and β := (β1, . . . , βq).

The parameter vector θ0 ∈ Θ is easy to estimate via the exact maximum likelihood

method or via regression (based on the conditional likelihood function). The ML estimator

is thus given by,

θ̂T := argmax
θ∈Θ

T∑
t=s

ℓt(θ), (2)

where ℓt(θ) denotes the logarithm of the conditional density of Yt given Pt−1, Pt−2, . . . , P1

with Pt := (Yt, X
′
t)

′, s := 1 + max(p, q) and et(α,β) denotes the residual term

et(α̂, β̂) := Yt − α̂0 − α̂1Yt−1 − . . .− α̂pYt−p − β̂1Xt−1 − . . . β̂qXt−q, t = s, . . . , T.

Once a point estimate θ̂T is found, the autocorrelation function, the forecast function,

including forecast confidence bounds, and the impulse response function for the ADL(p, q)

model can easily be computed.

It is well known that rolling-window estimation procedures can substantially improve

the forecasting performance of ADL models when changes in social, economic and financial

systems render past data less relevant. Examples are pervasive in macroeconomic and

financial forecasting. From inflation forecasting which recognizes that inflation dynamics

in the 1980s was far too different from inflation dynamics in the 2010s, see Stock and

Watson (2007), to money growth forecasting where past data can be equally misleading,
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see Tarassow (2019). From a parameter estimation perspective, rolling-window estimation

can however be seen as an extreme example of data weighting (Giraitis et al., 2013), where

recent observations receive unit weight and data points far in the past receive weight zero,

being effectively excluded from estimation. The top graph of Figure 1 represents this

weighting scheme as a simple diagram which assigns weight wt to the data point yt, over a

sample of points. At time T , for a window of length R, a typical rolling-window procedure

assigns binary weights of the form,

wt = 1(t∈[T−R,T ]) for t = s, ..., T ,

where 1(t∈[T−R,T ]) denotes an indicator function assigning value 1 to observations t in the

interval [T − R, T ], and zero otherwise. With such a window, the ML estimator is then

given by,

θ̂T (wT ) := argmax
θ∈Θ

T∑
t=s

wt · ℓt(θ), (3)

with wT := (ws, ..., wT ) collecting the weights assigned to each observation. In this context,

it is clear that data points with unit weights are ‘included’ in the estimation procedure,

while data points with zero weights are not taken into account and effectively ‘excluded’

from estimation.

There are however many scenarios where having such a clear window cut-off point may

be difficult to justify or even undesirable. The use of flexible-rolling windows aims to fill

this gap.

2.2 Flexible rolling windows

FRWs can play an important role in settings where simply ‘including’ and ‘excluding’ data

points from estimation is too simplistic. The second graph in Figure 1 shows, for example,

how multiple windows can be combined to give positive weight to observations from specific
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T timeT - R

T time

T time

Data far in the past is not 
relevant. 

Only data from certain
periods is relevant.

Only data from certain
periods is important, and data 
far in the past is less relevant 
than recent data.

T time

T time

Exponentially weighted 
combination of rolling windows 
of different lengths.

Single rolling window
of length R.

Combination of 
multiple windows 
of same length.

Exponentially 
weighted windows
of same length.

Weighted combination 
of contiguous windows
of same length.

Data from certain
periods is more important than 
others, and data far in the past is 
less relevant than recent data.

Relevance of past data varies 
over periods of different length.

Figure 1: Examples of flexible rolling windows obtained through weighted combination of
multiple windows of different length and spanning different periods.

periods only. The following weights are obtained by combining m windows with specific

start and end points,

wt =
m∑
i=1

1(t∈[t−i ,t+i ]) for t = s, ..., T .

Alternatively, the FRW can be used to give higher importance to data from past periods

of greater historical relevance. In this way, the FRW exploits more information from specific
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periods which, for example, are similar in terms of economic conditions. As we shall see in

our empirical application, Industrial Production Index (IPI) forecasts during an economic

recession can be significantly improved by giving higher weights to past episodes of economic

recession. FRW estimation allows us to effectively learn exclusively from the specific periods

of time, giving data from those periods larger weight in the estimation.

The third and fourth graphs in Figure 1 show further how different windows can be

combined to ensure both that data far in the past receives less weight for estimation, but

also, that data from certain periods is more relevant than others. When forecasting IPI

during a recession this allows not only for data from recession periods to receive more

weight, but also, for recessions far in the past to receive less weight than recent recessions.

We show in our empirical study that forecasts of the U.S. Industrial Production during the

global 2008–2009 recession can be significantly improved. In practice, the FRW estimation

procedure can be used to give higher weights to more recent observations compared to

observations far in the past. This may be desirable as various political, institutional, and

technological developments change social, economic and financial systems, rendering past

observations increasingly obsolete for the forecasting of economic variables. For example,

as demonstrated in Boud et al. (2023), improvements in GDP nowcasts can be achieved by

assigning greater weights to the periods with similar sentiment levels observed in the past.

In general, the following weights for the data are obtained by combining m windows with

weights ω1, ..., ωm,

wt =
m∑
i=1

ωi1(t∈[t−i ,t+i ]) for t = s, ..., T .

The bottom graph in Figure 1 shows that, at any given point in time, the FRW windows can

be adjusted to reflect the importance of past observations for improving forecast accuracy.

In particular, it highlights that windows can have different sizes and weights, implying that

short spells of relevant data can be combined with long spells of less relevant data, and
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vice-versa. At the end of the day, it is only natural that multiple factors may influence

data relevance. For example, forecasts for inflation during international oil crises can be

improved by paying special attention to price dynamics during past oil crises. Similarly,

the forecasts for unemployment during a period of strong fiscal austerity can benefit from

giving more prominence to observations that originate from past episodes of strong fiscal

austerity. In this way, the use of the FRW often results in a time-varying parameter ADL

model whose parameter estimates are optimal for forecasting observations in a given period

of interest.

3 FRW estimation and regularization

3.1 The estimator

As noted in the previous section, a simple and convenient way to formalize the influence

of FRW on estimation is to assign the weights to each observation in the sample when

calculating the criterion function for estimating the vector θ of ADL(p, q) model parameters.

For reasons of simplicity and computational efficiency, it will often be beneficial to parameterize

the weights using a low-dimensional parameter vector ρ. For example, one may include in

the vector ρ features such as window length, window boundaries, or even window weights,

when multiple windows are being combined. In such cases, each weight can be denoted by

wt(ρ), and our FRW maximum likelihood estimator will take the form,

θ̂T (ρ) := argmax
θ∈Θ

T∑
t=s

wt(ρ) · ℓt(θ), (4)

where ℓt(θ) denotes the logarithm of the conditional density of Yt given the past observations

Pt−1, Pt−2, . . . , P1,

ℓt(θ) := log pϵ
(
et(α,β);λ

)
,
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with et(α,β) := Yt − α0 − α1Yt−1 − . . .− αpYt−p − β1Xt−1 − . . . βqXt−q as before.

This implies that the FRW features ρ define implicitly a set of weights which, in turn,

determines the parameter estimates θ̂T for the ADL(p, q) model. In other words, we have

a map θ̂T : R × Ω → Θ where R ⊆ Rdρ is the parameter space for the vector ρ of FRW

features, with dimension dρ, Ω is the event space of the underlying probability space of

interest, and Θ ⊆ Rp+q+2 is the parameter space for the ADL(p, q) model with parameters

for the intercept, lags, and innovation’s variance.

3.2 Time-varying sequence of estimates

The fundamental difference between the FRW and the classical ML estimator is the introduction

of weights for different observations in the log likelihood function which are implicitly

defined by the rolling window(s). Observations with relatively large (small) weight will

have a relatively large (small) influence in the estimation of the parameter vector θ. As

such, the FRW parameter estimates will attempt to fit more accurately the dynamics of

the time series at certain periods of interest.

When a dynamic model is well specified, it is well known that the classical MLE produces

optimal forecasts in Kullback-Leibler divergence; see e.g. Blasques et al. (2015). However,

when the data generating process changes over time, resulting in a misspecified ADL model,

having a good in-sample fit does not ensure a good out-of-sample forecasting accuracy. Our

Proposition 3 in Section 4 highlights that for every misspecified ADL model, there exists a

non-constant sequence of parameters that improves the approximation of the ADL model

to the true data-generating process, and ultimately exhibits improved forecasting accuracy.

We further show that the FRW estimation procedure can help in finding such an appropriate

sequence of parameters, and that the FRW estimation outperforms the classical MLE.

In general, similarly to rolling-window parameter estimates, the FRW estimates will

differ from one time period to the next. For example, the parameter estimate θ̂t(wt)
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obtained using the sub-sample P1, ..., Pt, will typically be different from the parameter

estimate θ̂t+1(wt+1) obtained using the sub-sample P1, ..., Pt+1. For this reason, the FRW

can potentially be used to construct a sequence of parameter estimates {θ̂t(wt)} that

describes the parameter instability in the ADL(p, q) model.

3.3 Further parameterizing features

Note that, in principle, by adopting a weighted estimation loss function, we allow for even

more flexibility in the properties of rolling windows. For example, we can set exponentially

decaying weights for data points within a given window by setting ρ = (t−, t+, ρ) where

t− and t+ denote the lower and upper bounds of the rolling window, and ρ is a scalar

parameter which determines the exponential weight decay within the interval, such that

wt = ρ(t
+−t) for every t− ≤ t ≤ t+ and wt = 0 outside of the interval [t−, t+].

Another interesting class of weights is obtained by letting the weights depend on

lagged values of Yt or Xt and/or other variables of interest Zt. As mentioned earlier,

we show in Section 6 that forecasts of Industrial Production during the great recession,

can be significantly improved by defining weights that make past recession periods more

informative, and, at the same time, downweight more recent observations. In particular,

we use the NBER recession indicator Zt and define the weights of the vector wk(ρ, Zt) as

follows

wt(t
+, ρ1, ρ2, Zt) = ρ

(t+−t)
1 (ρ2 · (1− Zt) + (1− ρ2) · Zt), (5)

where 0 ≤ ρ1, ρ2 ≤ 1. This specification illustrates the generality of our framework of

weighing observations in the context of maximum likelihood estimation.

11



3.4 Regularization

It is well documented in the literature that rolling windows can provide important insights

into parameter instability, be it in the form of breaks, trends, seasonality or random

changes. However, without employing appropriate regularization methods for window-

length, any improvements in forecast accuracy would be the result of an ad-hoc improvement

in model specification. Moreover, even if the window-length is optimized, classical rolling-

window estimation will provide improved forecasts only if it turns out that the exclusive use

of recent data is advantageous for forecasting. In this section we propose a cross-validation

method of regularization which aims to optimize not only the window-length, but all the

relevant features of our FRW procedure.

In principle, the set of parameters ρ defining the FRW features can be obtained by

optimizing a given criterion function qt over a ‘regularization’ set as follows:

ρ̂H = argmin
ρ

QH(ρ) = argmin
ρ

1

H

T−n∑
k=T ′

qk(ρ), (6)

where we set H = T − T ′ − n. Common choices of regularization criterion qk include

squared errors, absolute errors, and likelihoods. For illustration purposes, we shall often

focus on optimizing the forecast accuracy of the ADL(p, q) model in an MSE sense. In

particular, we select rolling-windows’ features ρ which optimize the n-step-ahead squared

forecast error,

QH(ρ) =
1

T − T ′ − n

T−n∑
k=T ′

(
Ŷk+n

(
θ̂k(ρ)

)
− Yk+n

)2

, (7)

where the FRW θ̂k(ρ) depends on the feature vector ρ of the flexible rolling windows, and

T ′ defines the sample point from which the forecasting accuracy begins to be measured.

A large T ′ gives us more data to estimate the parameter vector θ by FRW, but a small

number of observations to evaluate the forecasting accuracy of the model and optimize the
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weights. On the contrary, a small T ′ increases the uncertainty in the estimation of θ but

gives us a larger sample to determine the optimal weights. Figure 2 shows how the data

Y1, ..., YT is split into parameter estimation and regularization parts. Once regularization is

achieved and the optimal FRW features ρ̂H are found, then a final forecast can be produced

under the point estimate θ̂T (ρ̂H) as illustrated in Figure 2.

T timeT+ht = 1 T’

T-1 timet = 1 T’ T

T-h timet = 1 T’ T

T timeT+1t = 1 T’

parameter estimation 

parameter estimation window regularization forecast

parameter estimation window regularization test

parameter estimation window regularization test

dataset

training sample
(parameter estimation) 

regularization sample
(tunning hyper-parameters) 

test sample
(validation sample)

T timeT+1t = 1 T’

parameter estimation regularization 

k = T’

k = T - 1

k = T’ + 1

.

.

.

T’+1

forecast

REGULARIZATION 
PROCEDURE

FINAL FORECAST

Sequence of parameter 
estimates is used to 
regularize the FRW.

Final parameter estimate 
is obtained conditional on 
the regularized FRW.

dataset

training sample
(parameter estimation) 

test sample
regularization sample
(tunning hyper-parameters) 

dataset

training sample
(parameter estimation) 

test sample
regularization sample
(tunning hyper-parameters) 

burn-in

time

Figure 2: Data split for both the FRW regularization procedure (top), as well as the final
ADL(p, q) parameter estimation and forecasting step (bottom) for one-step-ahead forecast.

3.5 Profile optimization procedure

The optimization of the FRW features in (6) relies on the relation between the features

ρ and the parameter estimates θ̂T (ρ̂H) obtained as a function of the estimates of ρ. The

optimization would be trivially simple if, for a given data sample, the mapping θ̂T : RT
+ → Θ

from weight vectors in RT
+ to point estimates in Θ were known analytically or if ρ could take

only a finite number of values. In general, however, this map is analytically intractable.

As a result, we need to carry out the optimization numerically.

For continuous features ρ, our optimization algorithm seeks to find the optimal FRW

features ρ̂H and the respective ADL(p, q) parameter estimates θ̂T (ρ̂H) simultaneously. This

is achieved by optimizing over the features ρ while calculating the best ADL(p, q) parameter
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θ̂T (ρ) at each step. In this way, we essentially optimize the ‘profile’ regularization criterion,

as we ‘concentrate out’ the optimal ADL(p, q) parameters at each step. This can be done

since, under mild regularity conditions, each value of ρ implies a unique best parameter

estimate θ̂T (ρ) for the vector θ. We display each step of the regularization procedure in

Algorithm 1.

Algorithm 1: Profile Optimization.

———————————————————————————————————
1. Set an initial ρ̂

(1)
H and obtain ML estimates

for the ADL(p, q) model θ̂
(1)
k (ρ̂

(1)
H ), k = T ′, ..., T − n.

2. Evaluate the regularization criterion in (6) at ρ̂
(1)
H by producing

a sequence of n-step-ahead forecasts Ŷk+n(θ̂
(1)
k (ρ̂

(1)
H )), k = T ′, ..., T − n.

3. Update the FRW features to a new value ρ̂
(2)
H and obtain

new ML estimates for the ADL(p, q) model θ̂
(2)
k (ρ̂

(2)
H ), k = T ′, ..., T − n.

4. Re-evaluate the regularization criterion in (6) at ρ̂
(2)
H by producing

a new sequence of n-step-ahead forecasts Ŷk+n(θ̂
(2)
k (ρ̂

(2)
H )), k = T ′, ..., T − n.

5. For j ≥ 3 iterate as follows:

5.1. Update ρ in the steepest descent direction to a new

value ρ̂
(j)
H and obtain ML estimates θ̂

(j)
k (ρ̂

(j)
H ), k = T ′, ..., T − n.

5.2. Re-evaluate the regularization criterion (6) at ρ̂
(j)
H using

the new forecast sequence Ŷk+n(θ̂
(j)
k (ρ̂

(j)
H )), k = T ′, ..., T − n.

5.3. If QH(ρ̂
(j)
H ) < QH(ρ̂

(j−1)
H ):

Repeat step 5 with j = j + 1.

5.4. If QH(ρ̂
(j)
H ) ≥ QH(ρ̂

(j−1)
H ):

Define ρ̂H = ρ̂
(j−1)
H , collect (θ̂T (ρ̂H), ρ̂H), and stop iterating.

———————————————————————————————————

This simple steepest-ascent algorithm has revealed itself to be fast and stable in our

Monte Carlo experiments reported in Technical Appendix B and in our empirical application

in Section 6. Note that, in the first step, we start with an initial ρ and optimize the

likelihood to obtain the standard MLE for θ. We further recall that QH(ρ) denotes the

n-step-ahead forecasting performance criterion chosen to optimize the FRW features ρ, of

which the MSFE in (7) is a special case. Since the algorithm can be initiated at the classical

ML estimates, the FRW will feature non-uniform weights and differ from the MLE only

when there is scope for improvement over the MLE.
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4 Theoretical foundations for the FRW estimation

The estimation and regularization procedure detailed in the previous section is intuitively

appealing as it leads to FRWs that improve the out-of-sample forecasting performance

rather than the in-sample fit of the ADL(p, q) model. Below we provide some theoretical

arguments for this procedure.

First, we analyze the MLE for FRW as a generalization of the classical MLE. In

particular, we show that if the ADL(p, q) model is well specified, then the regularized

FRW converges asymptotically to the MLE, and hence, uncovers the true parameter vector

and minimizes forecast errors. On the other hand, we also show that, if the model is

misspecified, then there exist FRW features setting non-uniform weights that improve upon

the MLE parameter estimates in terms of forecasting performance. Furthermore, we show

that our algorithm for finding optimal FRW features outperforms the MLE under very

general conditions. Second, we give conditions under which our cross-validation procedure

delivers a FRW that provides optimal forecasting performance. These results apply to a

wide range of forecasting performance criteria. Third, we implement a Giacomini-White-

type test that can be used to infer whether the improvements in forecasting accuracy from

a change in FRW features are statistically significant or not and we analyze the validity of

the asymptotic distribution of the statistic.

4.1 Time-varying ADL(p, q) representations

The FRW can be used to account for instability in the parameters of ADL(p, q) models.

For example, the FRW class has recursive estimators as well as rolling-window estimators

as special cases. Proposition 1 provides a simple representation result by showing that

many DGPs can be written in the form of a time-varying parameter ADL(p, q) model with

Gaussian innovations.
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For simplicity, we restrict our attention to a DGP with stochastic contracting dynamics.

In any case, the result applies to a diverse number of time series. Indeed, Yt can depend

nonlinearly on its past, as well as on a potentially very large vector Vt of variables that

may include not only innovations and random breaks, but also a wide range of exogenous

variables with complex dynamics and temporal dependence patterns.

Proposition 1. (Time-varying ADL(p, q) representation) Let {Yt}t∈Z be generated according

to

Yt = ϕ(Yt−1, Vt) , t ∈ Z, (8)

where

(i) {Vt}t∈Z with Vt = (Xt−1, ϵt) is a near epoch dependent (NED) of size −a ≡ −2(r −

1)/(r−2) nV-variate stochastic sequence on a ϕ-mixing sequence with mixing coefficients

of size −r/(r − 1);

(ii) supt E|Vt|4r <∞ for some r > 2;

(iii) supv∈V supy∈Y |ϕ′
y(y, v)| < 1,

(iv) supv∈V supy∈Y |ϕ′
v(y, v)| <∞.

Then the following time-varying ADL(p, q) representation holds

Yt = α0,t+α1,tYt−1+...+αp,tYt−p+β1,tXt−1+...+βq,tXt−q+ϵt , ϵt ∼ N(0, σ2
ϵ ) , t ∈ Z , (9)

where {αi,t}t∈Z and {βj,t}t∈Z are NED for every i = 0, ..., p and j = 1, ..., q, and furthermore

{Yt}t∈Z is also NED of size −a and supt E|Yt|4r <∞.
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4.2 Conditions for optimal FRW forecasting

A distinct feature of the FRW estimator is the fact that it reduces to classical MLE

when the weights implicitly defined on the data by rolling windows are unnecessary or

undesirable. Proposition 2 highlights that for a suitably regularized FRW procedure, the

weights converge in probability to unity when the model is well specified. Specifically,

the cross-validation method that we propose for estimating the weights ensures that the

weighted likelihood function converges in probability to the classical likelihood function

as the size of the estimation sample S := T ′ − max{p, q} and cross-validation sample

H := T − T ′ − n diverge to infinity sequentially. The Monte Carlo evidence reported

in Appendix B confirms that the weights remain close to unity, even in finite sample

dimensions that are typical in empirical studies.

Proposition 2. (Asymptotic regularization under correct specification) Let R be compact

and suppose the conditions of Proposition 1 hold and

ϕ(Yt−1, Xt−1, ϵt) = α0 + α1Yt−1 + ...+ αpYt−p + β1Xt−1 + ...+ βqXt−q + ϵt , ∀ t ∈ Z.

Then the MSFE criterion in (6) ensures that wt(ρ̂H)
p→ 1 ∀ t as T ′ → ∞ and H → ∞

sequentially, for any given forecasting horizon n ≥ 1 and lag orders p, q ≥ 1.

By application of Berge’s Maximum Theorem, we obtain as a corollary that FRW

converges in probability to the MLE as the cross-validation sample H diverges to infinity.

When both the cross-validation sample H and the estimation sample T ′ diverge to infinity,

FRW converges to the true parameter θ0 ∈ Θ, just as MLE does. The Monte Carlo evidence

reported in Appendix B reveals that FRW performs well in finite samples.

Corollary 1. Let the conditions of Proposition 2 hold. Then ∥θ̂T ′(ρ̂H)− θ̂T ′(1)∥ p→ 0 as

H → ∞ and θ̂T ′(ρ̂H)
p→ θ0 as T ′ → ∞ for any given forecasting horizon n ≥ 1.
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Corollary 1 reveals that the FRW will only deliver constant parameters in large samples

when the model is well specified. Under incorrect model specification, recursive or rolling-

window estimators, can often improve upon full-sample estimators by allowing for time-

varying parameters that better capture the dynamics of the data at any given period

of time. Similarly, the FRW will be able to improve the forecasting performance of the

ADL(p, q) model by allowing for time-varying parameters that can improve the out-of-

sample performance of the model. The existence of such a sequence of parameters is

another simple, albeit important and general, consequence of Proposition 1. Below we let

MSFEn(θ) denote the n-step ahead mean squared error achieved by the ADL(p, q) model

under some parameter vector θ ∈ Θ,

MSFEn(θ) = Et

(
Yt+n − Ŷt+n(θ)

)2

.

Corollary 2. Let the conditions of Proposition 1 hold, and suppose that

ϕ(Yt−1, Vt) ̸= α0 + α1Yt−1 + · · ·+ αpYt−p + β1Xt−1 + · · ·+ βqXt−q + ϵt , ϵt ∼ N(0, σ2
ϵ ) ,

for every θ ∈ Θ and any t ∈ Z⋆ ⊆ Z. Then there exists a non-constant sequence {θt}t∈Z of

points in Θ such that MSFEn(θt)≤MSFEn(θ) almost surely for any t and any given θ ∈ Θ

and n ≥ 1.

Corollary 2 highlights that time-varying parameters can improve the forecasting of the

ADL(p, q) when the model provides a simplistic representation of the data. Proposition 3

below focuses on the properties of the FRW algorithm proposed in the previous section.

First, it highlights that the algorithm is designed to ensure that the FRW outperforms (or

is at least as good as) the MLE in terms of the forecasting accuracy of the ADL(p, q) model

in the cross-validation sample. Furthermore, Proposition 3 shows that under appropriate

18



regularity conditions, the FRW algorithm will actually uncover the weights that optimize

the forecasting performance of the ADL(p, q) model in the cross-validation sample. We let

ρ̂
(j)
H denote the j-th iteration weights and we let QH(ρ) denote the mean squared error

in the cross-validation sample obtained under ρ. The Monte Carlo evidence reported in

Appendix B and the empirical evidence in Section 6 reveal that the FRW is indeed capable

of significantly improving the forecasting performance of the ADL(p, q) model.

Proposition 3. For any given realized sample {yt}Tt=1, Algorithm 1 ensures that

QH(ρ̂
(j+1)
H ) ≤ QH(ρ̂

(j)
H ), ∀ j ≥ 1,

and hence the FRW outperforms the MLE under the QH criterion.

If furthermore it holds that

sup
j

sup
ρ

∣∣∂θ̂(j)
k (ρ)/∂ρ

∣∣ < 1, and sup
j

sup
θ

∣∣∂ρ̂(j)
H (θ)/∂θ

∣∣ < 1.

Then, ρ̂
(j)
H → ρ∗ and θ̂k(ρ̂

(j)
H ) → θ∗

k as j → ∞, for any given n ≥ 1.

Two main conditions of Proposition 3 ensure the contraction of the maps θ̂ : ρ 7→ θ and

ρ̂ : θ 7→ ρ. Since these maps are often not known analytically, the contracting behavior

can only be verified numerically. This can be achieved by optimizing the derivatives stated

above and ensuring that the maximum is less than one.

4.3 Test for forecast precision improvement

The result established in Proposition 3 is important, but it ensures only that the FRW

improves the finite sample MSFE. In other words, the algorithm discussed in Section 3.3

delivers FRW features that optimize the forecasting performance within the cross-validation

sample. However, due to sampling error, it is impossible to ensure that the true forecasting
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performance has improved from the MLE to the FRW with some weight matrix W. To

assess whether the improvement in forecasting performance is statistically significant or

not, we will utilize a simple Diebold-Mariano (DM) test statistic. However, the FRW

estimator collapses to the MLE when the methods have equal forecasting accuracy; the

methods are ‘nested’ under the null hypothesis. Hence, we will instead consider a limited

memory estimator, as proposed in Giacomini and White (2006), where the parameters of

the ADL model are estimated using (maximum) estimation window size m < m̄ < ∞.

This choice justifies the use of the DM test statistics in the context of nested models,

unlike the DM test proposed by Diebold and Mariano (1995). Proposition 4 highlights

the validity of the asymptotic distribution derived by Giacomini and White (2006) when

the null hypothesis compares the MLE against an alternative FRW. We also generalize the

original Giacomini and White (GW) test to near epoch dependent (NED) processes, rather

than mixing processes. This allows for the consideration of fairly general DGP processes

in (8).

Below, we let MSFE(W) denote the MSFE achieved by the ADL model under the FRW

with weights W, and let W∗ denote the best possible weight matrix for the ADL model

W∗ = argmin
W

MSFE(W).

Furthermore, we let MSFE(1) denote the MSFE achieved by the MLE. Under correct model

specification, we naturally have that MSFE(1)=MSFE(W∗). Proposition 4 states a GW

test with a null hypothesis of correct specification

H0 : MSFE(W∗) = MSFE(1) (both MLE and FRW provide equal forecasting accuracy)

against an alternative of incorrect specification

H1 : |MSFE(W∗)−MSFE(1)| ≥ δ > 0 (FRW provides improved forecast accuracy).
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Below we let d̄m,K(wH) and σ
2
K denote the sample average and variance of the n-step-ahead

MSFE difference between FRW and MLE, evaluated over K out-of-sample observations,

i.e. d̄m,K(wH) =
1
K

∑T ⋆

k=T−n dm,k+n(wH,k), with T and T ⋆ denoting the beginning and the

end of the forecast evaluation sample, respectively, and

dm,k+n(wk,H) := um,k+n(1)
2 − um,k+n(wH,k)

2,

where um,k+n(wH,k) := Ŷk+n

(
θ̂m,k(wH,k)

)
− Yk+n.

Similarly to Giacomini and White (2006), we use a suitable HAC-type

estimator of the asymptotic variance σ2
K , for example, σ̂2

K = 1
K

∑T ⋆

k=T−n d
2
m,k+n +

2[K−1
∑pK

j=1 ωK,j

∑T ⋆

k=T−n+j dm,k+ndm,k+n−j], with {pK} such that pK → ∞ as K → ∞,

pK = o(K) and {ωK,j : K = 1, 2, . . . ; j = 1, . . . , pK} a triangular array such that

|ωK,j| <∞, K = 1, 2, . . . , pK , and ωK,j → 1 as K → ∞ for each j = 1, . . . , pK .

Proposition 4. Let the conditions of Proposition 1 hold and suppose 0 < σ2
K <∞ for all

K sufficiently large. Then

√
Kd̄m,K(wH) / σ̂K

d→ N (0, 1), as K → ∞,

for any given forecast horizon n and estimation window size m < m̄ < ∞ under the null

hypothesis H0 : MSFE(W∗) = MSFE(1), i.e. E[dm,k+n(wH,k)] = 0, and

|
√
Kd̄m,K(wH) / σ̂K | → ∞, as T → ∞,

with probability approaching to one under the alternative hypothesis
∣∣E[dm,k+n(wH,k)]

∣∣ ≥

δ > 0 for all K sufficiently large.
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5 Monte Carlo evidence

We verify in a set of simulation experiments whether the small-sample properties match our

theoretical findings. We investigate the finite sample performance of FRW in the context

of the basic AR(1) model, which is a special case of the ADL(p, q) model with q = 0, and

by means of our Monte Carlo simulation experiments. We consider four data generating

processes (DGP) for the time series yt, these are four departures of the AR(1) model: (1) the

basic AR(1) model, (2) the AR(1) model with a time-varying coefficient, and (3) the AR(1)

model with a structural break for the AR coefficient. For each case, we assess whether the

optimal weight function does improve the one-step-ahead forecasting accuracy of the MLE.

The forecasts are based on rolling window estimates. The FRW method is only applied

to the standard AR(1) model. We adopt the exponential weight function with wk,t = ρk−t

with ρ ∈ [0, 1] and k = T ′, . . . , T . More details for the Monte Carlo experiments and their

results are presented in Appendix B. The overall conclusions are as follows. In case the

AR model is well-specified as in DGP (1), we do not find any significant improvements

in forecasting accuracy. In effect, FRW and MLE results are overall the same. However,

in all three other cases where the AR model is not correctly specified for the DGP, the

FRW succeeds in producing higher maximized likelihood function values using non-uniform

weight functions. In particular, the increases in forecast precisions of FRW compared to

MLE are high and they confirm the asymptotic findings in the previous section.

6 Empirical illustrations

We study the empirical performance of our FRW procedure for several economic

applications. In Section 6.1, we focus on forecasting the growth rate of monthly U.S.

Industrial Production Index (IPI) during the global recession of 2008. We find that the

FRW can deliver a significantly better forecasting performance than the standard MLE
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method and the optimal rolling window (ORW) method. This result is achieved by

increasing the weights associated with observations coming from past recession periods

relative to expansion periods. Moreover, we find that the improved out-of-sample

forecasting accuracy delivered by FRW is not driven by a single, or just a few, observations.

Instead, the improved forecasting performance is experienced throughout the entire

evaluation sample. In Section 6.2 we show that the improved forecasting performance

delivered by FRW is not restricted to forecasting the IPI during a recession period. In

particular, Section 6.2 shows that the FRW outperforms the MLE also during expansion

periods. In Section 6.3, we show that the FRW outperforms the MLE in other data

sets as well. In effect, it reveals that the FRW method can, in some cases, improve the

forecasting performance of the model in a remarkable fashion. Finally, in Section 6.4, we

focus on forecasting during the COVID-19 recession. We find that even when simple

exponential weights are used the FRW method can improve substantially the forecast

accuracy especially in the presence of a structural break.

6.1 Forecasting industrial production during the great recession

In this section, we study whether the FRW method improves the forecast accuracy for the

growth rates in the US Industrial Production Index (IPI), when compared to the classical

MLE and single rolling-window with optimal window size (ORW) methods. Here, the

single rolling window corresponds to the FRW with simple binary weights, as explained in

Section 2.1.

The IPI growth rate is a core indicator of the US economy. To evaluate the forecasting

performance of the FRW and ORW methods during the great recession, we consider the

monthly time series of the US IPI growth rates from January 1950 until June 2009. We

consider two window lengths for the estimation of the parameters: 25 years (period 1975–

1999, containing 33 recession months) and 50 years (period 1950–1999, containing 85
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recession months). For the cross-validation of forecasting accuracy, we have 8 years (period

2000–2007, with 8 recession months). Finally, we take 1.5 years (period 2008–2009 June,

containing 18 recession months) for the out-of-sample forecasting period. We consider

simple AR models as well as ADL models where the latter includes exogenous regressors.

For the ADL model, the set of exogenous predictors consists of the growth rates of the IP

sectoral-level series: manufacturing, mining, and utilities. We report the results for the

forecast horizons of one month (n = 1) and one quarter (n = 3) ahead, focusing on direct

forecasts.

Since IPI observations coming from past recession periods may be more informative

about the dynamics of the IPI during the global recession of 2008–2009, in this empirical

application, we use a weighting scheme that can potentially give higher weight to the

recession periods as described in Section 3.3. Specifically, the weight function for wT takes

the form

wt = ρ2 · (1− Zt) + (1− ρ2) · Zt, 0 ≤ ρ2 ≤ 1,

where the indicator variable Zt ∈ {0, 1} is the NBER recession indicator. Naturally, when

ρ2 < 0.5, observations from recession periods receive more weight in estimation. The ratio

(1 − ρ2)/ρ2 indicates how much larger the weights for recession periods are compared to

expansion periods. The coefficient ρ2 is estimated via cross-validation using Algorithm 1,

allowing the data to determine the strength of this effect. Since the NBER recession

indicator is released with a significant delay, it can be replaced by the recession forecast Ẑt

when unavailable. This alternative approach is explored in Supplementary Appendix C.

The weight function can be made even more flexible by allowing for a combination of

a binary weight, ρ2, and an exponentially decaying weight, ρ1, as in (5). This weighting

scheme puts emphasis on the recession periods as well as downweighs observations from the

remote past. The intuition that underlies the exponential decay is straightforward: as the
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economy changes due to institutional, technological and societal shifts, observations far in

the past are likely to be less informative about the current dynamics of IPI than the more

recent observations. Setting ρ1 = 1 and ρ2 = 0.5 delivers classical MLE.

For simplicity, we set ρ1 = 1 and apply the FRWmethod with an NBER recession weight

function to the AR(1) and AR(p) models, as well as the ADL(1, 1) and ADL(p, q) models,

where the number of lags p and q are selected by means of the Akaike’s Information Criterion

(AIC). We refer to the latter case as the AR(AIC) and ADL(AIC) models. We focus on out-

of-sample forecasting of the monthly US IPI growth rate during the NBER global recession

period, which spans period from January 2008 to June 2009. We emphasize that the sample

for which the forecasting accuracy was evaluated was not used for estimating the AR/ADL

model parameters or the likelihood weights. Hence, the MLE estimator can potentially

outperform the FRW estimator in this separate evaluation sample. Any improvement in

forecasting accuracy should only be expected if the FRW method presents a substantial

estimation advantage over the MLE.

The results are presented in Table 1. We take the recession period in the year 2001 as

our cross-validation period to determine the feature of the FRW (ρ2) and optimal rolling

window size of the single rolling window. The weights are further used to produce forecasts

during the global recession of 2008. We report the RMSE ratios for the FRW against the

MLE and ORW methods such that a ratio value smaller than unity indicates improvements

in forecast accuracy. We also report the p-values of the GW test (in parentheses) and the

cross-validation estimates of the FRW parameter ρ2 (multiplied by 100) and the optimal

window size. The optimal window size was determined using a grid search with a minimum

window size of 4 years (48 months) and a step size of 1 quarter (3 months).

The results from Table 1 reveal that the FRW strongly outperforms both the MLE

and ORW in the majority of cases. The improvements of up to 34% in the forecasting

accuracy of the AR(AIC) relative to MLE are quite remarkable. The p-values of the GW
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Table 1: Pseudo out-of-sample forecasts: Binary NBER weights for recessions.

RMSE MAE

n=1 n=3 n=1 n=3

Ratio ρ2 Ratio ρ2 Ratio ρ2 Ratio ρ2
(GW) (GW) (GW) (GW)

AR(1)
FRW/MLE 25 years 1.116 2.8 0.842∗∗∗ 3.1 0.866 1.3 0.719∗∗∗ 1.8

(0.292) (0.009) (0.216) (0.001)

50 years 0.917∗∗ 6.1 0.806∗∗∗ 8.3 0.785∗∗∗ 3.0 0.656∗∗∗ 6.9
(0.017) (0.001) (0.000) (0.000)

FRW/ORW 50 years 0.880∗∗ 333 0.856∗∗∗ 327 0.738∗∗∗ 330 0.739∗∗∗ 327
(0.026) (0.001) (0.000) (0.000)

AR(AIC)
FRW/MLE 25 years 1.219 3.0 0.870 3.1 1.167 0.6 0.820 1.8

(0.169) (0.131) (0.266) (0.160)

50 years 0.938∗∗ 8.0 0.806∗∗∗ 8.3 0.836∗∗∗ 3.9 0.656∗∗∗ 6.9
(0.045) (0.001) (0.006) (0.000)

FRW/ORW 50 years 0.800∗∗∗ 54 0.856∗∗∗ 327 0.705∗∗∗ 51 0.739∗∗∗ 327
(0.006) (0.001) (0.001) (0.000)

ADL(1,1)
FRW/MLE 25 years 1.097 3.5 1.316 4.8 1.014 3.3 1.186 3.2

(0.277) (0.139) (0.477) (0.224)

50 years 0.854∗∗∗ 5.5 0.818∗∗∗ 7.8 0.734∗∗∗ 4.0 0.704∗∗∗ 6.1
(0.008) (0.006) (0.000) (0.000)

FRW/ORW 50 years 0.867∗∗ 330 0.858∗∗ 327 0.778∗∗∗ 330 0.767∗∗∗ 327
(0.020) (0.019) (0.005) (0.001)

ADL(AIC)
FRW/MLE 25 years 1.095 5.5 0.972 4.2 1.208 3.3 1.007 2.2

(0.173) (0.384) (0.169) (0.482)

50 years 0.870∗∗ 8.1 0.805∗∗ 9.1 0.771∗∗∗ 4.4 0.697∗∗∗ 6.4
(0.027) (0.011) (0.001) (0.000)

FRW/ORW 50 years 0.995 54 0.811∗ 51 0.936 54 0.601∗∗∗ 48
(0.481) (0.080) (0.375) (0.008)

Table 1: FRW forecasting results for monthly U.S. IPI growth rate for the AR(1) and AR(p) models, as

well as ADL(1, 1) and ADL(p, q) models, where p and q are selected by the Akaike’s information criterion,

AR(AIC) and ADL(AIC). Estimation window is of size 25 and 50 years, starting from periods 1975-1999

and 1950-1999, respectively. The column labeled Ratio shows the RMSE using the FRW method of the

AR/ADL models relative to the RMSE using the MLE or ORW methods. Cases where the forecasting

improvement is statistically significant at the 90%, 95%, and 99% confidence levels are indicated by ∗,
∗∗, and ∗∗∗, respectively. Entries in parentheses show the p-value of GW test. The column labelled “ρ2”

contains either estimated optimal window size or the optimal features of the FRW, multiplied by 100, for

the binary weighting ρ2 · (1 − Zt) + (1 − ρ2) · Zt where Zt ∈ {0, 1} is the NBER recession indicator. The

estimation of the FRW features is performed on the cross-validation sample once. The cross-validation

sample is recession period of 2000–2007. The out-of-sample forecasts are computed for 2008–2009 June (18

months). The optimal window size was determined based on a grid search with a minimum window size

of 4 years (48 months) and a step size of 1 quarter (3 months).
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test statistics reveal that forecast accuracy improvements relative to MLE and ORW are

statistically significant at standard confidence levels. Most importantly, the parameter

estimates of ρ2 indicate that the improved performance is due to giving more weight to

past recession periods. We want to highlight that the improved forecasting performance is

not only achieved for the simple AR(1) model, which is likely to be a misspecified model,

but also for the AR(AIC) and ADL(AIC) models, which in many cases has p > 1 (and

q > 1) in the AR(p) (ADL(p, q)) model and is therefore more flexible as it includes more

lags. Moreover, the FRW outperforms the ORW where the latter uses only a part of

the sample for estimation, which should make the parameter estimates more prone, for

example, to the changes in the dynamics of the time series and consequently to superior

forecasts. Hence, the improvements of the FRW over the ORW highlight the importance

of allowing for more flexible weighting scheme. Finally, the FRW demonstrates superior

forecasting performance over both the MLE and the ORW in the cases of the ADL(1, 1)

and ADL(AIC) models.

The cross-validation estimates of ρ2 vary over a range of values smaller than 0.09. The

more reasonable, large estimates of ρ2 lead to better results than the more extreme ones.

For example, consider the AR(AIC) model and the rolling window estimation sample of

50 years, for the RMSE of the quarterly forecasting horizon (n = 3) we have the estimate

of 0.083 for ρ2. The estimate of 0.083 implies that observations coming from a recession

period receive 11 times more weight than observations coming from an expansion period.

Hence, an observation in the recession year of 2001 is given approximately the same weight

as an observation in the 11 expansion years before 2000. Most importantly, this weighting

scheme leads to significant improvements in the RMSE as highlighted by the ratio of 0.806.

In contrast, the ρ2 estimate of 0.006 (obtained for the MAE and for the monthly forecast

horizon (n = 1) and the rolling window of 25 years) implies essentially that only the

observations in recession periods have an impact on the estimation; the data coming from
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expansion periods are ignored. Such extreme estimates of ρ2 lead to poor results in out-of-

sample forecasting evaluations when compared to the standard MLE method.

To illustrate that the results reported in Table 1 are not driven by only a few

observations, we present in Figure 3 the accumulated RMSE statistics over the 18 months

of our forecasting window of 2008 January to 2009 June, for the MLE, ORW, and FRW

methods. Figure 3 shows these results for AR(AIC) model for both n = 1 and n = 3. They

clearly show that the performance of the FRW method is preferred, in terms of RMSE, for

all time periods in the forecasting window. It is a strong empirical result that the FRW

achieves better forecasting accuracy by outperforming the MLE and ORW over the entire

forecasting evaluation sample.
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Figure 3: The accumulated root mean squared forecasting error from the MLE, ORW, and
FRW methods during the forecasting window of 2008–2009 June. These results are presented

for AR(AIC) model with a 50-year rolling window. The forecasts are computed for a forecasting horizons

of n = 1 and n = 3 periods.

6.2 Forecasting industrial production during the 2008-expansion

Given the encouraging results as reported above, we have concluded that the FRW method

can lead to improved forecasting performances for IPI growth during recession periods. We

next investigate whether these improvements are not specific to the global financial recession

period only. Does the FRW method also provide significant improvements in forecasting

accuracy during expansion periods? For this purpose, we take the NBER expansion period
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Table 2: AR model forecasting: for Expansion period,
with exponential decay (ρ1) and binary (ρ2) weights

n=1 n=3

Ratio ρ1 ρ2 Ratio ρ1 ρ2
(GW) (GW)

AR(1) 0.982 0.934 100.0 0.979 1.000 100.0
(0.328) (0.112)

AR(AIC) 0.969∗ 1.000 100.0 0.976∗ 1.000 100.0
(0.061) (0.083)

Table 2: FRW forecasting results for monthly U.S. IPI growth rate. The ratios are based on the RMSE

statistics and a rolling window size of 25 years. The forecasts are computed for the expansion period

2002–2007. For further explanations, we refer to Table 1.

from January 2002 to December 2007 as our forecasting evaluation sample. The results for

AR(1) and AR(AIC) models are reported in Table 2 that only focuses on the RMSE ratios

and a rolling window size of 25 years; the full results, including the MAE ratios and the

rolling window size of 50 years, are provided in Appendix C. We learn from Table 2 that the

FRW method delivers higher out-of-sample forecasting precisions in the evaluation sample

when compared to those from the MLE method. In two of these cases, the GW p-values

show improvements that are marginally statistically significant at the 90% confidence level.

In particular, Table 2 presents overall improvements in forecasting accuracy of up

to 3%. Although the magnitude of these improvements is not as impressive as in the

recession case, we still find statistically significant improvements in terms of the GW test.

The improvements are especially relevant when related to the forecasts of the AR(AIC)

model, which is a highly competitive benchmark in many forecasting studies. In any

case, improvements in forecasting accuracy are expected to be smaller in the expansion

case rather than in the recession case. The main reason for this is that the number of

observations originating from economic expansion periods outnumbers by far the number of

observations originating from recession periods. As a result, the total weight that expansion
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periods have in the likelihood criterion is much larger. It leads to ML parameter estimates

that are already adequate for expansion periods. As a result, there is a smaller margin for

obtaining an improvement for the FRW method. This also explains the finding that the

weights that only weigh expansions periods are selected (ρ2 = 1), effectively disregarding all

observations from recession periods. In Appendix C, we demonstrate that the conclusion

remains unchanged when the expansion period in the aftermath of the global recession is

considered.

6.3 Forecasting other variables during the 2008-recession

To show that the FRW method can also be effective for other relevant economic time

series in delivering notable improvements in forecasting accuracy, we present two additional

illustrations. We consider the monthly economic time series of the U.S. Unemployment

Rate and U.S. Total Non-Farm Payrolls growth rates and focus again on forecasting these

variables during the global recession of 2008. In Table 3 we report the RMSE and MAE

ratios obtained from the same out-of-sample forecasting study as done for U.S. Industrial

Production. The tables with full estimation results for the two time series, including the

estimates for ρ2, are presented in Appendix C.

In the upper part of Table 3, the RMSE and MAE ratios are presented for the monthly

time series of the US Unemployment Rate. These results show that the FRW is capable

of delivering significant reductions in the out-of-sample forecasts. In particular, we report

RMSE reductions of up to 39% and MAE reductions of up to 36% for the forecasts from the

AR(1) model, both at a monthly horizon. The lower part of Table 3 is for the forecasting

of the monthly time series of the U.S. Non-Farm Payrolls growth rates during the global

recession. For the AR(1) model, remarkable reductions of up to 38% in the out-of-sample

forecasting RMSE are obtained, and reductions of more than 50% in the MAE. Even more

convincingly, for the AR(AIC) we find reductions of 25% in the RMSE and around 42% in
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the MAE. Most of these reductions are statistically significant at any reasonable confidence

level.

Table 3: AR model forecasting: Other economic time series

RMSE Ratio MAE Ratio

n=1 n=3 n=1 n=3

U.S. Monthly Unemployment Rate

FRW/MLE AR(1) 0.608∗∗ 0.617∗∗∗ 0.639∗∗ 0.692∗∗∗

(0.019) (0.007) (0.028) (0.001)

AR(AIC) 0.637∗∗ 0.691∗∗ 0.674∗ 0.706∗∗∗

(0.030) (0.010) (0.056) (0.006)

FRW/ORW AR(1) 0.671∗∗∗ 0.700∗∗∗ 0.781∗∗ 0.845∗∗∗

(0.005) (0.003) (0.011) (0.000)

AR(AIC) 0.740∗∗ 0.746∗∗∗ 0.765∗ 0.844∗∗∗

(0.021) (0.009) (0.050) (0.004)

U.S. Monthly Total Non-farm Payrolls

FRW/MLE AR(1) 0.623∗∗∗ 0.734∗ 0.423∗∗∗ 0.622∗∗

(0.000) (0.078) (0.000) (0.028)

AR(AIC) 0.755∗∗ 0.855 0.584∗∗∗ 0.715∗

(0.033) (0.236) (0.004) (0.091)

FRW/ORW AR(1) 0.956 0.795∗∗∗ 0.887 0.728∗∗∗

(0.368) (0.003) (0.256) (0.004)

AR(AIC) 0.840∗∗ 0.593∗∗∗ 0.794∗∗ 0.526∗∗∗

(0.022) (0.007) (0.037) (0.001)

Table 3: FRW forecasting results for two other economic time series. The forecasts are computed over

the sample period 2008 January - 2009 June. We refer to Table 1 for further explanations.
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6.4 Forecasting during the COVID-19 recession

We also study the forecasting performance of the FRW method during the COVID-19

recession. The COVID-19 global recession is one of the deepest recessions in the world

history and it is characterized by a huge decline in economic activity in many sectors as

well as increased uncertainty. Therefore, in our application, we consider two time series:

the U.S. Economic Policy Uncertainty Index (EPUI) proposed by Baker et al. (2016) and

the changes over the month in the U.S. Weekly Economic Index (WEI) constructed by

Lewis et al. (2022). The former is based on the U.S. newspapers and it characterizes policy

uncertainty, while the latter is constructed using ten indicators of the U.S. real economic

activity which cover consumer behavior, labor market, and production.

For the daily time series of the U.S. EPUI, we take the estimation and cross-validation

samples spanning from 1 February 2018 until 1 February 2020, and for the U.S. Weekly

Economic Index (WEI) from 5 January 2008 until 1 February 2020 with the rolling windows’

length of 550 days and 533 weeks, respectively. Then for the cross-validation, we have 180

days (around half a year) for the EPUI and 96 weeks (around 2 years) for the WEI.

Starting from 1 February 2020, right before the recession began, we then use 121 days

(3 months) and 33 weeks, respectively, for the out-of-sample evaluation. To compare the

forecasting performance we consider one-step-ahead forecasts (n = 1) and exponentially

decaying weights for the FRW.

In Table 4 we report the RMSE and MAE ratios for the FRW against the MLE method.

We find that for the U.S. EPUI series the FRW method substantially outperforms the

standard MLE method and the improvements are of up to 24%. Moreover, this result is

significant at a 1% level. These improvements most likely occur due to the presence of a

structural break in the series as during the coronavirus pandemic the policy uncertainty

increased substantially since the middle of March 2020, shortly after the recession started.
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Therefore, the data far in the past became less relevant for forecasting and receive much

lower weights since the end of March 2020. Furthermore, in Figure 4, the accumulated

RMSEs for MLE and FRW are similar in February but, after the break, the accumulated

RMSE based on the MLE is much higher, which again supports the idea that after the break

the AR model is misspecified and then the FRW method is preferable for forecasting. This

is in line with the findings of the Monte Carlo experiment B.3 with a structural break. The

performance of the ORW and FRW is comparable as indicated by the ratio in Table 4 and

accumulated RMSEs in Figure 4. Intuitively, when optimal window size is low, the ORW

also limits the contribution of the observations far in the past. Hence, in the presence of a

structural break, both FRW and ORW deliver good forecasting results.

For the U.S. WEI, the FRW method slightly outperforms the standard MLE based

on the RMSE but the difference in the forecast accuracies is not significant (Table 4).

In Figure 4 we also observe that at one moment the FRW outperforms MLE but overall

their performance is comparable. This result could be explained by the fact that the series

exhibited a large downturn at the end of March and after that quickly started bouncing

back. The FRW method reacts quicker to the downturn but then the difference in forecast

accuracies disappears. This is in line with the theoretical findings discussed in Section

4 that in some cases the FRW method simplifies to a standard MLE. Overall, we can

conclude that the use of the FRW method appears to be highly beneficial for accurate

economic forecasting.

7 Conclusion

We have introduced a new flexible rolling-window estimation (FRW) method that weighs

the likelihood function contributions of individual observations differently for the purpose

to deliver optimal forecasting accuracy for linear autoregressive models and autoregressive
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Table 4: AR model forecasting: COVID-19 recession

RMSE Ratio Avg(ρ) MAE Ratio Avg(ρ)
n=1 n=1

U.S. Daily Economic Policy Uncertainty Index

FRW/MLE 0.761∗∗∗ 0.854 0.794∗∗∗ 0.842
(0.000) (0.000)

FRW/ORW 0.993 1.006
(0.785) (0.487)

∆4 U.S. Weekly Economic Index

FRW/MLE 0.979 0.880 0.992 0.888
(0.447) (0.459)

FRW/ORW 0.903∗∗ 0.967∗∗

(0.048) (0.016)

Table 4: FRW forecasting results for two economic time series during the COVID-19 recession. The

forecasts are computed over the sample period 1 February 2020–31 May 2020 and 1 February 2020–12

September 2020 for the EPUI and WEI, respectively. We refer to Table 1 for further explanations.
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Figure 4: The accumulated root mean squared forecasting error for the MLE, ORW, and
FRW methods during the forecasting window of 1 February 2020–31 May 2020 for the EPUI and 1

February 2020–12 September 2020 for the WEI. The forecasts are computed for a forecasting horizon of

n = 1 periods.

distributed lag models. We have shown how to estimate the optimal weights using a cross-

validation method. We further have investigated the asymptotic properties of FRW and we

have considered four Monte Carlo experiments for studying the finite-sample properties.

In empirical illustrations, we have analyzed the forecast accuracy of the FRW method

compared to standard MLE for several key economic indicators during the global recession

34



of 2008–2009, the 2008 expansion, and the COVID-19 recession. The analyses have revealed

that the FRW can substantially improve forecast accuracy. In particular, forecast precision

during recession periods can be significantly improved by increasing the weights of the most

recent observations or by increasing the weights of observations corresponding to similar

recession periods in the past. We have made the case that econometricians may need to

give past recessions more attention for providing more accurate forecasts during periods of

recessions and financial crises. In further work we can extend the method towards other

linear dynamic models, including the autoregressive moving average model, and towards

multivariate specifications such as the vector autoregressive model. Nonlinear extensions

of the model classes can also be considered but may require an extended theoretical

foundation.
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Technical Appendix

A Proofs of propositions

Proof of Proposition 1. Theorem 6.10 in Pötscher and Prucha (1997) implies that the

sequence {Yt}t∈N initialized at Y1 = y and generated according to (8) for every t ∈ N

is NED of size −a as long as {Vt}t∈Z is a NED nV -variate stochastic sequence of size −a,

supt E|Vt|2 < ∞, supv∈V supy∈Y |ϕ′
v(y, v)| < ∞ and supv∈V supy∈Y |ϕ′

y(y, v)| < 0. Given

conditions (i)-(v), all the conditions of the theorem are satisfied. The bounded moments of

{Yt}t∈N are also ensured by condition (iii) in Pötscher and Prucha (1997, Theorem 6.10).

The result for the limit sequence {Yt}t∈Z then follows straightforwardly.

The ADL(p, q) representation follows trivially by rewriting the Yt as follows

Yt = ϕ(Yt−1, Vt)− ϵt + ϵt

=
ϕ(Yt−1, Vt)− ϵt

ψ0 +Ψ(L)Yt +K(L)Xt

(ψ0 +Ψ(L)Yt +K(L)Xt) + ϵt ,

where Ψ(L) and K(L) denote the lag polynomials Ψ(L) = ψ1L + · · · + ψpL
p and K(L) =

κ1L+ · · ·+ κqL
q, and finally defining

αi,t :=

(
ϕ(Yt−1, Vt)− ϵt

)
ψ0 +Ψ(L)Yt +K(L)Xt

ψi , for i = 0, 1, ..., p,

βj,t :=

(
ϕ(Yt−1, Vt)− ϵt

)
ψ0 +Ψ(L)Yt +K(L)Xt

κj , for j = 1, ..., q.

The NED nature of αi,t, i = 0, ..., p and βj,t, j = 1, ..., q, follows from Davidson (1994,

Theorem 17.12) since every αi,t and βj,t is a Lipschitz function of NED variables.

Proof of Proposition 2. Since the Gaussian ADL(p, q) model is well specified, it follows

immediately that the Gaussian MLE converges to the true parameter as T ′ → ∞,
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i.e. θ̂T (1)
p→ θ∗

0(1) = θ0 under the usual regularity conditions.

Application of a continuous mapping theorem as T ′ → ∞ implies that

ut(θ̂T (1))
2 ≡ (Ŷk+n

(
θ̂T (1)

)
− Yk+n)

2 p→ ut(θ
∗
0(1))

2 ≡ (Ŷk+n

(
θ0

)
− Yk+n)

2.

As T ′ → ∞, the limit of the n-step-ahead MSFE forecast criterion based on H observed

forecast errors under the true parameter θ0 = θ∗
0(1) is given by

QH(1) :=
1

H

H∑
t=1

ut(θ
∗
0(1))

2.

Since ut(θ0) is a Lipschitz function of the NED sequence {ϵt}t∈Z, by Theorem 17.12

(Davidson (1994)) the sequence {ut(θ0)}t∈Z is also NED, and an application of the LLN

for NED sequences (Pötscher and Prucha, 1997, Theorem 6.4) then yields

QH(1)
p→ Eut(θ∗

0(1))
2 as H → ∞.

Finally, note that Algorithm 1 is always initialized at a weight matrix W satisfying ŵk,t =

1 ∀ k and ∀ t ≤ k. As a result, in the limit as T ′ → ∞ and H → ∞, the probability that

ŵk,t ̸= 1 for some (k, t) is given by

P(ŵk,t ̸= 1) = P
(
Eut(θ∗

0(wk))
2 < Eut(θ∗

0(1))
2
)
= 0

for any weight vector wk with some element wk,t ̸= 1 and some pair (t, k).

Proof of Proposition 3. The first claim follows trivially from the design of Algorithm 1.

The second claim follows by noting that both the ADL parameter vector θ̂ and the weight
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parameter vector ρ̂ satisfy a recursive relation

θ̂
(j+1)
T = θ̂T (ρ̂H(θ̂

(j)
T )) and ρ̂

(j+1)
H = ρ̂H(θ̂T (ρ̂

(j)
H )) ∀ j ≥ 1.

It is well known that the uniform unit bound on the derivative ensures the stability of the

recursion towards a unique global fixed point for any initialization.

Proof of Proposition 4. First, we show that under the null hypothesis
√
Kd̄m,K/σK

d−→

N (0, 1), where σ2
K = Var(

√
Kd̄m,K) and 0 < σ2

K <∞.

We have
√
Kd̄m,K/σK = K−1/2

∑T ⋆

k=T−n σ
−1
K dm,k+n. Below, we verify that the sequence

{σ−1
K dm,k+n}k∈Z satisfies the conditions of the CLT for NED sequences (Pötscher and

Prucha, 1997, Theorem 10.2).

Since by Proposition 1 the sequence {(Yt, Xt)}t∈Z is NED of size −2(r − 1)/(r − 2),

which implies that it is also NED of size −1 as r > 2, then by Theorem 17.12 of Davidson

(1994) {dm,k+n}k∈Z is also NED of size −2(r − 1)/(r − 2) since it is Lipschitz on (Yt, Xt).

Moreover, under H0, we have E[dm,k+n] = 0. Finally,

sup
k

E|σ−1
K dm,k+n|r = σ−r

K sup
k

E|um,k+n(1)
2 − um,k+n(ŵH,k)

2|r

≤ σ−r
K

(
c sup

k
E|um,k+n(1)|2r + c sup

k
E|um,k+n(ŵH,k)|2r

)
≤ σ−r

K c
(
sup
k

E|Ŷk+n(θ̂m,k(1))− Yk+n|2r

+ sup
k

E|Ŷk+n(θ̂m,k(ŵH,k))− Yk+n|2r
)
<∞,

where the last inequality follows since by Proposition 1 supt E|Yt|4r <∞ and supt E|Xt|4r <

∞ and ADL forecasts are linear in Yt and Xt. Hence, the conditions of Theorem 10.2 of

Pötscher and Prucha (1997) are satisfied and
√
Kd̄m,K/σK

d−→ N (0, 1).

Now, we show that σ̂K−σK
P−→ 0 asK → ∞. As shown above, the sequence {dm,k+n}k∈Z
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is NED of size −2(r−1)/(r−2) and, under the null, it is also a mean zero process. We also

have supk E|dm,k+n|2r <∞, since by Proposition 1 supk E|Xk|4r <∞ and supk E|Yk|4r <∞.

The HAC estimator weights ωK,j are bounded and limK→∞ ωK,j = 1 for each j > 0, then the

conditions of Corollary 12.2 of Pötscher and Prucha (1997) are satisfied, and we conclude

that σ̂K−σK
P−→ 0. Slutsky’s theorem finishes the first part of the proof about the behavior

of the statistics under the null hypothesis.

For the behavior of the test statistics under the alternative, by the arguments given

above, we notice that {dm,k+n}k∈Z is NED of size −1/2 and supk E|dm,k+n|2r < ∞.

Therefore, by LLN for NED processes (Pötscher and Prucha, 1997, Theorem 6.4), it implies

that d̄m,K − E[d̄m,K ]
P−→ 0. The rest of the proof follows similar reasoning as the proof of

Theorem 4 (b) in Giacomini and White (2006).

B Simulation experiments

We investigate the finite sample performance of the FRW method in the context of AR(1)

model using Monte Carlo simulation. We consider four different data generating processes

(DGP) for the time series yt. Among these four different AR(1) processes, the autoregressive

coefficient could be time-invariant, time-varying, regime switching or subject to a structural

break. We aim to investigate in which cases the optimal weight function can improve

the forecasting accuracy of the MLE. We concentrate on one-step-ahead forecasts based

on rolling-window method with window length k. Although we consider four different

data generating processes in the simulation experiment, our FRW method is based on the

ordinary AR(1) model as given by

yt = α + βyt−1 + ϵt, (10)
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where intercept α and autoregressive coefficient β are treated as fixed and unknown, and

where ϵt is an i.i.d. normally distributed variable with mean zero and unknown variance

σ2
ϵ .

We consider two kinds of weight functions which we apply in Monte Carlo experiment:

the exponential weight function (wt = ρk−t
1 , where ρ ∈ [0, 1]) and the binary weight function

with decay (wt = ρ
(k−t)
1 (1+(ρ2−1)·Zt), where Zt is the predetermined indicator for recession

period). The exponential weight function is applied in the first three experiments; while

the binary weight function with decay is applied in the last experiment.

B.1 Experiment 1: Time-Invariant AR(1) model

In the first experiment, the data are generated by an AR(1) model with time-invariant

parameters and the FRW parameter, ρ1, is estimated based on Equation (10). The data

generating process (DGP) is specified by:

DGP: yt = α + βyt−1 + ϵt, ϵt ∼ N(0, σ2
ϵ ) (11)

where α = 0.13, β = 0.5 and ϵts are i.i.d distributed with variance σ2
ϵ = 0.5. The

exponential weight function is considered when applying FRW algorithm and we use

Equation (10) with the estimates, θ̂T (wk(ρ̂H)), from the FRW to calculate the forecasts.

In Experiment 1, we generate a time series by the AR(1) model. The rolling window

length, k, is selected to be 120 and forecasts are made for time period t = 701 . . . 760. The

generated data are considered as monthly data. For each simulated data set, we carry out

FRW and use the resulting estimates to calculate the one-step-ahead forecasts. Since the

model is accurately specified we expect that the estimated FRW parameter, ρ1, is close to

1, which means the original AR(1) model can already provide accurate forecasts.

The left panel of Figure 5 shows the simulation density of FRW parameter, ρ1, in
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Figure 5: Simulation results for Experiment 1. The data are generated by an AR(1) model
and the FRW parameter, ρ1, is estimated based on Equation (10). Exponential weight
function is applied. The left panel presents the simulation density of FRW parameter, ρ1,
over 1,000 simulations. The rights panel presents the average sample weights and its 90%
confidence bound.

Experiment 1. The simulated parameters peak at 1. To be precise, the simulated parameter

mean is 0.9953 and the median is 1. In the setup, we restrict our weight parameter to be

between 0 and 1, so in this case we shall put more attention on the median of the simulation

results rather than the mean. The feature of the simulated distribution indicates that the

FRW method can hardly improve forecasting accuracy. Such finding is consistent with

Proposition 2 in Section 4 which shows the weights converge in probability to unity when

the model is well specified. The right panel of Figure 5 shows the respective average sample

weight and its 95% confidence bounds.

B.2 Experiment 2: Time-varying AR(1) model

In the second experiment, the time series are generated by an AR(1) model with time-

varying coefficient, β, and the FRW parameter, ρ1, is estimated based on Equation (10).

The data generating process (DGP) is specified by:

DGP: yt = α + βtyt−1 + ϵt, ϵt ∼ N(0, σ2
ϵ ) (12)
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βt = 0.5 + 0.5 sin(2πt/B), (13)

where α = 0.13 and ϵts are i.i.d distributed with variance σ2
ϵ = 0.5. The coefficient, β is

varying between 0 and 1 with respect to business cycle length B = 72. The exponential

weight function is considered when applying FRW algorithm and we use Equation (10)

with the estimates, θ̂T (wk(ρ̂H)), from the FRW to calculate the forecasts.

series business cycle 

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

0.0

2.5

5.0 series business cycle 

Figure 6: Illustration of DGP for Experiment 2.

In Experiment 2, we generate a time series of size T = 760. The generated data are

considered as monthly data. We consider a DGP which includes a six-year business cycle,

which is the average U.S. business cycle length. The rolling window size is set to be 60

which is a bit shorter than the business cycle. An illustration of such DGP is shown in

Figure 6. Forecasts are made for time period t = 701 . . . 760. In this experiment, the time

series imply instability of the coefficients in the model and the original AR(1) model is

misspecified, thus the FRW parameter ρ1 is expected to be smaller than 1. This means

recent observations are more relevant to the forecasts in the future.

The left panel in Figure 7 presents the simulated density of FRW parameter, ρ1. The

right panel shows the average sample weights and its 90% confidence bound. The right panel

of Figure 7 shows that both the mean and the median of the simulated FRW parameter,

ρ1, is smaller than 1. The general picture of Figure 7 is that when the time series contains

certain time-varying components in it and the considered forecasting model is misspecified,
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Figure 7: Simulation results of the FRW method over 1,000 simulations. The data are
generated by an AR(1) model with the time-varying coefficient, β, and the FRW parameter,
ρ1, is estimated based on Equation (10). The exponential weight function is applied. The
left panel presents the simulated density of the FRW parameter, ρ1. The right panel shows
the average sample weights and its 90% confidence bound.

the MLE method can improve forecasting accuracy by putting more weights to the recent

observation. Such finding is also consistent with Proposition 3 in Section 4.

B.3 Experiment 3: AR(1) Model with a Structural Break

In Experiment 3, the data are generated by an AR(1) model with a structural break in the

coefficient, β, and the FRW parameter, ρ1, is estimated based on Equation (10). The data

generating process (DGP) is specified by:

yt = α + βtyt−1 + ϵt, ϵt ∼ N(0, σ2
ϵ ) (14)

βt = 0.2 + 0.7It, (15)

where α = 0.13 and ϵts are i.i.d normally distributed with variance σ2
ϵ = 0.5. The indicator

It is set to It = 0 for t < 420 and It = 1 for t ≥ 420. The exponential weight function is

considered when applying FRW algorithm and we use Equation (10) with the estimates,

θ̂T (wk(ρ̂H)), from the FRW to calculate the forecasts.

In Experiment 3, we generate a time series with size T = 760. The rolling window
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Figure 8: Illustration of DGP for Experiment 3.

length, τ , is selected to be 120. The break-point is set to t = 420. We evaluate the

forecasting performance in three different forecasting periods. The first forecasting period

is the period before the break-point (BB) starting from t = 360. The second one is the

period right after the break-point (JAB) starting from t = 444 and the last one is the

period long after (LAB) the break-point starting from t = 492. For all cases, we evaluate

the forecasting performances of 60 observations. The generated data are considered as

monthly data. This means, the length of forecasting period is 5 years. Figure 8 presents a

realization of the data from Experiment 3. When forecasts are calculated before the break

point, the time series is generated by an ordinary AR(1) model and the FRW converges to

the classical ML method, while the simulated FRW parameter is expected to be 1. When

forecasts are calculated just after the break point, the data before the break point are less

relevant for calculating future forecasts, thus the FRW parameter, ρ1, will be significantly

smaller than 1. As the forecasting point is getting far away from the break point, the FRW

parameter ρ1 moves generally back to 1 again.

Figure 9 presents the density of FRW parameter, ρ1, in Experiment 3. The FRWmethod

can hardly improve forecasting accuracy for the forecasting period before the breaking point

because the forecasting model is well specified just as the finding of Experiment 1. For

the forecasting period right after the structural break the simulated mean of the FRW
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Figure 9: Simulation densities of FRW parameter, ρ1, over 1,000 simulations. The data are
generated by an AR(1) model with a structural break in the coefficient, β, and the FRW
parameter, ρ1, is estimated based on Equation (10). Exponential weight function is applied.
The upper-left panel presents the simulated densities for three forecasting periods: the
period before the breaking point (BB), the period just after the breaking point (JAB) and
the period long after the breaking point (LAB). The upper-right panel presents the average
sample weights and its 90% bound for forecasting period before the breaking point. The
bottom-left panel presents the average sample weights and its 90% bound for forecasting
period right after the breaking point. The bottom-right panel presents the average sample
weights and its 90% bound for forecasting period long after the breaking point.
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parameter is 0.93485, which indicates more weight should be put on recent observation in

order to provide better forecasts. Finally, for the period long after structural break, fewer

observations before the breaking point are included in the estimation window and the FRW

parameter tends to peak at 1 again.

C Further empirical findings

Given the considerable delay in the NBER recession publications, as a robustness check, we

consider a more timely recession indicator. Specifically, we consider the following recession

weights wt = ρ2 ·(1− Ẑt)+(1−ρ2) · Ẑt, where Ẑt ≡ E[Zt|Ft−n] is the n-step-ahead predicted

recession regime given the past information. For the in-sample and cross-validation parts,

we utilize the lags of the NBER recession indicator, i.e. E[Zt|Ft−n] = ZNBER
t−n , which

are available ex-post and provide a precise measure of the business cycle regime. For

the out-of-sample part, we construct a more timely recession indicator based on the lags

of the ‘Sahm rule’ indicator, which is available at the time of forecasting. The Sahm

rule indicator, recently introduced in the literature to signal recession onsets (Sahm, 2019),

utilizes unemployment rate data and signals the start of the recession when the three-month

moving average of the unemployment rate increases by 0.50 percentage points or more

relative to the minimum of the three-month averages from the previous 12 months1. Hence,

we construct a simple recession indicator where we define periods with the Sahm indicator

exceeding 0.50 and with its positive growth rate as recession periods. It is important to

note that this approach may potentially misclassify recession periods as expansions, and

vice versa.

In our analysis, we proceed to forecast monthly U.S. IPI growth rate during the

great recession, as outlined in Section 6.1. The forecasting results are presented in

1https://fred.stlouisfed.org/series/SAHMCURRENT.
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Table 5. Overall, the results align comparably with the results in Table 1 with FRW

notably outperforming ML in the majority of cases. This highlights the superiority of the

FRW approach, even when the weights are constructed based on the ‘predicted’ regimes.

Additionally, we note that we utilize a basic recession indicator, which could potentially

benefit from further refinement. For instance, the threshold of 0.50 proposed in Sahm

(2019) could be optimized further, as suggested in Feng and Sun (2020). Alternatively, a

more complex model for predicting business cycle regimes could be developed. This could

be particularly relevant for the n-step-ahead forecasts, where ZNBER
t−n (ZSahmRule

t−n ) is clearly

not the most accurate predictor of recessions at period t, leading to notably deteriorated

results for the U.S. IPI growth rate 3-step-ahead forecasts. In Tables 6 and 7, we present

the forecasting results for the U.S. Total Non-farm Payrolls and Unemployment rate based

on the predicted business cycle regimes.
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Table 5: Pseudo out-of-sample forecasts: Binary predicted business bycle regime weights;
Industrial Production

RMSE MAE

n=1 n=3 n=1 n=3

Ratio ρr2 ρe2 Ratio ρr2 ρe2 Ratio ρr2 ρe2 Ratio ρr2 ρe2
(GW) (GW) (GW) (GW)

AR(1)
25 years 1.094 3.5 78.2 0.909∗∗ 3.4 19.2 1.159 1.4 54.2 0.980 0.5 13.1

(0.296) (0.010) (0.300) (0.296)
50 years 0.926∗∗ 4.5 73.1 0.887∗∗∗ 5.2 21.6 0.886∗∗∗ 0.6 60.4 0.872∗∗∗ 1.7 10.9

(0.021) (0.001) (0.000) (0.000)

AR(AIC)
25 years 1.213 3.3 70.0 0.984 3.4 19.2 1.393 0.9 60.1 1.168∗ 0.5 13.1

(0.153) (0.386) (0.139) (0.094)
50 years 0.938∗∗ 5.3 62.0 0.891∗∗∗ 5.2 21.6 0.927∗∗∗ 0.9 57.6 0.880∗∗∗ 1.7 10.9

(0.049) (0.000) (0.005) (0.000)

ADL(1,1)
25 years 1.009 5.0 64.4 1.975 4.0 39.9 1.034 3.8 52.3 3.446∗ 0.3 30.5

(0.461) (0.114) (0.456) (0.092)
50 years 0.860∗∗ 5.9 60.7 0.925∗ 6.5 31.3 0.825∗∗∗ 1.1 50.3 0.931∗∗∗ 12.5 40.2

(0.017) (0.078) (0.003) (0.003)

ADL(AIC)
25 years 1.432 6.9 56.4 1.146∗ 4.1 27.9 1.564∗ 4.3 62.8 1.074 6.6 36.8

(0.100) (0.079) (0.082) (0.242)
50 years 0.786∗ 4.4 52.8 0.933∗ 7.6 29.8 0.769∗ 0.4 53.4 0.947 15.3 44.2

(0.058) (0.084) (0.052) (0.201)

Table 5: FRW forecasting results for monthly U.S. IPI growth rate. The column labeled Ratio shows

the RMSE or MAE using the FRW method applied to AR/ADL models relative to the RMSE or MAE

using the MLE method. The weights for the FRW are defined as wt = ρi2 · (1− Ẑt) + (1− ρi2) · Ẑt, where

Ẑt is the ‘predicted’ recession regime and i ∈ {r, e} indicates whether recession or expansion period was

used for cross validation. The columns labelled ‘ρr’ and ‘ρe’ contain the optimal features of the FRW for

the binary weighting, multiplied by 100. The estimation of the FRW features is performed on the cross-

validation sample once. The cross-validation sample is either recession or expansion period of 2000–2007.

The out-of-sample forecasts are computed for 2008–2009 June (18 months).

We provide further (rolling-window) forecasting results for our empirical illustrations on

the basis of different weight functions within the FRW procedure. Tables 8 and 9 present

the forecasting results for two expansion periods for the monthly time series of U.S. IPI

growth rate obtained from autoregressive models with binary and decaying weights for

FRW. Tables 10 and 11 present the forecasting results for the monthly time series of U.S.

Unemployment Rate and U.S. Total Non-farm Payrolls, respectively.
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Table 6: Pseudo out-of-sample forecasts: Binary predicted business cycle regime weights;
U.S. Total Non-farm Payrolls

RMSE MAE

n=1 n=3 n=1 n=3

Ratio ρr2 ρe2 Ratio ρr2 ρe2 Ratio ρr2 ρe2 Ratio ρr2 ρe2
(GW) (GW) (GW) (GW)

AR(1)
25 years 0.616∗∗∗ 0.6 23.2 0.983 0.1 12.4 0.623∗∗∗ 1.0 33.6 1.048 0.0 18.9

(0.000) (0.432) (0.000) (0.364)
50 years 0.536∗∗∗ 1.5 22.1 0.880 0.0 17.8 0.541∗∗∗ 1.1 25.4 0.821∗∗∗ 1.2 17.4

(0.000) (0.104) (0.000) (0.001)

AR(AIC)
25 years 0.835 2.4 18.1 1.134 0.1 13.3 0.848∗∗ 0.8 39.3 1.052 0.4 15.3

(0.122) (0.185) (0.026) (0.458)
50 years 0.733∗∗∗ 2.8 23.6 1.028 0.0 17.9 0.750∗∗∗ 1.4 24.6 1.032 0.0 22.9

(0.002) (0.426) (0.000) (0.404)

Table 6: FRW forecasting results for monthly U.S. Total Non-farm Payrolls. For further details, we refer
to Table 5.

Table 7: Pseudo out-of-
sample forecasts: Binary predicted business cycle regime weights; U.S. Unemployment Rate

RMSE MAE

n=1 n=3 n=1 n=3

Ratio ρr2 ρe2 Ratio ρr2 ρe2 Ratio ρr2 ρe2 Ratio ρr2 ρe2
(GW) (GW) (GW) (GW)

AR(1)
25 years 0.644∗∗ 0.9 84.0 0.649∗∗∗ 1.0 83.4 0.621∗∗ 0.0 54.2 0.622∗∗∗ 0.4 57.8

(0.020) (0.006) (0.010) (0.000)
50 years 0.679∗∗∗ 5.8 65.4 0.670∗∗∗ 5.8 71.2 0.637∗∗∗ 2.5 58.8 0.631∗∗∗ 3.5 90.2

(0.008) (0.007) (0.001) (0.000)

AR(AIC)
25 years 0.695∗∗ 1.9 86.1 0.718∗∗∗ 1.0 100 0.709∗∗ 3.2 81.6 0.724∗∗∗ 0.7 100.0

(0.024) (0.006) (0.034) (0.000)
50 years 0.720∗∗ 6.6 90.4 0.736∗∗∗ 5.0 91.9 0.715∗∗∗ 1.2 89.4 0.732∗∗∗ 3.1 99.0

(0.018) (0.008) (0.006) (0.000)

Table 7: FRW forecasting results for monthly U.S. Unemployment Rate. For further details, we refer to
Table 5.
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Table 8: AR model forecasting results: Binary weight with decaying, expansion period 2002Jan-2007Dec

RMSE MAE

n=1 n=3 n=1 n=3

window Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2

AR(1)
FRW/MLE 25 years 0.982 0.934 100.0 0.979 1.000 100.0 0.984 0.921 92.2 0.975 1.000 100.0

(0.328) (0.112) (0.359) (0.101)
50 years 0.891∗∗ 0.934 100.0 0.999 1.000 60.1 0.940∗ 0.996 93.2 0.999 1.000 60.4

(0.027) (0.441) (0.051) (0.459)
FRW/ORW 50 years 0.958∗ 48 0.993 435 1.004 48 0.993 426

(0.096) (0.310) (0.469) (0.352)

AR(AIC)
FRW/MLE 25 years 0.969∗ 1.000 100.0 0.976∗ 1.000 100.0 0.970∗ 0.999 99.9 0.972∗ 1.000 100.0

(0.061) (0.083) (0.050) (0.059)
50 years 0.931∗∗ 0.988 100.0 0.999 1.000 60.1 0.908∗∗ 0.989 76.4 0.999 1.000 60.4

(0.036) (0.441) (0.010) (0.459)
FRW/ORW 50 years 0.968∗∗ 162 0.993 435 0.987 174 0.993 426

(0.034) (0.310) (0.103) (0.352)

Table 8: Rolling-window forecasting results for monthly U.S. IPI growth rate. Entries Ratio show the root mean-squared-forecast-error (RMSE) or mean-
absolute-error(MAE) using FRW method of the AR model relative to RMSE or MAE using ML or ORW. Columns labelled ρ1 and ρ2 show the optimal
weight parameter for the combined weight function. The forecasts were computed over the sample period 2002Jan–2007Dec. For further explanations, we
refer to Table 1.
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Table 8: AR model forecasting results: Binary weight with decaying, expansion period 2009Jul-2023Dec.

RMSE MAE

n=1 n=3 n=1 n=3

window Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2 Ratio ρ1 ρ2

AR(1)
FRW/MLE 25 years 0.751 0.976 100.0 0.949 0.974 100.0 0.881 0.955 100.0 1.046 0.966 100.0

(0.155) (0.298) (0.114) (0.195)
50 years 0.804 0.976 100.0 1.033 0.974 100.0 0.878∗ 0.955 100.0 1.078∗ 0.966 100.0

(0.148) (0.297) (0.069) (0.097)
FRW/ORW 50 years 0.471 126 1.017 567 0.762 105 1.054 351

(0.154) (0.425) (0.120) (0.167)

AR(AIC)
FRW/MLE 25 years 0.762 0.995 100.0 0.899 0.974 100.0 0.933 0.986 100.0 1.016 0.966 100.0

(0.128) (0.208) (0.230) (0.400)
50 years 0.854 0.990 100.0 1.033 0.974 100.0 0.974 0.983 100.0 1.078∗ 0.966 100.0

(0.155) (0.297) (0.373) (0.097)
FRW/ORW 50 years 0.744 258 1.017 567 0.917 240 1.054 351

(0.135) (0.425) (0.199) (0.167)

Table 9: Rolling-window forecasting results for monthly U.S. IPI growth rate. Entries Ratio show the root mean-squared-forecast-error (RMSE) or mean-
absolute-error(MAE) using FRW method of the AR model relative to RMSE or MAE using ML or ORW. Columns labelled ρ1 and ρ2 show the optimal
weight parameter for the combined weight function. The forecasts were computed over the sample period 2009Jul–2023Dec. For further explanations, we
refer to Table 1.
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Table 10: AR model forecasting results: U.S. Unemployment Rate

RMSE MAE

n=1 n=3 n=1 n=3

Window Ratio ρ2 Ratio ρ2 Ratio ρ2 Ratio ρ2

AR(1)
FRW/MLE 25 years 0.608∗∗ 1.0 0.617∗∗∗ 2.0 0.639∗∗ 1.7 0.692∗∗∗ 5.0

(0.019) (0.007) (0.028) (0.001)
FRW/MLE 50 years 0.673∗∗∗ 7.5 0.701∗∗∗ 10.2 0.782∗∗ 14.2 0.849∗∗∗ 24.6

(0.005) (0.003) (0.010) (0.000)
FRW/ORW 0.671∗∗∗ 387 0.700∗∗∗ 378 0.781∗∗ 387 0.845∗∗∗ 378

(0.005) (0.003) (0.011) (0.000)

AR(AIC)
FRW/MLE 25 years 0.637∗∗ 1.7 0.691∗∗ 2.7 0.674∗ 2.2 0.706∗∗∗ 10.5

(0.030) (0.010) (0.056) (0.006)
FRW/MLE 50 years 0.734∗∗ 9.4 0.750∗∗ 19.7 0.759∗∗ 8.7 0.848∗∗∗ 33.6

(0.021) (0.010) (0.049) (0.005)
FRW/ORW 0.740∗∗ 576 0.746∗∗∗ 378 0.765∗ 576 0.844∗∗∗ 378

(0.021) (0.009) (0.050) (0.004)

Table 10: Rolling-window forecasting results for monthly U.S. Unemployment. Entries Ratio show the
root mean-squared-forecast-error(RMSE) or MAE using FRW method of the AR model relative to RMSE
or MAE using normal ML or ORW methods. Columns labelled ρ2 show the optimal weight parameter,
multiplied by 100, for the combined weight function or optimal rolling window size. The forecasts were
computed over the sample period 2008Jan–2009June.
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Table 11: AR model forecasting results: U.S. Total Non-farm Payrolls

RMSE MAE

n=1 n=3 n=1 n=3

Window Ratio ρ2 Ratio ρ2 Ratio ρ2 Ratio ρ2

AR(1)
FRW/MLE 25 years 0.623∗∗∗ 0.1 0.734∗ 0.6 0.423∗∗∗ 1.9 0.622∗∗ 3.0

(0.000) (0.078) (0.000) (0.028)
FRW/MLE 50 years 0.519∗∗∗ 2.5 0.553∗∗∗ 3.1 0.460∗∗∗ 5.1 0.497∗∗∗ 5.8

(0.000) (0.000) (0.000) (0.000)
FRW/ORW 0.956 135 0.795∗∗∗ 132 0.887 135 0.728∗∗∗ 132

(0.368) (0.003) (0.256) (0.004)

AR(AIC)
FRW/MLE 25 years 0.755∗∗ 0.6 0.855 0.7 0.584∗∗∗ 1.9 0.715∗ 2.1

(0.033) (0.236) (0.004) (0.091)
FRW/MLE 50 years 0.614∗∗∗ 2.8 0.564∗∗∗ 3.5 0.513∗∗∗ 8.1 0.512∗∗∗ 6.3

(0.002) (0.002) (0.000) (0.000)
FRW/ORW 0.840∗∗ 135 0.593∗∗∗ 48 0.794∗∗ 135 0.526∗∗∗ 48

(0.022) (0.007) (0.037) (0.001)

Table 11: Rolling-window forecasting results for monthly U.S. Total Non-farm Payrolls. Entries Ratio
show the root mean-squared-forecast-error (RMSE) or MAE using FRW method of the AR model relative
to RMSE or MAE using normal ML or ORW methods. Columns labelled ρ2 show the optimal weight
parameter, multiplied by 100, for the combined weight function or optimal rolling window size. The
forecasts were computed over the sample period 2008Jan-2009June.
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