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Abstract

Agriculture is widely recognized as one of the sectors most vulnerable to extreme tem-

peratures. Yet, crop losses are estimated to form only a modest share of aggregate macroe-

conomic damages from climate change, since agriculture accounts for a small share of global

GDP. These estimates, however, arise from analyses that largely ignore the critical role of

agriculture as an upstream sector in global production networks, including the sectoral

and spatial linkages connecting local agricultural output to other sectors and regions. In

this paper, I develop a a novel reduced form method to incorporate input linkages be-

tween sectors and countries that I use to estimate the aggregate impacts of extreme heat

in agriculture. A multi-region multi-sector production network model illustrates how ex-

treme heat in agriculture can propagate to downstream sectors across countries by reducing

supply availability and increasing intermediate input prices. Exploiting the geographic dis-

tribution and temperature sensitivity of 118 crops across the world, I construct a measure

of exposure to extreme heat in agriculture and show that it induces substantial losses to

downstream sectors, across national borders, and beyond first degree linkages. Counterfac-

tual exercises reveal that input linkages are responsible for approximately 70% of the total

value added losses induced by extreme heat in agriculture. The analysis demonstrates that

adaptation in agriculture to heat in regions that are central to global production networks

can have substantial co-benefits downstream and in other locations.
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1 Introduction

Agriculture has long been considered the sector most vulnerable to global warming. Given its

exposure and sensitivity to weather fluctuations, the first studies estimating economic losses

from climate change focused on this sector (Mendelsohn et al., 1994; Deschênes and Greenstone,

2007; Schlenker and Roberts, 2009). Agriculture, however, only accounts for 10% of global GDP,

implying that the global macroeconomic impacts of agricultural losses from climate change are

often considered modest.1 Nevertheless, agriculture is a critical upstream sector in the global

economy, producing commodities that are directly or indirectly used in downstream sectors,

ranging from cotton for the textile industry to rubber for the automotive industry (Antràs et al.,

2012). Thus, in an increasingly interconnected world, local productivity shocks in agriculture

can propagate through the economy and across space via trade in intermediate inputs (Farrokhi

and Pellegrina, 2023). To date, however, the implications of such propagation on the aggregate

economic impacts from climate change have yet to be assessed.

Two main approaches dominate in the quantification of global climate damages. One ap-

proach empirically estimates the effect of local quasi-random variations in temperature on GDP.

By using an aggregate measure of economic output, this approach implicitly embeds domestic

linkages across sectors, although typically failing to account for linkages across locations (e.g.,

Burke et al., 2015; Kalkuhl and Wenz, 2020). A second approach uses spatial quantitative models

to trace sectorally-disaggregated linkages through the economy, but relies on a set of assump-

tions on the structure of the economy and its sensitivity to climate that are difficult to calibrate

using real-world empirical data (Cruz and Rossi-Hansberg, 2024). Understanding the economic

consequences of global climate change requires accounting for sectoral and spatial linkages, yet

previous studies have either structurally modelled these linkages or empirically estimated the

treatment effect of local temperatures.

This paper bridges these two approaches to quantify the global economic losses induced by

extreme heat in agriculture accounting for linkages across sectors and space. I develop a reduced

form representation of a class of spatial models that incorporates general equilibrium links in

the form of intermediate input linkages between sectors and countries through model-consistent

exposure shares, and use it to estimate the aggregate impacts of extreme heat in agriculture.

To do so, I combine global country-level sectoral value added data with high-resolution daily

temperatures and input-output sectoral linkages between 1975 and 2020.

1For example, Costinot et al. (2016) find that climate impacts on agriculture amount to a 0.26% reduction in
global GDP.
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My analysis starts by showing four empirical facts that inform my theoretical model and

empirical approach. First, in a global cross-country sample of value added for six sectors,

extreme heat negatively affects only agriculture.2 This pattern echoes previous findings that

agriculture is the most vulnerable sector, and motivates my focus on this sector to study shock

transmission through the economy. Second, the negative productivity effect of extreme heat

on agriculture induces a short-lasting increase in agricultural commodity prices, which feeds

into the transmission mechanism in my theoretical model. Third, extreme heat in agriculture is

increasingly spatially correlated over time, underlining the importance of accounting for linkages

across space in empirical analyses of temperature impacts. Fourth, downstream sectors do not

alter their agricultural input expenditure shares in response to extreme heat shocks, suggesting

limited adaptation in the form of spatial and sectoral adjustments in the global production

network.

Armed with these empirical facts, I build on a static multi-sector production network model

where output is a function of intermediate inputs (Acemoglu et al., 2012). I extend the framework

to an open-economy where I model agricultural production separately from other sectors and

introduce local productivity shocks in the form of extreme heat that can transmit through input

linkages. The objective of the model is two-fold. First, it highlights how traditional quasi-

experimental research designs that estimate the effect of local weather on aggregate output

ignore spatial linkages, deriving estimates by holding weather in other locations fixed. That is,

the estimated (and projected) damages in a location due to global warming are computed under

local warming, without accounting for simultaneous temperature increases elsewhere. Second,

the model illustrates how agriculture-specific shocks in a location can propagate through input

linkages not only to first degree downstream sectors, but also to the rest of the economy through

higher degree linkages, which account for all sectoral and spatial interdependencies. Extreme

heat, by agricultural commodity supplies and increasing their prices, leads downstream sectors

to reduce the demand for intermediate input, thereby reducing their output.

Based on the empirical facts and on the theoretical model, I develop a reduced form spec-

ification that integrates spatial and sectoral input linkages. A key empirical challenge lies in

disentangling the direct effects of local heat on a sector from the indirect effect of heat prop-

agating from agriculture. To address this challenge, I construct country-specific agricultural

2In the other five sectors the average effect is small and statistically indistinguishable from zero, but with
substantial heterogeneity across climate and income, consistent with prior work (Carleton et al., 2022; Nath
et al., 2024). The other five sectors include: Mining, manufacturing and utilities; Construction; Wholesale, retail
trade, restaurants, and hotels; Transport, storage, and communication; Other activities (including government
and financial sector).
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shock exposure metrics that combine the differential geographic distribution of crop areas for

118 distinct plants with their differential sensitivity to above optimal temperatures. The final

metric is measured in degree days, which quantify the cumulative annual exposure of crops to

temperatures above their optimal growing conditions. My econometric specification then relies

on plausibly exogenous variation in extreme heat over time across sectors within country-years

to identify both direct and indirect effects of extreme heat on sectoral value added. My approach

builds on the popular “shift-share” design (Borusyak et al., 2022), using agriculture-by-location

specific “shifters”, driven by differential crop-specific heat sensitivities and crop acreage, that

affect downstream sectors’ value added via model-derived exposure “shares” through domestic

and international input linkages, which are allowed to adjust endogenously.

My main analysis leads to three key findings. First, domestic and foreign extreme heat con-

ditions in agriculture have a strong negative effect on the growth rate of downstream sectors’

value added via first degree input linkages. On average across five downstream sectors, one ad-

ditional degree day of heat exposure in domestic (respectively, foreign) agriculture reduces the

growth rate of value added by approximately 0.18% (0.15%). Downstream sectors are hetero-

geneously affected, with damages concentrated in sectors like manufacturing, wholesale, retail,

hotels, and restaurants, which directly rely on agricultural commodities, including unprocessed

food crops, feed, fiber, and oil crops. Second, results are larger in magnitude when accounting

for higher order linkages. The effect spreads further through the economy, affecting negatively

other sectors, including construction, transport, storage, and communication. Accounting for

higher order linkages, the average effect across downstream sectors for a one-degree day increase

in heat in domestic (foreign) agriculture is 0.31% (0.26%). Third, as predicted by the theoretical

model, I document that the direction of the propagation travels downstream from supplier to

buyer sectors. Extreme heat is a (negative) productivity shock on agriculture, which can be in-

terpreted as a supply-side shock propagating only downstream, not affecting sectors upstream. I

empirically validate this hypothesis by showing that extreme heat in agriculture has a negligible

and insignificant effect on upstream sectors. In additional robustness checks, I also show that

the results cannot be rationalized by a distance-weighted exposure measure to heat, suggesting

that spatial correlations do not confound the propagation effect through input linkages.

Finally, I use the estimated parameters from the reduced form specification as the basis

for two counterfactual exercises that quantify the importance of accounting for spatial and

sectoral linkages in the measurement of climate damages. First, I quantify the contribution of
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input linkages to annual value added losses induced by recent warming from 2000 onwards.3 I

compare value added losses in agriculture induced by local heat and aggregate value added losses

in downstream sectors transmitted through input linkages to a baseline where extreme heat in

agriculture stayed at its 1975-2000 average. While value added losses induced by local extreme

heat in agriculture are spatially heterogeneous and concentrated in Africa and South Asia, input

linkages amplify the aggregate impact of recent warming in agriculture, which are approximately

31% greater than local losses, with damages more homogeneously distributed across space. When

computing aggregate economic losses induced by extreme heat in agriculture, only 29% of the

losses can be explained by the direct impact of extreme heat in agriculture on this sector, while

the remaining 71% depends on the propagation across space and sectors through input linkages.

Second, I compute the aggregate global impact of extreme heat in agriculture in each single

country. Annual global losses are larger when extreme heat hits countries with stronger supply

chain interlinkages in the production network, such as China, the United States, India, France,

and Brazil. For example, a one standard deviation increase in heat conditions in China leads to

approximately global value added losses of 235 billion US$. Altogether, these countries are the

major global agricultural producers (Costinot et al., 2016). The results indicate a strong positive

relationship between how integrated and interconnected a country is in the production network

and the global losses induced by heat shocks in that country. Aggregating all counterfactuals

across countries, annual global losses amount to approximately 1.6 trillion US$, equivalent to

around 3.5% of the average global value added in the sample.

This paper contributes to the literature on the macroeconomic impacts of climate change

by bridging two complementary approaches that trade off identification with comprehensive

measurement. A first approach relies on quasi-experimental variation in temperature in a given

location in a panel data structure to estimate the effects of climate change on the growth rate

of national or sub-national GDP (Akyapi et al., 2024; Burke et al., 2015; Burke and Tanutama,

2019; Dell et al., 2012; Kahn et al., 2021; Kalkuhl and Wenz, 2020; Kotz et al., 2021, 2024; Nath

et al., 2024; Newell et al., 2021). These reduced form panel fixed effects methods implicitly

account for domestic sectoral linkages by studying the response of an aggregate measure of

economic output. Sometimes they also account for spatial linkages either through the use of

spatial lags (e.g., Kotz et al., 2024), or non-parametrically by exploiting variation in weather

that is spatially uncorrelated through the use of time-varying fixed effects at broader spatial

3These counterfactuals use reduced form short-run elasticities to weather. For this reason, my counterfactual
exercises focus on a retrospective quantification of the economic cost of recent warming, instead of a projection of
future climate damages, where other long run adaptive margins (e.g., spatial adjustments in crop specialization
patterns) might affect differences between short-run elasticities to weather and long-run elasticities to climate.
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levels. Nevertheless, reduced form estimates from panel fixed effect models do not capture

general equilibrium effects if the outcome responds to prices. For this reason, other papers using

this method run a time-series analysis of global spatially-averaged temperature on a global

economic outcome (Berg et al., 2024; Bilal and Känzig, 2024), as suggested by Deschênes and

Meng (2018). This approach embeds, by construction, all global spatial and sectoral linkages,

but cannot disentangle the local effect from the spatial correlation structure of temperature and

from trade and input linkages across sectors and space. This approach may also not identify

causal effects if other drivers of the global economy are changing over time and are correlated

with temperature changes.

A second method takes a spatial quantitative approach to quantify climate damages ac-

counting for general equilibrium forces, including trade and spatial and sectoral reallocation of

economic activities, through calibrated structural models.4 In models that account for trade

and crop specialization pattern adjustments, agriculture has only been considered a consump-

tion good and not an intermediate input in other sectors’ production (Costinot et al., 2016;

Gouel and Laborde, 2021). The importance of agriculture has also been documented through

consumption preferences characterized by non-homotheticity and low substitutability, although

in a model without intermediate inputs (Nath, 2020). Rudik et al. (2024) show with a macro

quantitative model that input linkages transmit climate shocks through the economy, but focus

on within-state sectoral linkages in the US. To the extent that some of these models include

sectoral or spatial interdependencies, they do so only through the structure of a model, which

allows for welfare calculations, and at a coarser sectoral disaggregation. In contrast, my paper

develops and applies a reduced form approach to estimate global climate impacts accounting for

sectoral and spatial input linkages, bridging the gap between the quasi-experimental approach

and structural spatial models of the economic activity under climate change. My approach allows

for a flexible structure of spatial links and idiosyncratic shocks, and it does not require observ-

ing all trade costs before and after the shock (Donaldson and Hornbeck, 2016) nor calibrating

parameters to match distribution moments generated in the model with simulated shocks (Cruz,

2021).

Besides spatial correlation in climate-induced productivity losses and absolute advantage

as a channel for the global nature of climate change (Dingel et al., 2023), my paper shows

4Earlier contributions to this approach develop a computable general equilibrium (CGE) model, which sim-
ulates interactions between firms in multiple sectors using the Global Trade Analysis Project (GTAP) global
economic model (Hertel, 1997). These models account for the indirect effects of climate damages beyond the
sector and region where they occur, but quantify damages through calibrated simulations (Moore et al., 2017;
Baldos et al., 2019).
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that heat shocks can also propagate across sectors and geographically distant countries through

production networks. Firm level studies quantify the role of input linkages as a mechanism

for the propagation and amplification of natural disasters within the manufacturing sector in

the US (Barrot and Sauvagnat, 2016) or after the 2011 Japan earthquake (Boehm et al., 2019;

Carvalho et al., 2021). My paper shows that more frequent but less salient climate shocks

driven by variation in extreme temperatures can transmit across sectors and countries. Recent

studies have also explored firm adaptation in manufacturing production networks through shifts

in the composition of their suppliers and diversification of sourcing locations in India (Castro-

Vincenzi et al., 2024) and Pakistan (Balboni et al., 2024). My paper contributes to this growing

literature adopting a macro perspective and documenting that cross-sectoral input linkages with

agriculture are unresponsive to extreme heat conditions in this sector, leading to downstream

amplification of these shocks.

Altogether, my findings provide evidence of the importance of accounting for sectoral and

spatial linkages when computing the impacts of extreme heat in agriculture. Without accounting

for linkages across sectors and countries, the effects of extreme heat on agricultural production

are concentrated locally in those countries whose share of agriculture in total value added is

large. Trade can be an effective adaptation strategy to climate change that helps countries

reduce their exposure to local shocks (Nath, 2020). At the same time, however, stronger input

linkages make countries more interdependent and exposed to heat shocks that can propagate

through these linkages, amplifying local effects across sectors and countries. This result suggests

that local adaptation efforts might also have beneficial consequences in other locations.

2 Data

This section provides a summary of the main data sources used throughout the analysis. The

final merged data set combines sector-level value added (Section 2.1) with weather (Section

2.2) and global country-sector interlinkages (Section 2.3). Complementary secondary data are

described in Appendix Section D.

2.1 Sectoral value added

The Economic Statistics Branch of the United Nations Statistical Division (UNSD, 2024) pro-

vides annual Gross Value Added (GVA) in constant 2015 US$ for 183 countries in the world
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from 1975 through 2020.5 The data set categorizes sectors into six broad groups (with the

International Standard Industrial Classification - ISIC - rev. 3.1 code in parentheses) and it

provides the most comprehensive source of global economic production disaggregated by sec-

tor: agriculture, hunting, forestry, and fishing (A-B); mining, manufacturing and utilities (C-E);

construction (F); wholesale, retail trade, restaurants, and hotels (G–H); transport, storage, and

communication (I); other activities (J–P).6 The latter encompasses, among others, the financial

sector, real estate, public administration, education and health.7

These data present two main advantages. First, in contrast to previous work estimating

macroeconomic damages to climate change globally (e.g., Dell et al., 2012; Burke et al., 2015;

Nath et al., 2024), these data provide a more disaggregated sectoral breakdown categorizing the

country’s production in six sectors, as compared to the traditional tripartition into agriculture,

manufacturing, and services. Calibrated structural models also articulate the economy often

into agriculture and non-agriculture sectors (e.g., Costinot et al., 2016; Conte et al., 2021). In

few exceptions, studies explicitly model the service sector (Nath, 2020; Rudik et al., 2024),

or the construction and mining sectors (Casey et al., 2024).8 Sectoral disaggregation is of

paramount importance for two reasons. First, it informs which sectors are more vulnerable

to temperature fluctuations, with first order relevance for policy implications. Second, since

intermediate input use from agriculture can substantially differ along the supply-chain, sectoral

disaggregation is crucial when tracing input linkages across sectors and countries, . For instance,

industries in the manufacturing sector include “manufacture of food products and beverages”,

or “manufacture of wood and of products of wood and cork”, which directly rely on intermediate

inputs from agriculture. Conversely, the “retail sale of food, beverages and tobacco in specialized

stores” industry in the wholesale, retail trade, restaurants, and hotels sector uses inputs from

the agriculture sector to a smaller extent through first degree sectoral linkages, but more so at

when accounting for higher order linkages through the food processing industry.

Second, sectoral production is measured in value added, which is equal to a sector’s gross

output (which consists of sales or receipts and other operating income, commodity taxes, and

5The final sample of countries and their frequency are reported in Appendix Table C2.
6The original data include information for value added in manufacturing (ISIC D). Unlike previous studies

(Hsiang, 2010; Kunze, 2021), I consider mining, manufacturing and utilities (ISIC C-E) as one single sector, since
value added across sectors is not additive.

7Appendix Table C1 presents summary statistics for sectoral production. Although unbalanced, the sector-
country panel dataset covers all countries in the world for most of the 46 years in the analysis. On average,
information for each sector-country tuple is available for 44 years. Most of the sectors are covered for the entire
time period except for recent geopolitical changes.

8For a complete review of the sectoral heterogeneity in macro quantitative models quantifying climate damages,
see Carleton et al. (2024).
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inventory change) minus its intermediate inputs (including both domestic and foreign sources).

Using value added instead of gross output allows me to trace the role of shocks that affect local

production from shocks that propagate through intermediate inputs. Although output could be

affected by local weather through a variety of channels, including labor supply and productivity

(Graff Zivin and Neidell, 2014), capital depreciation (Bakkensen and Barrage, 2018), and total

factor productivity (Letta and Tol, 2019), the data do not allow me to disentangle which of

these channels dominates the local response of value added to local weather. This is usually

possible in firm level studies that disentangle the effect of temperature shocks through total factor

productivity and local factor inputs, including capital and labor, although without allowing for

the possibility of shocks to hit intermediate input availability, mostly due to data limitations

(Zhang et al., 2018; Somanathan et al., 2021). Here, I investigate the propagation of temperature

shocks over input-output linkages by observing both the production network and the shocks that

I describe in the following sections, without having to rely on identifying assumptions for backing

out the shocks from data.

2.2 Weather

I construct daily average temperatures and total precipitation measures from the global reanal-

ysis ERA-5 dataset compiled by the European Centre for Medium-Range Weather Forecasts

(Muñoz Sabater, 2019). ERA-5 is available on a 0.25◦ × 0.25◦ resolution grid (≈ 28km at the

Equator) at the hourly frequency from 1940 to the present. Reanalysis data combine climate

model output with observational data from across the world into a globally complete dataset us-

ing the laws of physics and relying on information from weather stations and satellites, removing

biases in measurement and creating a coherent, long-term record of past weather.9

A key empirical challenge in the parametric estimation of spillover effects of heat in agricul-

ture transmitting through sectoral and spatial linkages lies in separating these from the direct

effect of local heat on sectoral value added. In what follows, I detail how I construct country-

specific shocks in agriculture, relying on temporal variation in daily temperatures combined

with cross-sectional spatial variation in land use, as well as agro-physical information on the

optimal growing temperatures for individual crops, and sector-country specific heat shocks that

exploit the spatial distribution of population and of sectoral economic activity. This allows me

9The process undertaken by reanalyses data is called “data assimilation”, which merges observational data
with the physics-based global climate model. Despite partly relying on climate models, the use of reanalysis
climate data for empirical analysis has been widely validated, particularly so in those regions where observations
are sparse or of poor quality (Hogan and Schlenker, 2024).
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to isolate a temperature shock that hits agricultural production, as based on crop sensitivity

and exposure, but does not directly impact other sectors.

Heat shocks in agriculture. Crucial to the analysis is the construction of shocks specific

to agriculture. Building on extensive prior literature, I focus on extreme heat exposure, which

is quantitatively the most important weather determinant of agricultural yields (Schlenker and

Roberts, 2009; Hultgren et al., 2024).

To construct a measure of extreme heat that contains orthogonal variation across sectors,

I exploit the fact that locations grow different crops and each crop is differentially sensitive

to extreme heat. Spatial variation in the the global geography of crop areas comes from the

Earthstat database (Monfreda et al., 2008). These land use data combine national, state, and

county-level census statistics with a global data set of croplands to construct the agricultural land

coverage for 175 crops at a 5 arcmin (≈10 km) spatial resolution. The data are time-invariant and

obtained as an average from multiple years between 1990 and 2003 to get a single representative

value for circa the year 2000. By only relying on cross-sectional variation in the geography

of crop acreage, this approach does not account for crop migration as an adaptive margin to

changes in heat exposure. Three reasons justify this simplification. First, crop migration only

occurs locally, with spatial patterns of production shifting to neighboring locations (Sloat et al.,

2020). By aggregating the original spatial resolution of crop areas to match the spatial resolution

of climate data (nine times coarser), I measure exposure of crop-specific agricultural land within

each weather grid cell which thus accounts for crop migration within location. Second, around

half of the crops in my sample, 84, are perennial, which suggests that spatial adjustments in

crop specialization might be more limited than documented in previous work, which studies

this margin of adaptation for annual crops (Costinot et al., 2016; Aragón et al., 2021; Gouel

and Laborde, 2021). Third, in Appendix Section E, I empirically document that, for a subset

of crops whose spatial distribution is available over time, accounting for spatial reallocation

patterns does not substantially alter crop-specific extreme heat exposure.

To capture crop-specific exposure to harmful hot temperatures, I use crop-specific informa-

tion on the optimal temperature for growing conditions from the UN FAO EcoCrop database.

I construct a measure that combines the intensity and the length of exposure to extreme heat

for each specific plant. The EcoCrop data are compiled from experts and provide information

on plant characteristics and crop environmental requirements for each individual plant species,

including tolerance ranges for temperature and precipitation, soil pH, light intensity, and other

soil characteristics. The data set includes plant information for more than 150 agricultural
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commodities that can be broadly categorized into food crops (including fruits, cereals, grains,

vegetables, nuts, spices), feed crops, fiber crops (e.g., agave, cotton, flax, hemp, and jute), oils

and fats, ornamental crops, and industrial and secondary crops (including rubber and tobacco).

I use the crop-specific upper temperature threshold for optimal growing conditions to com-

pute the cumulative number of degree days in a year during which temperatures exceed a

threshold that is damaging to the plant growth. Appendix Figure A1 plots the distribution of

optimal maximum growing temperatures for the 118 plants in my final sample.10 For example,

temperatures above 31◦C are harmful for maize. Figure 1 illustrates graphically the importance

of this approach with an example. A spatially uniform threshold to compute extreme heat

across locations and crops, e.g., 30◦C, would completely mask Bolivia’s and Ecuador’s exposure

to above-optimal growing temperature conditions for quinoa (20◦C), of which these countries are

the leading world producers but whose daily average temperature on agricultural land growing

quinoa is above 25◦C only in 2% of the days in the sample.

Using the geographic and temperature sensitivity information for 118 crops, I expand on

previous US-specific (Moscona and Sastry, 2023) and crop-specific (Hsiao et al., 2024) temper-

ature exposure measures to construct a country-specific measure of extreme heat exposure in

agriculture aggregating across crops c and grid cells g in country n, such that:

ExtremeHeatnt =
∑
c

∑
g∈n

Areagc∑
c

∑
g′∈nAreag′c

DegreeDaysgt(T
max
c ) (1)

where DegreeDaysgt(T
max
c ) is the total number of degree days above the crop-specific op-

timal growing temperature Tmax
c in grid cell g in year t, and Areagc is the fraction of grid cell

g in country n growing crop c. To have a crop-weighted cumulative measure of extreme heat

exposure at the country-level, I sum crop-specific cumulative extreme heat exposure weighted

by the relative importance of each crop c in country n in terms of land where it is grown.

Heat shocks in other sectors. Unlike agriculture, production in other sectors is not linked to

temperatures through specific geo-physical or agronomic relationships. Output can be affected

by temperatures through a variety of channels, including labor productivity, capital damages,

and health. For this reason, I construct a grid-specific measure of abnormal heat exposure using

deviations of temperatures from their historical norms.

10Sample limitations are driven by data availability of the geography of crop acreage.
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Figure 1. Daily temperatures in agricultural land growing quinoa in Ecuador and Bolivia

Notes: The figure shows the daily average temperatures in 2012 across grid cells in Bolivia and Ecuador where
quinoa is grown. These countries are the leading world producers of quinoa, whose maximum optimal growing
temperature according to EcoCop data is 20◦C (dashed line in orange). Using a uniform cut-off across crops
and locations to define extreme heat, e.g., 25◦C (dashed line in red), would entirely mask Ecuador’s exposure to
above-optimal temperature growing conditions and substantially underestimate Bolivia’s exposure.

This measure has two major benefits over previous measures. First, it allows for non-

linearity while preserving unidimensionality. Since early reduced form approaches assessing

the GDP-temperature relationship, temperature has been used in levels (Dell et al., 2012).

The non-stationarity of temperature levels, however, introduces concerns for the identification

strategy that first-differenced temperature would allay, only if introduced linearly (for a de-

tailed discussion and mathematical proofs, see Appendix Section G). Previous work, however,

has documented substantial non-linearities in the relationship between temperature and out-

put (e.g., Burke et al., 2015). To preserve non-linearities while avoiding econometric pitfalls, I

construct deviations of temperature counting the cumulative number of degree days above the

95th-percentile of each grid-specific 30-year long temperature distribution. I do so in two ways.

Firstly, I construct a distribution across the twelve months in each year; secondly, I construct a

month-specific distribution to account for month-specific deviations, e.g., temperatures in Jan-

uary 2000 are compared to the 95th-percentile of temperatures in January between 1970 and

1999 in a given location.
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Second, using temperature deviations from their historical norms allows for an implicit model

of adaptation. Using a baseline climate of 30 years is consistent with assuming that individuals

form climate beliefs over this time length and any deviations from it would constitute unexpected

idiosyncratic shocks. To allay concerns on the arbitrariness of the cut-off, I test for the robustness

of the results using the 90th and 99th percentile as alternative cut-offs (Carleton et al., 2024).

Furthermore, although 30 years is the traditional length over which climate is generally computed

in climate science (Arguez et al., 2012), I construct alternative measures of abnormal heat

exposure with respect to a 20-year and a 40-year long historical norm. This approach also

allows me to test for the speed of adaptation (the shorter the interval, the faster individuals

treat higher temperatures as the new norm).

Using this methodology, the measure is evenly distributed, and any abnormal realization

is compared to the grid-specific climatic norm, in contrast to using absolute thresholds (e.g.,

number of days above 35◦C), which only occur in certain areas of the world and might drive

variation without geo-physical justifications. To construct a measure of weather exposure for

the average individual in a country, after taking any non-linear transformation at the grid cell

level, I average grid cell values across space using time-invariant population weights from the

2000 Landscan dataset (Bright and Coleman, 2001) and accounting for fractional grid cells that

partially fall within a country (Hsiang, 2016). To obtain sectoral variation in weather conditions

within a country, I collect data from National Statistics Offices on the sub-national geographic

distribution of sectoral economic activities (Appendix Section D provides additional details on

the data sources).11

In additional robustness checks, I also construct an alternative measure of heat shocks,

following Nath et al. (2024). The approach relies on projecting the temperature in each country

on its own lags and interact them with country mean temperature to allow the dynamics to

vary across climates. I implement this approach at the sectoral level accounting for all possible

two-way fixed effects, country-year, sector-year, and country-sector, and use the innovation in

this non-linear regression as the temperature shock.12

11Like in the case of the spatial geography of land use, a time-invariant measure for population distribution and
sectoral activity implies that this approach does not account for human migration (Cai et al., 2016) or sectoral
reallocation (Rudik et al., 2024), which could be important adaptation margins. Nevertheless, these adaptive
margins entail ex ante decisions. In this paper, I focus on short run elasticities that do not capture any long run
adaptation decision.

12The temperature shock τjnt is defined as the innovation to temperature in the equation

Tjnt =

5∑
p=1

γjpTjn,t−p +

5∑
p=1

δjpTjn,t−p × T jn + αjn + µnt +jt +τjnt, (2)
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2.3 Production network

The definition of sectoral and spatial input linkages is crucial to my analysis. I use input-

output (IO) data from EORA26 (Kanemoto et al., 2011; Lenzen et al., 2012) to define the

production network and analyze how idiosyncratic weather shocks propagate. This data set

contains a sequence of global bilateral input-output tables that record final and intermediate

goods shipments at basic prices (i.e., the amount a producer receives for a unit of a good or

service, minus any taxes and plus any subsidies) across countries for 26 sectors from 1970.13

Construction of sectoral linkages across space. To investigate whether and how shocks

in agriculture propagate to other sectors and countries through input-output interlinkages, I

account for the geographic location and the position in the supply chain of the origin of the

shock. First, I distinguish between shocks to agriculture in the same country, domestic, and

those originating in others, foreign. Second, I classify network shocks into downstream and

upstream using entries from the inter-country IO tables with different weights depending on the

relative importance of agriculture as a supplier or customer of the sector of interest. From the

perspective of the sector of interest, downstream shocks originate in agriculture as a supplier

sector and travel in the same direction as intermediate inputs. In contrast, upstream shocks hit

agriculture as a customer sector and travel upstream to the sector of interest. I allow for the

production network to slowly evolve, wherein input linkages are averaged over a five-year lagged

period every five years (e.g., I use average linkages between 1970 and 1974 for period between

1975 and 1979), so as to smooth annual variation and to account for the intensification of inter-

sectoral and inter-national production linkages over time with more interconnected global supply

chains.

From the perspective of sector j in country n, I construct weights associated with shocks in

agriculture using the downstream linkages with the agricultural sector in country m, such that

ωj,n
m,τ =

inputm,τ→jnτ∑
kf∈Θjn

inputjnτ→kfτ

, (3)

where Tjnt is temperature in sector j in country n in year t, T jnt, is the country mean temperature in the
sample, and I include up to 5 lags in temperature. The second summation term allows the coefficients on lagged
temperature to vary with country mean temperature. The residuals from this regression τ̂jnt are the temperature
shocks that I use in additional robustness checks.

13The dataset contains the richest information in terms of geographic, temporal and sectoral disaggregation for
input-output interlinkages, which makes it preferable over alternative datasets, including WIOD and EXIOBASE.
The EORA26 respects national account definitions of final and intermediate goods and is consistent with standard
macro aggregates. Appendix Table C3 maps the 26 EORA sectors to the six sectors described in Section 2.1.
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i.e., the share of intermediate inputs used by sector j in country n sourced from agriculture

in country m over total inputs supplied to its set of customer sector-countries Θjn averaged

over the previous five years τ . In other words, these weights represent the share of intermediate

inputs that sector-country jn sources from the agriculture sector in country m to produce one

dollar’s worth unit of its output. A sector’s output can in turn be both used as an input for

other sectors or consumed as a final good, hence the denominator embeds both inputs and value

added for sector-country jn.14

Appendix Figure A5 displays the inter-sectoral linkages (i.e., the full Ω matrix of ω sector-

by-country interlinkages) averaged across countries and time. Agriculture is the most upstream

sector and, on average, downstream interlinkages with agriculture are larger than with any other

sector. This result resonates with the “upstreamness” measure in Antràs et al. (2012) and Fally

(2012), constructed as the average position of an industry’s output in the value chain in terms of

distance from final use.15 There is, however, substantial heterogeneity across sectors. Manufac-

turing has much stronger first order linkages with agriculture (0.48) than the transport, storage,

and communication (0.08, which does not include agricultural storage), reflecting different use

of agricultural commodities as an intermediate input in the production process in each of these

sectors.

Appendix Figure A6 shows the empirical distribution of the first order linkages with agricul-

ture across sectors by five-year period. The distributions are noticeably skewed, with heavy right

tails. These skewed distributions are indicative of the presence of agricultural commodities that

are general purpose inputs used by many other sectors and of the presence of major agricultural

suppliers to sectors that produce the general purpose inputs. I return to the latter point when

studying counterfactuals in the propagation of shocks in Section 7. These distributions, however,

do not considerably vary over time, suggesting that linkages have been relatively stable, with

the average varying between 0.38 in 2005 and 0.52 in 2015.

14In robustness checks, I use upstream linkages between agriculture and sector j, which are constructed as

ω̂j,n
m,τ =

inputjnτ→,mτ∑
lf∈Θ̂jn

inputjnτ→lfτ

, (4)

i.e., intermediate inputs of sector-country jn to the agriculture sector in countrym over the total inputs supplied
to its set of customers Θjn. These upstream weights reflect the importance of the agriculture sector in country
m as a customer for the sector-country of interest jn.

15Antràs et al. (2012) construct the upstreamness measure for industries in the manufacturing sector in the
United States, but in complementary analysis they show using global trade flows from 2002 that the mean value
of upstreamness for the agriculture sector is 2.84, while it is 2.10 for manufacturing industries.
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Construction of network shocks. I combine the country-specific measures of extreme heat

in agriculture with sectoral linkages to construct two measures of network shocks that differ by

location and supply chain position. Downstream shocks Dn are constructed for domestic, Dom,

and foreign, Fgn, agriculture as follows (upstream shocks are symmetric but differ by using

upstream weights ω̂j,Ag
n,m,τ in Equation (4)):

NetworkShockDn,Dom
j,n,t = ωj,n

n,τExtremeHeatnt (5)

NetworkShockDn,Fgn
j,n,t =

∑
m̸=n

ωj,n
m,τExtremeHeatmt (6)

where ExtremeHeatnt measures the crop-weighted extreme heat conditions in agriculture in

country n in year t, as defined in Equation (1). These metrics resemble a “shift-share” approach

since the sum of extreme heat conditions is weighted by pre-shock sector-country exposure

shares. Indirect exposure of sector j in country n to extreme heat in agriculture in m depends

on sector-country input linkages ωj,n
m,τ , which are computed in the pre-shock period τ , averaging

the five-year linkages prior to the shock.

The measures in Equations (5) and (6) capture the exposure to extreme heat shocks in agri-

culture of immediate downstream industries that use agricultural commodities as intermediate

inputs. Agricultural commodities in the sample include a wide range of crops that enter in

the production processes of several downstream sectors. Intuitively, cereals, fruits, vegetables,

spices, oils and fats are essential for the food and beverage manufacturing industry. Other types

of agricultural commodities include fiber crops (such as cotton, kapok, flax, hemp, ramie) used in

the textile and apparel industry, oil crops (including sunflower, soybean, canola, palm, sesame,

coconut) used for oilseed processing, fats and oils refining and blending, ornamental plants used

in plant wholesale and retail of ornamental plants (lavender, peppermint, rosemary), herbs and

spices (such as basil, thyme, sage, mint, chive), tobacco product manufacturing, crops for phar-

maceutical, medicinal, cosmetic, and personal care products (including coconut, aloe vera, olive,

safflower, sesame, chamomile, jojoba), rubber and latex products for the automotive industry,

and crops for paper and packaging products (including bamboo, hemp, agave, flax).

The transmission of heat shocks may not be limited to first degree linkages but can ripple

down through higher order linkages to sectors that are not or only partially directly connected

with agriculture. A negative productivity shock in agriculture will reduce commodity output and

increase its price, adversely impacting all of the sectors that purchase inputs from agriculture.

This direct impact will be further augmented in competitive equilibrium because these first-
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round-affected sectors will change their production and prices, creating indirect negative effects

on other customer industries that might not rely directly on agriculture inputs. Examples

of these industries include automotive components, packaging industries, construction material,

home decor and landscaping industries, clothing and apparel industries, therapeutic and wellness

industries, and cosmetics and personal care products. To account for higher order linkages, I

compute the Leontief inverse matrix, L = (I − Ω)−1 =
∑∞

r=0Ω
r, which summarizes the sector-

specific “technical coefficients” of the shock propagation through a power series representation

of the Leontief inverse (Leontief, 1970). The technical coefficients capture all direct and indirect

sectoral interdependencies with agriculture and allow me to capture the total aggregate effect

of heat shocks in agriculture through the production network. This intuition is formally derived

in the model in Section 4.

3 Empirical facts

I begin the analysis by bringing together the data presented in Section 2 to document four key

empirical facts about the relationship between local extreme heat and i) sectoral value added; ii)

agriculture prices; iii) global patterns of extreme heat conditions; and iv) the production network

potential endogenous adjustments of the production network in response to weather variation.

Together, these facts allow me to characterize the main features of my theoretical model and

build the subsequent empirical approach, which introduces sectoral and spatial linkages as a

transmission channel of extreme heat in agriculture to sectoral economic production.

Fact 1: Local extreme heat reduces agricultural value added. To empirically establish

the sector-specific sensitivity to heat, I estimate the response to local extreme heat conditions

in growth rate of sectoral value added. Differently than previous cross-country evidence on the

channels through which weather shocks impact sectoral outcomes (Acevedo et al., 2020; Dell

et al., 2012), I jointly estimate sector-specific response functions in a pooled, multi-country

multi-sector sample. This model allows me to directly compare the different response functions

across sectors estimated in a single econometric specification of the form:

∆ log(value added)jnt = βjExtremeHeatjnt +W′
jntδj + αjn + λjt + µnt + εjnt (7)

where I regress the growth rate of value added in sector j in country n in year t (approximated

by the first difference in logarithms) on a sector-specific extreme heat measure j in country n
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in year t, and control for a second order polynomial of total precipitation Wjnt. Country-sector

fixed effects αjn account for unobserved heterogeneity that influences countries’ average sectoral

growth rates, such as history, culture, or topography and time-invariant sectoral compositions

of national output. Sector-year fixed effects λjt capture shocks to specific sectors (e.g., agri-

cultural commodity price shocks), while country-year fixed effects µnt account for time-varying

differences across countries, but also country-specific differential impacts of larger scale shocks,

including El Niño events or economic recessions. The full set of two-way fixed effects means

that my estimates only exploit variation across sectors within country-years and are not driven

by any country-specific or sector-specific trends, or differences in sector specialization across

countries. Therefore, this empirical strategy exploits the differential exposure of country-sector

pairs to plausibly exogenous variation in extreme heat over time, drawing on differential geo-

graphic distribution of crops, population, and sectoral economic activities.16 Standard errors

are clustered at the country level to account for spatial correlation of the error terms across

sectors and over time within a country.

Figure 2 shows the sector-specific coefficients associated with local extreme heat conditions

on growth rate of sectoral value added. On average, an additional degree day in the extreme

heat measure constructed in Equation (1) (≈ 1% at the sample mean) reduces the growth rate

of agricultural value added by 0.76%. All other five sectors do not respond to extreme heat, with

the effect very small in magnitude and statistically indistinguishable from zero. Together, these

estimates indicate that extreme heat exposure has substantial negative effects on agricultural

value added and does not significantly affect any other sector’s production.17. These average

treatment effects mask heterogeneous effects of local extreme heat by adaptation potential as

measured by income and climate (Carleton et al., 2022). I describe the results in Appendix Sec-

tion H. I find that sectors that rely on outdoor activities such as construction, transport, storage

and communication, benefit from hotter days in colder climates. Finally, to allay concerns that

differences in shock construction explain heterogeneous sectoral responses, I also construct a

measure of abnormal heat exposure in agriculture that is directly analogous to the metric used

for all other sectors. This measure weighs exposure to daily temperatures above the grid-cell

16I do not include any other time-varying determinants of sectoral production - such as investments or capital
stocks - since they are endogenous to weather and may thus introduce bias in the estimates because of the “bad
controls” problem (Dell et al., 2014).

17Results are robust to estimating the baseline equation in a balanced panel, excluding large countries (i.e.,
Brazil, China, India, Russia, US), controlling for lagged growth, and to alternative specifications (linear and
quadratic country-specific trends, sub-region-year fixed effects) (Appendix Figure B1). Results are also robust
when altering the threshold to construct abnormal heat (90th or 99th) percentile, computing the distribution
separately for each grid-month instead of for each grid-year, and altering the length of the climate distribution
(20-year or 30-year) (Appendix Figure B2).
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specific 95th percentile by agricultural land coverage in each grid cell (Ramankutty et al., 2010).

I find comparable and quantitatively similar results, with agriculture being the only affected

sector (Appendix Figure B3). I also estimate the specification using the alternative measure of

temperature shocks from Equation (2). Also in this case, agriculture is the only sector affected

by temperature shocks (Appendix Figure B4). Finally, I explore whether extreme heat has any

long-lasting impact on growth rate of value added by estimating a dynamic event study, but I

only uncover contemporaneous impacts (Appendix Figure B5).

The empirical finding that agriculture is the only sector for which value added responds to

heat resonates with previous micro (Nath, 2020) and macro findings (Dell et al., 2012; Acevedo

et al., 2020; Nath et al., 2024). Temperature-induced damages to agriculture are substantially

larger than those on non-agricultural sectors.18 The confidence intervals on the effects of extreme

heat on other sectors, however, cannot entirely rule out moderate impacts, which are more visible

in the heterogeneity analysis by climate and income that I study in Appendix Section H. In

particular, the construction sector might experience benefits from extreme heat in cold climates

and losses in temperate and hot climates. This finding is consistent with previous research that

underlines this sector’s vulnerability to climate through damages to investment productivity

(Casey et al., 2024). Overall, this finding indicates the importance of accounting for sectoral

heterogeneity when estimating or calibrating damage functions in climate impact studies so as

to inform direct sector-specific investments in climate policies. Previous work has documented

heterogeneous effects of temperature on economic output across locations depending on their

sectoral composition (Nath, 2020; Cruz, 2021), however, these studies often limit their approach

to contrasting agriculture with the rest of the economy, neglecting further sectoral heterogeneity

combined with climate and income heterogeneity. Yet to date, most studies calibrating damage

functions do not incorporate sectoral heterogeneity in their structural models (Cruz and Rossi-

Hansberg, 2024; Bilal and Rossi-Hansberg, 2023).

Fact 2: Extreme heat induces a short-lasting increase in crop prices. Negative effects

of extreme heat on agricultural value added combine a price and a quantity effect. To disentangle

how much of the local response in supply is driven by changes in price and quantities, I use FAO

crop price data measured in current US$ per tonne. In a crop-country level distributed lag

model, I estimate the response of crop prices to cumulative exposure to extreme heat conditions

18Appendix Figure B6 plots the response of growth rate of agricultural value added to changes in terciles or
quintiles of the extreme heat distribution.
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Figure 2. Effect on local extreme heat on growth rate of sectoral value added

Notes: The figure shows the coefficients on the country-average number of degree days in the extreme heat
exposure for the agricultural sector (constructed as in Equation (1)) and country-sector average number of days
above the 95th percentile of the daily distribution in temperature on growth rate in sectoral value added from
Equation (7). All sector-specific coefficients are estimated jointly in a regression model fully saturated with
country-sector, sector-year, and country-year fixed effects and allowing for sector-specific response to a quadratic
functional form in precipitation. Vertical lines represent the 95% confidence intervals around point estimates.
Standard errors are clustered at the country level.

above the crop-specific maximum optimal growing temperature over land cultivating that crop

in the country, accounting for five lags and leads. Figure 3 shows a substantial price increase

induced by heat conditions that, however, is not persistent over time. Only extreme heat during

year t increases crop prices, with the effect vanishing after one year. Appendix Table C4 reports

the tabular results in a country-crop panel regression that only accounts for contemporaneous

heat. The empirical finding documented here provides the source of propagation of extreme

heat conditions in agriculture throughout the economy that the theoretical model in Section 4

builds upon. Extreme heat in agriculture reduces sectoral value added and increases commodity

prices, inducing downstream sectors to decrease their demand for the intermediary inputs and

consequently leading to a reduction in the production of downstream goods.
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Figure 3. Dynamic price effect of extreme heat

Notes: The figure reports the regression coefficients on crop-specific extreme heat from an event study specification
where the outcome variable is the crop price (in $/tonne) from UN FAOStat Crop Price (see Appendix Section D
for additional details on the data source). The specification includes five leads and lags of extreme heat exposure,
a second order polynomial in precipitation, country-crop, crop-year fixed effects and a linear country-specific
trend. Vertical lines represent the 95% confidence intervals with standard errors clustered at the country-level.

Fact 3: Extreme heat shocks are increasingly spatially correlated. The third empirical

pattern relates to the geography of extreme heat exposure (EH) in agriculture around the world.

I measure the global spatial correlation of extreme heat in each year t using Moran’s I (Dingel

et al., 2023), a statistic for spatial autocorrelation that indicates how similar or dissimilar the

values of a variable are across locations in a geographic space:

It ≡
N∑

n

∑
m ̸=n anm

∑
n

∑
m̸=n anm

(
EHnt − EHt

) (
EHmt − EHt

)∑
ℓ

(
EHℓt − EHt

)2 (8)

where N is the number of countries, anm = amn is a (symmetric) spatial weight that depends

on the distance between countries n and m, and EHt is the world average extreme heat exposure

in year t across countries. Moran’s I values range from -1 to 1. A value equal to 1 indicates

that similar values of extreme heat cluster together in space, high values are surrounded by high

values and low values by low values, while a negative statistics would indicate that extreme

heat values are surrounded by low values, and vice versa. Figure 4 plots the time series of the

Moran’s I statistics. In the 45 years in the sample, the Moran’s I ranges from 0.55 to 0.62 with
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an average equal 0.59 and a strong positive trend over time. This fact suggests that, in spite

of crop-specific temperature thresholds, extreme heat exposure is spatially correlated across

countries and increasingly so over time, indicating that crop specialization patterns also follow

a similar spatial structure (Dingel et al., 2023).

The spatial correlation structure of extreme heat exposure is an additional aggravating factor

to previously documented agricultural losses induced by extreme temperatures. Trade costs lead

to stronger trade relationships with neighboring countries rather than distant ones (Chaney,

2018). In spite of accounting for differential crop composition of agricultural production across

countries, this empirical result suggests that lower agricultural output in a country due to

increases in temperatures is likely to be spatially correlated and neighboring countries are likely

to be similarly affected. This spatial correlation pattern might diminish the potential adaptive

role of international trade compared to scenarios where shocks are not spatially correlated (Cruz

and Rossi-Hansberg, 2024).

Local temperature fluctuations have been used in quasi-experimental studies that inform

climate impact projections (e.g., Burke et al., 2015). In this literature, the effect of local tem-

peratures on economic output is traditionally estimated using quasi-random variation implicitly

holding temperatures in other locations fixed. Climate change global impacts are then com-

puted as the sum of projected local impacts, which, however, hold fixed the spatial structure

of temperature and thus correspond to considering many scenarios in which only one location

experiences warming in each scenario. Two empirical approaches so far account for the global

nature of climate change, in which all locations experience warming simultaneously: a number

of studies accounts for spillovers from neighbouring regions using a spatial-lag model (e.g., Kotz

et al., 2024), while Dingel et al. (2023) integrate the general-equilibrium effect of spatial cor-

related shocks induced by global climatic phenomena on cereal productivity. In either cases,

incorporating changes in the spatial correlation exacerbates global welfare inequality and losses

induced by changes in climate conditions.

Fact 4: Downstream linkages with agriculture do not respond to extreme heat.

Countries may react to extreme heat conditions that hit the agricultural sector by altering

sectoral interlinkages and thus the production network structure. In other words, the production

network described in Section 2.3 might be endogenous to extreme heat. A productivity shock

to agriculture may result in a reallocation of resources across sectors in the economy, altering
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Figure 4. Spatial Correlation of Extreme Heat Exposure

Notes: The figure shows the time series evolution between 1975 and 2020 of the Moran’s I Statistic computed as
in Equation (4) for the Extreme Heat Exposure constructed in Equation (1). The dashed black line represents
the linear fit with the 95% confidence intervals displayed in the gray shaded areas (the coefficient on the linear
trend is equal to 0.001, with standard error equal to 0.0001), and the dashed orange line is a local polynomial.

expenditure shares of agriculture from specific locations hit by the shock.

Previous micro level empirical evidence documents that firms systematically respond to

changes in weather conditions by altering their location choice, their supply partner composition

and characteristics (Balboni et al., 2024; Castro-Vincenzi et al., 2024; Pankratz and Schiller,

2024). For example, firms may relocate to safer locations, shift purchases towards suppliers in

less exposed regions and use less exposed routes. A similar result is documented with changes

in intranational trade patterns of crops in the US (Dall’Erba et al., 2021). These endogenous

changes in the production network can, in turn, significantly alter the economy’s response to

exogenous disturbances. To examine whether the production network endogenously adjusts in

response to heat in agriculture, I exploit the time-varying nature of the input-output matrix

and estimate the following specification:

IOj
n,m,t = βj,ℓExtremeHeatn(ℓ),t + αjnm + µjmt + εjnmt (9)

where the outcome variable IOj
n,m,t is the (log) of intermediate inputs share that sector j in
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country m sources from agriculture in country n in year t.19 I exploit inter-annual variation in

extreme heat conditions in the agricultural sector in country n to test for within country-pair-

sector changes in intermediate inputs sourced from the agricultural sector. The specification

accounts for country-pair-sector αjnm and customer country-sector by year µjmt fixed effects

(which effectively also accounts for weather conditions and any other time-varying shock in the

downstream sector-country). To allow for heterogeneous elasticities of substitution, I estimate

sector-specific response functions to extreme heat and allow elasticities to differ also by location

ℓ of the agricultural sector (either domestic or foreign).

Figure 5 reports the sector-location specific coefficients associated with extreme heat on the

sectoral interlinkages with agriculture. The ten coefficients on domestic and foreign extreme

heat in agriculture for five downstream sectors are small and not statistically significant at any

conventional level. This pattern suggests that sectors do not endogenously respond to extreme

heat in agriculture by altering their expenditure shares, providing suggestive evidence of the

stickiness of production processes.20 This fact suggests that a model where expenditure shares

are independent of the realization of productivity shocks as in a Cobb-Douglas model may serve

as a good approximation at the sector level, in contrast with previous micro level evidence on

firms’ ability to substitute inputs and trading patterns in response to idiosyncratic shocks. I

also explore whether a country’s ability to diversify extreme heat exposure from agriculture

linkages differs by income groups. Income is one of the most important factors governing the

economics of climate adaptation (Carleton et al., 2022). High-income countries have less binding

budget constraints, which could in turn facilitate adaptive behavior and make them less affected

by temperature. While this result holds for the response of economic output to local weather

fluctuations (Dell et al., 2012, and Appendix Section H), I document that downstream exposure

to extreme heat in agriculture has been relatively constant over the past 40 years across income

groups. The ratio in downstream exposure to extreme heat in agriculture between time-varying

and time-invariant linkages has been relatively flat and statistically indistinguishable from one

across income classes (Appendix Figure B8). A ratio that is not statistically distinguishable

from one indicates that countries did not alter their input linkages compared to the baseline

linkages in 1970-1974 in such a way to reduce extreme heat exposure in the agricultural sectors

they source inputs from. This result suggests that, differently than in the case of local extreme

19Sector-specific density distribution of the downstream sectoral linkages with agriculture are reported in Ap-
pendix Figure B7.

20Kunze (2021) also documents a small and negligible shift of sectoral interlinkages in response to cyclones.
In contrast, input linkages have been shown to have elastic responses after trade shocks including the NAFTA
(Caliendo and Parro, 2015) and the 2018 trade war (Fajgelbaum et al., 2020; Handley et al., 2024).
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heat responses, income does not explain differences in downstream exposure to extreme heat.

Figure 5. Response of downstream sector-specific input linkages to extreme heat in agriculture

Notes: The figure shows the sector-specific coefficients associated with extreme heat in domestic and foreign
agriculture obtained from Equation (9). The outcome variable is the log of the ratio of inputs that a sector (in the
x-axis) sources from the agricultural sector over the total inputs sourced by each sector-country. All coefficients
are estimated jointly in a regression model saturated with country-pair-sector and country-sector-year fixed effects
and sector-location specific coefficients on linear and squared term of total precipitation. Vertical lines represent
the 95% confidence intervals around point estimates. Standard errors are clustered at the country level.

Together, these four facts inform the theoretical model and the empirical approach in multiple

ways. These facts indicate that local extreme heat reduces agricultural value added and increases

agricultural commodity prices. This pattern motivates the focus of the analysis on local shocks

in extreme heat conditions in agriculture and how they can propagate through the economy via

price increases through input linkages between agricultural and downstream sectors, emphasizing

the broad-reaching consequences of climate-induced disruptions in agriculture. Furthermore, I

observe that extreme heat shocks are becoming increasingly spatially correlated, indicating the

necessity of accounting for spatial dependencies in my empirical analysis to capture the broader

economic impacts. Despite the significant effects of heat shocks on agriculture, downstream

sectoral interlinkages are not responsive. This observation aligns with the characteristics of a

Cobb-Douglas production technology where expenditure shares are fixed. This result informs my

theoretical approach to obtain model-derived sectoral exposure shares to upstream supply-side
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shocks through a shift-share approach with quasi-randomly assigned shocks. In the next section,

I present a theoretical model that rationalizes the importance of sectoral and spatial interlinkages

in climate damage quantification and then bring this model to the empirical estimation.

4 Theoretical framework

Motivated by the evidence above, I propose a simple static production network model where

sectors use intermediate inputs from agriculture and other sectors in the economy. This model

is able to capture how extreme heat shocks can propagate through the production network,

affecting sectors that are exposed to the shock through input linkages (Acemoglu et al., 2012;

Carvalho and Tahbaz-Salehi, 2019). In Appendix Section F, I describe the traditional conceptual

framework adopted to derive empirical estimates of the effect of local weather shocks on local

economic output. This traditional approach derives temperature-related productivity shocks

from a Cobb-Douglas production function that solely relies on local factor inputs, labor and

capital. Extreme heat is a Hicks-neutral productivity shock which reduces local economic output.

When this conceptual framework is taken to the data, temperature shocks in other sectors and

countries in the economy are absorbed in the error term. Spatial and sectoral linkages, combined

with the spatial correlation structure of temperature shocks, can introduce bias in the estimates.

Here, I introduce a production network where a sector uses intermediate inputs to produce

its final good. I use this model to show that the effect of extreme heat shocks can be expressed

in its reduced form in terms of each sector-country exposure shares to the shock and of the shock

itself. Informed by the empirical findings in the previous sections of this paper, I incorporate

differences in factor-intensity between the agricultural sector and other non-agricultural sectors.

I consider a multi-sector multi-region model consisting of N regions indexed by n ∈ {1, ..., N}

(or m), each populated with J+1 sectors indexed by j ∈ {1, ..., J} (or k), and the J+1th sector

is agriculture, denoted as Ag.

Agricultural sector. I begin by characterizing the agricultural sector. I adopt a parsimonious

representation at a micro disaggregated level equivalent to a grid cell g in country n to represent

the richness of the micro level data used in the empirical analysis, while keeping the model

transparent. For this reason, I abstract from modelling fields and assume that labor and parcels

of land are the only inputs in the production of each crop c ∈ C and are perfect complements

(Costinot et al., 2016). By combining Hc
n(g) workers and L

c
n(g) hectares of arable land for crop

c in grid cell g, a representative farm can produce
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qcn(g) = Zc
n(g)EH

c
n(g)min{Hn(g), L

c
n(g)}, (10)

where the total factor productivity of grid cell g in country n allocated to crop c embeds

an exponential vector of Hicks-neutral productivity extreme heat shocks EHc
n(g) that is crop-

grid specific, and Zc
n(g) denotes unobserved crop and grid specific technological heterogeneity.

The temperature-related productivity shocks account for differential geographic distribution

and differential heat sensitivity of crop c across grid cells g in country n.21 Total agricultural

output Qn in country n aggregates output across agricultural commodities c and grid cells

g ∈ n. Exogenous variation in the vector of crop-grid temperature-related productivity shocks

Tn reduces agricultural output and increases its price.

Non-agricultural sectors. In each of the J non-agricultural sectors in region n, a represen-

tative competitive firm produces good j with production possibilities described by a constant

returns-to-scale Cobb-Douglas technology whose inputs are capital, labor, and, most impor-

tantly, intermediate inputs. The output in sector j in country n is given by

Y j
n = Zj

n[(Kj
n)

λ(Hj
n)

1−λ]a
j,n
Xj

n (11)

where total factor productivity Zj
n is a product of two components: (i) a region-sector

unobserved specific component zjn, and (ii) an exponential vector of Hicks-neutral productivity

temperature-related shocks T j
n with sector-specific elasticities βj .

22 There are three types of

inputs: Kj
n is capital, Hj

n is the amount of labor hired by firms in sector j in region n, and Xj
n

is a bundle of intermediate inputs. To keep the model simple, all production technologies have

the same capital intensity λ, however, I allow the intensity of local factor input use aj,n to be

sector-region specific.

The production function in non-agricultural sector j has a two-tier Cobb-Douglas technology

(Acemoglu et al., 2016; Carvalho and Tahbaz-Salehi, 2019). It is useful to unpack the composite

bundle of intermediate inputs Xj
n one step at a time. Differently than previous multi-sectoral

production network models (Carvalho and Tahbaz-Salehi, 2019), I introduce two key margins

21As previously discussed, I abstract from potential endogenous input adjustments. Previous micro level studies
document that farmers adjust inputs, including planted are and labor use, and change crop mix as a short-
term mechanism in response to extreme heat to attenuate its impact on agricultural output (Aragón et al.,
2021). Nevertheless, while this is documented only for annual crops, a large share of my crop data also cover
perennial crops. Moreover, I show that the crop-specific planted area exposure to extreme heat conditions does
not significantly vary over time (Appendix Section E).

22I assume that sector-specific temperature productivity shock are mutually uncorrelated, sufficiently dispersed
in terms of their average exposure. I empirically examine these features in Appendix Figures A2-A4.

26



of heterogeneity to distinguish spatial and sectoral linkages and isolate different propagation

patterns depending on the spatial and sectoral origin of the shock. First, I allow for differences

between agricultural and non-agricultural inputs. Xk,m represents intermediate inputs from

each sector k ∈ J produced in region m, and Qm represents the agricultural output aggregated

across crop commodities c in region m. Second, by embedding a production network model in

an open economy, I can distinguish between inputs produced in the same country n and inputs

produced abroad in country m, such that

Xj
n =

 Q
ωj,n
Ag,n

n

J∏
k

X
ωj,n
k,n

k,n︸ ︷︷ ︸
Domestic input linkages

∏
m ̸=n

(
Q

ωj,n
Ag,m

m

J∏
k

X
ωj,n
k,m

k,m

)
︸ ︷︷ ︸

Foreign input linkages

 , (12)

where aj,n+
∑

m∈N

(∑
k∈J ω

j,n
k,m + ωj,n

Ag,m

)
= 1. The coefficient ωj,n

k,m(∀k ∈ {J+1}) designates

the importance of good k as an intermediate input for the production of good j. These coefficients

represent the share of good k from region m in the total intermediate input use by sector j in

region n, which can be equal to zero if good k from region m is not used. The larger ωj,n
k,m

the more important the intermediate good k from the region m for the production of good j in

region n.

By assuming a Cobb-Douglas production function, each sector-country expenditure on var-

ious inputs is invariant to the realization of the shocks and is thus exogenous. While previous

micro level firm studies have documented that firms adjust trade patterns in response to natural

disasters (Balboni et al., 2024; Castro-Vincenzi et al., 2024), Fact 4 in Section 3 demonstrates

that the expenditure shares from agriculture ωj,n
Ag,m do not respond to extreme heat conditions,

suggesting that the Cobb-Douglas model serves as a good approximation at the sector level.

In the more general case with a nested constant elasticity of substitution structure, the

propagation of shocks follows two separate channels. First, a negative productivity shock in

sector k results in an increase in its price which affects all sectors downstream that rely on

good k as intermediate input. Second, sectors may adjust resource allocation across regions m

within the same sector k and across sectors k depending on the elasticities of substitution. In

a Cobb-Douglas economy, this last channel is not captured. For this reason, supply-side shocks

only propagate downstream, while demand-side shocks propagate upstream.23 In the empirical

23With Cobb-Douglas production technologies, the price effect (a negative shock increasing output prices and
thus demand for inputs) and the quantity effect (as production decreases, demands for inputs decreases, too)
cancel out, leaving supply-side shocks only propagating downstream.
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analysis, I test for the validity of this hypothesis constructing upstream exposure to extreme

heat in agriculture as described in Equation (4).

Before characterizing the consumption side, it is useful to map the parameters introduced in

the model to the empirics. The matrix Ω = [ωj,n
k,m] summarizes the inter-sectoral inter-country

first degree input linkages. The matrix (whose rows sum up to one because of constant return-

to-scale technologies, and whose columns are the shares of sector j’s output within the total

inputs used by the other sectors) accounts for first-order effects of propagation of shocks from

agriculture to downstream sectors through first degree sectoral interlinkages.

Consumption. In addition to the production side, the economy is populated by a representa-

tive household in each country n, which supplies inelastically one unit of labor and sector-specific

capital, and has Cobb-Douglas preferences over J + 1 distinct goods, that is

U(c1, ..., cJ , cJ+1) =
J+1∏
j=1

(cj)
βj , (13)

where cj is the consumption of good j and βj represents the its share in the household’s

utility function, normalized such that
∑J+1

j βj = 1.

Equilibrium. The equilibrium in this model is defined as a vector of prices and quantities

such that the representative household maximizes their utility; all firms maximize their profits

taking prices as given, and markets clear. Market clearing conditions for good j in n are given

by Y j
n = cj +

∑
k

∑
mX

km
jn . The representative firm in sector j in region n chooses demands for

labor, capital, and intermediate inputs to maximize profits π, such that

πjn = pjY
j
n − wHj

n − rKj
n −

∑
k

∑
m ̸=n

(pkXk,m + pAgQm)−
∑
k

pkXk,n − pAgQn, (14)

and it takes all prices p, wage w and rental rate r as given. From this equation, one can

derive the first-order conditions for agricultural goods in region n for firms in sector j in region

n, which are given by

Qn =
ωj,n
Ag,nY

j
n pj

pAg
, (15)

and symmetrically for agricultural output from region m. Equation (15) summarizes the

propagation mechanism at play. In equilibrium, a heat-induced increase in the price of agri-

cultural commodity bundle pAg leads to a decrease in the quantity of agricultural output Qn

demanded by firms in sector j in country n.
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Downstream propagation of extreme heat. Without loss of generality, I consider a two-

country three-sector example that illustrates the transmission of heat shocks. The bundle of

agricultural commodities Qn from region n and inputs Xk,m from sector k in region m are the

only intermediate inputs used for the production of good j in region n. The rise in the price

of agricultural commodities pAg attributable to extreme heat conditions (as per Fact 2) induces

sector j to decreases its demand for the bundle of goods Qn. Since the exposure share ωjn
Ag,n

is invariant to extreme heat in agriculture (as per Fact 4), this leads to a reduction in the

production of the good Y j
n . To see this, one can rewrite Equation (13) for sector j’s output in

region n in log form (lowercase letters indicating logs)

yjn = log zjn + f(T j
nt, βj) + ajnλk

j
n + ajn(1− λ)hjn + ωjn

Ag,n log (Qn(EHn)) + ωjn
km log (Xk,m) , (16)

where Qn(EHn) is the agricultural output produced in region n used with intensity ωjn
Ag,n

by firms in sector j in region m. Equation (16) suggests that heat shocks EHn that reduce

agricultural output Qn impact sector’s j production in region n, which decreases with elasticity

ωjn
Ag,n. This is the downstream propagation of extreme heat through first degree linkages. Re-

markably, this is not the end of the propagation effect (Acemoglu et al., 2012). Sectors whose

input bundle includes j in region n are now subject to a second order effect of extreme heat

ωj,n
n

2. This effect continues propagating with higher order linkages which can be summarized

by the Leontief inverse matrix (Leontief, 1970), L = (I − Ω)−1, whose (j, k) elements denote

the importance of sector k as a direct and indirect supplier to sector j.24 Hereinafter, I explain

how I bring this model to the data and quantify the cost of local and network heat shocks on

the economy.

5 Empirical approach

In this section, I use the data described in Section 2, the empirical facts in Section 3, and

the theoretical notions in Section 4 to derive an empirical specification that considers input

linkages from agriculture to other sectors across space. My research design builds upon the

conventional methodology adopted in quasi-experimental approaches that typically estimate

24While a sector’s Domar weight (i.e., the sales share of a sector with respect to the economy’s output) is a
sufficient statistic for how shocks in a sector affect aggregate output (this result is commonly known as Hulten’s
theorem (Hulten, 1978)), in open-economy models like the one represented here the sales shares are no longer
universal sufficient statistics (Baqaee and Farhi, 2024).
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local direct effects, ignoring spatial linkages (e.g., Dell et al., 2012; Burke et al., 2015). This

traditional approach implicitly assumes that residual variation in local weather is orthogonal to

variations in weather elsewhere. The potential outcomes of one observation, however, may vary

with the treatment assignment of other units through input linkages and through the spatial

correlation of shocks. Therefore, when there are upstream and downstream relationships across

space as those modelled here, spatial considerations become of first-order relevance. These

challenges may result in violations of common identifying assumptions, including the stable

unit treatment value assumption (SUTVA) with first-order effects. The SUTVA rules out that

extreme heat in agriculture can differentially affect expected outcomes in other countries.

To account for sectoral and spatial linkages, I design an econometric specification that builds

on the traditional quasi-experimental approach, also adopted in Equation (7), but I introduce

a parametric measure of network shocks to evaluate the differential effect of extreme heat con-

ditions in agriculture across sectors on value added domestically and abroad. The estimating

equation is written as follows

∆ log(value added)jnt = βjExtremeHeatjnt+
∑

ℓ∈{Dom;Fgn}

γℓjNetworkShock
Dn,ℓ
jnt +W′

jntδj+αjn+λjt+µnt+ηjnt,

(17)

where I regress the growth rate of value added in sector j in country n in year t for all five

sectors in the economy on sector-specific extreme heat shocks.25 Most importantly, the specifi-

cation includes NetworkShockDn,ℓ
jnt , defined as extreme heat conditions in agriculture weighted

by the downstream interdependence of sector j in country n with the agricultural sector in

geographic location ℓ distinguishing between shocks originating in the same country Dom and

abroad Fgn, as explained in Equations (5) and (6). The specification also accounts for a second

order polynomial of total precipitation in Wjnt, and for a full set of two-way fixed effects at

the country-sector αjn, sector-year λjt, and country-year µnt level. The two-way fixed effects

mean that my estimates only exploit variation across sectors within country-years. As a re-

sult, they absorb country-specific or sector-specific trends, or any differences in baseline sector

specialization across countries.

This approach relies on the differential exposure of country-sector pairs to plausibly exoge-

nous variation in extreme heat over time both locally, used to identify βj , and in domestic and

foreign agriculture, used to identify γDom
j and γFgn

j . This research design is in nature similar

25The estimation sample does not account for agriculture since local and domestic network shocks would be
collinear up to a constant.
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to a shift-share (or “Bartik”) approach. The network shocks are constructed as a sum of a

set of shocks, extreme heat in agriculture, weighted by input-output interlinkages as exposure

share weights. Although the empirical facts in Section 3 suggest that downstream interlinkages

do not endogenously adjust in response to extreme heat in agriculture, this assumption is not

necessary for the identification of the effect of network shocks, which only relies on the quasi-

random assignment of extreme heat (Borusyak et al., 2022). Identification and consistency of γ’s

can therefore be satisfied in a setting where shocks are as-good-as-randomly assigned, mutually

uncorrelated, large in number, and sufficiently dispersed in terms of their average exposure.

The identification of local direct and network extreme heat shocks faces two major chal-

lenges. First, it is crucial to isolate a extreme heat conditions in agriculture that propagate

through the production network from the effect of local heat conditions. I address this challenge

constructing sector-specific heat shocks, as detailed in Section 2. This allows me to isolate ex-

treme heat conditions that affect agriculture based on crop sensitivity and exposure and affect

the downstream sectors only by way of intermediate input linkages. I conduct a number of diag-

nostics tests in support of this hypothesis. Appendix Figure A2 displays the residual variation

in extreme heat in agriculture conditional on country and year fixed effects and highlighting

the variation for China, India, and the United States. Appendix Figure A3 displays the em-

pirical residual variation in extreme heat exposure in manufacturing for the 183 countries over

the sample period considered, conditional on country and year fixed effects. Most importantly,

I compare the residual variation in extreme heat exposure in agriculture with heat shocks in

any of the other five sectors and find no statistically significant relationship between these two

measures (Appendix Figure A4). This result allays potential concerns on the collinearity of the

sector-specific measures of heat exposure and implies the existence of independent sector-specific

variation.

A second empirical challenge for identification is that the sum of exposure shares is not con-

stant, i.e., ΩDom
jnτ = [ωj,Ag

n,τ ] and ΩFgn
jnτ =

∑
m ̸=n ω

j,Ag
n,m,τ vary across sectors and countries over time.

In this case, even if shocks are uncorrelated and quasi-randomly assigned, the estimator will also

leverage non-experimental variation in ΩDom
jnτ and ΩFgn

jnτ , in addition to quasi-experimental vari-

ation in extreme heat conditions. Even when extreme heat is random, sector-countries with

higher agricultural shares ΩDom
jnτ and ΩFgn

jnτ will have systematically different values of shocks,

leading to bias if they also have different unobservables. To address this challenge, the vector of

controls Wjnt includes the sum of exposure shares Ωjnτ (Borusyak et al., 2022). This approach

isolates quasi-experimental variation in extreme heat in agriculture conditional on sector-country
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exposure shares. As a result, my approach does not rely on conventional assumptions of inde-

pendent or clustered data that would be inconsistent with the shift-share data structure when

the shocks are considered random variables. Instead, domestic and foreign heat shocks are

as-good-as-randomly assigned conditional on exposure weights.

This approach aims at quantifying the impact of trade-induced exposure to harmful extreme

heat conditions in agriculture on sectoral value added. As formulated in the theoretical frame-

work and supported by the empirical evidence, extreme heat reduces agricultural productivity.

By only considering the direct impact of local weather conditions on a given sector, one is

omitting the amplification and transmission of these shocks due to the intersectoral reliance.

A negligible or null effect of local weather conditions on a given sector may be amplified by

extreme heat conditions hitting agricultural sectors around the world with strong commercial

interlinkages with that sector. The effect would ripple down to downstream customer sectors

that use agricultural inputs less intensively in response to increases in agricultural prices, thus

reducing their own production.

With respect to previous approaches that account for sectoral and spatial linkages, there are

a number of advantages of using Equation (17) for the aggregate and differential effect of ex-

treme heat in agriculture. First, this specification links in a transparent way the shock’s impact

in general equilibrium to exposure measures and reduced form effects (direct and indirect). The

model-consistent empirical driver of my approach is a significant departure from the traditional

approach of computing the shock’s general equilibrium impacts using calibrated spatial models

in quantitative frameworks with calibrated spatial links (Redding and Rossi-Hansberg, 2017).

Second, my approach remains valid under a flexible structure of spatial links and idiosyncratic

shocks. This flexibility is in contrast with previous approaches, e.g., the “market access” (Don-

aldson and Hornbeck, 2016), which is an endogenous variable obtained from solving the general

equilibrium model under restrictive assumptions on the spatial links in the economy and that

requires observing all trade costs before and after the shock. Last, my empirical strategy is

distinct from an indirect inference procedure that calibrates parameters to match arbitrarily

chosen moments generated in the model with simulated shocks (Farrokhi and Pellegrina, 2023).

This procedure may yield biased estimates of the reduced form semi-elasticities if the chosen

moments are not closely related to the model-implied relationship. In contrast, my approach is

not subject to this concern because it is derived from the model’s predictions for the impact of

the observed shock.

Importantly, country-year fixed effects in my specification isolate any residual variation in
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extreme heat that is not spatially correlated across countries. This approach allows me to

separate the effect of extreme heat exposure through input linkages from the unobserved spatial

correlation in shocks across countries. To further allay any concern that input linkages embed

linkages across space and are simply a proxy for the underlying correlation of heat shocks, I

construct a gravity-based measure of spatial exposure to extreme heat in country n

SpatialHeatnt ≡
∑
m ̸=n

D−δ
mn∑

o ̸=nD
−δ
on

ExtremeHeatnt, (18)

where Dmn is the bilateral distance between the population centroids of country n and m.

The specification has a “gravity” structure in the sense that SpatialHeat is higher if country n

is closer to a country m exposed to higher extreme heat. The parameter δ controls how much

indirect exposure declines with distance and I use the typical estimate of the trade elasticity

by setting δ = 5. In additional robustness checks, I replace country-year fixed effects with this

measure that captures the spatial differential effect of heat exposure. This measure, at the cost

of stronger identifying assumptions without country-year fixed effects, captures the net effect of

spatial shock transmission.

6 Extreme heat across sectors and space

In this section, I report the results from the estimation of Equation (17) that quantifies the

propagation of extreme heat on agriculture across the economy through the production network.

Figure 6 displays the 15 jointly estimated coefficients, three for each of the five sectors, associated

with local extreme heat conditions and downstream exposure to extreme heat in domestic and

foreign agriculture.

Starting from the effect of local extreme heat on the growth rate of sectoral value added,

the coefficients are not statistically distinguishable from zero for any of the five sectors. I

then turn to the coefficients associated with extreme heat conditions in domestic and foreign

agriculture. The coefficients measuring the differential impact of exposure to extreme heat in

agriculture on the growth rate of downstream sectoral value added are negative, indicating that

local extreme heat in agriculture propagates to downstream sectors reducing their growth rate.

For downstream sectors that heavily rely on agricultural goods as intermediate input, such as

mining, manufacturing, and utilities, and wholesale, retail, restaurants and hotels, the effect

is more pronounced and statistically significant for extreme heat in both domestic and foreign

agriculture, suggesting that extreme heat in agriculture propagates both across sectors and space.
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On average, one degree day of extreme heat exposure in domestic (foreign) agriculture reduces

the growth rate of manufacturing value added by 0.47% (0.15%). Similarly, one degree day of

extreme heat exposure in domestic (foreign) agriculture reduces the growth rate of wholesale,

retail, restaurants and hotels value added by 0.26% (0.21%).

Figure 6. Effect of local heat and downstream exposure to extreme heat in agriculture on sectoral
value added

Notes: Bars represent the sector-specific coefficients associated with local extreme heat and with extreme heat in
domestic and foreign agriculture obtained estimating Equation (17). Extreme heat in agriculture is constructed
as in Equation (1). Domestic and foreign agriculture extreme heat metrics are constructed respectively as in
Equations (5) and (6). The specification jointly estimates all sector-specific coefficients in a regression model that
accounts for country-sector, sector-year, country-year fixed effects and sector-specific second-order polynomial of
total precipitation and sum of exposure shares. Vertical lines represent the 95% confidence intervals with standard
errors clustered at the country level. Tabular results are reported in Appendix Table C5.

Altogether, these findings have two consequences in the interpretation of previous temperature-

output relationships. First, from a methodological perspective, sector-specific estimates that

only account for local weather conditions may be biased since the treatment status of other

units in the sample alters the potential expected outcome through shocks propagating from the

agriculture sector. This is visible when comparing point estimates of local heat in Figures 2 and

6. While the estimates are noisy and imprecisely estimated, the magnitude of the coefficients in-
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dicates a potential downward bias in the estimates obtained without accounting for extreme heat

in agriculture across space. In particular, the statistical and economic significance of extreme

heat in foreign agriculture suggests that also geographically distant weather fluctuations matter

through input linkages. Second, from an economic perspective, extreme heat conditions in agri-

culture are amplified through the production network, affecting other sectors beyond agriculture

and beyond national borders. As a result, recent estimates on the economic damage of temper-

ature increases may have been underestimated due to the omission of this propagation channel.

On average, across the five downstream sectors, one degree day of extreme heat in domestic

(foreign) agriculture reduces the sectoral growth rate by 0.18% (0.15%). This result indicates

a substantial underestimation of the total economic cost imposed by extreme heat exposure in

agriculture via intermediate input linkages. When only considering the semi-elasticities of the

growth rate of sectoral value added, the average effect across sector is 0.03%.

Beyond first degree sectoral interlinkages. The analysis has so far relied on first degree

input linkages in the production network. To account for the full transmission of shocks over the

network, I construct the Leontief inverse matrix, which summarizes the sector-specific technical

coefficients of the shock propagation through a power series representation of input linkages.

By taking the inner product of extreme heat in agriculture and the Leontief inverse matrix, I

obtain measures of extreme heat conditions in agriculture that take full inter-sectoral relations

into account. I estimate a specification using the resulting vector of shocks of extreme heat in

agriculture and report the coefficients in Figure 7. By taking into account the full direct and

indirect linkages of downstream sectors with agriculture, all sectors are negatively affected by

extreme heat in both domestic and foreign agriculture. The effect of extreme heat in agriculture

percolates downstream to final goods and service sectors such as construction, other activities,

and transport, storage, and communication. The effects are also larger in magnitude than first

degree input linkages. At the mean, the effect of one degree day of heat exposure in domestic

(foreign) agriculture reduces growth rate of manufacturing value added by 0.56% (0.35%). Sim-

ilarly, extreme heat in domestic (foreign) agriculture reduces growth rate of wholesale, retail,

restaurants and hotels value added by 0.43% (0.36%). On average, across the five downstream

sectors, a one-degree day increase in exposure to extreme heat in domestic (foreign) agriculture

reduces the sectoral growth rate by 0.31% (0.26%).

Propagation over time. The estimates indicate that extreme heat in agriculture propagates

across sectors and countries with a contemporaneous short-run negative effect on the growth rate
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Figure 7. Sector-specific response to extreme heat in agriculture accounting for higher degree
linkages

Notes: Bars represent the sector-specific coefficients associated with local extreme heat shocks and extreme heat
in domestic and foreign agriculture. Domestic and foreign downstream shocks are constructed respectively as in
Equations (5) and (6), with extreme heat in agriculture constructed as in Equation (1) and sectoral interlinkages
obtained from the Leontief inverse matrix obtained from the downstream sectoral interlinkages obtained as in
Section 2.3. The specification jointly estimates all sector-specific coefficients in a regression model that accounts
for country-sector, sector-year, country-year fixed effects and sector-specific second-order polynomial of total
precipitation and sum of exposure shares. Vertical lines represent the 95% confidence intervals with standard
errors clustered at the country level. Tabular results are reported in Appendix Table C6.

of value added in downstream sectors. It might be, however, that the effects of extreme heat on

agricultural production may take up to one year to manifest in downstream sectors, particularly

in those furthest away in the supply chain from direct agricultural inputs. This delayed impact

might occur for two reasons. First, the structure of the crop calendar complicates the alignment

of agricultural impacts with the calendar year, as growing seasons can extend across two years.

As a result, the cumulative negative effect of extreme heat on agricultural output may only

become evident at the conclusion of the growing season, which may not coincide with the timing

of value added measurements in national accounts. Second, in downstream sectors, the impact

of extreme heat in a given year may only emerge in subsequent years due to the lag in the

processing and distribution of agricultural goods. An alternative hypothesis, however, is that if

agricultural production rebounds the year following an extreme heat shock, there might be no
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negative effect on downstream sectors in the following year. This dynamic effect could be further

reinforced by the availability of agricultural inventories, which allow agricultural producers to

smooth shocks (Roberts and Schlenker, 2013). To empirically test which of these two mechanisms

dominate, I estimate the baseline regression including a one-year lagged measure of local heat

and of extreme heat in domestic and foreign agriculture. Appendix Figure B9 displays the six

coefficients on contemporaneous and lagged local and network heat impacts for each of the five

sectors. Local extreme heat is never statistically significant, however, an interesting pattern

emerges for extreme heat in domestic and foreign agriculture. They both have a negative and

statistically significant impact on most sectors, with the effect larger in magnitude on lagged

shocks, in particular for sectors further downstream. This result suggest that the cumulative

effect of extreme heat exposure in domestic and foreign agriculture is larger once we account for

lags in the response of the growth rate of value added in downstream sectors.

Robustness. I consider a number of robustness and placebo tests to ascertain the stability

and validity of my findings. I conduct these exercises for both first degree linkages and for the

Leontief linkages. First, I estimate the baseline specification including country-specific quadratic

time trends and country-sector specifics quadratic time trends, respectively. These two addi-

tional controls flexibly account for country-specific and country-sector time-trending covariates

allowing these covariates to influence different countries (demographic trends) or country-sectors

in different ways (e.g., country-specific trends in agricultural innovations, manufacturing input

use, sectoral labor supply trends). Since the outcome variable is the derivative of value added,

quadratic country-(sector) specific time trends permit growth rates to evolve nonlinearly over

time, allowing to account for country-(sector) specific cubic polynomials in value added levels.

Secondly, the exclusion of certain countries does not substantially affect my baseline estimate.

A potential concern is that certain countries may overinfluence my estimates and thus drive

my findings. Using a balanced sector-country sample, excluding certain large countries (China,

India, Russia, United States), or the 10% coldest or hottest countries, does not substantially

change my baseline findings (Appendix Figures B10 and B11).

Upstream propagation. As a test of the validity of the Cobb-Douglas production function

assumed in Section 4, I construct a measure of exposure to extreme heat weighted by upstream

linkages with agriculture. Since extreme heat is a supply-side shock that reduces agricultural

output and increases its prices and thus percolates to downstream sector as a input shock,

my theoretical model predicts that the effect should only manifest downstream. I empirically

validate this hypothesis testing whether extreme heat propagates upstream. Appendix Figures
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B12 and B13 show that extreme heat exposure in agriculture does not propagate upstream

neither using first order linkages nor using the linkages obtained from the Leontief inverse matrix.

This result suggests that extreme heat in agriculture behaves as a supply-side productivity shock

that only propagates downstream. The ten coefficients on extreme heat in domestic and foreign

agriculture are very close to zero in magnitude and not statistically significant.

Distance-weighted extreme heat. In an additional robustness check, I introduce the distance-

weighted measure of SpatialHeat constructed in Equation (18) to examine whether input link-

ages capture the same variation in the spatial correlation structure of shocks. Dingel et al. (2023)

and Neal (2023) demonstrate the importance of accounting for spatial linkages in the estima-

tion of global climate damages. I empirically test whether my approach confounds the role of

spatial correlation, but find that the distance-weighted measure SpatialHeat is not statistically

significant at any conventional level, and controlling for it in my baseline specification does not

substantially alter the magnitude of the input-weighted network shocks (Appendix Figure B14).

This result suggests that distance-weighted exposure to extreme heat does not capture the effect

identified by extreme heat conditions in agriculture transmitting through input linkages.

7 Counterfactuals: Economic cost of warming

This section uses the estimated sectoral semi-elasticities to extreme heat conditions in domes-

tic and foreign agriculture to demonstrate how to incorporate spatial and sectoral linkages via

intermediate inputs into quantification exercises of the impact of global warming. In particu-

lar, I quantify the impact of input linkages across sectors and space in amplifying the welfare

effects of global warming through two counterfactual exercises. Since the panel estimates ob-

tained from the estimation refer to short-run elasticities in response to deviations from extreme

heat, my counterfactual exercises focus on a retrospective quantification of the economic cost of

recent warming, instead of a projection of future climate damages. For this reason, I abstain

from applying estimates based on past exogenous short-run changes in extreme heat to future

long-term output changes due to climate change which would require accounting for possible

adaptations in anticipation of future climate change (Carleton et al., 2024). These exercises

are therefore based on the empirical observation of input linkages across sectors and countries

and on the panel estimates of my analysis. The final objective is to show how the economic

consequences of spatial and sectoral input linkages, estimated using quasi-experimental varia-

tion, can be incorporated into short-run elasticities to weather to help bridge the gap between

quasi-experimental approaches and structural models of climate impacts (Costinot et al., 2016;
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Cruz and Rossi-Hansberg, 2024).

Because these exercises have the sole purpose of capturing sectoral and spatial linkages

through intermediate inputs, these counterfactual exercises omit other potential general-equilibrium

effects of climate change. First, I fix the spatial patterns of comparative advantage within agri-

cultural crop at recent historical values. This implies that I do not take into account other trends

such as technological change (to the extent that this is not embedded in the unobserved het-

erogeneity captured by my set of fixed effects or quadratic country-sector specific time trends).

Second, I do not consider other potential adjustments such as spatial reallocation across crops

within the agricultural sector (Rising and Devineni, 2020), although Appendix Section E shows

that I cannot reject the null hypothesis that agricultural production has not been adapting sig-

nificantly in such a way that extreme heat exposure to agricultural crops has changed over time.

It is useful mention what my estimates can capture. First, exposure shares to extreme heat

in agriculture are allowed to vary every five years. This implies that my analysis accounts for

changes in trade patterns of agricultural commodities. Second, my estimates also account for

sectoral reallocation to the extent that sectoral value added losses are aggregated at the country

level using time-varying sectoral shares of value added.

7.1 Local and downstream value added losses due to recent warming

In the first counterfactual, I use the estimated semi-elasticities to quantify the impact of recent

historical warming on the level and spatial distribution of value added across countries. Using

the estimates of the effect of local extreme heat in agriculture in Section 3 and the estimates of

the effect of extreme heat in domestic and foreign agriculture on downstream sectors in Section

6, I simulate how much slower or faster each sector in a country would have grown over the 2001-

2020 period, had the extreme heat conditions in agriculture stayed at their 1975-2000 average.

I then cumulate these effects over the 2001-2020 period to compute the total national value

added losses weighing each sector’s estimate by its value added share (see Appendix Section I

for additional details). This analysis provides estimates that are agnostic to the cause of recent

warming and does not necessarily represent the impact of recent anthropogenic warming.

I begin by computing the effect of recent warming on agricultural value added. Compared

to a counterfactual where local extreme heat had stayed constant to its average in the twentieth

century, recent warming has a negative impact on agricultural value added around the world

(the only countries that marginally benefit from changes in temperature with respect to 1975-

2000 are Canada and Ireland). Figure 8 shows the distribution of damages across countries (top
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map). On average, recent warming in agriculture is responsible for a 0.035% loss in total value

added across countries. The distribution of value added losses in agriculture induced by recent

warming is heavily skewed. In particular, larger losses are concentrated in Northern Africa,

Middle East and South-East Asia, with losses that are above 0.20% of total value added for

several countries, including Afghanistan, Chad, Ethiopia, Mali, Morocco, Pakistan, and Syria.

I then quantify losses in downstream sectors that use intermediate inputs from agriculture due

to extreme heat conditions induced by recent warming compared to counterfactual extreme heat

conditions in 1970-2000. I use the estimated semi-elasticities from Equation (17) that account

for all the higher order linkages between agriculture and downstream sectors and simulate how

much slower or faster each sector in each country would have grown over the 2001-2020 period,

had extreme heat in domestic and foreign agriculture stayed at its 1975-2000 average. It is

useful to remind that this counterfactual accounts for endogenous adjustments in trade patterns

as observed in the data since the input linkages in Equations 3 are allowed to vary every five

years. Therefore, to the extent that countries have been able to reduce their exposure to extreme

heat in agriculture, this would be reflected in the data and in the counterfactuals that I run.

Similarly, the estimates also account for observed sectoral reallocation. By weighing sector-

specific value added losses by the country-specific share of each sector in total value added, if

larger damages are experienced in sectors that only have a small or negligible share in total

domestic production, this would be reflected in the aggregate country losses.

The bottom map in Figure 8 shows the global distribution of losses (in % of total value added)

on downstream sectors induced by extreme heat in domestic and foreign agriculture. On average

across countries, recent warming in agriculture is responsible for a 0.046% loss in total value

added across downstream sectors. This result indicates that by accounting for input linkages, the

cost of recent warming in agriculture in downstream sectors is approximately 31% greater than

the losses induced by extreme heat only on the agriculture sector itself. Interestingly, the spatial

distribution of damages across countries is more homogeneous. Europe, North America, and

Latin America incur greater losses. This result can be explained by the fact that downstream

sectors form a larger share of total GDP and thus any loss in this sector is magnified. Overall,

this result indicates that only 29% of the total value added losses induced by extreme heat

in agriculture can be explained by the direct impact of heat on this sector. The remaining

71% of the total value added losses depends on the propagation of extreme heat effects to

downstream sectors within and across countries by way of input linkages. Remarkably, the

economic importance of the production network in amplifying the impacts of extreme heat in
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agriculture is very close in magnitude to the 73% share of the indirect losses that contribute

to the total economic cost of conflicts in India (Couttenier et al., 2022). Appendix Figure B15

displays the world map of value added losses induced by extreme heat in agriculture aggregated

across all six sectors, agriculture and the five downstream sectors.

This result indicates that trade as an adaptation strategy to climate change can come at a

cost. Without accounting for linkages across sectors and countries, the effects of extreme heat

on agricultural production are concentrated locally in those countries whose share of agriculture

in domestic value added is large. Vice versa, accounting for input linkages makes the world

more interdependent and hence amplifies the effects of local extreme heat in agriculture across

sectors and countries. Downstream sector use of agricultural inputs both domestically and

internationally amplifies the propagation of local productivity shocks in agriculture induced by

extreme heat.
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Figure 8. Annual value added losses (%) induced by recent warming (2001-2020)

(a) Global distribution of value added losses in agriculture (above) and in downstream sectors (below)

Value added loss (%)
0.45
0.2
0.1
0.075
0.060
0.055
0.050
0.045
0.040
0.030
0.020
0.005
0
−0.01

(b) Density distribution of annual value added losses across countries
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Notes: The figure shows the total annual losses in value added (%) between 2001 and 2020, compared to a
counterfactual where extreme heat in agriculture had remained at 1975-2000 baseline averages, instead of observed
values. The world map above displays the agriculture value added losses due to local extreme heat conditions in
agriculture (weighted by the average share of agriculture in total value added). The world map below displays
value added losses induced by extreme heat in domestic and foreign agriculture summed across the five downstream
sectors and weighted by the average share of each sector’s in the country’s total value added. The density plot
in (b) displays the cross-country distribution of value added losses in agriculture due to local extreme heat,
in downstream sectors due to extreme heat in domestic and foreign agriculture, and the total aggregate losses
accounting for both the effect of local extreme heat in agriculture and its propagation through input linkages
(dashed lines display the mean). The sector-specific semi-elasticities are obtained from bootstrapping 1000 times
the underlying panel estimates of Equation (17) with replacement.
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7.2 Propagation of extreme heat through the production network

In a second exercise, I quantify the macroeconomic aggregate impact of a shock in extreme

heat in agriculture in a country and the differential global implications based on the geographic

origin of the shock. In essence, this counterfactual exercise comprises 183 counterfactuals in

which each country at a time experiences a shock in extreme heat in agriculture that is equal to

one standard deviation of the observed global annual extreme heat conditions. This approach

allows me to account for differential temporal variations in climatic conditions induced by global

phemonena (e.g., El Niño) and in geographical variations in climatic conditions across countries

since the shocks are normalized. I use the estimated semi-elasticities in Equation (17) to compute

counterfactual growth rates and compute value added losses for each sector in each country,

which I then aggregate to obtain annual counterfactual losses/benefits in value added under

each of the 183 counterfactuals.

I start by computing average annual global losses adding up all 183 counterfactuals. On

average, if all countries experienced a one standard deviation shock in extreme heat exposure

in agriculture, annual global losses would be around 1.62 trillion 2015US$ (95% CI: 1.57; 1.68).

To give an idea of the magnitude of the losses, global value added in my sample was on average

45 trillion 2015 US$ (where the maximum was recorded in 2019 and was more than 79 trillion

US$). Therefore, on average, global value added losses due to a simultaneous increase by one

standard deviation in extreme heat conditions in agriculture globally are around 3.5% of average

global value added.

I then analyze the different 183 counterfactuals separately to infer which countries are more

influential in the propagation across sectors and space. Figure 9 reports the ten largest annual

global value added losses. Global losses are larger if China or the United States experience a

shock, respectively, 235 and 190 billion US$. The counterfactuals show that global value added

losses are also large if France, India, or Brazil experience an increase in extreme heat conditions

in agriculture. Remarkably, these five countries together make up more than 45% of world crop

output. China is the leading producer of rice, wheat, tobacco, cotton, and ramie. While Costinot

et al. (2016) only account for the local impact of climate change on crop output, these results

indicate that extreme heat in these countries can also propagate to other sectors and countries,

inducing greater losses. Overall, these findings indicate a strong positive relationship between

the integration of a country’s agricultural sector in the supply chain and the value added losses

induced across sectors and space. As a sanity check, Appendix Figure B16 displays the ten

smallest statistically significant global value added losses induced by a one standard deviation
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shock in a country. Losses are remarkably small when countries that are not integrated in the

global production network, such as North Korea or Somalia, experience extreme heat.

Figure 9. Annual global value added losses accounting for input linkages for a standard deviation
increase in extreme heat in agriculture in a country (in x-axis)

Notes: The figure shows the annual global value added losses in 2015$ billions for a one standard deviation
increase in extreme heat in agriculture in each country reported in the x-axis. Estimates are obtained using
sector-specific semi-elasticities from Equation (17) and aggregating across sectors and countries to obtain average
global losses in a year. Brown bins indicate the 95% confidence intervals obtained from 1000 bootstrap replications
with replacement.

8 Conclusion

Recent studies have pushed forward the frontier for an accurate estimation of aggreggate eco-

nomic losses induces by climate for an adequate quantification of the total economic impact of

climate change (Bilal and Känzig, 2024; Nath et al., 2024). This paper contributes to this effort

by shedding light on a new potential component of climate damages, arising from the propaga-

tion of extreme heat in agriculture through production networks across sectors and countries.

Complementing firm level evidence on the spillover effects of natural disaster shocks, I build on

prior research on production networks to quantify the economic cost of global warming. The

44



methodology is applied to global production networks constructed from input-output sectoral

interlinkages and sectoral value added data combined with high-resolution daily temperatures

between 1975 and 2020.

The analysis reveals that input linkages work as an amplification mechanism of extreme heat

conditions in agriculture across countries, generating substantial fluctuations in sectoral value

added. Downstream sectors, including manufacturing, mining, utilities, and wholesale, retail,

restaurants, and hotel that are unresponsive to local heat suffer from substantial economic losses

due to the interdependence of their production process with domestic and foreign agricultural

production exposed to extreme heat. In light of the negative impact of indirect extreme heat

conditions in agriculture on other sectors, these findings suggest that climate damages may be

larger than indicated by standard empirical approaches and quantitative models that do not

account for input linkages.

The findings point to the structure of sectoral production network linkages as a key driver of

aggregate fluctuations induced by extreme heat in agriculture. In particular, they indicate that

even if most sectors with the exception of agriculture are sheltered from local weather fluctua-

tions, the potential propagation of the impacts on agriculture along the economy’s production

network can impact them, thus resulting in movements in macroeconomic aggregates. Using

the reduced form estimates of my analysis to inform counterfactual simulations, I show that

input linkages are responsible for approximately 70% of the total value added losses induced by

extreme heat in agriculture. Global losses are sizable even for just a single country experiencing

extreme heat if the country is strongly interconnected in the global production network. This is

the case for China, the US, France, India, Russia, and Brazil. A one standard deviation increase

in extreme heat in each of these countries would lead to a total average annual global loss in

value added equal to 852 billion US$.

Several important avenues remain open to future research. First, the analysis provides

modest but suggestive evidence of adaptation. In particular, the effect of local extreme heat

conditions depends on climate and income. My analysis, however, cannot reject the hypothesis

of little to modest evidence of countries’ ability to reduce their exposure to extreme heat in

agriculture by adjusting input linkages. My approach does not explicitly model adaptive invest-

ments, technological change, or other agriculture-specific adaptive responses (e.g., irrigation) or

production process strategies (e.g., inventories) that may heterogeneously affect the response

functions and reduce climate damage. As an example, crop-specific extreme heat conditions

are computed over a time-invariant measure of agricultural land that does not allow for crop
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specialization adjustments, a crucial adaptive margin that can help mitigate climate damages

(Costinot et al., 2016). Although my analysis cannot reject differential extreme heat exposure

in agriculture in a country by varying the geographic distribution of crop acreage over time,

accounting for these margins may alter the propagation patterns of extreme heat conditions.

Related to these long run adjustments to climate, the analysis is also mostly silent about agents’

climate beliefs and expectations, which explain adaptation (Shrader, 2021; Zappalà, 2024). Al-

though my analysis accounts for implicit models of adaptation by using different time frames to

compute anomalies in local extreme heat exposure for other sectors, I leave to future research

accounting for heterogeneous beliefs and expectations in production networks and supply-chain

relationships, modelling the learning process about climate risk from weather realizations and

their spatial correlation structure.

Second, the transmission of weather shocks is studied through the relative importance of

trade partners in input-output interlinkages in a Cobb-Douglas economy. Productivity shocks in

agriculture may impact the output of other sectors via two distinct channels. First, the resulting

increase in the impacted sector’s good price adversely affects sectors that rely on that good as

intermediate input for production. Second, extreme heat conditions may also lead to reallocation

of resources across sectors depending on the elasticities of substitution across inputs. Input

specificity and elasticities of substitution would mean that shocks in upstream sectors would not

remain confined to downstream sectors, but could potentially also propagate upstream. This

channel has only been documented at the firm level, and although I find evidence consistent

with the Cobb-Douglas model being a good approximation at the sector level, additional layers

of production heterogeneity could shed light on the exact channel of transmission of extreme

heat in agriculture through the economy.
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A Additional figures - Descriptive Statistics

Figure A1. Crops and optimal maximum growing temperature
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Notes: The figure shows the optimal maximum growing temperature for the 118 plant species in my final sample,
as reported in the FAO EcoCrop (UN FAO, 2024).
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Figure A2. Residuals in extreme heat exposure in agriculture

Notes: The figure shows the residuals in extreme heat exposure in agriculture obtained from a regression projecting
extreme heat on country and year fixed effects.
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Figure A3. Residuals in heat shocks in manufacturing

Notes: The figure shows the residuals in extreme heat exposure in manufacturing obtained from a regression
projecting extreme heat on country and year fixed effects.
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Figure A4. Scatter plot of residuals in agricultural and manufacturing sectors

Notes: The figure shows the scatter plot of the residuals in extreme heat in agriculture and in manufacturing
obtained after conditioning on country- and year- fixed effects. The relationship between the residuals in the final
sample is not statistically different from zero (p-value equal to 0.61).
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Figure A5. Average downstream linkages across countries and times

Notes: The figure shows the average downstream input linkages across countries and over time computed as the
share of intermediate inputs that input sector (in rows) provides to output sector (in columns) over total value
added. Intermediate inputs are computed in basic prices from EORA26.
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Figure A6. Density distribution of first order degree linkages of agriculture
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Notes: The figure shows the empirical density distribution of the first order outdegree of each agriculture sector
in the world across years (each year represents the average of the following five years, e.g., 1970 indicates the
average linkages between 1970 and 1974).
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Figure A7. Countries in the sample by climatic zone

Notes: The map represents the countries in the sample divided by climatic zones, defined as terciles of the average
annual temperature from 1975 through 2020. The classification is implemented in order to compute heterogeneous
treatment effects as reported in Figure H1.
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B Additional figures - Robustness and additional results

Figure B1. Robustness 1: Response to local extreme heat

Notes: The figure shows the regression estimates for the country-average number of degree days of extreme heat
using a sector-country balanced panel; excluding large countries (Brazil, China, India, Russia, US); including
lagged growth rate; including country-specific linear trends; including linear and quadratic country-specific trends;
including subregion-by-year fixed effects. All sector-specific coefficients are estimated jointly in a regression model
fully saturated with country-sector and sector-year fixed effects. Vertical lines represent the 95% confidence
intervals around point estimates. Subregions divide the world into 17 zones: Australia and New Zealand, Central
Asia, Eastern Asia, Eastern Europe, Latin America and the Caribbean, Melanesia, Northern Africa, Northern
America, Northern Europe, Polynesia, South-eastern Asia, Southern Asia, Southern Europe, Sub-Saharan Africa,
Western Asia, Western Europe.
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Figure B2. Robustness 2: Response to local extreme heat

Notes: The figure shows the regression estimates constructing the extreme heat exposure differently: I use different
percentiles of the grid-specific distribution (90, 95 - the baseline - and 99); I construct heat exposure relative to
the 95th percentile of each grid-month specific distribution of temperature in the previous 30 years and relative
to the 95th percentile of each grid-year specific distribution of temperature in the previous 20 or 40 years.
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Figure B3. Effect of local abnormal hot days on growth rate of sectoral value added

Notes: The figure shows the regression estimates for the country-average number of days above the 95th percentile
of the daily distribution in temperature. All sector-specific coefficients are estimated jointly in a regression model
fully saturated with country-sector and sector-year fixed effects and controlling for a sector-specific second order
polynomial in total precipitation. Vertical lines represent the 95% confidence intervals around point estimates.
Standard errors are clustered at the country level.
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Figure B4. Effect of temperature shocks on growth rate of sectoral value added

Notes: The figure shows the regression estimates of the temperature shocks constructed as in Equation (2).
All sector-specific coefficients are estimated jointly in a regression model fully saturated with country-sector and
sector-year fixed effects and controlling for a sector-specific second order polynomial in total precipitation. Vertical
lines represent the 95% confidence intervals around point estimates. Standard errors are clustered at the country
level.
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Figure B5. Dynamic effect on local extreme heat on growth rate of sectoral value added

Notes: The figure shows the regression estimates of the temperature shocks constructed as in Equation (2).
All sector-specific coefficients are estimated jointly in a regression model fully saturated with country-sector and
sector-year fixed effects and controlling for a sector-specific second order polynomial in total precipitation. Vertical
lines represent the 95% confidence intervals around point estimates. Standard errors are clustered at the country
level.
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Figure B6. Quantiles of Extreme Heat on Agricultural Value Added

Notes: The figure shows the regression estimates for the measure of extreme heat (degree days) constructed as
in Equation (1) on the growth rate of agricultural value added and categorized by terciles or quintiles. Each set
of bars corresponds to the estimates from a single regression which accounts for linear and quadratic terms of
precipitation, and country and year fixed effects. Vertical lines represent the 95% confidence intervals around
point estimates. Standard errors are clustered at the country level.
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Figure B7. Density function of intermediate input interlinkages with agriculture by sector

Notes: The figure plots the sector-specific density distribution of the (log) of interlinkages with agriculture used
as outcome variable in Equation (9).
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Figure B8. Downstream exposure to extreme heat in agriculture by income terciles

Notes: Each panel in the figure displays the income tercile-specific average (black solid line) ratio of downstream
heat exposure computed between a production network where sectoral interlinkages are varying annually and one
where sectoral interlinkages are fixed in time averaged between 1970 and 1974. As Fact 4 establishes that sectors
do not substantially differ in response to extreme heat in agriculture, I pool downstream exposure to extreme
heat conditions across sectors in a country and divide the global sample by terciles of income. Income terciles
are defined averaging for the whole 45-year time period the log of per capita GDP using data from the World
Bank’s World Development Indicators. I construct downstream heat exposure in two ways. First, I measure a
country’s exposure to extreme heat allowing the production network to evolve over time and constructing sectoral
interlinkages which vary annually. Second, I construct downstream extreme heat exposure using a time-invariant
production network where sectoral interlinkages are constructed from the earliest available five-year period of
input-output linkages (1970 to 1974). A ratio between these two measures of downstream heat exposure below
one would indicate that countries have been able to reduce their exposure to downstream non-local extreme heat
conditions. The gray shaded areas represent the 95% confidence intervals.
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Figure B9. Contemporaneous and lagged response to extreme heat conditions in agriculture
accounting for higher order linkages

Notes: Bars represent the sector-specific coefficients associated with contemporaneous and one-year lagged local
extreme heat shocks and extreme heat in domestic and foreign agriculture constructed using the extreme heat
exposure measure constructed as in Equation (1). Domestic and foreign downstream shocks are constructed
respectively as in Equations (5) and (6), with sectoral interlinkages obtained from the Leontief inverse matrix
obtained from the downstream sectoral interlinkages obtained as in Section 2.3. The specification jointly estimates
all sector-specific coefficients in a regression model that accounts for country-sector, sector-year, country-year fixed
effects and sector-specific second-order polynomial of total precipitation and sum of exposure shares. Vertical lines
represent the 95% confidence intervals with standard errors clustered at the country level.
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Figure B10. Robustness: Alternative specifications for first degree linkages

(a) Country quadratic time trends (b) Country-sector quadratic time trends

(c) Balanced panel (d) Excluding “large” countries

(e) Exclude 10% coldest (f) Exclude 10% hottest

Notes: The figure shows the sector-specific coefficients associated with local extreme heat and domestic and
foreign extreme heat in agriculture. Panel (a) shows the estimates accounting for country-specific quadratic time
trends; Panel (b) accounts for country-sector specific quadratic time trends; Panel (c) uses sector-country balanced
panel; Panel (d) excludes large countries (China, India, Russia, US); Panel (e) excludes the 10% coldest countries
based on mean temperature in the 45 years considered; Panel (f) excludes the 10% hottest countries based on
mean temperature in the 45 years considered. Vertical lines represent the 95% confidence intervals around point
estimates with standard errors clustered at the country level.
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Figure B11. Robustness: Alternative specifications for Leontief matrix

(a) Country quadratic time trends (b) Country-sector quadratic time trends

(c) Balanced panel (d) Excluding “large” countries

(e) Exclude 10% coldest (f) Exclude 10% hottest

Notes: The figure shows the sector-specific coefficients associated with local extreme heat and domestic and
foreign extreme heat in agriculture using the Leontief inverse matrix. Panel (a) shows the estimates accounting
for country-specific quadratic time trends; Panel (b) accounts for country-sector specific quadratic time trends;
Panel (c) uses sector-country balanced panel; Panel (d) excludes large countries (China, India, Russia, US); Panel
(e) excludes the 10% coldest countries based on mean temperature in the 45 years considered; Panel (f) excludes
the 10% hottest countries based on mean temperature in the 45 years considered. Vertical lines represent the 95%
confidence intervals around point estimates with standard errors clustered at the country level.
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Figure B12. Local and upstream agricultural extreme heat on sectoral production

Notes: Bars represent the sector-specific coefficients associated with local shocks and domestic and foreign up-
stream shocks, using the extreme heat exposure measure constructed as in Equation (1). The specification
jointly estimates all sector-specific coefficients in a regression model that accounts for country-sector, sector-year,
country-year fixed effects and sector-specific second-order polynomial of total precipitation and sum of exposure
shares. Vertical lines represent the 95% confidence intervals with standard errors clustered at the country level.
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Figure B13. Local and upstream agricultural extreme heat on sectoral production in a Leontief
matrix

Notes: Bars represent the sector-specific coefficients associated with direct shocks and domestic and foreign
upstream shocks, using the average number of days above the 95th percentile of the daily temperature distribution.
Domestic upstream shocks are constructed as the average weather shock in agriculture in the same country as the
sector of interest weighted by the upstream interdependence with each sector. Symmetrically, foreign upstream
shocks are constructed as the average weather shock in the agriculture sector abroad weighted by the upstream
interdependence with each sector. The specification jointly estimates all sector-specific coefficients in a regression
model that accounts for country-sector, sector-year, country-year fixed effects and sector-specific second-order
polynomial of total precipitation and sum of exposure shares. Vertical lines represent the 95% confidence intervals
with standard errors clustered at the country level.
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Figure B14. Controlling for distance-weighted measure of extreme heat in agriculture

Notes: Bars represent the sector-specific coefficients associated with local shocks and domestic and foreign agricul-
ture shocks, and a gravity-based measure of indirect exposure to extreme heat where I use the typical estimates of
the trade elasticity δ = 5 to obtain the weighted average of extreme heat by distance across countries. I construct
the extreme heat exposure as in Equation (1). The specification jointly estimates all sector-specific coefficients
in a regression model that accounts for country-sector, sector-year fixed effects, and sector-specific second-order
polynomial of total precipitation and sum of exposure shares. Vertical lines represent the 95% confidence intervals
with standard errors clustered at the country level.
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Figure B15. Aggregate annual value added losses (%) induced by recent warming (2001-2020)
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Notes: The figure shows the total annual losses in value added (%) between 2001 and 2020 aggregating value
added losses in agriculture induced by local extreme heat and downstream value added losses induced by extreme
heat in domestic and foreign agriculture, compared to a counterfactual where extreme heat in agriculture had
remained at 1975-2000 baseline averages. The sector-specific semi-elasticities are obtained from bootstrapping
1000 times the underlying panel estimates of Equation (17) with replacement.
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Figure B16. Annual global value added losses accounting for input linkages for a standard
deviation increase in extreme heat in agriculture in a country (in x-axis)
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Notes: The figure shows the annual global value added losses in 2015$ billions for a one standard deviation
increase in extreme heat in agriculture in each country reported in the x-axis. Estimates are obtained using
sector-specific semi-elasticities from Equation (17) and aggregating across sectors and countries to obtain average
annual global losses. Purple bins indicate the 95% confidence intervals obtained from 1000 bootstrap replications
with replacement. These ten countries represent the ten cases in which global value added losses are smallest but
significant at the 95% level.
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C Additional tables

Table C1. Summary statistics on sectoral GVA growth rate

N mean SD min max

(log) Value added 36,079 21.901 2.424 13.560 30.016
Growth rate of value added 36,079 0.033 0.125 -3.267 2.608

Sector
Agriculture, hunting, forestry, fishing (ISIC A-B) 7,351 0.027 0.104 -1.691 0.745
Construction (ISIC F) 7,345 0.029 0.169 -3.267 2.608
Mining, Manufacturing, Utilities (ISIC C-E) 7,351 0.027 0.130 -3.099 2.466
Other Activities (ISIC J-P) 7,351 0.034 0.087 -1.567 1.237
Transport, storage and communication (ISIC I) 7,306 0.042 0.111 -2.567 2.067
Wholesale, retail trade, restaurants and hotels (ISIC G-H) 6,726 0.030 0.109 -1.609 1.546

Number of countries 183
Number of sectors 6
Number of years per country-sector 44.381 4.647 31 46
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Table C2. Countries and year-sectors in final sample
Country Number of years-sectors Country Number of years-sectors Country Number of years-sectors
Afghanistan 276 French Polynesia 276 Nigeria 276
Albania 276 Gabon 276 North Korea 184
Algeria 276 Gambia 276 North Macedonia 180
Andorra 276 Georgia 180 Norway 276
Angola 276 Germany 276 Oman 276
Antigua and Barbuda 276 Ghana 276 Pakistan 276
Argentina 276 Greece 276 Palestine 180
Armenia 180 Greenland 276 Panama 276
Aruba 276 Grenada 276 Papua New Guinea 276
Australia 276 Guatemala 276 Paraguay 276
Austria 276 Guinea 276 Peru 276
Azerbaijan 180 Guyana 276 Philippines 276
Bahamas 296 Haiti 276 Poland 276
Bahrain 276 Honduras 276 Portugal 276
Bangladesh 276 Hungary 276 Qatar 276
Barbados 276 Iceland 276 Republic of the Congo 276
Belarus 180 India 276 Romania 276
Belgium 276 Indonesia 276 Russia 180
Belize 276 Iran 276 Rwanda 276
Benin 276 Iraq 276 Samoa 276
Bermuda 276 Ireland 276 San Marino 276
Bhutan 276 Israel 276 Saudi Arabia 276
Bolivia 276 Italy 276 Senegal 276
Bosnia and Herzegovina 180 Jamaica 276 Serbia 180
Botswana 276 Japan 276 Seychelles 276
Brazil 276 Jordan 276 Sierra Leone 276
British Virgin Islands 276 Kazakhstan 180 Singapore 276
Brunei 276 Kenya 276 Slovakia 180
Bulgaria 276 Kuwait 276 Slovenia 180
Burkina Faso 276 Kyrgyzstan 180 Somalia 276
Burundi 276 Laos 276 South Africa 276
Cabo Verde 276 Latvia 180 South Korea 276
Cambodia 276 Lebanon 276 South Sudan 72
Cameroon 276 Lesotho 276 Spain 276
Canada 276 Liberia 276 Sri Lanka 276
Cayman Islands 276 Libya 276 Sudan 72
Central African Republic 276 Liechtenstein 276 Suriname 276
Chad 276 Lithuania 180 Swaziland 276
Chile 276 Luxembourg 276 Sweden 276
China 276 Madagascar 276 Switzerland 276
Colombia 276 Malawi 276 Syria 276
Comoros 276 Malaysia 276 São Tomé and Pŕıncipe 276
Costa Rica 276 Maldives 297 Tajikistan 178
Croatia 180 Mali 276 Tanzania 276
Cuba 276 Malta 276 Thailand 276
Cyprus 276 Mauritania 276 Togo 276
Czechia 180 Mauritius 276 Trinidad and Tobago 276
Côte d’Ivoire 276 Moldova 180 Tunisia 276
Democratic Republic of the Congo 276 Monaco 230 Turkey 276
Denmark 276 Mongolia 276 Turkmenistan 180
Djibouti 276 Montenegro 180 Uganda 276
Dominican Republic 276 Morocco 276 Ukraine 180
Ecuador 276 Mozambique 276 United Arab Emirates 276
Egypt 276 Myanmar 276 United Kingdom 276
El Salvador 276 México 276 United States 276
Equatorial Guinea 276 Namibia 276 Uruguay 276
Eritrea 126 Nepal 276 Uzbekistan 180
Estonia 180 Netherlands 276 Vanuatu 276
Ethiopia 180 New Caledonia 276 Venezuela 276
Fiji 276 New Zealand 276 Vietnam 276
Finland 276 Nicaragua 276 Yemen 186
France 276 Niger 276 Zambia 276

Zimbabwe 276

Total 47,289
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Table C3. Mapping between EORA26 sectors and UNSD industries

EORA26 Sector UNSD industry

Agriculture Agriculture, hunting, forestry, fishing (ISIC A-B)
Fishing Agriculture, hunting, forestry, fishing (ISIC A-B)
Mining and Quarrying Mining, Manufacturing, Utilities (ISIC C-E)
Electricity, Gas and Water Mining, Manufacturing, Utilities (ISIC C-E)
Food & Beverages Mining, Manufacturing, Utilities (ISIC C-E)
Textiles and Wearing Apparel Mining, Manufacturing, Utilities (ISIC C-E)
Wood and Paper Mining, Manufacturing, Utilities (ISIC C-E)
Petroleum, Chemical and Non-Metallic Mineral Products Mining, Manufacturing, Utilities (ISIC C-E)
Metal Products Mining, Manufacturing, Utilities (ISIC C-E)
Electrical and Machinery Mining, Manufacturing, Utilities (ISIC C-E)
Transport Equipment Mining, Manufacturing, Utilities (ISIC C-E)
Other Manufacturing Mining, Manufacturing, Utilities (ISIC C-E)
Recycling Mining, Manufacturing, Utilities (ISIC C-E)
Construction Construction (ISIC F)
Maintenance and Repair Construction (ISIC F)
Wholesale Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Retail Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Hotels and Restaurants Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Transport Transport, storage and communication (ISIC I)
Post and Telecommunications Transport, storage and communication (ISIC I)
Financial Intermediation and Business Activities Other Activities (ISIC J-P)
Public Administration Other Activities (ISIC J-P)
Education, Health and Other Services Other Activities (ISIC J-P)
Private Households Other Activities (ISIC J-P)
Others Other Activities (ISIC J-P)
Re-export & Re-import Other Activities (ISIC J-P)

Notes: Author’s classification based on Kunze (2021) and adapted to six UNSD sectors.
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Table C4. Effect of extreme heat on crop prices

Crop Price (USD/Tonne) (log) Crop Price (USD/Tonne)

(1) (2) (3) (4)

Degree Days 0.4114∗∗ 0.2875∗∗∗ 0.0007∗∗∗ 0.0002∗

(0.2078) (0.0825) (0.0002) (0.0001)
Total Precipitation 1,196.6 435.0 0.4562 -0.7051

(992.6) (838.0) (1.207) (0.5697)
Total Precipitation2 -412,342.2 -156,285.3 -853.8 233.7

(328,287.8) (248,919.6) (1,026.4) (269.8)

Observations 96,266 96,266 96,265 96,265
Outcome mean 834.15 834.15 6.1182 6.1182

Crop-Country fixed effects ✓ ✓ ✓ ✓
Crop-Year fixed effects ✓ ✓ ✓ ✓
Country-specific linear trends ✓ ✓

Notes: Degree Days is a crop-specific extreme heat exposure in ◦C × days/year for each country-crop com-
bination around the world computed as the average exposure to extreme temperatures in degree-days (using
maximum optimal growing temperature thresholds from FAO EcoCrop) on land cultivating a given crop (from
Monfreda et al. (2008)). Total Precipitation is measured in metres.
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Table C5. Effect of local heat and downstream exposure to extreme heat in agriculture on
sectoral value added

Construction Mining, manufacturing & utilities Other activities) Transport, storage & communication Wholesale, retail, restaurants & hotel
(1) (2) (3) (4) (5)

Local extreme heat -0.0000393 -0.0000570 0.0000422 0.0000503 0.0000732
(0.000176) (0.000110) (0.0000780) (0.000102) (0.0000950)

Domestic agriculture extreme heat -0.0000232 -0.000132∗∗∗ -0.0000138 -0.0000252∗∗∗ -0.0000793∗∗∗

(0.0000245) (0.0000346) (0.0000170) (0.00000714) (0.0000270)

Foreign agriculture extreme heat -0.0000402∗ -0.0000572∗∗∗ -0.0000373 -0.0000567 -0.0000654∗∗

(0.0000221) (0.0000208) (0.0000340) (0.0000350) (0.0000286)

Sector-specific quadratic precipitation ✓ ✓ ✓ ✓ ✓
Exposure share sums ✓ ✓ ✓ ✓ ✓
Sector-Country fixed effects ✓ ✓ ✓ ✓ ✓
Country-Year fixed effects ✓ ✓ ✓ ✓ ✓
Sector-Year fixed effects ✓ ✓ ✓ ✓ ✓

Mean outcome 0.0290103 0.0274871 0.0345063 0.042939 0.0304112
N 36079
adj. R2 0.335

Notes: Table reports the OLS estimates of one single regression estimating 15 coefficients (Equation (17)),, including the effect of local extreme heat and the indirect effect of extreme heat in domestic and foreign agriculture
via exposure through intermediate inputs with downstream sectors. This is the tabular version of Figure 6. The regression controls for a second-order polynomial in total precipitation, and exposure share of each sector with
domestic agriculture and the sum of exposure shares with foreign agriculture. Standard errors are clustered at the country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C6. Effect of local heat and downstream exposure to extreme heat in agriculture on
sectoral value added accounting for higher degree linkages

Construction Mining, manufacturing & utilities Other activities) Transport, storage & communication Wholesale, retail, restaurants & hotel
(1) (2) (3) (4) (5)

Local extreme heat -0.00000586 -0.0000821 0.0000464 0.0000608 0.0000956
(0.000176) (0.000109) (0.0000785) (0.000101) (0.0000952)

Domestic Leontief agriculture extreme heat -0.0000605∗∗∗ -0.000156∗∗∗ -0.0000871∗∗∗ -0.0000567∗ -0.000131∗∗∗

(0.0000137) (0.0000433) (0.0000286) (0.0000317) (0.0000477)

Foreign Leontief agriculture extreme heat -0.0000493∗∗∗ -0.0000970∗∗∗ -0.0000789∗∗∗ -0.0000933∗∗ -0.000111∗∗∗

(0.00000229) (0.0000196) (0.0000144) (0.0000442) (0.0000184)

Sector-specific quadratic precipitation ✓ ✓ ✓ ✓ ✓
Exposure share sums ✓ ✓ ✓ ✓ ✓
Sector-Country fixed effects ✓ ✓ ✓ ✓ ✓
Country-Year fixed effects ✓ ✓ ✓ ✓ ✓
Sector-Year fixed effects ✓ ✓ ✓ ✓ ✓

Mean outcome 0.0290103 0.0274871 0.0345063 0.042939 0.0304112
N 36079
adj. R2 0.334

Notes: Table reports the OLS estimates of one single regression estimating 15 coefficients (Equation (17)), including the effect of local extreme heat and the indirect effect of extreme heat in domestic and foreign agriculture via
exposure through intermediate inputs with downstream sectors. This is the tabular version of Figure 7. The regression controls for a second-order polynomial in total precipitation, and exposure share of each sector with domestic
agriculture and the sum of exposure shares with foreign agriculture. Standard errors are clustered at the country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D Additional data sources

The empirical analysis and additional empirical facts rely on a set of complementary secondary

data, which I describe below.

Sub-national sectoral activity. To obtain geographic variation in sectoral exposure to

weather conditions within a country, I rely on the geographic distribution of sectoral activi-

ties. This information is available for 41 countries around the world, including Europe, Brazil,

Canada, China, and United States. For each country, I consider the first available five years of

sectoral production to construct a measure of sub-national geographic distribution of sectoral

activities. I use these measure as a weight to aggregate nationally sub-national measures of

weather exposure. Below, I describe each data source in detail.

I rely on Eurostat data on GVA by industry (NACE Rev. 2) at the sub-national level for

34 European countries. I use NUTS-3 level information from 31 countries (Albania, Austria,

Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Malta, Netherland, Norway, Poland, Por-

tugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Sweden, Türkiye,

Serbia, Spain) and NUTS-2 level for three other countries (Cyprus, Luxembourg, Montenegro).

State-level sectoral data for Brazil are taken from the Brazilian Institute of Geography and

Statistics, which displays information since 2003 for 15 economic services: agriculture, industry

(extraction industries; transformation industries; and electricity and gas), construction, trade

and transportation (trade; transport, storage and communications; hotels and restaurants; and

information and communication), finance (financial activities; real estate; and professional ac-

tivities) and government and other services (public administration and defense; education and

health; and other services). Sectoral value added data across provinces for Canada is obtained

from the Statistics of Canada, which provides information since 2001 according to the NAICS

standard in chained 2012 U.S. dollar. Value added data across states for China are taken from

the Macro Economy Statistics Yearbook. As for value added, the dataset comprises nine sectors,

including agriculture, wholesale and retail, hotels and catering and transport, storage and post.

For the United States, data at the state level come from the Bureau of Economic Analysis.

Information is reported since 1997 according to the NAICS standard.

Crop prices. Data on domestic crop prices come from the UN FAOSTAT domain on Agri-

cultural Producer Prices and Producer Price Index (expressed in USD/Tonne), which reports
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official national level data received from FAO Members on annual prices their farmers obtain

from 1991 to 2020 for 160 countries and for about 262 products. Agriculture Producer Prices

are prices received by farmers for primary crops, live animals and livestock primary products

as collected at the point of initial sale (prices paid at the farm-gate). I match crop names to

DegreeDays measures at the crop level computed using the UN FAO EcoCrop database and

the agricultural land where each crop is grown in each country as explained in Section 2.

Crop acreage over time. To study crop adjustments in space I use the Spatial Production

Allocation Model (SPAM) (International Food Policy Research Institute, 2019, 2024). In partic-

ular, I use the first and last available year, respectively 2000 and 2020 that contain information

on the physical area for 12 crops at a 5min spatial resolution. Physical area is measured in a

hectare and represents the actual area where a crop is grown, not counting how often production

was harvested from it. Physical area is calculated for each production system and crop, and the

sum of all physical areas of the four production systems constitute the total physical area for

that crop. Appendix Section E explains how I use the data.
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E Extreme heat in agriculture accounting for crop spatial ad-

justments

In this section, I empirically show the negligible consequences of accounting for spatial reallo-

cation patterns of crop acreage. To do so, I rely on the availability of the spatial distribution

of cropland in 2000 and 2020 (International Food Policy Research Institute, 2019, 2024) for 12

crops and construct extreme heat exposure at the country-level for the year 2010 as explained in

Section 2.2, using the crop-specific maximum optimal growing temperature to compute extreme

heat exposure and weighting by cropland coverage in the two different years.

Table E1 shows the balance test results testing for difference in means in extreme heat

exposure in 2010 for each of the 12 crops in the sample (N indicates the number of countries

where exposure is non-zero). I cannot reject the null hypothesis that on average the extreme

heat exposure measures are statistically equivalent using different years to measure crop acreage.

Table E1. T-test for extreme heat exposure using crop geographic distribution
in 2000 and 2020

Extreme Heat by Crop (degree days in 2010)

Crop Crop acreage in 2000 Crop acreage in 2020 p-value N

Barley 955.46 989.34 0.324 124
Bean 524.63 507.04 0.342 130
Cassava 86.49 89.12 0.685 85
Cotton 11.38 8.06 0.239 44
Groundnut 55.37 50.54 0.360 85
Maize 46.56 45.19 0.675 82
Rice 97.72 103.80 0.164 113
Sorghum 24.38 26.95 0.543 55
Soybean 47.47 40.14 0.198 54
Sugarbeet 236.66 232.34 0.882 65
Sugarcane 10.49 13.64 0.475 19
Wheat 680.95 694.27 0.506 137
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F Local output response to local weather shocks

The majority of the reduced form climate impact studies motivates econometric specifications

with a partial equilibrium model of production where the economy consists of N regions (Dell

et al., 2012; Burke et al., 2015). To match this section with the model described in the main

text, I consider an economy with N regions indexed by n ∈ {1, ..., N} (or m), each populated

with J sectors indexed by j ∈ {1, ..., J} (or k). Although empirically we usually observe sectors

and countries for multiple years, here I consider a static version for simplicity. Production

possibilities for sector j in region n are described by a constant returns-to-scale Cobb-Douglas

technology whose inputs are capital and labor:

Y j
n = Zj

n(K
j
n)

λ(Lj
n)

1−λ (F.1)

where total factor productivity Zj
n is a product of two components: (i) a region-sector specific

component zjn, (ii) an exponential vector of temperature effects T j
n with sector-specific elasticities

βj . Taking the log and rearranging in terms of output per worker, one obtains:

log
Y j
n

Lj
n

=
1

1− λ
[log zjn + f(T j

n, βj)] +
λ

1− λ
log

(
Kj

n

Y j
n

)
(F.2)

In this static setting, the reduced form effect of temperature β̂ on output per capita is

estimated under the assumption that the residual variation in temperature is not correlated

with the error term once absorbed sector-region specific unobserved heterogeneity. This simple

framework serves as an example to show that weather conditions T k
n or T j

m, i.e., temperature

conditions in other sectors k in the same country n or in the same sector j in other countries m

do not enter in the production function for Y j
n . When this is taken to the data, these variables

are absorbed in the error term. Linkages across sectors and space through the spatial correlation

structure of temperature shocks and through the use of intermediate inputs suggest that the

empirical approach using only local variation in temperature on local output might suffer from

omitted variable bias.
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G Reduced form GDP-temperature regressions with tempera-

ture in first-difference

Kahn et al. (2021) review the three main approaches that study the climate-output relationship

in reduced form in the literature (Dell et al., 2012; Burke et al., 2015; Kalkuhl and Wenz, 2020),

highlighting the restrictive assumptions that each of these models requires to study the effect

of temperature. In an attempt to deal with the non-stationarity issue of trended temperatures,

a recently often implemented alternative is to use changes in temperature levels (Akyapi et al.,

2024; Newell et al., 2021; Letta and Tol, 2019). Nevertheless, this measure does not inform

how atypical the weather realization is with respect to individual expectations since it neglects

any information provided by the levels and assumes that individuals rationally update their

beliefs annually, under an implicit instantaneous model of adaptation. This is because the

first difference in temperature effectively removes any information on the temperature levels.

Therefore, a change in 2◦C temperature will have the same effect regardless of the temperature

level. A workaround to this shortcoming proposed by Kalkuhl and Wenz (2020) is to interact the

change in temperature ∆Tnt with temperature levels Tnt, which, however, re-introduces trends

in the regression, therefore biasing the coefficient on the interaction term.

Here, I discuss another approach implemented in the literature which is to include higher

order polynomials of first-differenced temperature as main regressors (as in Ortiz-Bobea et al.

(2021)). This approach allows for non-linear effect of temperature changes while dealing with

the non-stationarity issue of trended temperatures. Without loss of generality, the estimating

equation considering only a second-order polynomial of differenced temperature is written as

∆ynt = αn + δt + λ∆Tnt + ψ∆[T 2
nt] + εnt (G.1)

which uses the growth rate of log-differences of real GDP per capita of country n in year t as

the dependent variable, the main regressors are the linear and quadratic differenced temperature,

where the latter term is the change in temperature-squared (different from the squared change

in temperature), αn is the country-specific fixed effect and δt is the time-specific fixed effect.

Motivated by empirical evidence on the temperatures being trended, I assume that

Tnt = aTn + bTnt+ νTnt (G.2)

where, in line with historical evidence, bTn > 0, and E(νTn;t) = 0 and E(ν2Tn;t
) = σ2Tn

.
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Substituting Equation (G.2) in Equation (G.1) and taking expectations yields

E(∆ynt) = E(δt) + αn + bTn [λ+ 2ψaTn ] + 2ψb2Tn
t (G.3)

To ensure that E(∆ynt) is not trended, there are some restrictions to impose. First, since δt

is unobserved, one can set E(δt) = 0 (Kahn et al., 2021), and then require that 2ψb2Tn
t = 0 for

all n. Therefore, this approach does not resolve the trend problem around the output growth-

climate specifications, introducing a trend in the mean output growth, which is not supported

empirically. An alternative approach would be to include region-year rt fixed effects in Equation

(G.1), such that it becomes

∆ynrt = αnr + δrt + λ∆Tnrt + ψ∆[T 2
nrt] + εnrt (G.4)

with Tnrt = aTn,r +bTn,r t+νTn;rt , where the shock νTn;rt for country n in region r in year t has

zero mean and finite variance. Taking expectations as above, to have that E(∆ynrt) is stationary,

one would require no trend in temperature bTn;r = 0, or exact cancellation of quadratic trends

in temperature at the regional level with the region-year fixed effects, i.e. δrt + ψb
2
Trt = 0, for

all r, where b
2
Tr = 1

n

∑nr
n=1 b

2
Tn,r

. The use of this fixed effects, besides not necessarily tackling

this issue, comes at the cost of drastically increasing the signal-to-noise ratio in the remaining

variation in weather (Fisher et al., 2012).
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H Heterogeneous effects of local extreme heat across adaptation

potential

The impact of extreme heat may differ as a function of factors that influence the adaptation

potential of countries, including income and climate. First, richer countries have less binding

budget constraints and wider adaptation capacity to cope with weather fluctuations. Second,

a hotter climate may differentially incentivize adaptive investments as returns to adaptation

would be relatively higher for more frequent temperature changes. I estimate heterogeneous

temperature-value added relationships by interacting the vector of temperature and precipitation

coefficients with income and climate terciles from long-run average income and temperature

(Appendix Figure A7 shows the sample composition) (Carleton et al., 2022).

Appendix Figure H1 graphically presents the coefficient associated with heat shocks inter-

acted with income and climate terciles. Starting from heterogeneity by income, agricultural

value added becomes more sensitive to extreme heat as income rises. This result, perhaps sur-

prising at first, could be explained by differences in improved technologies, infrastructure, or

insurance that influence producer strategies (Hultgren et al., 2024). There is not substantial

heterogeneity in the response of other sectors to extreme heat conditions by income, with the es-

timated coefficients that are never statistically distinguishable from zero. Similarly, I document

that countries adapt to higher temperatures across crops such that agricultural value added is

sheltered from the impact of extreme heat in temperate and hot countries and negatively af-

fected in cold countries. Conversely, there is considerable heterogeneity in the sectoral response

to extreme heat by climate. In particular, the manufacturing and service sectors benefit from

hotter conditions in cold countries, whereas these sectors do not respond in hot and temperate

countries.
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Figure H1. Income and climate heterogeneity in GVA response to extreme heat

(a) Income terciles

(b) Climate terciles

Notes: The figure shows the coefficients associated with the response of growth rate of value added to extreme
heat by income using long-run average per capita GDP and average temperature. All sector-specific coefficients
are estimated jointly in a regression model fully saturated with country-sector and sector-year fixed effects and
controlling for a second order polynomial in precipitation. Vertical lines represent the 95% confidence intervals
with standard errors clustered at the country-level.
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I Quantifying the cost of recent warming accounting for sectoral

and spatial linkages

Here, I provide additional details on the construction of the counterfactuals in Section 7. To

understand the differential and aggregate cost of recent warming, I use the estimates of the

effect of local extreme heat and exposure to extreme heat in domestic and foreign agriculture to

simulate how much slower or faster each sector in each country would have grown annually over

the 2001-2020 period, compared to a scenario under which extreme heat stayed at its 1974-2000

average, and cumulate these effects over the period to calculate the increase or decrease in total

value added. This computation does not necessarily represent the differential impact of recent

anthropogenic warming accounting for network shocks and is instead agnostic to the cause of

recent warming.

First, I compute the cost of annual warming in 2001-2020 compared to a counterfactual where

extreme heat exposure stayed constant at the period 1970-2000. Importantly, I do so both only

using the semi-elasticities from local extreme heat and including the semi-elasticities to extreme

heat exposure in domestic and foreign agriculture. I bootstrap 1000 times the underlying panel

estimates from Equation (17) and use the β̂j ’s and γ̂j,ℓ’s obtained from this exercise, as the

sector-specific estimates for the effect of local extreme heat, domestic and foreign downstream

exposure to agricultural extreme heat to compute the counterfactual growth rate g:

glocaljnt = β̂j(ExtremeHeatnt − ˜ExtremeHeatnt) (I.1)

gglobaljnt = (β̂jExtremeHeatnt +
∑

ℓ∈{D;F}

γ̂j,ℓNetworkShock
Dn,ℓ
jnt )

− (β̂j ˜ExtremeHeatnt +
∑

ℓ∈{D;F}

γ̂j,ℓ ˜NetworkShock
Dn,ℓ

jnt )
(I.2)

where ExtremeHeatnt is the observed extreme heat measure constructed in Equation (1),

˜ExtremeHeatnt is the counterfactual extreme heat measure in the 1970-2000 period, and sym-

metrically for NetworkShock, which is constructed as detailed in Equations (5) and (6). I

compute sector j’s counterfactual value added levels in year t omitting and accounting for indi-

rect shocks

Ŷ p
jnt = Yict−1 + yjnt + gpjnt (I.3)

where hatted term indicates a counterfactual, Y is the (log) of value added, y is the observed
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growth rate and p ∈ {local, global}. I can then compute the relative loss in value added for

sector j in country n over the 2001-2020 period as

%LOSS
p
jn =

2020∑
t=2001

eŶ
p
jnt − eYjnt

eYjnt
(I.4)

to obtain a measure of the average cost of recent warming at the sector level omitting and

accounting for input linkages with agriculture. The aggregate loss in value added across sectors

for country n is

%LOSS
p
n =

J∑
j

%λjnLOSS
p
jn (I.5)

where λjn is the average share of total value added of sector j in country n. Figure 8 reports

the country-level losses computed only in the case of damages to agriculture (top map) and

summing over all other five sectors in the economy (bottom map).
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