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Abstract

We characterize the set of communication igotum payoffs of any undiscounted repeated
matrix-game with imperfect monitoring and complete information. For two-player games, a
characterization is provided by Mertens, Sorin, and Zamir (Repeated games, Part A (1994) CORE
DP 9420), mainly using Lekr’s (Math. OperationRes. (1992) 175) result foocrelated equilibria.

The main result of this paper is to extend this characterization tayblayer case. The proof of

the characterization relies on an analogy with an auxiliary 2-player repeated game with incomplete
information and imperfect monitoring. We use Kohlberg’s (Int. J. Game Theory (1975) 7) result to
construct explicitly a canonical communicatioevite for each communication equilibrium payoff.
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1. Introduction

We study repeated games with imperfect monitoring. In such interactions, a one-shot
matrix-game known by all the players ispeated over and over, and after each stage
the players get some signal depending oa #letions just played. A general goal is to
extend the Folk Theorem to such games, i.e. to characterize the set of equilibrium payoffs
according to the original data (one-shot game and signalling functions). The pioneering
work in this area is due to Lehrer, who obtained characterizations of equilibrium payoffs
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for 2-player games in the case of Nash equilibria (Lehrer, 1989, 1992b) and in the
case of correlated equilibria (Lehrer, 1992a). In thplayer case, characterizations were
provided for particular classes of signallingictions only (Lehrer, 1990 for semi-standard
signalling, Renault and Tomala, 1998 for a partial result in case of graph monitoring,
Tomala, 1999 for observable payoff vectors).

We deal here with general repeated games with imperfect monitoring, without any
assumption on the number of players, the one-shot matrix-game or the signalling functions.
We provide a characterization of the set of equilibrium payoffs depending only on the
original data. An important point is that we deal with communication equilibrium payoffs
and not with Nash equilibrium payoffs. @onunication equilib@a have been introduced
by Forges (1985) and Myerson (1982). TheseMash equilibria of some extension of the
repeated game, where a mediator who canmainicate with the players has been added.
The mediator has no payoff, no commitmgrower, and he can just communicate in a
private way with each player between the stages. He may be seen as an extra player with
payoff O who can help the players to coordinate themselves. Although communication
equilibria are more complicated to define, they are here easier to study. For example, as
soon as playet knows player; has deviated; can tell it to the mediator who will warn
the other players.

The set of communication equilibrium payoffs (denoteddyhroughout the paper)
always contains the set of Nash equilibrium payoffs and the set of correlated equilibrium
payoffs of the one-shot game and is thus non empty. For two-player games, a characteriza-
tion is provided in Mertens et al. (1994, part A), mainly using Lehrer’s (1992a) result for
correlated equilibria. The main result of the present paper is to extend this characterization
to then-player case. Mertens et al. use thiédwing idea of Lehrer to characteriza A de-
viation of a player is undetectable if it can not be directly observed (i.e. has no influence on
others’ signals) and provides to the deviator at least as much information (consequently the
deviation cannot be detected by “asking questions” such as: what did you observe at such
stage?). For 2-player games, the charazation can be described as follov@is the set
of individually rational payoffs which are feasible in a way such that there is no profitable
and undetectable deviation. In theplayer case studied here, a new phenomenon appears:
during the game, it is possible that all players know that a deviation occurred, without
knowing who has deviated. Consequently, at equilibria all players that may have deviated
must be simultaneously punished, and strategies leading to collective punishments have to
be introduced (see Tomala, 1999 for a construction of such punishments in a simple case).
This type of punishing strategies inducing simultaneously low payoffs for several criteria
is typically a “Blackwell” appoachability strategy (see &tkwell, 1956). The notion of in-
dividual rationality is then replaced by the oofgoint rationality, and the introduction and
the characterization of the set of jointly rational payoffs is the main new aspect of our result.

Our proof is based on the consideration of an auxiliary repeated game with two players
and incomplete information, and the use for such a game of a result by Kohlberg (1975)
in the spirit of Blackwell's approachability. In this auxiliary game, one of the players
represents the mediator and the other playeaied the cheater, representing any potential
deviator in the original game. The state of nature represents the identity of the player who
may be deviating in the original game. It is known by the cheater but not by the mediator.
Formally, the auxiliary game obtained is a 2-player game with lack of information on one
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side, where the uninformed player alwaysstpayoff 0 and with state dependent signalling.
The study of some Nash equilibrium payoffs of such repeated games yields our result. In
particular, it provides for each communication equilibrium payoff of the original game,
an associated canonical communication device. The analogy between communication
equilibria of the original game and specific Nash equilibria in the game is very robust.
It is merely an identification of strategy apes in the two games. In particular it is valid
under any kind of evaluation of payoffs e.gsddounted games or finitely repeated games.
However, to get a full characterization of the set of equilibrium payoffs, we focus on
undiscounted games for which some aspects of the analysis are easier. For example, players
can use any finite number of stages for information transmission, without influencing
payoffs. As a consequence, our charactéiorarequires no hypothesis on payoffs, as for
the Folk Theorem. For convenience, we firgtgent our result in the case of deterministic
signals. This simplifies the definitions and the proof, but the characterization will also hold
in the general case of random signals (see the last section). This may be of interest since
random signals appear in many economic models such as principal-agent problems where
the outcome observed by the principal depends stochastically on the action taken by the
agent. In such a case, the use of a mediator can also have some economical relevance: think
of situations where an outside actor (a regulation authority, e.g. representatives of the state)
is used to smooth conflicts inside a firm.

In Section 2, we introduce the model and tlediditions. For simplicity, we already start
with the notion of canonical communication éguria, which is payoff-equivalent to that
of communication equilibria. The statement of the characterization is given in Section 3.
We then derive previously known results from it, and provide illustrative examples showing
how to compute”. An example is given wher€ is not a polytope (i.e. the convex hull of
a finite number of points). Note that such an example necessarily involves at least 3 players
since for 2-player gameg; is a polytope (Lehrer, 1992a). In this case, simultaneous
punishments are much more difficult to construct. Section 4 is devoted to the proof and
to the analogy with 2-player repeated games with lack of information on one side. We
finally conclude with the consideration of random signals (Section 5).

2. Themode

We start with a set of players'. Each playeri in N has a set of actiond’ and a
payoff functiong’ from A = ]_[jeN A/ to R. The observation of playéris given by a set

of signalsU! and an observation functiofi from A to U'. The repeated game, denoted

by I', is played as follows. At each stage=1, 2, ..., the players independently and
simultaneously choose an action in their own set of actions.itf A is the joint action
selected, the stage payoff for playieis g’ (a), and before starting stager 1, playeri

learns the signaf’ (a) only (hence playei may not know his own payoff’ (a)). Players

are assumed to have perfect recall. The infinitely repeated damsethus characterized

by the dataVN, (A)ien, (g)ien, (UDien, (fDien, fixed once and for all. We assume

that the set of players, the sets of actions and the sets of signals are all non empty
and finite. The goal of this paper is to progié characterization of the set of uniform
communication equilibrium payoffs accordjrio these data. Throughout the paper, we
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will use the following notations. IfE');cy is a collection of sets indexed by, E will
denote[ ;. E'. An elemenie’);cy in E will simply be denoted by, and we will denote

by e~ the current element of ' = [],_; E/. We will write e = (e, e~*) when theith
component is stressed. i is a finite set| E| will denote its cardinality and\(E) the set

of probability distributions oveE. An elemente in E will be identified with the Dirac

mass ore. For p = (p(e))ece in A(E), Suppp will denote the support op. A(E) will

be viewed as a subset of the Euclidean spg&ée and p - ¢ will denote the canonical
inner product ofp andg. A communication equilibrium of” is a Nash equilibrium of

an extended game where a mediator has fzekted. The mediator communicates with
the players through a fixed public knowledge procedure called a communication device:
before each stage, he sends a private recommendation to each player, and after each stage,
each player sends a message back to the noedMotice that there is no need here for

an extra initial stage where the players would send messages to the mediator, because the
players have no initial private information. Forges in 1986 (see also Mertens et al., 1994)
showed, using a revelation principle, tr@dmmunication equilibria admit a canonical
form. Namely, any communication equitibm outcome can be sustained by a canonical
communication equilibrium in which at eadtage, the mediator suggests each player
which action to play, players actually playette actions and report their observed signals

to the mediator. Since the set of canonicahtounication equilibrium payoffs equals the

set of communication equilibrium payoffs, we only formally define the former. We first
consider communication devices such ttt& recommendation sent by the mediator to
each player is an action inA’ and where after each stage each player sends back a
message i/’ . To distinguish between recommendations and actions, and between signals
and messages, it is actually cemient to define, for each player R = A’ (R’ will be
interpreted as the set of recommendations for playeereasA’ is the set of actions that
playeri can take), and similarly/’ = U’ (M for messages sent back to the medialir,

for signals observed by playé.

Definition 2.1. A canonical communication device is an element (c;);>»1, where
c1 € A(R) and for each > 2, ¢, is a mapping from(R x M)'~1to A(R).

Given a fixed canonical communication devicewe define an infinitely repeated
gamelr; played as follows:

Stage 1. The mediator selts a joint recommendationi),-e;v in R according toci,
and privately sends the recommendaﬁ@rto each playet. Then the players
simultaneously choose actions and receive signals as in the original game, and to
conclude stage 1 every playechooses a messagél in M that he sends in a
private way to the mediator.

Stager. The mediator selects a joint recommendatﬁffr)ieN in R according t0c,((ri,
mY)ien, ..., (r'_j,m!_)ien) and privately sends! to each player. Then the
players simultaneously choose actians= (q;);ey and receive signalsf({ (a;)
for player i), and to conclude stage every playeri sends back a private
message! to the mediator.
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Players are assumed to have perfect recall, and the whole description of the game,

includingc, is public knowledge. I, a behavior strategy for playewill be denoted by
ol = (o}, &})i>1 Where for each:

o/ gives the lottery on actions played by playeat stager depending on his past

recommendations from the mediator, the actions he played, the signals he observed

and the messages he sent to the mediafds a mapping R’ x A’ x U x M%)'~1 x
R — A(AY).

g/ gives the lottery on messages sent by pldyarstage, depending on the past. Itis
amappingR’ x A’ x U' x M))'"1 x R' x A" x U' — A(M?).

Denote byX’ the set of behavior strategies for playen I'.. A play in this game is
a sequence(ri)ien, (@)ien, W)ien, (m)ien, ..., rDien. (@)ien, Whien, (mb)ien,
...), hence the set of plays I = (R x A x U x M)*, endowed with the produet-
algebra. A profile of behavior strategiese ¥ naturally induces a probabilit§, . over
2. We define the expected average payoffs as:

T
. [ 1 i
Vie N,VT > 1, y;,!c(o') = EPU,C (; ;g’ ((lt)).

We think of players as maximizing the expatitn of their average payoffs and use the
classical notion of uniform (Nash) etjbria (see for example Sorin, 1992).

Definition 2.2. ¢ € X is an equilibrium of I, if: (i) for each playeri, (y}’c(cr))T>1

converges ag goes to infinity to some/ (o),
(ii) for all ¢ > 0, there existdy s.t.o is ane-Nash equilibria in finitely repeated games
with at leastTy stages, that is:

VT >To,Vie NVt € X', yp (t'.07)) <yp (o) +e.

(vi(0))ien € RV is then called an equilibrium payoff df,.

In I., each playeri has a special strategy’*: at each stageg’* plays the

recommendation just received, and sends back to the mediator the signal just observed

by playeri. We will refer toc’* as the faithful strategy of playér We now define the set
we are interested in.

Definition 2.3. If ¢ is a canonical communication device and if the faithful stratetys
an equilibrium ofr7, the payoff(yj (6™))ien € RY is called a canonical communication
equilibrium payoff of the original repeated game Let C be the set of such payoffs as
varies.

As already said( is indeed the set of all communication equilibrium payoffsiaf
We will consequently often omit the word canonical while dealing with communication
equilibrium payoffs (CEP for short).
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3. Thecharacterization

We first present the main strategic aspects of communication equilibria of repeated
games with imperfect monitoring, then state our result and finally provide comments and
examples.

3.1. Feasibility

We denote byg: A — RY the vector payoff function(g(a) = (g’ (a));ey for each
a € A) and extendg to A(A) by settingg(p) = E,(g) for all p in A(A). If P is a
subset ofA(A), we denote{g(p), p € P} by g(P). Since a CEP is defined as a limit
of expectations of stage-average payoffs, any CEP must belong to the convex compact set
of feasible payoffg(A(A)). HenceC C g(A(A)).

3.2. Individual rationality

The correlated minmax of playeiis defined by

w'= min max g (p'®p)= max min g (p'®p),
pTieA(ATY) pleA(Al) pleA(A)) pieA(AT)

and the set of individually rational payoffs is
IR={x=(")ieny eRY,x' > w' Vi e N},

wherew'’ is the lowest quantity that playercan be punished to. Note that the minimum
is taken over the seA(A~7), because the players can correlate their actions, with the help
of the mediator, in order to punish playerlt is plain that in any extended game player

i can always obtain at least a payoff f by playing the maximizing' at each stage.
Hence at equilibrium his payoff should always be at leéstSoC c IR. Recall that when

the players perfectly observe all actions play¥t, U’ = A and f' is the identity map),

the Folk Theorem (see Sorin, 1992) for CEP states¢hatg(A(A)) N IR. The last two
aspects (see Sections 3.3 and 3.4) are due to imperfect monitoring.

3.3. Undetectable deviations

This phenomenon already appears in two-player games, and the following definitions
are due to Lehrer (1989). Assume playeleviates in a way such that:

(i) itinduces the same signals for every playan N\{i}.
(ii) it givesto playeri at least as much information.

It is then impossible to detect thieviation, because no player M\{i} will be aware of

it, and player is able to continue the play as if he did not deviate. Such deviation should
not give a better payoff to him. Formally, let andb’ be two actions imM’. Think of 4’ as

the action recommended to playeand ofb’ as a possible deviation. We wribé > a’ if:
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() Ya=' € A71,Vj e N\{i}, fi(b',a™") = fi(a',a™") (b' and a' are said to be
equivaleny,

(i) Va7l e A7, Vb~ € A7E, fi(a',a™") # fi(a', b~ implies fi(b',a™") # fi(b', b))
(b' is said to bemore informativehana’).

Remark 1. Note that (ii) is equivalent to3g' :U' — M’ s.t. Ya=', @' (f'(b',a™"))
= fi(a',a™"). Knowing his recommendatio®’, the action he playe#’ and the signal
he observed, playéris able to send back the signgll(a’, a ") to the mediator, i.e. to play
as if no deviation had occurred (see Lehrer, 1992a).

Assume now that the mediator selects a joint recommendatien (aj)jEN in
A according to some probabilityy, and privately recommends each playgrto
play a’. If player i deviates and plays some actiéh, his expected payoff will be
Yoa-ica-i plaHa)g' (b, a™) = O pica-i pla,a g (b',a"))/p(a’). If moreover
b' > d', the deviation will not be detected, herateequilibrium, it should not give player
i a greater payoff. We thus put:

P= {peA(A),Vi eEN, Vb ,a' e Al stb' >d',

Z p(ai,a_i)gi(ai,a_i) > Z p(ai,a_i)gi(bi,a_i)}.
a“teA™ a“teAt
Note thatg(P) is obviously included into the set of feasible payaffixA(A)). Following
the work of Lehrer (1992a), Mertens et al. (1994) showed that for 2-player repeated games,
C=g(P)NIR.

3.4. Joint rationality

With more than two players, a new phenomenon appears: it may be the case that
everyone knows a deviation occurred, without knowing who did deviate. For example,
consider a 3-player game where:

(i) player 1 and player 2 have trivial monitoring (they always observe the same signal
after each stage i.€/* andU? are singletons).

(ii) the signal observed by player 3 does not depend on his own move and the values of the
signalling functionf3 are given by the following matrix (player 1 is the row player
andAl = {T, B}, player 2 is the column player amf = {L, R}):

L R
T | u|v
B|lv ] v

Consider a canonical communication equilim where at some stage, the device
recommends player 1 to plajy and player 2 to playL. Suppose that at this stage,
player 3 observes the signaland faithfully sends it back to the mediator. Considering
unilateral deviations only, the mediator knows that one and only one of the three following
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statements is correct: (play 1 has deviated by playing) or (player 2 has deviated by
playing R) or (player 3 has deviated by reportingy. But he can not decide which one

is true. Consequently, we show that it is necessary to punish simultaneously all players
suspected of deviation to prevent profitable deviations. Concerning CEP, this implies that
for any subset of players that can be simultaneously suspected, the equilibrium payoffs of
these players may be linked and will have to satisfy several inequalities.

Example 3.1. Consider the following gameV = {1,2,3}, Al = {T, B}, A%> = {L, R},
A3 ={W,M,E}, U = U2 = {x}, U3 = {u, v}. Payoffs are given by the following
matrices:

L R L R L R

T [(0,0,0] (0,2,0) T [(0,1,0)] (0,1,0) T [(1,0,0)] (1,0,0)

B [(2,0,0)] (1,1,0) B [(0,1,0)] (0,1,0) B [(1,0,0)] (1,0,0)
w M E

and signals for player 3 are as follows:

L R L R L R

T | u| v T |v|v T |v|v

Blv|u Blv | v Blv|vw
w M E

First note that player 3 always has payoff 0. Hence deviations of this player will
never be profitable, so we can simply forget about these deviations and always think
player 3 as playing his faithful strategy. The set of feasible paygffs(A)) is here the
convex hull of (0,2,0), (2,0,0), and (0,0, 0). If player 3 playsM, player 1's payoff
is 0 whatever he does: heneg€' = 0. Similarly w? = 0. Note that the two actions of
player 1 (respectively playe?) are not equivalent, henggP) = g(A(A)). So we get
g(P)NIR=con{(0, 2,0), (2,0,0), (0,0, 0)} where conv stands for convex hull. We claim
that (0, 0, 0) is not a CEP. The intuition is the following. Assume thais a canonical
communication device such that the faithful strategy*, o2*, %) is an equilibrium
of I'. with payoff (0,0, 0). Since (0, 0,0) is an extreme point 0g(A(A)), (T,L, W)
must be recommended to the players in most stages with high probability. Consider now
the deviationo! of player 1 consisting of playing at each stafjeand B with equal
probability, independently of what happened before, and in particular independently of
the recommendation of the mediator. Assume thdt o2*, %) is played. Then at each
stage where player 3 is recommended to plagr E, the message reported to the mediator
is v, and at each stage where player 3 is recommended top)diie law of the message
reported to the mediator, is uniform ¢m, v}. In particular, at each stage whef® L, W)
is recommended, it occurs with probabilityZLthat player 1 play®, has a payoff of 2
and the reported messageuisSinces! should not be a profitable deviation, player 1
has to be punished, and the device should recommend at (almost) every stage player 3 to
play M. But consider now the deviatiar? of player 2 consisting of playing at each stage
L and R with equal probability, independently of what happened beforex ¥, 02, o3*)
is played, the message reported to the mediator is again uniformly distributed on
at each stage wher® is recommended to player 3, and the message reported to the
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mediator isv at each other stage. We have seen that player 3 will theniglagry often,

giving a payoff of 1 for player 2. Se is a profitable deviation, an@, 0, 0) can not be

a CEP. The point here is that it is not possible to punish simultaneously players 1 and 2
at the level(0, 0). We now quantify the levels of simultaneous punishments. By playing
at each stageM + (1 — A)E, with A in [0, 1], player 3 can make sure that the expected
payoff for player 1 is(1 — 1) whereas player 2 has payoff This will imply that any
payoff x = (x1, x2, x3) in con{(0, 2,0), (2,0, 0), (0,0, 0)} which verifiesx® + x2 > 1

can be obtained as a CEP. This can be proved as follows: take an infinite sequence of
pure joint actionsus, az, ..., a;, ... giving on the average the payaff, and construct

a canonical communication devicerecommending to play, at each stage, as long

as the messages reported by player 3 do not imply that a deviation has occurred. To
avoid profitable deviations, if at some stagéhe message reported by player 3 shows
that a deviation has occurred, then at any subsequent stagie recommend player 3

to play M with probability » and E with probability 1— A. If A is chosen such that

1 - < x! andx < x2, no deviation from the faithful strategy will be profitable. This
proves that

{(xl, x2,x3) € g(A(A)),xl—i—x2 > 1} cC.

The reverse inclusion is also true: lebe a canonical communication device inducing
a CEP (x1,x2,x3). Consider as before the strategie$ (play 7 and B with equal
probability, independently of what happened) for player 1 arfd(play L and R
with equal probability, independently of what happened) for player 2. The point is
that (o1, 0%, 0%*) and (61*, 02, 0%) induce the same probiiby distribution on the
sequences of recommendations of the mediaso they inducehe same pybability
distribution on the sequences of actions played by player 3. Forradgnote byr!,
Ag, Ag the induced expected frequencies diieh player 3 respectively play®, M
and E up to stageT. At each stage, the payoff of player 1 is 1 if player 3 plays
E, and the expected payoff of player 1 given that player 3 playss at least 12.
Consequently,

1
yTl)c(Ul, o2, 03*) > E)\{ +k§.

Similarly we obtain
1

yTZ,C(crl*, a2, 03*) > EAI +)L£.

Hence

yTl)c(Ul, o, 03*) + y%c(al*, a2, 63*) > A{ + kg + Ag =1,
and the equilibrium conditio(ii) of Definition 2.2 gives/}(o0¥*, 6%, 6%) + y2(a 1*, 0%,
o3*) > 1. Consequently,

C= {(xl, xz,x?’) € g(A(A)), x4 x?> 1}.

The level of simultaneous punishment is given here by the inequaltty-
2
x<>1.
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Back to the general case, wevgithe following definition.
Definition 3.2.

e For each player, a stage-decision-rule (in short a decision) for player a pair of
mappings?’ = (o!, u') with o’ : R' — A’ andp’: R’ x Ul — M.

e We let D' be the set of stage-decision-rules for plaier

e Letd'* be the stage-decision-rule for playesuch that:

V(ai, ui) € R x Ui, oti(ai) =ai, ui(ai, ui) =ul.
This decision will be henceforth called the faithful decision of player
e Any decision ruled’ # d'* will be called a deviation of player.

The interpretation of a decision-ru# is as follows. When player is told the
recommendation’, he playse/ (r'), and if u’ is the signal he observes, he sends back
the message (', u’). D' is the set of pure stage-strategies of playar any extended
gamel,: instead of first observing his recommendation, then choosing an action, observing
a signal and sending back a message, playan equivalently choose an element/of
and play according to it. What we are doing here is to reduce each stage of the extended
game to its normal form.

If a = (a")en € A is recommended to all players and playeplays according to
d' = (o', u') € D', whereas the other plays play according ta, the joint message
received by the mediator is

(A (@) a1l (@ S (e (@) 7)) ) € U.

It will be denoted by (d', a). We will consider mixed decisions, i.e. probabilities over
the finite setD’. Assume now that € A is recommended and playechooses a decision
according to some lotter§ = (8'(d")) icpi € A(D'). We extend the previous definition
and denote by’ (8', a) the law of the joint message received by the mediator. We have

yi(8'a)= D" & (d)y'(d'.a) e A,
dieDi
and for anyu = (u¥)ren in U, the probability ofu undery (8¢, a) is the probability under
8t of the set

[(@.w)e D, vk, ff(oi(a').a™) =ub andul (@', /(o (@) ™)) =u .

For any playet, we will also denote by’ (5, a) the marginal ofy (8¢, a) on U¥,

i.e. the law of the message reported to the mediator by playake will later use
gy (@) = By (g* (@i (a'),a™)) for the expected payoff of player if player i usess’
whereas the other plays play according ta.

Two mixed decisions’ € A(D?) ands/ € A(D/) will lead to the suspicion of both
playersi and j if the mediator does not see the difference betwgdayeri deviating
with 8/} and{player; deviating withs/}, i.e. if the law of the joint message sent back by
all players is the same in both cas@s(s’, a) = ¥/ (87, a), Ya. A consequence of this is
that the marginals of/ (8', a) andy/ (87, a) coincide for eacla:
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— no playerk # i, j can see the difference betwegslayeri deviating by playings’}
and{playerj deviating by playing’}: ¥ (8!, a) = ¢k (87, a),

— while deviating tos’, playeri reports the same signals as jf was deviating:
Y S a) =y (S, a),

— while deviating toé/, player j reports the same signals asiifwas deviating:
Y7, a) =y, a).

Definition 3.3. Let J C N be a subset of players. The set of similar decisions of players
inJis

SDJ) = {a:(a")iel e[[a(D). Viel. Vjel y'(s'.a)=y/(8,a) VaeA}.

ieJ

If 8 is in SD(J) and some playerin J plays according té’, the reported signals give
no information about to the ediator about the identity 6f At a canonical communication
equilibrium, the mediator will suspect each player/afo have deviated. Thus, there must
exist some punishing strategy giving a low payoff simultaneously to every player
J if i is deviating This is where Blackwell’s approachability strategy naturally appears.
On the other hand, if two decisions are not similar there is an action profile that induce
different reported signals for some pair of players. By choosing full support distributions
for recommended actions, the mediator can differentiate any two decisions which are not
similar.

We always havedi*);c; € SD(J). SinceSD(J) is defined via finitely many linear
equalities, it is a polytope. Henc8D(J) is a non empty compact convex subset of
Hie] A(D").

Definition 3.4. The set of jointly rational payoffs is
JR={x eR", Vg € A(N), x-q 21(¢)}.
where for anyy € A(N),

I(g)= max min igl (a).
(6]) BeSD(Supp;)aeAl_eZNq 85 @

For eachy € A(N), the minmax theorem (see, e.g., Raghavan, 1994) gives:

@)= min — max Y p@)y q'gla).

A(A
PEA( )SeSD(SUPm)aeA N

Our main result is the following.

Theorem 3.5. For any repeated game with imperfect monitoring, the set of communication
equilibrium payoffs is the set of feasible pdgdhat are robust taindetectable deviations
and jointly rational

C=g(P)NJR

We now illustrate the definition afRwith several comments and examples.
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3.4.1. Joint rationality implies individual rationality
Let g be the Dirac measure on playeit is plain thatSD({i}) = A(D'): any deviation
of playeri makes each player ifi} a suspect! Then:

(@)= min max a)g.(a
@) min max Zp( )ghi (@),

= min max Zp(a)g a™),

PEA(A) i 1 Al Al

= min max Ng' (b, a™"),
peA(A) Z ; bieAi _IEZA ~ ( . )

S

Hence(x - g > 1(q)) <= (x' > w'). Jointly rational payoffs are individually rational.

3.4.2. The two-player case

A specificity of the 2-player case is that both players can be simultaneously punished
to their minmax level. Assume that = {1, 2}. Fix p! in A(A1) and 52 in A(A?) such
that p* (respectivelyp?) realizes the minimum im® = min 1,41y MaX,zc (42) 82 (p* ®
p?) (respectivelyw? = min 2. 542y MaX,1c 4 (a1) 81 (p* ® p?). Consider the product
distribution 1 ® p2 in A(A). Then for anyy = (¢1, g% € A(N),

o< on max P@)(q'g;1(@) +4°g5 (@),
a pEA(A)(Slﬁz)EA(Dl)xA(DZ)Z q 85 q §2 )

=1/ 1\ =2( 2 1.1 1 2 2 2 1 2
(81 Sz)eAn(]glfo(DZ)( 1a22)e,4p (a )p (a )(q gal(a »a )+C] 852(61 ,a ))

But for all (81, §2),

> pMah)p?(a®) (g g5 (at a®) + %85 (at. a?))
Y ) ) S

al 2 a
<qlwl+q w?,

Hence we obtairi(¢) < ¢'w® + ¢?w?. Since in addition, we proved that individual
rationality should always be respected, we deduce IRat {(x1, x?) € R?, x1 > wl,
x? > w?} = IR. For two-player games, we recognize the result from Mertens et al. (1994):
C=g(P)NIR.

3.4.3. The perfect observation case

If there are at least two players thall deviations can be detectelt & A(A)). For at
least three players, as soon as a deviation is detected, the identity of the deviator is clear
since a strict majority of players will report the actions actually played to the mediator.
Formally, for each/ c N, such thatJ| > 2, SDXJ) = {(d"*);es}. ConsequenthJR= IR
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Since we havedR= IR also for two players, for any number of players we get the Folk
Theorem:C = g(A(A)) NIR.

3.4.4. The trivial observation case

No deviation is then detectabl®i € N Va',b' € A’, we haveb’ > 4!, and for all
J C N, all decisions from players id are similar:SD(J) = [[;.; A(DY). Consequently,
P is the set of correlated equilibrium distributions of the one-shot game:

P= {peA(A), VieN, Va',b' € A,
Z p(ai,afi)gi(ai,afi) > Z p(ai,ai)gi(bi,ai)}.
a~teA™ a~teA™t

Moreover, for every; € A(N) with Suppy = J,

l@)= min  max > pa)y q'gs),

PEA(A) §€[;c; ADY)

acA iel
— mi i L a e (b, a ).
p;nAlpA)iEZJq aerAf’m)"(a—erA—fp(a a=)g'(b',a™)
Soforpin P,
gp)-g=Y qa'gdm=>q"> > pla.a)g (a.a7),
ieJ ieJ gicAig—icA—i
— i i =i\ i
=2 2 max ) pla ) 0haT) 2 0.
ieJ gicAl a—ieA—i

and we obtainC = g(P). In case of trivial observation, the set of communication
equilibrium payoffs is the set of correlated equilibrium payoffs of the one-shot game.

3.4.5. Backto Example 3.1
Let us see how the characterization solN@s example. The interesting case is when 1
and 2 are the suspected players. By definition,

SD({L. 2}) = |8 = (61, 6%) € A(DY) x A(D?), Yae A, y*(s',a) = y2(% a))}.

Since player 1 has trivial observation, he has nothing to report to the deviator and
therefore a decision-rule is well defined by specifying the action funetfoanly. Since
player 1 has two actiong)! contains four elements which we denote as follow:
(faithful decision),d” (always playT, whatever the recommendation)? (always
play B, whatever the recommendation), add" (play 7 if B is recommended and
vice-versa). A mixed decision for player 1 is an elementAgiD?!), i.e. a probability
distribution on{d™*, d'", 48 41<}. Notice that several mixed decisions of player 1
may be “equivalent”, in the sense that feach recommendation, they induce the same
probability distributions on plays. For example, the mixed decigibh/2 + d18/2 is
equivalentta/'*/2+ 4% /2: whatever the recommendation, player 1 plays in both cBses
and B with equal probability. In fact, given a mixed decision of player 1, only two numbers
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are relevant: the probability of playinff when recommende@ and the probability of
playing T when recommendefi. This simply amounts to say that in an extensive game,
several mixed strategies may be equivalent with the same behavior strategy. With similar
notations we puD? = {d%*, d?L, d2R 4%+ }.

Takes = (81, 82) € SD({1, 2}). The probaility unders? that player 1 playg” when he
is recommended is §1(d1*) + 81(d7), and we denote this quantity kye [0, 1]. Since
players 1 and 2 have trivial observation, we just have to consider the marginaldf a)
andy2(82, a) on the set of signals of player 3. For amjn A, ¥13(81, a) = v23(82, a).

e Consider the case= (T, L, W). Undery1-3(81, (T, L, W)), u occurs with probabil-
ity A andv occurs with probability - 1. Sincey23(82, (T, L, W)) = y13(81, (T, L,
W)), we obtain thathie probablity under §2 of playing L whenL is recommended is
alsoxr. S08%(d?*) + 82(d?L) = A.

e Consider nowa = (T, R, W). ¥23(82, (T, R, W)) = v13(8L, (T, R, W)), which is
the probability distributioriv + (1 — 1)u. WhenR is recommended? playsR with
probabilityx, i.e. §2(d%*) + 82(d2R) = .

e For a = (B,L, W), we obtain thats® plays B with probability A when B is
recommended. S61(d%*) + §1(d18) = .

o Y131 (B, R, W) = du+ (1—1)v =232 (T, R, W)), soa = (B, R, W) gives
no other condition.

e The other cases far give no condition, since player 3's signal will always e

We have obtaineds®(d) 4 §1(d'7) = §1(d¥) + 81(dB) = 82(d?®) + 6%(d?!) =
82(d%*) + 82(d?®), and these conditions are equivalent t8%,52) € SDX{1, 2}). For
example,(d'” /2 + dB/2,d?L /2 + d?R /2) belongs toSD({1, 2}). Notice that there are
two pure elements iBD({1, 2}): (d¥*, d%*) and(d1<, d%).

Let now ¢ be in A(N) with Supp; = {1,2}. For eacha in A, Y.y qigé, (a) =
q'g:(a)+q°g5(a). Using again the notation= 5" (4*) +8*(@*"), we have for example

D 'l (T L. W) =g (On+2(1 = 1)) + ¢?(0r + 21— 1)) =2(1— 1).
ieN

We represent the mappirig — ",y ¢'¢}; (a)) by the following matrices.

L R L R
T 2(1—2) g (1 —1) + 2rg° T | ¢ ] g%
B | ¢*(1—1) + 20q*t A B | q°|q°
w M
L R
T |q"|q"
Blq'|q"

E

Since)"; .y q'¢}; (a) only depends og, a andx, we denote this quantity byg, 2. ),
and we havé(g) = max,cfo,11 MiNyea l(g, 1, a). l(g) is the value of the following matrix-
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game, with the row player as the maximizer:

(0% 0 b2 e

- 9= 2 0 g ¢
The top row of this matrix corresponds to the case 1, i.e. to the faithful decision
(d¥*, d%*), whereas choosing the bottom row of the above matrix corresponds to the case
1 =0, i.e. to the decisionid1<, d2<) (play the action not recommended). For eacin
[0, 1], MiNyeal(g, A, a) = min{2(1 — 1), 1, g1, g%} < min{gl, ¢2}. Considering. = 1/2
gives that/(¢) = min{gL, ¢%}. Thus the condition - ¢ > I(g) for eachg in A(N) with
Suppy = {1, 2} becomesVr € [0, 1], x1r + x2(1 —r) > min{z, 1 — 1} which is equivalent
tox!>0,x2>0andxl+x2>1.
If ¢ in A(N) is such thaSupp; = {1, 3}, we have:
0<Il(g)< _max ming'g(a).
8€[l;en A(DT) acA

Taking for example: = (T, L, M) givesi(g) = 0. Similarly,l(¢) = 0 if Supp; = {2, 3}.
Finally, since (81, 82, 8%) € SD(N) implies (81, 5%) € SD({1, 2}), we have if Supp =
{1,2,3}:

0<l@)<  max  ming'gsi(a) +q°g5(a),

(81,62)eSD({1,2)) acA

so in this casel(g) < min{gl, 42} and if x is such that! > 0, x2 > 0 andx® + x2 > 1,
we havex - g > I(g). We thus obtain

JR= {(xl,xz, x3), ¥t >0, x2 >0, x3 >0, x4 x2 > 1}
and
C = g(A(A)) N {(xl,xz, x3), xt 4 x? > 1}
=conv{(0,2,0), (0,1,0),(1,0,0), (2,0,0)}.

3.4.6. Pure and mixed decisions
ForJ c N, SIXJ) is a polytope, but it might not be the convex hull of pure elements of
SD(J). Moreover, in the expression:
@)= min  max > pa)) q'gj@),

PeA(A) seSD(Suppy) S =

one can not in general replaB&(Suppy) by the set of pure elements 8D Suppy). The
following example illustrates these facts.

Example3.6. Consider, as in Example 3.1, three players with trivial observation for players
1 and 2 and the following observation for player 3:

L C R L C R L C R

T |u|v|u T |u|u|v T |w|w|w

M |v|u|v M|v|u|v M|lw|lw|w

Blu|v|u Blu|v|u Blw|w]|w
w MW ME
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w XN
SEE NN N
ISEESRES R

SIS

We assume that payoff vectors can be deduced from signals of player 3:sigivek
(0,0, 0), signalv gives(1, 1, 0), signalw gives(0, 1, 0) and signak gives(1, 0, 0).

The point here is that if player 1 plags + 3 B, or if player 2 plays;C + 3 R, itinduces
the law of signalsiu + 3v as soon as player 3 play® or MW. We computeSD({1, 2}).
Again we observe that, since players 1 and 2 have trivial observation, we do not have to
specify the signals they report. Take= (81, 5%) € A(DY) x A(D?) such thatva € A,
1//1’3(51, a) — 1//2’3(52, a)_

e Taking a = (T, L, W) gives the equality betweethe probalblities unders! that
oX(T) = M and undes? thate®(L) = C. We denote this probability by/2.

e a=(T,L, MW) givesPu(a*(T) = M) = Pg(a?(L) = R).

e Trying all other values of, we obtain thah € [0, 1].

We gets = (1 — 1) (d™, d?*) + A(d*, d?), whered® plays with probability 12 always
M and with probability 32 alwaysB, andd? plays with probability ¥2 alwaysC and
with probability 1/2 alwaysR. Such a$ cannot be obtained as a convex combination of
pure elements. The only pure decision paiSin({1, 2}) is (d1*, d%*).

Player 3 can punish player 1 by playing E and player 2 by playingt, hence
w! = w? =0. If Supp = {1, 2}, [(g) = Ma%.c[0,1] MiNea (g, A, a), With

_ 1.1 2.2
g, 2 a)=q78 ;) ey 1 (@ 478, 4245 02(@D-

Fixing A, (a — Il(g, A, a)) is given by the following matrices, where= A/2 andt =
1-21/2.

L C R L C R L C R
T |s |t |s T |s | s |t T | g% | q% | q°
M|t ]|s |t M|t |s |t M | g% q° | q*
B|s |t ]|s B |s |t ]| s Blw|w|w
w MW ME
L C R
T [ q' g |q"
Mg [q" g
B g |q | 4q°
E

S0 Vi, Minueal(g, 1, a) = min{3. 4", g%} andi(g) = ming*, ¢%. If (x*,x%,0) € C,
xIg + x%¢? > min{ql, ¢?} for all ¢ € A({1, 2}), and this is equivalent to* > 0, x2 >0
andx! + x2 > 1. We thus have here:

C ={(x%x% x%) e g(A(A)), x> + x2 > 1} = con((0, 1, 0), (1, 0,0), (1, 1, 0)}.
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3.4.7. Structure of the set of communication equilibrium payoffs

It is plain thatC is a convex compact subset Bf¥. P is indeed a polytope and so
is g(P). For two-player games; is thus also a polytope. But in the general case (at
least three players), the definition &R involves infinitely many affine inequalities. The
following example shows that need not be a polytope.

Example 3.7. Consider a three-player gam¥, = {1, 2, 3} where each player has two
actions. Player 3 has payoff 0 and players 1 and 2 have trivial observation. The signal
for player 3 is given by the following matrices.

L R L R

T | u|v T | ul|v
Blv | v Blv | v

w E

The payoffs are the following.

L R L R
T (0,000,110 T 1100|100
B | (0,10 | (1,10 B (0,10 | (1,10

w E

First note that players 2 and 3 can punish player 1 by plagiapdW. Hencew! = 0.
Similarly, w? = 0. SinceP = A(A), g(P) NIR= g(A(A)). We now comput&D({1, 2}).
Let§ = (81, 52) be such that for eachin A, we havey-3(81, a) = v23(82, a).

e Consider the case= (B, L, W). ¥23(82, (B, L, W)) is the Dirac mass on and thus
so isyb3(8t, (B, L, W)). Hences! assigns probability one to the elements such that
a*(B) = B.

e Considering now: = (T, R, W) gives thats? assigns probability one to the elements
such thaw?(R) = R.

e Fora = (T,L,W), we obtain the equality between the probability undérthat
oX(T) = B and the probuility unders? thata?(L) = R.

e The other cases far give no condition, since player 3's signal will always he

Thus we obtairSQ({l, 2D)={Nd*+(1—- ad, x € [0, 1]}, whered* = (d%*, d%*) is the
faithful decision andl = (42, d2F) whered'® always playsB andd?® always playsR.
Letg = (¢%, g% be in A({1,2}). Theni(q) = Max,cjo.1; MiNuea L(¢, A, a), with

1.1 2.1
Hg: 2 ) =478} o 1 sy D+ 98 o 132 @

= ql()»gl(a) +(1- k)gl(B, ail)) + qz()»gz(a) +(1- A)gZ(R, (fz)).
(a+—l(q, 1, a)) is given by following the matrices.

L R L R
T [ A=1g°] A1—1Ngt+47 T [q'x]q"
B q° 1 B| g% |1

w E
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Hencel(q) = max.cjo.1; Min{g*x, (1 — 1)¢?} = ¢*¢>. We then obtain:
JR={(x1x%x%) eR3, xlr +x%A -1 >1(1—1) Vvt €[0,1]}.
A simple computation shows thaR= {(x1, x2,x%) e R?, vx1++/x2> 1}. Thus,

C ={(x" 42 5%) e g(AA), Val+Vx?>1},

which is not a polytope. It is here much more complicated to construct simultaneous
punishments of players 1 and 2. We now giweratuition for the construction of a canonical
communication device yielding the CER1/4,1/4, 0).

First consider an infinite playas,ao,...,a;,...) composed of(T,L, W) with a
frequency of 34 and of(B, R, W) with a frequency of 14. As long as the signal reported
by player 3 does not prove that a deviation has occurregcommends to play, at
every stager. This gives a payoff of(1/4, 1/4,0) if no player deviates. As soon as
player 3 reports the signal at some stage wher@’, L, W) was recommended, it is
clear that a deviation has occurred. Since player 3 has payoff 0, players 1 and 2 only
have to be suspected. To avoid profitable deviationsi]l then play a punishing strategy
giving simultaneously players 1 and 2 no more thgd.IThe mediator approaches the
set of payoffs{(x1, x2, x3), x1 < 1/4, x2 < 1/4} in the game with vector payoffs given
by player 1 and player 2's payoffs. Thisraegy roughly unfolds as follows. At each
stage recommends to play the acti@@, L, W) with some probabilityp and the action
(T, L, E) with probability 1— p. So at every stage player 1 is asked to pfayand
player 2 is asked to play and the deviating player can not condition his play on the
action recommended to player 3, having no information about it. The communication
device (or the mediatpcomputes then after each stage the frequeniey[0, 1] of stages
where the signal was reported by player 3. If player 1 is deviating, his average payoff
is approximately1 — p)A. If player 2 is deviating, his payoff is approximateiyl — 1).
As the number of stages goes to infinity, the mediator adapts this strategy so as o have
close tox. Is is thus possible to control the vector payoff, x2), x! being the payoff of
player 1 in case he is deviating and similarly being the payoff of player 2 in case he
is deviating, in order to getc®, x2) € {((1 — M)A, A(1 — 1)), » € [0,1]}. Sox! < 1/4 and
x? < 1/4, and no deviation is profitable.

4. An auxiliary 2-player game with incomplete infor mation and the proof

We first present the well-known model of 2-player repeated games with incomplete
information, where one of the players is fully informed about the state of nature. Such
games are called 2-player repeated games with lack of information on one side, and were
introduced by Aumann and Maschler in the sixties (their work, also introducing games with
lack of information on both sides, can be found in Aumann and Maschler, 1995 book). In
Section 4.2, we show ho@ can be seen as the set of some equilibrium payoffs of such a
game. Finally, we describe this s&id derive our characterization 6ffrom it.
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4.1. Two-player repeated games with lack of information on one side

In these games, we have two players: plaiés called the informed player whereas
playerll is called the uninformed player. There is a set of stateand an initial probability
go on K . Initially, nature chooses some stataccording tago. & is then fixed and told to
playerI, not to playerll. Then, at each stage=1, 2, ..., both players simultaneously
select an action in their own set of actions and observe some signal before starting stage
t + 1. Stage payoffs are not necessarily observed.

The sets of stage actions and of signals for playaray depend on the selected state
k, and will respectively be denoted b§* and VX. E (respectivelyW) will stand for
playerll’s set of actions (respectively signals). Payoffs functions in gtatee G* : DX x
E —> Rfor playerl, andH* : D¥ x E —s R for playerll . Similarly, signalling functions
in statek will be denoted byy* : D¥ x E — V* for player! and byy*: D¥ x E — W
for playerll. All sets of states, actions and signals are assumed to be non empty and
finite. We also assume thag has full support. Strategies and equilibria are defined as in
Section 2. A behavior strategy for playgmwill be denoted bys = (6%)rcx, where for
eachk, o¥ is the strategy used if the statekisWe denote bys (respectively?) the set of
behavior strategies for playér(respectivelyl). A joint behavior strategyo, r) induces,
for any statek, a probabilityP% _ over the setD¥ x E x Vk x W)™ of infinite sequences
of actions and signals played if the staté end(c%, 1) is playedgg and(c, ) also induce
a probabilityP,, . over the set of play§(k, k), k € K, h € (D* x E x VK x W)*®}. The
expected payoffs are then, for &ll>> 1:

T T
1 1
Lk Z I,k Z
VT (G, 7,') = E]P)ér (; o Gk(dt, e[)) ) J/T (01 T) = EPZCT,T (T - Hk(dl‘v e[)) )

T
1 k k. 1Lk
yi(o, ) =Ep,, (7 > GMdi, e,)> =Y 46y (0. 7),
=1 keK
1 T
I k k. 11k
vt (0,7) =Ep,, (7 2; H*(4,, e:)) = kZquyT (0, 7).
= S

Definition 4.1. A (uniform) equilibrium of the repeated game with lack of information on
one side is a joint stratedy, T) such that:

(i) for each staté, (y;’k(a, 7))7>1 converges ag’ goes to infinity to some (o, 1),

and(y}' * (o, 7))7>1 converges ag goes to infinity to some ' (o, 1),
(ii) forall ¢ > 0, there existdy s.t. (o, 7) is ane-Nash equilibriain finitely repeated games
with at leastTy stages, that i87T > Tp:

VTI(U', 7) < y{ (0,7)+¢, Vo' eS8,
vi (@, t)<yp (o, 1) +e, Vi'eT.

(%o, D)rek, v" (0, 7)) e RK x R is then called an equilibrium payoff of the repeated
game.
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As usual in games with incomplete information, a strategy for the informed player is
an e-best response if and only if it is so in each state which has positive probability. It is
thus equivalent to replace in (ii) the condition for playevy:

Ve >0, 3To, VT > To, Vk€ K,y (', 1) <y' (0, 1)+¢, Vo' €S.
4.2. An auxiliary game with lack of information on one side

We associate here to the original repeated gahaefined in Section 2, an auxiliary
gamerinc with lack of information on one side.

The informed player (playef) is called the cheater, the uninformed player (playgr
represents by the mediator. The set of sta&feis defined as the original set of playe¥s
and the initial probabilityyo as the uniform probability ok . The set of actions for the
cheater in state will be the setD* of decisions of playek defined in Section 3.4, whereas
the setE of actions for the mediator will be the original set of joint actioghsThe analogy
between the original gamE and the auxiliary gaméi,c is the following. The selected
state represents the deviating player in tnginal game. At eaclstage, the mediator
selects a joint action representing his recommendatian,iwhereas the cheater selects
some decisiow* if the state isk representing the deviation of playein I". Payoffs for
the cheater in stateare given by payoffs for playérin I': GX(d*, a) = g (a* (a¥),a")
for any statek, d* = (af, u¥) € D* anda € A. The mediator has payofi*(d*, a) =0
for any k, d* anda. Signals are similarly defined as follows. For the cheater in gtate
it consists of the recommendation of the mediator and the signal of playerI":
ok (d*, a) = (d*, f¥ak(ab), a=*)) for any statek, d € D¥ anda € A, and thus the set of
signalsV* is A¥ x U*. For the mediator, the signal consists of the messages sent back by
all players:W = U, andy* (d*, a) = ((f/ (@k(a¥), a™%)) jux, 1k (@*, ¥k (@*), a=*))).
Notice that the notation* (¢, a) is the same as in Section 3.4.

With respect to general repeated games with lack of information on onelSiddas
specific features that are exploited in the sequel. Notice that pldyas a special strategy:
we defined** as the strategy that plays in each statbe faithful decisioni**, at every
stage regardless of what happened before. Notice also that the set of behavior strategies
for playerll is 7 = {t = (1;),;>1, with for eacht, 7;: (A x U)—1 — A(A)}, and we
identify this set with the set of canonical communication devices defined in Section 2. The
following result is the main interest of our auxiliary game.

Proposition 4.2. (1) Letc be a canonical communication device. Then, the faithful strategy
o* is an equilibrium off, if and only if (d**, ¢) is an equilibrium ofl .
(2) C ={x eRY, 3c e T with (d**, ¢) an equilibrium oflnc with payoff(x, 0)}.

Proof. Letc be in7. We first consider the two following situations:

(a) I, is played and every playemuses his faithful strategy’*.

(b) Iinc is played, and playef usesd** whereas playell usesc.

It is just a matter of notations to see that (a) and (b) induce the same probability
distributions over streams of payoffs (for all playersi/ipn and for the vector payoff of
player! in Inc). Hence, for allT’, (y})c(a*))ieN = (y;”(d**, ¢))ien. So condition (i) of
Definition 2.2 is equivalent to that of Definition 4.1. And (2) here will then follow from (1).
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Considering unilateral deviations, we can first restrict ourselves to pure strategies. Fix
i in N.In Ine, a pure strategy for player in statei is an element’ = (cr,i),>1 with
for eacht, o/ : (D' x Vi)'~1 — D' giving the action played at stagédy player! if the
state isi, depending on the firgt — 1) actions he played and the firgt— 1) signals he
received. While using a fixed pure strategy, plaje&an deduce his past actions from his
past signals, so one can equivalently think of pure strategies as elements; ),>1 with
for eacht, o/ : (V)'~t — D. We now consider a pure strategy for playen I'.. It is
defined as an elemeat = ((o/, /), >1) where for each:

-0/ 1(RIx AT x U' x M)~ x RT — AT,
—E(R X AT x U x M) x RIx AT x Ul — M,

Similarly, we can restrict ourselves to elements= (o/,&/),>1 with for eacht,
ol 1(R" x U "1x Rl — Al and&/ : (R x U')'"1 x R x U' — M'. Instead of
considering several steps (first choose an action, then a message), we can also switch to
the normal form for each stage This is equivalent with associating to each element of
(R' x U')'~1 a mapping fromR’ to A’ and a mapping fronR’ x U’ to M’, that is an
element ofD’. Since by definitionR’ = A’, andV’ = A’ x U, we obtain a unique set of
pure reduced strategies for playein statei in Inc and for playet in I, which is the set
of o' = (0/),>1 with for eacht, o/ : (A" x U')'~1 — D'. We fix sucho', and consider
again two situations:

(a) I'. is played, all players excepuse their faithful strategy whereas playefeviates
fromo'.

(b) I'nc is played, the state is player! playse’ whereas playell playsc.

Again, (a) and (b) induce the e probability distributionsver streams of payoffs (for
playeri in I'. and for player in Iinc), so forallT, yi .((67%) . 0') = yTI’i(cr, ¢) where
o is any strategy of player that playss’ in statei. So conditions (i) of Definitions 2.2
and 4.1 are equivalent, and Proposition 4.2 is proved.

4.3. Atheorem for some games with lack of information on one side

We now concentrate on repeated games vétklof information on one side. We start
with a repeated gamB,c as defined in Section 4.T, is described by a set of stat&s
an initial probabilitygo with full support onk, sets of actiongD*),cx and E, sets of
signals(V¥)rcx andW, and for each statk payoffs functionsG* and H* and signalling
functionsgf andy*.

We make the following important assumptions:

— playerll has payoff 0, hencéf*(d¥,¢) = 0 Vd*¥ € D* ande € E. So the repeated
game is with known own payoffs. Moreover, there is no need to check optimality for
playerll;

— there exist pure actions of playerd** e D* for eachk, that induce the same signals
for playerll: Vk, k' € K, y*(d**, e) = y* (d*'*, e) for eache in E. We denote by/**
the strategy of playef that plays at each stage, whatever happéfisif the state isk;
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and we want to characterize the set
C= {x e RX, 31 € T with (¢**, 7) an equilibrium of e with payoff (x, 0)}.

We are thus interested in strategiesuch that(d**, r) is an equilibrium. Notice that
since for each stat@;** plays the same action at each stage whatever happens, we do not
have to care about playéis observations.

As in Aumann and Maschler (1995), we introduce the set of non-revealing strate-
gies for player!. If the state isk and at some stage he plays according to the lot-
tery ¥ € A(D*) whereas playeill plays somee in E, the law of the signal re-
ceived by playerl is Y. pr 85(d) ¢k (d*, e) € A(W). Denote bys*y* the vector
(X gkepk K@)k (@, e))ecr and defineyq € A(K):

NR(@) = 5= (6,5 € [T A(DY). ViK' € Suppy, *y* =s¥y*').
keK
Suppose that € NR(¢) and that the selected state iSSopp; . If player I plays according
to 8% in statek, playerll will receive no further information about the selected statis.
then called a non-revealing strategy;aBecause of the existencedf = (d**);cx which
induces state independent sign®&(q) is non-empty and it is a convex compact subset
of [Tex A(DY). The non-revealing payoff function is now defined as:

Vg € A(K), I(g)= max min kG (s*
g€ AKK), Iq) = SeNR(q)peA(E)Zq

kGk(s
= min max G
peA(E)SeNR(q) Z 1

whereG* (8%, p) is the expected payoff of playérif the probabilitiess* andp are played.
Using Blackwell's (1956) approachabilitydkilberg (1975) proved the following result.

Let I'o(go) be the zero-sum game with incomplete information that is describdthas

except that playell wants to minimize player’s payoff. Let cav be the least concave

function onA(K) which is p0|ntW|se greater thanLeta € RX be such thqu € A(K),

a-q >1(¢g) anda - go = cavi(go). Such a vector always exists since £é concave and

continuous.

Theorem 4.3 (Kohlberg, 1975)The value offp(go) exists and is:avf(qo). Player Il has
an optimal strategy that approaches the §gte RX, Vk, gX < o*}. That is, there exists
some strategy of player Il such that

Ve >0,3To, VT > To, Vo €S, Vke K, yt*(0,7) <x*+e.
In general, call approachable a vectdn RX for which there exists some strategyf
playerll such that:
Ve >0,3To, VT > To, Vo €S, Vke K, yi*(0,7) <o +e.

It is plain that any vectox which is coordinate-wise greater thanis also approachable.
We will thus use Kohlberg'’s theorem in the following form.
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Lemma 4.4. For eachx = (x*)gex in RX:
x is approachable ifandonlyifx-¢g >1(q) Vg€ A(K).

In other words, playetl can force player’s long term average expected payoff to
be not greater thax’, simultaneously for each. This type of strategy will be used as a
punishing strategy of playélr against player .

Remark. Note that in such repeated games with lack of information on one side and state
dependent signals, playkrmay receive signals which are inconsistent with some states. In
such a case, he should only care about payoffs in states which are still possible. This is true
in particular when he punishes his opponeatBiackwell’s approachability strategy. Back

to the analogy with our original game, the set of still possible states exactly represents the
set of suspected players i.e. those players who have a deviation consistent with the signals
observed by the mediator.

We now characteriz€'.

Theorem 4.5. C = {x e RX, 3p € A(E) s.t.
() Vg € A(K), x-q >1(q),
(it) Vk € K, xk=Gk(ak*, p),
(iii) Yk € K Vd* € DF s.t.d*y* = ak*yk, G¥(a**, p) = G*(a*, p)}.

Proof. We proceed by double inclusion.

(1) Let x be in C, and consider a strategy of player Il such that(d**, ) is an
equilibrium of I with payoff (x, 0). From the Definition 4.1 of equilibrium, playdr
should not get more tharf in statek, that is,t is such that

Ve >0, 3Ty, VT > Tp, Yo € S, Vk e K, yTI’k(a,r) gxk+£.

From Lemma 4.4, we get- ¢ > (q) Vg € A(K).

For any statek in K, definevVT > 1, pr(k) as the expectation of the average action
played by playetl up to stagel if player I usesd** and playeill usesr, given that the
state isk: pr (k) = (pr(k)(e))ecE € A(E), wWith Ve € E,

I{t < T7 et :e}|

T .
Sinced** always plays the same action and under this action the signals for plager
independent on the state, we have thatk) actually does not depend d@n We thus set

pr = pr(k) € A(E), and consider a cluster poiptof the bounded sequencgr)r>1.
By definition, for each statg,

P =Eg (
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Hence (ii) is proved.

Assume now for the sake of contradiction that (iii) is not satisfied. There exists some
statek andd* in D* with dfy* = a¥*y* and G*(d**, p) < G*(d*, p). Consider the
deviationo of player consisting of playing at each stagé if the state isk, andd*'*
if the state ist’ # k. This deviation can not be detected by plajflehence

t<T,e,=e
EMT(I{ (=ell

T ) = pr(e)

for eache, and y.* (o, v) = G*(d*, pr) for all T. Point (i) of Definition 4.1 is then
contradicted.

(2) Letx in RX andp in A(E) be such that (i), (i), and (iii) are satisfied. We construct
7 such thatd**, t) is an equilibrium ofTj,c with payoff (x, 0). Notice that since playek
is supposed to play at each statjé if the state isk, knowing his actiore playerll knows
which signal he should receive. Let for each stdgep” = (1 — 1/v/T)p + (1//T)p,
wherep is the uniform distribution ork. The strategy is as follows:

e play pl at stage 1. If at each stage< T, the signal received wag* (d**, ¢,) for
somek, play according top” at stagel'. Here,e, € E denotes the action played by
playerll at stage and recall that/* (d**, e;) is independent of.

e if at some stager the signal received is different frony*(d**, e,), play for
the remaining of the game according to a stratéggiven by Lemma 4.4 (this
strategy exists because of (i)). In other words, punish pldyéor ever, using the
approachability strategy for zero-sum games with signals.

We finally show that(d**, t) is an equilibrium with payoff(x, 0). Since (pT)T>1
converges to, it is clear that(d**, t) yields the payofft = G¥(d**, p) in each staté.
It remains to prove that playdrplays a best response.

Fix ¢ > 0, and letM be an upper bound for all absolute values of payoffs. Using
Lemma 4.4, leT be such thatyT > T, Vo € S, Vk € K, y-¥ (0, 7) <x* + ¢ andT >
(M /¢)?. Define nowTy such thatlp > T /¢ and for allT > Ty, T exp(—e~/T/|E|) < «.
Fix T > Tp, ando a strategy for playef. We consider th@ -stages game and prove that:
Vk € K, yi* (o, v) <xF +e(1+ 4M).

Fix k € K, and consider the probabili§}, . induced by andr whent is the selected
state. We define the random varialdle {0, ..., T'} as the number of stagen {1, ..., T}
where playetl is not punishing playef, and playerl is deviating in a way that could be
detected by playell while not being detected (i.e. his actidnsatisfiesd, ' # d**y¥,
andy* (d;, e;) = y* (@™, e)).

Note that if at some stage player Il plays according top’ and player/ deviates
by playing some actiod; such thatd;v* # d**y*, the probability that playet will
detect playerl’s deviation (i.e. plays some, such thaty*(d;, e;) # v*(d**, e,)) is at
least ¥(|E|v/7) > 1/(IE|VT). ConsequenthPX (Z=z) < (1—1/|EIVT)-.

We condition playet’'s payoff according to the values of

T T
1
ZMGCRIED 0P§,,<z = )Es, (; ; 1 G (dr,e) | 2 = z).
7= =
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We compute an appropriate upper bound ;fél"(cr, 7). The point is that low values of
z do not give too important payoffs for playér and high values of occur with small
probability.

Casel. Letz be such that < eT. .
Knowing z, we cannot give a better bound thahon player/’s expected payoff at the
following stages:

— when player deviates whereas playkris not punishing him (at most + 1) stages),

— atthe las(T — 1) stages, in case play#ris punishing player, but the punishment
is not long enough,

— atthe firstT stages.

So we have at mostI2+ z stages where we only know that playés payoff is at most
M. These stages will have a small influence on the average payoff:

T
1
EIP’{CM <7 ;Gk(du er) ‘ Z= Z),

sincez < eT andT < eTo < eT.

We have at leasT’ — (2T + z) other stages. At each of these stages, either pliayer
is punishing playet, or playerll is not. If playerll is punishing played at some stage
t <T — T, then the punishment is long enough so that the average expected payoff of
player! over the stages when he is punished is at mbst ¢. If playerll is not punishing
playerI, player! plays at stage > T > (M /¢)? some actionl, such thaw,y* = dk*y*,
whereas playell playsp’. Hence his expected payoff is:

1 1 .
Gk(dh pt):<l_ >Gk(dl‘v P)“F—Gk(dh P)

Vi Vi

We thus obtain

T
1 1 _ _ B
EPZ‘,,, (?;Gk(duet) ‘ Z:Z) < ?((ZT +z)M-|- (T_ZT—Z)(xk—i—g)),

<xk +£(1+3A7I),

sinceT < eT andz <eT.
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Case 2. We now consider such that > ¢T. Then,

T
1 1 \?
P (Z=7E = Gk(d,e)‘z g(l— >M,
" o T; o |E|VT

and for all such;, we have

(7)< e
1— <e IENT g T8,
|E|NT
So:
1 T
S P (Z=2Ep (7 > Grnen |z =z) <TMe T <eM.
z>Te =1

Summing up, we obtain:

TCRIRS ( YoP (Z=0)(x +e(1+ 31\7))) +eM
7<Te

<xfte(l+4M). O
4.4. Back to the characterization

Using Proposition 4.2 and Theorem 4.5, we now know that:
C={xeR¥ IpeA(E) st
() Vg € A(K), x-q >1(9),
(i) Vk € K, x* = GF(d**, p),
(iii) Vk € K Vd* € DX s.t.aky* = d**y*, GF(d*, p) > G*(a*, p)}.
The following proposition exjcits the direct links between conditions (i), (ii) and (iii)

above from the incomplete information game and thegg®t) N J R of feasible payoffs
that are robust to undetectable deviations and jointly rational in the original game.

Proposition 4.6. Letx be inRX andp be in A(E).

1 x=g(p) <= (i) holds
2 peP +— (iii) holds
@) xelJR — (i) holds

Proof. Firstrecall, from the analogy of Section 4.2, the original notations of Section 2. We
notably havek = N (set of players)E = A (set of joint actions), ang* (d**, p) = gk (p)
(expected payoff of playék if the distributionp is played).

(1) is clear. We now prove (2).

If dk = (o, u¥) is a deviation of playerk in DX, d*y* = (y*(d*, a))gen =
(f7 @ (@), a=®)) jk, uk @k, fR(@* (@*), a=¥)))aea, hence (jii) reduces to:
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Vk € K, Ya* : R — A, vk RF x U¥ — MY st
(Vaea, vj#k fi(a(a").a™) = /(@ and
i, Ao (@), ) = @),
theng(p) > 3,4 P(@)g" (@ (a"),a™).
This is equivalent tovk € K, Yo* : R — Ak s t.:
vak, Ya7k, Vi £k, fI(oF(d¥),a7F) = £ (), (%)
and
Vak, 3F UF — MF st Yok, pR(f5 (o (), a8)) = fH (a5 a ), ()

we haves®(p) > 3,4 p(a)gt(@* (@), a™).

But ((x) and (xx)) is equivalent toa*(a¥) > a* for eacha* (see Remark 1 in
Section 3.3), so (iii) is also equivalent to:
Vk € N,Vaok : R¥ — Ak s.t.Vak, ok (a*) > a¥, we have:

Z Z p(ak,a_k)gk(ak,a_k) > Z Z p(ak,a_k)gk(otk(ak),a_k).
akeAk a—ke A~k ake Ak a—ke A~k

And this is simply equivalent tp € P.
We finally prove(3).

Vg € A(N), [(g)= max min 'G'(s', p) = max min gl (a),
geAN). Ig)= max mi (A)iequ (8", p) = max mir ZNq 2 (@)
with NR(¢) = {8 = (8')ien € [Tjey ADY), Vi, j € Suppy, 8"y’ =587y} _
We can first restrict ourselves to the projectidR(¢) of NR(g) on [];cgypp, A(D").
We have [(q) = maX gry) MiNuea Y ey q'gh(@). Now, by definition 8'y' =
Qgicpi 8 @)Y (d', a))aca and for alla € A, Y yicpi 8'(d)Y' (d', a) is justy' (8, a)
as defined in Section 3.4. It is then clear thi(q) = SD(Suppy) for all g. The set of
non-revealing strategies atin the repeated game with incomplete information is (up to
a projection) the set of similar decisions of the players in the suppert Gbnsequently,
I(g) =1(q) for all g, and condition (i) holds if and only if belongs to the set of jointly
rational payoffSJR O

We can now conclude the proof of Theore.5. From the previous proposition, one
has:
C={xeR", Ipe A(A)stxeIR x=g(p), andp € P}.
HenceC =g(P)N JR.

5. Random signals

We finally extend our result to the case of random signals. The model of Section 2
is generalized as follows. Instead of having for each playedeterministic observation
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function f': A — U’, we have a single stochastic functign A — A(U). After each
stage, ifa € A is the joint action played, an element= ('), is selected according to
f(a), and before starting stager 1 the signal’ is announced to playér The definition
of the setC of communication equilibrium payoffs is similar as before. We first state the
characterization o', and then explain the ideas of the proof, referring to a previous work
by Renault (2000) for computations.

The definition of jointly rational payoffs is almost the same. We still define the set of
stage decisions of playems:

D'={d" = (o', p')witha' : R" — A’ andu’ :R' x U' — M'}.

If 8 is in A(D") anda is in A, we denote as before by’ (8, a) € A(U) the probability
distribution on joint messageeceived by the mediator if:

— a is recommended to the players, _
— each playey #i plays faithfully, whereas playérdeviates according t& .

The following procedure selects an elemerdccording toy (8', a). First drawd’ =
(of, u') € D' according tos?, then choose an elemeiit= (ii*)ey in U according to
fla™, (@), and finally takeu = ((@*)xzi, ni(a’, i) € U. We define as before the
expected payofgg, (a) of playeri if he usess’ whereas the other plays play according
to a, the setSD(J) of similar decisions of players id and the seflR of jointly rational
payoffs. The definition o extends as follows:

P= {peA(A), VieN, ¥8' € A(D') s.t.y' (8, a) = f(a) Va € A,

Y p@gi@ =) pag (a)}.

acA acA

With these generalizations, Theorem 3.5 perfectly extends.
Theorem 5.1. In case of random signals, one h@s= g(P) N JR.

The proof is a technical generalization of the proof of Theorem 3.5. We now explain
how to proceed (all missing points andneputations can be found in the proof of
Proposition 5.1 in Renault, 2000).

Sketch of the proof. The main part of the proof of Theorem 3.5 can be generalized in a
straightforward manner. We now have to dedth 2-player repeated games with lack of
information on one side and random signals. The model of Section 4.1 is generalized to
the case where in each statehere is a signalling functio®* : D¥ x E — A(Vk x W).

If the state isk, player/ playsd® e D* and playeil playse € E, an elementvf, w) is
selected according t@* (d¥, ¢), and player/ (respectivelyll) learnsv* (respectivelyw).

The most relevant function ig : D x E — A(W) associating to eackd, e) the
marginal of®*(d*, ¢) on W. We then just have to change the definition of the signalling
functions in the definition of the auxiliary game (see Section 4.2). For #ng DF



J. Renault, T. Tomala / Games and Economic Behavior 49 (2004) 313-344 341

anda € A, &¥(d*, a) is defined as follows: select an elemént (zlj)jeN according to
f(a=*, ak(a")). The signal for player (the cheater) is the@*, i¥) € A¥ x U, and the
signal for playerl is (@~*, u¥(a*, @*)) € U. Proposition 4.2 and its proof then extend
word for word. The only serious problem is to generalize Theorem 4.5 (Section 4.4 then
extends easily).

We keep the same definitions féfy*, NR(g) andi(q). We still deal with repeated
games with incomplete information where playehas payoff 0, and where playéras
pure actions/®* e D* for eachk, that induce the same signals for playervk, k' € K,
vk (dr*, e) = K (d¥*, e) for eache in E. Theorem 4.5 extends as follows:

C={xeRK 3pecaE)st
() Vg € AK), x-q >1(q),
(i) Vk € K, x* = GF(d**, p),
(iii) Vk € K vk € A(DF) s.t.sky* = a**y*, G (a*, p) > G* (5%, p)}.

The unique difference is in (iii), where one now has to consider mixed deviationei)
instead of only pure deviations iPX. The reason is that with random signals, it may
be possible to find a mixed deviatidf in A(D*) inducing the same signals a§* for
playerll, and which is not a convex combination of pure deviation®fninducing the
same signals ag*. The proof of this characterization fat is more difficult. There is no
problem in using Kohlberg’s result, which has been generalized to the random signalling
case by Mertens et al. (1994, part B, Chapter V). Part (1) of the proof of Theorem 4.5
extends word for word, but the problem concerns part (2). The difficulty is that the signals
playerll is supposed to receive are now random, so knowing his own action plagees

not exactly know which signal he should receive. Hence statistical tests will be required.
Namely, instead of playing a mixed action once, the uninformed player will have to play
the same mixed action i.i.d. for a large number of stages and then decide from the statistics
of signals, whether playdrhas deviated or not.

Fix x in RX andp in A(E) satisfying (i), (i) and (iii). We have to construetsuch that
(d**, T) is an equilibrium ofl ¢ with payoff (x, 0).

In order to definer, we can adapt the constructions of Lehrer for repeated games
with complete information and deterministic signals (see Lehrer, 1990, 1992b), or more
directly very slightly adapt the constructiof equilibrium strategies of Renault (2000) for
2-player repeated games with incomplet®rmation and random signalling: the unique
difference is that in Renault’s paper, sig;are assumed to be state independent whereas
it is not the case here. However, the generalization to the setup we are dealing with now
is straightforward, and almost everything can be used word for word. We now construct
Back to communication equilibrium payoffs of repeated games with imperfect monitoring,
this construction explicits, for every payoffin g(P) N JR, a canonical communication
device yieldingr as a CEP (in the sense of Definition 2.3).

Definition of thestrategy t. The set of stageld, 2, .. .} is divided into consecutive blocks
B, B2, ..., B™, ... such that for each, |B™| = m1°. The play will consist of a main
path and of punishments’ phases, starting from the main path.
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At some blockB™ in the main path, playell plays independently at each stage the
mixed action(1 — 1/m) p + (1/m) p, with p being the uniform distribution on playér's
actions.

At the end of such a bloclB™, playerll will compare the frequency of signals he
observed and the frequency of signals he expected to observe (i.e. he should observe if
player I is not deviating, in the senseahhe is playing according t8**). Put, for any
m > 0, actione in E and signak in W:

{t € B™, e; = e, w; = w}|
|{t € B™, e; =e}|

TH(w, e) = ¥* (dk*, e)(w) and OB"(w,e) = ,
e; andw; being respectively the actions pkxyand signals received by playeiat stage.
If {t € B™, e, =e} =0, just defineOB” (w, ¢) = TH(w, ).

TH(w, e) is the probability that playelt observes the signab at some stage when he
playse, if player I playsd** for somek. Hence it is the theoretical frequency of observing
w while playinge that he should observe if playéiis not deviating. Notice that it does not
depend ork in K. OB(w, ¢) is the observed, or empirical, frequency of signalamong
the stages where play#rhas played. The idea is that if playef usesd**, OB™ (w, e)
andTH(w, e) will be, by Tchebychev’s inequality, very close with great probability for
eachw ande. If player! plays something else, for example in order to increase his payoff,
condition (iii) will imply that for somee andw, OB™ (w, ¢) and TH(w, ¢) will be more
different than they should be, and playemwill punish player! via a punishing strategy
given by condition (i). More precisely, after the play of some bl@k in the main path
there are two cases:

If for eachw in W ande in E, |TH(w, ¢) — OB™(w, ¢)| < 1/m, playerll will consider
that player! did play according tel** at block B™. The play stays in the main path and
proceeds to blocB” 1.

Otherwise, playetl will consider that playetd has deviated frond**. The play will
immediately go out of the main path and a punishment phase will start. This phase will last
from block B”+1 to block B"”. Then, whatever happens during the punishment phase, the
play will come back to the main path at blodk'*+1,

To complete the definition of, it remains to define what is played during a punishment
phase. By assumption, - ¢ > I(q) ¥q € A(K), thus the generalization of Kohlberg’s
result by Mertens et al. (1994, part B, Chapter V, Section 3.d) gives, as in Section 4.3,
the existence of some strategyof playerll such that:Ve > 0,379 VT > Tp Vo € S
Vk € K, y1*(0, T) < x* + ¢. Define now, for each::

em=min{e >0, 37, € 7T s.t.Vo €S, Vk € K,
VT e {m+ D™ m+ D0+ 1. m®}, o, Tn) <xF el

We haves,, —> . 0. Consider the case where the play is in the main path at some
block B” and a punishment phase will start at bloBR*!. Let 7,, be a strategy of
playerll that pushes playet's payoff down tox + &, in any game of length between
(m + 1)19 andm?. To punish player at the blocksn + 1, ..., m?, playerll will play at
any blockm’ € {m + 1, ..., m?} according to theB™ | first moves oft,,. This completes
the definition ofz.
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We finally briefly explain why(d**, t) is an equilibrium of the incomplete information
game.

First assume thatd**, ) is played. Using Tchebychev's inequality and Borel Cantelli
Lemma, one can first show that almost surely the number of punishment phases is finite.
It is then not difficult to show that for each state(1/T) Y./_, G*(d;, e;) —> 700 X,

Py . a.s. and to conclude tha&}’k(d**, T) —> 700 x* by the bounded convergence
theorem. See Renault (2000), proof of condition (2) for computations.

Finally assume that player plays some strategy whereas playetl plays ac-
cording to z. Define for each block number, B, as the evenfthe play is in the
main path at blockB™}. Fix some statek, and defineX,, as the random variable:
(1/1B™) >, cpn G¥(d;, e) — x*. Assume that the states and fixe > 0.

The key point is the following, which corresponds to Lemma A of Renault (2000). One
can show that at each blod™, m large enough, while playdt is in the main path,
player I only has a small probability to obtaia good payoff without being punished
afterwards. More precisely, we have farlarge enoughP’;’t(BmHﬂ {(Xm >} | By) <e.

The main argumentin the proof of this property is a lemma by Lehrer (1992b, Appendix 1),
which extends Tchebychev’s inequality to nimlependent random kiables such as the
sequences of actions played by the players at some block. As a consequence, one can
proceed “as if” playel was playing the same mixed action i.i.d. at each stage of some
large block in the main path. Computations, using condition (iii), conclude the proof of
this property.

Lastly, from the efficiency of the punishing ategies and the cardinalities of the blocks,
one can prove thats’ > 03Tp VT > Tp yTI’k(cr, 1) < x¥ 4+ ¢'. For a precise proof of this,
see Lemma B of Renault (2000).
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