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In this paper we develop multivariate outlier tests based on the high-breakdown Minimum Covariance Determinant estimator. The rules that
we propose have good performance under the null hypothesis of no outliers in the data and also appreciable power properties for the purpose
of individual outlier detection. This achievement is made possible by two orders of improvement over the currently available methodology.
First, we suggest an approximation to the exact distribution of robust distances from which cut-off values can be obtained even in small
samples. Our thresholds are accurate, simple to implement and result in more powerful outlier identification rules than those obtained
by calibrating the asymptotic distribution of distances. The second power improvement comes from the addition of a new iteration step
after one-step reweighting of the estimator. The proposed methodology is motivated by asymptotic distributional results. Its finite sample
performance is evaluated through simulations and compared to that of available multivariate outlier tests.
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1. INTRODUCTION

We are concerned with outlier detection in a multivariate
model with mean vector μ and covariance matrix � on v di-
mensions. We estimate the parameters μ and � based on a
sample of n observations y = (y1, . . . ,yn)

′. It is well known
that the classical least-squares estimates can be strongly dis-
torted and even completely break down if the sample contains
outliers. For this reason highly robust estimators of μ and �

should be used in place of the classical ones (Rousseeuw and
van Zomeren 1990; Becker and Gather 1999; Peña and Prieto
2001; Cuesta-Albertos, Matràn, and Mayo-Iscar 2008).

With high-breakdown methods robust estimation and outlier
detection are two essentially equivalent tasks: given robust esti-
mators of μ and �, the outliers in y are revealed by their large
distances from this robust fit. Formal identification rules are
commonly obtained by comparing the squared robust distances
to the χ2

v distribution, since their exact distribution is unknown
for finite samples, and by testing each observation at a fixed
nominal size α not depending on n. Usually 0.01 ≤ α ≤ 0.05,
with α = 0.025 being perhaps the most popular choice (e.g.,
Hubert, Rousseeuw, and Van Aelst 2008; Willems, Joe, and Za-
mar 2009). However, there are two potential shortcomings in
this procedure. The first one is the inadequacy of the χ2

v approx-
imation to obtain reliable cut-off values when the data contain
no outliers. Evidence of this behavior is now well documented
even in moderately large samples, especially when the number
of dimensions increases (Becker and Gather 2001; Hardin and
Rocke 2005; Cerioli, Riani, and Atkinson 2009; Riani, Atkin-
son, and Cerioli 2009). The other potential pitfall is the ab-
sence of simultaneity adjustments when comparing n distances
to the relevant cut-off. Multiplicity corrections are considered
in the seminal work of Wilks (1963) and in some of its exten-
sions (e.g., Caroni and Prescott 1992), but they are not taken
into account in most high-breakdown developments. A few no-
table exceptions are the simultaneous outlier detection rules
of Becker and Gather (1999) and Cerioli, Riani, and Atkinson
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(2009), which, however, rely on low-power Bonferroni-type ad-
justments of the asymptotic χ2

v distribution of robust distances.
The main consequence of the two shortcomings described

above is a large number (often higher than nα) of false out-
liers declared in any “good” dataset. Swamping may be an ac-
ceptable side effect in some situations, for example, when the
user is almost certain that the data contain outliers. If this is
the case, it is sensible to magnify the power of the diagnostic
procedure in order to “find all the outliers that matter” (Hubert,
Rousseeuw, and Van Aelst 2008, p. 92), even at the expense of
an increase in the number of false discoveries. However, there
are applications where even a moderate amount of swamping
may have disastrous consequences. For instance, in the analy-
sis of bivariate trade data arising in the European Union mar-
ket outliers are of paramount importance because some of them
may correspond to fraudulent transactions (Arsenis, Perrotta,
and Torti 2005; Riani et al. 2008). Since there are hundreds of
transactions to be inspected over thousands of markets, ignor-
ing the multiplicity of tests and relying on liberal distributional
assumptions would lead to a plethora of false signals for an-
tifraud services, thus making substantial investigation of pos-
sible frauds impractical. Similar problems arise in multivariate
quality control (Vargas N. 2003; Boente and Farall 2008) and
in microarray data analysis (Brettschneider et al. 2008).

The goal of this paper is to develop multivariate outlier tests
based on high-breakdown estimators with good performance
under the null hypothesis of no outliers in the data and also with
appreciable power properties for the purpose of individual out-
lier detection. In particular, we focus on the reweighted version
of the Minimum Covariance Determinant (MCD) estimator of
Hawkins and Olive (1999) and Rousseeuw and Van Driessen
(1999). This estimator shares the same high-breakdown prop-
erties of the “raw” MCD estimator but has greater efficiency
thanks to one-step reweighting (Croux and Haesbroeck 1999;
Lopuhaä 1999). Furthermore, it benefits from the availability of
fast software implemented in different languages, which makes
it one of the most popular choices in applied robust statistics.
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Our goal in this paper is achieved by two orders of im-
provement over the currently available methodology. First,
we suggest an approximation to the exact distribution of ro-
bust distances computed from the reweighted MCD estima-
tor, from which accurate cut-off values can be obtained even
in small samples. These thresholds are virtually as accurate
as those obtained by approximating the unknown distribution
of the squared robust distances through Monte Carlo simula-
tion (Cerioli, Riani, and Atkinson 2009), but they are simpler
to implement and result in more powerful outlier identification
rules. Our second improvement is the addition of a new itera-
tion step after reweighting. The new step allows us to control
the family-wise error rate of the n outlier tests only when it
is really needed, that is, when all the data come from the null
distribution, thus increasing the probability of finding contami-
nated observations when they are present. Like in the standard
high-breakdown framework, we accept to tolerate some degree
of swamping, with at most (n − 1)α false outliers, but only
when we are confident that some contamination is present in
the data. The resulting procedure has power curves which are
close or even superior to those of the potentially very liberal
MCD-based tests.

The outline of the paper is as follows. In Section 2 we set up
the problem, we motivate our approximation to the exact dis-
tribution of robust reweighted distances with asymptotic distri-
butional results and we show simulation evidence of the good
null performance of the resulting outlier test. In Section 3 we
suggest the iterated reweighted MCD procedure, which ensures
an increase in power when there is evidence of contamination.
Simulation is used in Section 4 to assess the power properties of
our procedures and to compare them with the liberal reweighted
MCD test currently in use. The paper ends with an application
in Section 5 and some closing remarks in Section 6.

2. MULTIVARIATE OUTLIER DETECTION WITH
THE REWEIGHTED MCD

2.1 Set Up

The MCD subset is defined to be the subsample of h observa-
tions, with n/2 ≤ h < n, whose covariance matrix has the small-
est determinant. Let y(MCD) = {i1, . . . , ih} denote the indices of
the observations belonging to the MCD subset. The MCD esti-
mate of location is the average of the MCD subset,

μ̂(MCD) = 1

h

∑
i∈y(MCD)

yi, (1)

whereas the MCD estimate of scatter is proportional to the dis-
persion matrix of this subset:

�̂(MCD) = kMCD(h,n, v)

h − 1

×
∑

i∈y(MCD)

(
yi − μ̂(MCD)

)(
yi − μ̂(MCD)

)′
. (2)

The proportionality constant kMCD(h,n, v), depending on the
values of h, n, and v, serves the purpose of making �̂(MCD)

both consistent and unbiased when each yi ∼ N(μ,�) (Croux
and Haesbroeck 1999; Pison, Van Aelst, and Willems 2002).
The finite-sample formula for computing kMCD(h,n, v) is given

in Equation (17). For outlier detection, we take the value of h
yielding the maximum possible breakdown point, that is,

h =
⌊

n + v + 1

2

⌋
≈ n

2
, (3)

where �·� denotes the integer part. Another popular choice is
h ≈ 0.75n, which yields more efficient estimates at the expense
of a reduced breakdown value.

To increase efficiency, a one-step reweighting scheme is of-
ten used in practice. Reweighted estimators are computed by
giving weight 0 to observations for which the squared robust
distance

d2
i(MCD) = (

yi − μ̂(MCD)

)′
�̂

−1
(MCD)

(
yi − μ̂(MCD)

)
,

i = 1, . . . ,n, (4)

exceeds a threshold value. The reweighted MCD (RMCD) esti-
mates of location and scatter are then

μ̂(RMCD) = 1

m

n∑
i=1

wiyi (5)

and

�̂(RMCD) = kRMCD(m,n, v)

m − 1

×
n∑

i=1

wi
(
yi − μ̂(RMCD)

)(
yi − μ̂(RMCD)

)′
, (6)

where wi = 0 if d2
i(MCD) > d2

(MCD)∗, wi = 1 otherwise, and
m = ∑n

i=1 wi. The suggested threshold (Rousseeuw and Van
Driessen 1999) is the 0.975 quantile of the χ2

v distribution

d2
(MCD)∗ = χ2

v,0.975.

The scaling kRMCD(m,n, v) guarantees consistency of the
reweighted estimator and improves its small sample behav-
ior, as does the corresponding factor in (2). The currently
adopted formula for computing kRMCD(h,n, v) is shown in
Equation (20). An alternative proposal is suggested in Step 3
of Section 2.4.

2.2 Outlier Detection and Testing

The squared robust reweighted distances

d2
i(RMCD) = (

yi − μ̂(RMCD)

)′
�̂

−1
(RMCD)

(
yi − μ̂(RMCD)

)
,

i = 1, . . . ,n, (7)

constitute the main tool of this paper for identifying multivari-
ate outliers. The outlier detection problem is usually phrased in
terms of testing the n null hypotheses

H0i : yi ∼ N(μ,�), i = 1, . . . ,n. (8)

We say that yi is a “good” observation if it satisfies H0i. Other-
wise, it is contaminated.

There is some debate about which error rate should be con-
trolled when testing each H0i. Let R be the number of true
null hypotheses (8) which are incorrectly rejected. Following
Benjamini and Hochberg (1995), the two main quantities of
interest are the per-comparison error rate (PCER) E{R/n} and
the family-wise error rate (FWER) Pr{R ≥ 1}. The prevalent
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approach is to test individually each hypothesis (8) at level
0.01 ≤ α ≤ 0.05 (Hubert, Rousseeuw, and Van Aelst 2008),
thus focusing on the requirement that E{R/n} be controlled
at that α. Under this framework, we expect to find a propor-
tion α of false outliers when all the data come from the pre-
scribed multivariate normal distribution. Controlling the PCER
increases the probability of detecting truly contaminated obser-
vations, but results in a value of the FWER that is close to 1
even in moderate samples when all the observations satisfy the
null (8). The user must then be prepared to declare at least one
outlier (and often many more) in most datasets of realistic size,
even when contaminated observations are not present.

On the other hand, the simultaneous rules of Becker and
Gather (1999) and Cerioli, Riani, and Atkinson (2009) focus
on the intersection hypothesis

H0s : {y1 ∼ N(μ,�)} ∩ {y2 ∼ N(μ,�)} ∩ · · ·
∩ {yn ∼ N(μ,�)} (9)

that no outlier is present in the data. Given a cut-off d2, the size
of the test of (9) is

P
(
maxn

i=1d2
i(RMCD) > d2|H0s is true

)
, (10)

which represents the proportion of good datasets that are
wrongly declared to contain outliers. The Bonferroni argument
can be used to choose d2 such that (10) is kept below a spec-
ified value γ between 0.01 and 0.05 when the distribution of
d2

i(RMCD) is known. However, this argument is known to lead to
conservative rules ensuring that

P(R ≥ 1) = P
(
maxn

i=1d2
i(RMCD) > d2) ≤ γ

not only when H0s is true, but also under any configuration of
good and contaminated observations (Hochberg and Tamhane
1987). In Section 3 we consider a more powerful way of per-
forming multiple outlier detection. Before that, we introduce a
simple but effective approximation to the exact distribution of
the reweighted distances that provides reliable cut-off values for
our basic outlier identification rule.

2.3 The Distribution of Reweighted Distances

Our basic simultaneous outlier identification rule is moti-
vated by two useful distributional results. These results assume
that the parameters μ and � in (9) are known and thus hold
only asymptotically for the robust reweighted distances (7). Our
conjecture is that they can also provide useful guidance in finite
samples, given that a reliable approximation to the distribution
of the “raw” MCD distances (4) is available.

Let

d2
i = (yi − μ)′�−1(yi − μ), i = 1, . . . ,n (11)

be the squared population Mahalanobis distance for observation
yi. Define the weights

ωi =
{

0 if d2
i > χ2

v,1−δ

1 otherwise,
(12)

where χ2
v,1−δ is the 1 − δ quantile of the χ2

v distribution.
Our first distributional result is stated in Proposition 1 and

refers to the null distribution of the distances of the observations
for which ωi = 1. The proof is given in the Appendix.

Proposition 1. Under the null hypothesis (9), the conditional
distribution of yi given ωi = 1 is a truncated multivariate normal
distribution with

E(yi|ωi = 1) = μ and Var(yi|ωi = 1) = κ−1
δ �, (13)

where

κδ = 1 − δ

P(χ2
v+2 < χ2

v,1−δ)
.

The usefulness of Proposition 1 is that it suggests how to
obtain approximately unbiased estimators of μ and � from the
observations yi for which ωi = 1. Let ωδ = ∑n

i=1 ωi,

μ̂δ = 1

ωδ

n∑
i=1

ωiyi,

�̂δ = κδ

ωδ − 1

n∑
i=1

ωi(yi − μ̂δ)(yi − μ̂δ)
′,

and

d2
i,δ = (yi − μ̂δ)

′�̂−1
δ (yi − μ̂δ). (14)

Note that E(yi|ωi = 1) = E(ωiyi)/(1 − δ), Var(yi|ωi = 1) =
E{ωi(yi − μ̂δ)(yi − μ̂δ)

′}/(1−δ) and ωδ/n = (1−δ)+Op(
1√
n
).

It thus follows from Proposition 1 that

E(μ̂δ) → μ and E(�̂δ) → �

as n → ∞. It is a standard result that the distribution of the
squared Mahalanobis distances for the observations that con-
tribute to the computation of the classical unbiased estimators
of μ and � is a scaled Beta. Therefore, conditioning on ωδ ,
we use an analogous scaled Beta distribution to approximate
the distribution of the squared reweighted distances (14) for the
units that contribute to the computation of the asymptotically
unbiased estimators μ̂δ and �̂δ :

d2
i,δ|ωδ ≈ (ωδ − 1)2

ωδ

Beta

(
v

2
,
ωδ − v − 1

2

)
if ωi = 1.

Our second distributional result is stated in Proposition 2 and
gives a hint on the null distribution of the reweighted distances
of the units for which ωi = 0. Proposition 2, which is proved in
the Appendix, is given in the univariate case, where the popula-
tion Mahalanobis distance (11) becomes the squared standard-
ized residual (yi −μ)2/σ 2 and E (1−δ) is the symmetric central
part of the N(μ,σ 2) distribution leaving probability δ/2 in each
tail. A multivariate extension could follow from the asymptotic
representation of affine equivariant multivariate quantiles (e.g.,
Chakraborty 2001).

Proposition 2. Let v = 1. Suppose that y1 ∼ N(μ,σ 2), . . . ,

yn ∼ N(μ,σ 2) with μ and σ known and define the weights ωi,
i = 1, . . . ,n, as in (12). Take 0 < ε < δ/2 and let y(j) be the jth
sample order statistic, with j = �(1 − ε)n� + 1. Then,

cov
(√

ny(j);√nμ̂δ

) → 0 as n → ∞.

An analogous result also holds with j = �εn� + 1. There-
fore, Proposition 2 shows that the observations trimmed in the
reweighting step are asymptotically uncorrelated to the trimmed
mean μ̂δ , when the population parameters are known and the
weights (12) are used. This conclusion is remarkably differ-
ent from that obtained when considering y(j) and the sample
mean ȳ = ∑

i yi/n (see, e.g., DasGupta 2008, p. 95). The same
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argument can be used to show that cov(y(j); σ̂ 2
δ ) = op(

1√
n
).

Furthermore, E(σ̂ 2
δ |ωδ) ≈ σ 2 by Proposition 1. The usefulness

of Proposition 2 is thus to suggest that, conditioning on ωδ ,
the squared distance of a trimmed observation should approx-
imately behave like that of an observation independent of the
parameter estimates. This distance has a scaled F distribution.
Therefore, we take

d2
i,δ|ωδ ≈ (ωδ − 1)v

ωδ − v
Fv,ωδ−v if ωi = 0. (15)

The distributional results given in Propositions 1 and 2 re-
fer to the squared reweighted distances (14) which take advan-
tage of the population weights ωi, i, . . . ,n. Consistency of high-
breakdown estimators (Butler, Davies, and Jhun 1993; Lopuhaä
1999) could be used to obtain analogous asymptotic results
when the true parameter values are replaced by such estimates.
However, our main goal is to derive a reliable finite-sample ap-
proximation to the distribution of the squared reweighted MCD
distances (7). Our conjecture is that the distributional results for
d2

i,δ suggested by Propositions 1 and 2 still hold approximately

true for d2
i(RMCD) in finite samples, provided that the weights

are defined as follows:

wi =
{

0 if d2
i(MCD) > Dv,1−δ

1 otherwise,
(16)

where Dv,1−δ is the 1 − δ quantile of the finite-sample distribu-
tion of the squared MCD distances (4). In fact, under (16), each
wi will have the same Bernoulli distribution as the correspond-
ing population weight ωi, and m ∼ Bin(n,1 − δ) as ωδ .

Unfortunately Dv,1−δ is unknown, but Hardin and Rocke
(2005) provide an accurate approximation to it for the values
of δ useful for the purpose of outlier detection. Monte Carlo
simulation is used in the next section to show the adequacy of
our conjecture with this approximation.

2.4 Outlier Identification in Finite Samples

Let α be the nominal size at which each individual hypothe-
sis (8) is tested. Given the distributional results of Section 2.3,
our finite sample reweighted MCD (FSRMCD for short) rule
for outlier detection is summarized as follows.

Step 1. Choose h and compute the raw MCD estimators (1)
and (2) with

kMCD(h,n, v) = h/n

P(χ2
v+2 < χ2

v,h/n)
sMCD(h,n, v), (17)

where sMCD(h,n, v) is the small sample bias-correction factor
for �̂(MCD) obtained by Pison, Van Aelst, and Willems (2002).

Step 2. Compute the weights (16), with Dv,1−δ the 1 − δ

quantile of the scaled F distribution of Hardin and Rocke (2005,
p. 938) obtained using their adjusted asymptotic method. Take
δ = 0.025.

Step 3. Compute the RMCD estimators (5) and (6) with
kRMCD(h,n, v) = κδ as given in Proposition 1.

Step 4. Compute the squared reweighted distances (7) and
test each observation at size α, using the distribution

d2
i(RMCD) ∼ (m − 1)2

m
Beta

(
v

2
,

m − v − 1

2

)
if wi = 1 (18)

∼ m + 1

m

(m − 1)v

m − v
Fv,m−v if wi = 0. (19)

We introduce the factor (m + 1)/m in (19) to allow for es-
timation of μ in the squared distance d2

i,δ of Equation (15)
(Atkinson, Riani, and Cerioli 2004, p. 43).

Asymptotically, the null probability of rejecting the intersec-
tion hypothesis (9) under the FSRMCD rule is γ = 1−(1−α)n,
like that of the multiplicity-adjusted RMCD procedure using
χ2

v,1−α as a cut-off for each individual outlier test (Becker
and Gather 1999). We now investigate its finite sample per-
formance through Monte Carlo simulation. We also compare
our FSRMCD rule with the results of the asymptotic RMCD
methodology that uses χ2

v,1−α as a cut-off. We focus on the

case α = 1 − (1 − 0.01)1/n, corresponding to a nominal size
γ = 0.01 for testing the intersection hypothesis (9). The expe-
rience from this simulation study is that the same conclusions
hold for different choices of γ .

We estimate the actual size of the test of (9) by simulat-
ing 5000 independent n-dimensional samples y from the v-var-
iate N(0, I) distribution, for several values of n and v. The re-
sults are valid for any yi ∼ N(μ,�) of the same dimensions
thanks to affine invariance of robust reweighted Mahalanobis
distances. Aiming at the highest possible breakdown value, our
first choice is to take h as in (3). We obtain the MCD subset
through the Fortran algorithm FAST-MCD of Rousseeuw and
Van Driessen (1999), which is based on repeated iteration of the
concentration step (see also Hawkins and Olive 1999). To pro-
vide comparison with the available methodology, we also tune
the RMCD procedure with the same corrections computed in
function covMcd of the R package robustbase (Maechler 2008),
where kMCD(h,n, v) is as in (17),

kRMCD(h,n, v) = m/n

P(χ2
v+2 < χ2

v,1−δ)
sRMCD(h,n, v) (20)

and sRMCD(h,n, v) is a small sample calibration factor for
�̂(RMCD) (Pison, Van Aelst, and Willems 2002). The aim of
these corrections is to guarantee the best finite sample control
of the size of the resulting RMCD tests. For each procedure, the
size of the test of the intersection hypothesis (9) is estimated as
the proportion of simulated datasets for which the null H0s is
falsely rejected.

Table 1 summarizes our results. Each entry in the cells of
this table should be close to 0.01. It is clear that our rule greatly
outperforms the standard RMCD approach across all the val-
ues of n and v. The actual size of the proposed test is virtually
coincident with the nominal size when n ≥ 90 and still accept-
able for the smallest sample sizes, even if v increases. This is a
remarkable result in view of the sparsity of multivariate space
with few observations per dimension. On the other hand, the
results obtained under the χ2

v approximation are exceptionally
bad, with sizes up to 99% and often larger than 10%, thus ren-
dering the standard RMCD procedure unusable for the purpose
of simultaneous outlier identification in most of the experimen-
tal conditions considered in Table 1.

Our FSRMCD rule exhibits moderate liberality only when
n = 40 and v increases. In such extreme situations Rousseeuw
and van Zomeren (1990, p. 649) predict that “any outlier
method can get into trouble” and, as a rule of thumb, they
recommend applying robust multivariate methods only when
n/v > 5. The null performance of our method can be further
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Table 1. Estimated size of the proposed FSRMCD rule and of the standard RMCD procedure for
testing the intersection hypothesis (9) of no outliers at nominal size γ = 0.01. The cut-off of each

individual test performed by the RMCD procedure is χ2
v,1−α

, with α = 1 − (1 − 0.01)1/n.
The cardinality h of the MCD subset is given by (3). Size is estimated on 5000 simulations

for each combination of n and v

n = 40 n = 60 n = 90 n = 125 n = 200 n = 400

v = 5 FSRMCD 0.017 0.017 0.015 0.013 0.011 0.010
RMCD 0.516 0.272 0.119 0.071 0.028 0.016

v = 10 FSRMCD 0.054 0.025 0.014 0.012 0.012 0.008
RMCD 0.992 0.837 0.389 0.156 0.061 0.021

v = 15 FSRMCD 0.084 0.030 0.013 0.014 0.013 0.010
RMCD 1.000 0.999 0.884 0.478 0.126 0.040

improved by the more conservative choice δ = 0.01 in Step 2
and by defining

kRMCD(h,n, v) = m/n

P(χ2
v+2 < χ2

v,1−δ)

in Step 3. The first choice reduces the amount of trimming
and thus the small sample bias that kRMCD(h,n, v) is not
able to allow for in Step 3. Taking m/n in the numerator
of kRMCD(h,n, v) corrects for the actual proportion of units
trimmed in Step 2, which in very small samples can be sub-
stantially higher than the nominal proportion 1 − δ. With these
choices the FSRMCD entries in the first column of Table 1 be-
come 0.006, 0.020, and 0.034, respectively. The FSRMCD si-
multaneous sizes for v = 10 and v = 15 can thus be remarkably
close to the hoped-for value even with a sample size as small
as n = 40. However, since this setting will generally reduce the
power of the outlier detection rule, we recommend it only when
n is very small.

Increasing the cardinality of the MCD subset does not alter
our findings. Table 2 summarizes the results for the less severe
trimming recommendation h ≈ 0.75n. Again, to provide com-
parison, the precise value of h is calculated as in the R function
covMcd. Although the sizes in Table 2 are generally smaller
than the corresponding entries in Table 1, it is clear that the
standard RMCD procedure is still unusable in most situations.
A small benefit is observed for FSRMCD as well, when the ra-
tio n/v is very unfavorable.

3. THE ITERATED REWEIGHTED MCD

We increase the power of the multiple outlier test described
in Section 2.4 by adding a further iteration step to the FS-
RMCD procedure. The iterated reweighted MCD (IRMCD for

short) aims at behaving like a simultaneous outlier identifica-
tion rule under the null hypothesis of no outliers and like the
standard RMCD test when the data are contaminated. Further-
more, the test takes advantage of the accurate distributional re-
sults obtained in Section 2.3. The IRMCD rule is defined as the
FSRMCD procedure with the additional step that follows.

Step 5. Let qi,1−α be the 1 − α quantile of the reference dis-
tribution for d2

i(RMCD) in Step 4. If

maxn
i=1I

(
d2

i(RMCD) > qi,1−α

) = 0, (21)

then accept H0s. Otherwise, test each individual hypothesis (8)
using qi,1−γ as a cut-off, with γ = 1 − (1 − α)n, and declare yi

to be an outlier if

d2
i(RMCD) > qi,1−γ . (22)

Condition (21) ensures that the IRMCD and the FSRMCD
procedures have the same size for testing the null hypothesis (9)
of no outliers in the data. On the other hand, (22) increases the
probability of correctly identifying contaminated observations
when they are present. The idea of performing n individual tests
only when a simultaneous hypothesis is rejected is certainly not
new and dates back at least to Fisher’s least significant differ-
ence method (Hochberg and Tamhane 1987). It fits naturally
in the RMCD setting as it only involves one additional itera-
tion step. More importantly, the IRMCD rule follows the com-
monly accepted high-breakdown philosophy that admits a small
amount of false outliers. The important contribution is that, with
the IRMCD, swamping occurs only when there is substantial
evidence of contamination.

Table 2. The entries represent the same quantities as in Table 1, but now the cardinality of
the MCD subset is h ≈ 0.75n

n = 40 n = 60 n = 90 n = 125 n = 200 n = 400

v = 5 FSRMCD 0.019 0.015 0.015 0.013 0.010 0.010
RMCD 0.240 0.113 0.058 0.041 0.023 0.016

v = 10 FSRMCD 0.035 0.018 0.015 0.012 0.013 0.010
RMCD 0.848 0.465 0.182 0.090 0.049 0.022

v = 15 FSRMCD 0.053 0.019 0.014 0.014 0.015 0.011
RMCD 1.000 0.928 0.542 0.237 0.086 0.034
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4. POWER OF OUTLIER IDENTIFICATION RULES

We now compare the power of the outlier detection rules sug-
gested in this paper, FSRMCD and IRMCD, with that of other
MCD-based procedures with similar size properties and also
with that of the potentially very liberal RMCD approach using
cut-off values from the χ2

v distribution. The alternative finite-
sample procedures based on the MCD that we consider are
the Hardin and Rocke (2005) scaled-F test using the squared
raw MCD distances (4) (HR), and the calibrated-χ2

v test of
Cerioli, Riani, and Atkinson (2009) based on the reweighted
distances (7) (RMCDCAL). Both these procedures are adjusted
for simultaneity and have good control of the size γ of the test
of the intersection hypothesis (9) for the values of n and v con-
sidered in our power simulations. With regard to the standard
RMCD techniques, we compute both the multiplicity-adjusted
test with cut-off χ2

v,1−α , already described in Table 1 (RMCD),
and the individual RMCD test commonly adopted in practice,
having χ2

v,1−γ as a cut-off (RMCD_ind). A summary of the out-
lier detection rules compared in our power simulations is given
in Table 3.

We generate 5000 n-dimensional samples for each combina-
tion of n and v. For a specified contamination rate τ < 0.5, each
dataset is composed of n(1 − τ) observations from N(0, I) and
nτ observations from a v-variate location-shift model with con-
stant contamination on all variables, yi ∼ N(λe, I), where λ is
a positive scalar and e is a column-vector of ones. Power is de-
fined as the proportion of contaminated observations which are
correctly named as outliers. We take γ = 0.01, the findings for
different nominal sizes being similar. We give the results only
for the maximum breakdown coverage h = �(n + v + 1)/2�,
since the more efficient choice h ≈ 0.75n of Table 2 does not
affect our conclusions. The only procedure that experiences a
major increase in power when h ≈ 0.75n is the raw-MCD test
HR, but the ranking of the best-performing rules remains un-
changed.

Our first experimental setting is n = 60 and v = 5, a situ-
ation where the standard RMCD test should not be used for
simultaneous outlier detection due to its very liberal behavior,
even after adjusting for multiplicity. Figure 1 shows the power
curves of the different tests under the location-shift contami-
nation model as λ > 0 increases, respectively when τ = 0.05

Figure 1. Power of MCD-based tests under a multivariate loca-
tion-shift contamination model, for n = 60 and v = 5. The nominal
size for testing the simultaneous hypothesis (9) is γ = 0.01. Upper
panel: τ = 0.05. Lower panel: τ = 0.20. The cardinality h of the MCD
subset is given by (3). Power is estimated on 5000 simulations for each
value of τ and λ.

and τ = 0.20. To provide comparison also under the null hy-
pothesis, the power values for λ = 0 are defined to be the cor-
responding sizes in Table 1. Not surprisingly, the individual
test RMCD_ind has size close to 1 and leads to wrongly re-
ject the null hypothesis (9) in almost all the simulated good

Table 3. MCD-based outlier detection rules computed for power comparison

Acronym Synthetic description

RMCD Squared reweighted distances d2
i(RMCD)

with corrections (17) and (20); asymptotic χ2
v distribution with simultaneity adjustment

RMCD_ind Squared reweighted distances d2
i(RMCD)

with corrections (17) and (20); asymptotic χ2
v distribution without simultaneity

adjustment

HR Squared “raw” MCD distances d2
i(MCD)

with correction (17); scaled F distribution of Hardin and Rocke (2005)
with simultaneity adjustment

RMCDCAL Squared reweighted distances d2
i(RMCD)

with corrections (17) and (20); cut-off values estimated by Cerioli, Riani, and Atkinson
(2009) with simultaneity adjustment

FSRMCD Finite sample reweighted-MCD detection rule of Section 2.4; scaled Beta distribution (18) or scaled F distribution (19) with
simultaneity adjustment

IRMCD Iterated reweighted-MCD detection rule of Section 3
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Figure 2. Power of MCD-based tests under a multivariate loca-
tion-shift contamination model, for n = 200 and v = 5. The nominal
size for testing the simultaneous hypothesis (9) is γ = 0.01. Upper
panel: τ = 0.05. Lower panel: τ = 0.20. The cardinality h of the MCD
subset is given by (3). Power is estimated on 5000 simulations for each
value of τ and λ.

datasets. However, if λ in the location-shift model is small, the
proportion of contaminated observations which are detected by
RMCD_ind is much lower than 1, yielding a descent in the cor-
responding power curve.

It is clear from the pictures in Figure 1 that the FSRMCD
procedure greatly outperforms the other two tests with similar
simultaneous size (HR and RMCDCAL). The additional iter-
ation step of the IRMCD procedure provides a further gain in
power. Despite the wide gap at the origin, the power curve of
IRMCD is remarkably close to those of the very liberal RMCD
and RMCD_ind tests and approaches them as λ increases.

Figure 2 depicts the results for our second experimental set-
ting with location-shift contamination, n = 200 and v = 5. Al-
though slightly liberal, the multiplicity-adjusted RMCD test can
be considered an acceptable procedure for simultaneous outlier
detection in this situation and indeed its performance is very
close to that of FSRMCD. Instead, the power of the IRMCD test
is much larger than that of RMCD. Furthermore, we see from
the plots that the power curve of IRMCD rapidly converges to
that of RMCD_ind as λ increases. The proposed method, which
has good control of the FWER under (9), is thus virtually as

Figure 3. Power of MCD-based tests under alternative multivariate
contamination models, for n = 200, v = 5, and τ = 0.20. The nomi-
nal size for testing the simultaneous hypothesis (9) is γ = 0.01. Upper
panel: radial contamination. Lower panel: multivariate t contamina-
tion. The cardinality h of the MCD subset is given by (3). Power is
estimated on 5000 simulations for each value of ψ and ζ .

powerful as the PCER-controlling test RMCD_ind under the
contamination model.

It is also instructive to look at the behavior of the differ-
ent methods in contamination models exhibiting a gradation
of more to less central observations. The upper panel of Fig-
ure 3 shows power under a radial contamination scheme, where
n(1 − τ) observations are generated from the null distribution
N(0, I) and the remaining nτ ones from N(0,ψI), with ψ > 1.
The lower panel displays the results when the nτ contaminated
observations are generated from a v-variate t distribution with
ζ ≥ 1 degrees of freedom. In both instances n = 200, v = 5,
τ = 0.20, and γ = 0.01. Contaminated observations now have
the same mean as those coming from the null model. It is thus
not surprising to see that power is lower than under the location
shift-model. Nevertheless, the relative performance of the dif-
ferent methods in Figure 3 is unchanged, with the IRMCD rule
behaving as the PCER-controlling test RMCD_ind. It is worth
noting that there are instances where IRMCD is even more pow-
erful than RMCD_ind. This is a bonus of the adoption of the
null correction factor κδ in Step 3 of Section 2.4, instead of the
usual RMCD correction (20).

We conclude that for multivariate outlier detection the iter-
ated reweighted MCD rule is the one to be preferred in most
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Table 4. Percentage of noncontaminated observations declared to be outliers by different
procedures, in the case n = 200, v = 5, and τ = 0.05, under the location-shift contamination

model. The nominal size for testing the simultaneous hypothesis (9) is γ = 0.01. The
cardinality h of the MCD subset is given by (3). Estimates on 5000 simulations

for each value of λ

λ = 0.0 λ = 2.0 λ = 2.2 λ = 2.4 λ = 2.6 λ = 2.8

IRMCD 0.019% 0.762% 0.868% 0.930% 0.931% 0.919%
RMCD 0.014% 0.009% 0.009% 0.009% 0.009% 0.008%
RMCD_ind 1.386% 0.984% 0.959% 0.974% 0.950% 0.941%

situations among the high-breakdown procedures considered in
this paper. It has the right size under the null hypothesis of no
outliers even in small samples and it shows excellent power
properties under different experimental settings and contamina-
tion schemes. Therefore, it is a considerable improvement over
the available MCD-based methodologies. The little price one
has to pay is a small proportion of false discoveries, bounded
by γ , when the simultaneous hypothesis (9) is false. For in-
stance, Table 4 reports the percentage of noncontaminated ob-
servations wrongly declared to be outliers at γ = 0.01, in the
case n = 200, v = 5, and τ = 0.05, under the location-shift con-
tamination model. The IRMCD rule induces approximately the
same proportion of false discoveries as RMCD_ind if λ > 0,
but the effect of swamping is negligible when (9) is true.

5. DATA ANALYSIS

Flury and Riedwyl (1988) introduce data on six variables
measuring the size and other features of 200 Swiss banknotes,
100 of which are genuine and 100 forged. We expect the qual-
ity control during the production of genuine notes to be much
tighter than that on forged notes, so that the null hypothesis of
no outliers should be reasonable for the first sample. On the
other hand, the group of forged notes is known to be heteroge-
neous, perhaps due to the action of different forgers. We ana-
lyze the two groups of banknotes separately and we compare
the performance of outlier detection methods for each of them.

The left-hand panel of Figure 4 shows the classical squared
Mahalanobis distances, computed from the unbiased estimators

of μ and �, for the sample of 100 genuine notes. As a cut-
off, we report the 1 − (1 − 0.01)1/100 percentage point of the
null scaled-Beta distribution of these distances. The right-hand
panel gives the corresponding robust reweighted distances (7),
with h as in (3). Three cut-off values are reported for the ro-
bust distances: the scaled-F cut-off of the FSRMCD procedure
with α = 1 − (1 − 0.01)1/100, the simultaneous RMCD cut-off
χ2

v,1−α with the same value of α, and the individual RMCD

cut-off χ2
v,1−0.01 (RMCD_ind). We do not display the thresh-

old provided by (18), which does not show any outlier among
the banknotes for which wi = 1. If H0s is true, classical and
robust distances should roughly give the same answer. Of the
robust procedures, only FSRMCD leads to accept (9) and to
rightly conclude that the data form a homogeneous sample, in
good agreement with the classical Mahalanobis distances. On
the contrary, the chi-square RMCD rules trim too much and
discard some genuine notes as forgeries. This effect, which may
be particularly severe for the PCER-controlling approach, could
lead to considerable waste of money if the robust distances were
used in an automatic procedure of banknote scanning for an-
tifraud purposes.

Figure 5 repeats the analysis for the group of forged ban-
knotes. Now the Mahalanobis distances completely break down
due to heavy contamination. Instead, the presence of many out-
liers is revealed by the FSRMCD test. The additional iteration
step of the IRMCD rule suggests the existence of a further bor-
derline unit, which is also signalled by the RMCD_ind crite-
rion. We conclude that in this contaminated sample the IRMCD

Figure 4. Genuine Swiss banknotes. Squared distances and cut-off values for multivariate outlier detection (γ = 0.01). Left-hand panel:
Mahalanobis distances. Right-hand panel: robust reweighted distances with h as in (3).
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Figure 5. Forged Swiss banknotes. Squared distances and cut-off values for multivariate outlier detection (γ = 0.01). Left-hand panel:
Mahalanobis distances. Right-hand panel: robust reweighted distances with h as in (3).

procedure has the same diagnostic power as repeated testing
of the n individual hypotheses (8) without multiplicity adjust-
ments. Therefore, our method proves to be as effective as the
currently available high-breakdown methodology when the data
contain outliers, but has a much more sensible behavior on un-
contaminated datasets. Also note that Willems, Joe, and Zamar
(2009) obtain an indication of 20 outliers for the group of forged
notes by use of the liberal χ2

v,0.975 cut-off for the squared raw
MCD distances (4), and reach conclusions similar to ours only
after application of a number of supplementary diagnostic tools.

6. CONCLUSION

We are interested in tests for multiple outlier detection with
good size properties when the data come from the multivariate
normal distribution and with high power against contamination.
Our results show that the currently available high-breakdown
methodology (Hubert, Rousseeuw, and Van Aelst 2008), which
relies on asymptotic arguments, fails to meet the first goal even
in relatively large samples. We suggest two novel multivariate
outlier detection rules, FSRMCD and IRMCD, that solve this
problem. Our procedures are based on accurate finite-sample
distributional results for the robust distances. Therefore, they
are able to attain the nominal size even in otherwise problem-
atic situations with n < 200. When outliers are present, both
FSRMCD and IRMCD are considerably more powerful than
the few available tests with similar size properties (Hardin and
Rocke 2005; Cerioli, Riani, and Atkinson 2009). We conclude
that, among the high-breakdown procedures considered in this
paper, our proposals provide the best balance between size and
power and are thus to be recommended.

The FSRMCD and IRMCD rules have the same behavior
under the null hypothesis of no outliers. They differ in their
attitude towards swamping. FSRMCD aims at controlling the
number of false outliers for any distribution that could have
generated the data. IRMCD tolerates a higher degree of swamp-
ing, but only when there is substantial evidence of contamina-
tion. The bonus of the latter approach is a considerable gain
in power. Indeed, we have seen that the power of IRMCD is
comparable to those of the potentially very liberal MCD-based
tests currently in use. However, there may be situations where

the acceptable degree of swamping could depend on the num-
ber of outliers found and not only on evidence of contami-
nation. In these situations, our distributional results are still
valid and can be used to develop outlier detection rules that
focus on alternative error rates, like the false discovery rate of
Benjamini and Hochberg (1995) and its extensions. Multivari-
ate outlier tests based on the FDR criterion are the subject of
ongoing research. Preliminary simulation evidence shows that
these tests will have power curves intermediate between those
of FSRMCD and IRMCD.

APPENDIX

Proof of Proposition 1

Under (9), the conditional distribution of yi|ωi = 1 is the distribu-
tion of a v-variate normal random vector y ∼ N(μ,�) truncated out-
side the set

E (1 − δ) = {y : (y − μ)′�−1(y − μ) ≤ χ2
v,1−δ}.

To this distribution we apply Tallis (1963) results on elliptical trunca-
tion and we obtain the parameters given in (13).

Proof of Proposition 2

Since μ and σ are known, we take μ = 0 and σ = 1 without loss of
generality. It is well known that

√
n
(
y(j) − F−1

n (1 − ε)
) → 0

almost surely, where Fn(·) is the sample distribution function. We thus
apply the Bahadur representation of F−1

n (1 − ε) to y(j):

y(j) = 1

n

n∑
l=1

zl + op

(
1√
n

)
,

where

zl = z1−ε + (1 − ε) − I(yl ≤ z1−ε)

φ(z1−ε)
,

I(·) is the indicator function and z1−ε is the 1 − ε quantile of N(0,1),
with density φ(z1−ε). Neglecting terms of order op( 1√

n
), the covari-
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ance of interest is

cov

(√
n

n

n∑
l=1

zl;
√

n

ωδ

n∑
i=1

yiωi

)
= n

nωδ

n∑
l=1

n∑
i=1

σil, (A.1)

where

σil = E

{
(1 − ε) − I(yl ≤ z1−ε)

φ(z1−ε)
yiI(d

2
i ≤ χ2

1,1−δ)

}

− E

{
(1 − ε) − I(yl ≤ z1−ε)

φ(z1−ε)

}
E{yiI(d

2
i ≤ χ2

1,1−δ)}.

For i = 1, . . . ,n, we have that

E{yiI(d
2
i ≤ χ2

1,1−δ)} =
∫

E (1−δ)
yiφ(yi)dyi = (1 − δ)μ = 0, (A.2)

by Tallis (1963) result on elliptical truncation. Applying (A.2) we ob-
tain

σil = E

{
(1 − ε) − I(yl ≤ z1−ε)

φ(z1−ε)
yiI(d

2
i ≤ χ2

1,1−δ)

}
.

We need to distinguish two separate cases in the evaluation of σil.
Case (a): i �= l. The observations yi and yl are independent. Also

the functions ϕ1(yi) = yiI(d2
i ≤ χ2

1,1−δ
) and ϕ2(yl) = I(yl ≤ z1−ε) are

thus independent. The covariance term σil becomes

σil = (1 − ε)(1 − δ)

φ(z1−ε)
μ − 1

φ(z1−ε)
E{ϕ1(yi)}E{ϕ2(yl)} = 0, (A.3)

applying (A.2) again.
Case (b): i = l. The covariance term now is

σii = (1 − ε)(1 − δ)

φ(z1−ε)
μ

− 1

φ(z1−ε)
E{yiI(yi ≤ z1−ε)I(d

2
i ≤ χ2

1,1−δ)}. (A.4)

Let L(1 − ε) = {y : y ≤ z1−ε}. The expectation in (A.4) is the expecta-
tion of y ∼ N(0,1) over the intersection region

I(1 − δ;1 − ε) = {y : y2 ≤ χ2
1,1−δ} ∩ {y : y ≤ z1−ε}

= E (1 − δ) ∩ L(1 − ε).

Note that E (1 − δ) is the intersection of two sets: E (1 − δ) = L(1 −
δ/2) ∩ R(δ/2), with L(1 − δ/2) = {y : y ≤ z1−δ/2} and R(δ/2) =
{y : y > zδ/2}. Therefore,

I(1 − δ;1 − ε) = L(1 − δ/2) ∩ R(δ/2) ∩ L(1 − ε) = E (1 − δ)

because ε < δ/2 and L(1 − δ/2) ⊂ L(1 − ε). The covariance term is

σii = (1 − ε)(1 − δ)

φ(z1−ε)
μ − 1

φ(z1−ε)

∫
E (1−δ)

yiφ(yi)dyi (A.5)

= − ε(1 − δ)

φ(z1−ε)
μ = 0. (A.6)

Finally note that

ωδ

n
= (1 − δ) + Op

(
1√
n

)
because ωδ ∼ Bin(n,1 − δ). Substituting (A.3) and (A.6) into Equa-
tion (A.1) and applying Slutski’s theorem to the denominator gives the
result.

[Received March 2009. Revised July 2009.]
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