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Abstract

Multivariate outlier identification requires the choice of reliable cut-off

points for the robust distances that measure the discrepancy from the fit

provided by high-breakdown estimators of location and scatter. Multiplicity

issues affect the identification of the appropriate cut-off points. It is described

how careful choice of the error rate which is controlled during the outlier

detection process can yield a good compromise between high power and low

swamping, when alternatives to the Family Wise Error Rate are considered.

Correspondingly, multivariate outlier detection rules based on the False

Discovery Rate and the False Discovery Exceedance criteria are proposed.

The properties of these rules are evaluated through simulation. The rules

are then applied to real data examples. The conclusion is that the proposed

approach provides a sensible strategy in many situations of practical interest.

Keywords: false discovery rate, false discovery exceedance, multiple

outliers, reweighted MCD, masking and swamping



1. Introduction

With multivariate data, multiple outliers are revealed by their large

distances from the robust fit provided by high-breakdown estimators of

location and scatter (Hubert et al., 2008). An important issue is the

occurrence of multiplicity problems when outlier detection is set up in a

statistical testing framework. Multiplicity arises because the candidate

outliers are not known in advance and all the observations are tested in

sequence starting from the most remote one. Different error rates may be of

interest when performing multiple tests. The multiplicity problem has not

been considered thoroughly in the literature about outlier detection, even

if there are notable exceptions like Davies and Gather (1993) and Becker

and Gather (1999), who define outward testing procedures and use Sidak

correction to guarantee that the level of swamping is below a threshold.

The goal of this paper is to show how carefully choosing the error

rate to be controlled in multiple outlier detection can provide a reasonable

compromise between good performance under the null hypothesis of no

outliers and high power under contamination. In particular, we focus on

multivariate outlier detection rules based on the False Discovery Rate (FDR)

of Benjamini and Hochberg (1995), on the False Discovery eXceedance (FDX)

of Lehmann and Romano (2005) and van der Laan et al. (2004), and we

compare the power of the resulting outlier tests with those of alternative

procedures attaining the same nominal size. We also evaluate the positive

FDR (pFDR) of the procedures (Storey, 2002, 2003). We conclude that

controlling these error rates, especially the FDR, can be a sensible strategy

for outlier identification in many situations of practical interest.
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The rest of the paper is as follows: in the remainder of this section

we briefly review the error rates which are of interest in multiple testing.

In Section 2 we set out our strategies for FDR and FDX control, and for

pFDR estimation, in multivariate outlier identification. The merits of these

strategies are illustrated with a simulation study in Section 3 and on two

motivating examples in Section 4.

1.1. Multiplicity control and outlier detection

Let yi be a v-variate observation with mean vector µ and covariance

matrix Σ. Our basic model explaining the genesis of yi is a two-components

mixture model of the kind: yi|zi ∼ Fzi
for some unobserved zi ∈ {0, 1}.

The clean observations arise from F0 ∼ N(µ, Σ), while the contaminated

observations are those for which zi = 1, with F1 arbitrary. Outlier detection

is stated in terms of testing n null hypotheses

H0i : yi ∼ N(µ, Σ), i = 1, . . . , n. (1)

Each test is performed by computing the squared robust distance

d2
i = (yi − µ̃)′Σ̃−1(yi − µ̃), (2)

where µ̃ and Σ̃ are high-breakdown estimators of µ and Σ. In this paper we

take µ̃ and Σ̃ to be the reweighted MCD (RMCD) estimators of Rousseeuw

and Van Driessen (1999).

Suppose that there are M0 clean observations and M1 contaminated ones.

R is the number of observations declared to be outliers, i.e. those for which

(1) is rejected. Table 1 summarizes the outcome of the outlier detection

process. The values of N0|1 and N1|0 determine the effects of masking and
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Table 1: Outcome in testing n observations for outlyingness

Null Hypotheses (1)

Not Rejected Rejected Total

True N0|0 N1|0 M0

False N0|1 N1|1 M1

Total n − R R n

swamping, respectively. Furthermore, the quantities in Table 1 are used to

define error rates, which are deemed to be under control when they are bound,

before the experiment, to be below a threshold α.

Traditional methods in multiple testing involve control of the Family Wise

Error Rate (FWER), defined as the probability of making one or more false

rejections. There is a plethora of methods for FWER control, the simplest

being Bonferroni correction, which consists in performing each individual test

at level α/n. Another simple, but slightly more powerful, one-step procedure

is Sidak correction, where each test is performed at level

γ = 1 − (1 − α)1/n. (3)

The observations selected after control of the FWER are all trusted to

be outliers. The main drawback of FWER control is its low power. The

consequences of FWER control may thus be close to those of masking.

A different approach is proposed by Benjamini and Hochberg (1995), who

define the False Discovery Rate (FDR):

FDR = E

[

N1|0

R
|R > 0

]

Pr(R > 0). (4)

The FDR is the expected proportion of erroneously rejected hypotheses, if

any. The method developed by Benjamini and Hochberg (1995) (BH) is a
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stepwise procedure which proceeds by rejecting all tests corresponding to p-

values below ρiα/n, where ρi is the rank of the i-th p-value. A very similar

error rate, the positive FDR (pFDR), is defined by Storey (2002, 2003) as

pFDR = E

[

N1|0

R
|R > 0

]

, (5)

thus restricting to the cases in which there is at least one rejection. The

pFDR has a nice Bayesian interpretation (Storey, 2003). It can be directly

controlled or, as we do in this paper, it can be estimated to further evaluate

the performance of any testing procedure. The pFDR is estimated by

p̂FDR =
âp(r)

r(1 − (1 − p(r))n)
, (6)

where r > 0 denotes the observed value of R, p(r) is the largest p-value

associated with rejected tests and â is an estimator of the number of true

null hypotheses. In this paper we use the Schweder and Spjøtvoll (1982)

estimator, and set â = 2(n − τ0.5), where τ0.5 denotes the count of p-values

smaller than or equal to 0.5.

Both (4) and (5) are based on an expectation, whereas the actual

proportion of false discoveries may be larger than α. Therefore, Lehmann

and Romano (2005) and van der Laan et al. (2004) independently define the

False Discovery eXceedance (FDX) as the probability of the false discovery

proportion being above a threshold, that is,

FDX = Pr

(

N1|0

R ∨ 1
> c

)

, (7)

where typically, and also in this paper, c = 0.1. We control the FDX using

the Lehmann and Romano (2005) (LR) procedure, which rejects all tests
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corresponding to p-values below (⌊ρic⌋ + 1)α/(n + ⌊ric⌋ + 1 − ri), where ⌊·⌋

is the integer part.

There is a plethora of other available methods, and error rates, for a

review of which we refer to Farcomeni (2008). An important feature for our

purposes is that Bonferroni and Sidak corrections provide strong control of

the FWER, which is bounded no matter the number and the configuration

of outliers. Instead, the procedures based on the FDR and FDX ensure weak

control of the FWER, which is then bounded only under the complete null

hypothesis of no outliers

H0 : ∩n
i=1H0i. (8)

The main consequence for outlier detection is that FDR (or FDX) control

provides a balance between ignoring multiplicity, as in Hardin and Rocke

(2005) or in Hubert et al. (2008), and strictly correcting for multiplicity

through FWER control, as in Becker and Gather (1999) or in Cerioli et

al. (2009). The improvement obtained by controlling (4) or (7) may be

particularly advantageous when n is high, or when many samples of moderate

size need to be analyzed in sequence. In such instances the total number of

hypotheses (1) to be tested will be large and the loss of power induced by

strong FWER control will become more relevant.

2. FDR and FDX rules for multivariate outlier detection

The performance of any outlier detection method with well-behaved data

sets is ruled by two basic elements:

a) availability of a good approximation to the unknown finite-sample null

distribution of the squared robust distances (2);
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b) correction for the multiplicity implied by repeated testing of the n

individual hypotheses (1).

Avoiding b) leads to identify a proportion α of false outliers in any good data

set, a situation that can have negative consequences in many applications

like the examples described in Section 4. Swamping effects are magnified

when component a) is also absent. Evidence that asymptotic distributions

may fit poorly even with sample sizes in the order of the hundreds is now

well documented and extends from the multivariate setting to regression:

see, e.g., Cerioli et al. (2009), Hardin and Rocke (2005), Maronna and Yohai

(2010) and Riani et al. (2009).

The Finite Sample RMCD detection rule (FSRMCD) developed by Cerioli

(2010a) addresses both a) and b). This methodology is able to control

the nominal size of the test of no outliers even when the ratio n/v is

very unfavourable (e.g. when n/v ≈ 5) and asymptotic approximations

fail. Being based on Sidak correction, the FSRMCD procedure aims at

providing strong control of the FWER. As remarked in §1.1, the main

drawback of this approach is its low power. A less stringent and more

powerful requirement is weak control of the FWER, one example of which is

the Iterated RMCD (IRMCD) procedure, also proposed by Cerioli (2010a).

The IRMCD methodology consists in adding a further iteration step without

multiplicity adjustment when FSRMCD suggests the presence of at least one

outlier. The associated degree of swamping is controlled when there is no

evidence of contamination. If at least one outlier is found, however, the

proportion of false outliers will rise up to almost α.
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Control of the FDR can provide a better balance, since it puts a bound

on the expected proportion of false outliers. The key issue when the FDR

is controlled in the outlier detection process is that the acceptable degree of

swamping is allowed to depend on the number of selected outliers, not just on

evidence of contamination. This is particularly useful when some swamping

can be permitted provided that the number of outliers is high: the focus is

not on each single outlier, but on the set of selected outliers. When the FDX

is controlled, the probability that the proportion of false discoveries exceeds

c is bounded, guaranteeing that this proportion is low with high probability.

This view suggests the adoption of multiplicity-adjusted procedures for

multivariate outlier detection that focus on the FDR and on the FDX criteria.

Our finite-sample proposals based on the RMCD estimators, FDR-RMCD

and FDX-RMCD for short, are given below. They assume that the clean

part of the data comes from N(µ, Σ), as in (1). This assumption is not

uncommon: see, e.g., Hardin and Rocke (2005), Morgenthaler (2007), Pison

et al. (2002) and Todorov and Filzmoser (2010). Furthermore, Cerioli (2010b)

shows how the normality assumption can be robustly checked using the same

distributional results used in Step 4 below.

The FDR-RMCD and FDX-RMCD rules are made of five steps.

Step 1. Set the coverage h of the MCD subset. Typical choices are

h =

⌊

n + v + 1

2

⌋

≈ 0.5n (9)

and

h = ⌊2⌊
n + v + 1

2
⌋ − n + 1.5(n − ⌊

n + v + 1

2
⌋)⌋ ≈ 0.75n. (10)

Compute the raw MCD estimators of location and scatter, using the

algorithm of Rousseeuw and Van Driessen (1999). Apply to the estimator of
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scatter both the consistency and the finite sample corrections described by

Pison et al. (2002).

Step 2. Compute the weights wi, i = 1, . . . , n, with wi = 1 if the MCD

squared distances are below the 0.975 quantile of the scaled F distribution

of Hardin and Rocke (2005), and wi = 0 otherwise. Let m =
∑n

i=1 wi.

Step 3. Compute the RMCD estimators:

µ̃(RMCD) =
1

m

n
∑

i=1

wiyi;

Σ̃(RMCD) =
0.975

Pr(χ2
v+2 < χ2

v,0.975)

n
∑

i=1

wi(yi − µ̃(RMCD))(yi − µ̃(RMCD))
′

m − 1
,

where the first term of Σ̃(RMCD) is a consistency factor corresponding to a

nominal trimming of 2.5% in Step 2.

Step 4. Compute the squared reweighted distances

d2
i(RMCD) = (yi − µ̃(RMCD))

′Σ̃−1
(RMCD)(yi − µ̃(RMCD)) i = 1, . . . , n

and assume for each of them the distribution:

d2
i(RMCD) ∼

(m − 1)2

m
Beta(

v

2
,
m − v − 1

2
) if wi = 1 (11)

∼
m + 1

m

(m − 1)v

m − v
Fv,m−v if wi = 0. (12)

Step 5. Compute p-values for the squared reweighted distances d2
i(RMCD),

using their reference distribution in Step 4. Control the FDR using the BH

procedure or the FDX using the LR procedure. The rejected hypotheses

correspond to the outliers. If desired, estimate the pFDR using (6).

Step 1 is also implemented in function covMcd of the R package

robustbase. Steps 2–4 mimic those of the FSRMCD procedure of Cerioli
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(2010a) and ensure an accurate approximation to the unknown null

distribution of the squared RMCD distances. The robust outlier detection

problem then allows for use of the standard FDR or FDX controlling

procedures in Step 5. To our knowledge this is a substantially new proposal

for the purpose of multiple outlier detection, whose merits are evaluated

in the next sections. For the moment, we note that a crucial requirement

for proper error rate control in real life situations is that the p-values

actually follow the uniform distribution. Therefore, the applicability of

Step 5 is intimately related to the existence of a good approximation to the

null distribution of the squared robust distances d2
i(RMCD), which is indeed

provided by Steps 2–4.

A final issue regards the potential problem of dependence among the n

squared distances d2
i(RMCD), which are based on the same estimates µ̃(RMCD)

and Σ̃(RMCD). In general, it is known that Bonferroni procedure is robust with

respect to arbitrary dependence of the test statistics, Sidak procedure with

respect to positive dependence, BH procedure both with respect to positive

(Benjamini and Yekutieli, 2001) and weak (Farcomeni, 2007) dependence,

and that LR procedure is also robust with respect to certain forms of

dependence (Lehmann and Romano, 2005). We now show a simulation to

provide empirical confirmation of the minor impact of dependence on the

multiple testing corrections.

For a given test, let α be the FWER under the complete null, that is,

α = Pr(N1|0 ≥ 1|M0 = n), (13)

in the notation of Table 1. Let α̂1(γ) be the Monte Carlo estimate of the

right-hand side of (13) when each hypothesis (1) is tested at nominal size γ.
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If the test statistics are independent, we also obtain α = 1 − (1 − γ)n from

Sidak relationship (3). Therefore, under independence, we can compute an

alternative estimate of α as

α̂2(γ) = 1 − (1 − γ̂)n,

where γ̂ is the Monte Carlo estimate of E[N1|0]/n when each H0i is tested at

nominal size γ. If the n tests are independent, α̂1(γ) and α̂2(γ) should be

approximately equal. We then compute the ratio

α̃(γ) =
α̂1(γ)

α̂2(γ)

as our measure of the effect of dependence when each individual test of (1) is

performed at nominal size γ. Table 2 reports the values of α̃(γ) obtained from

5000 simulations run under (8) with different values of n and v. Due to affine

invariance of the RMCD distances, we take µ = 0 and Σ = I. We choose γ

to give a nominal α = 0.05 in equation (3). The effect of dependence among

the squared robust distances d2
i(RMCD) is seen to be minor, even in moderately

small samples.

We also computed Monte Carlo estimates of the average rank correlation,

a resistant measure of dependence (Croux and Dehon, 2010), between

d2
i(RMCD) and d2

i′(RMCD), for i 6= i′. Our simulations show this measure to be

generally smaller in magnitude than −1/(n − 1), the theoretical correlation

between two squared classical Mahalanobis distances. We thus conclude that

dependence is not a major issue for multiple outlier detection, unless perhaps

when n is very small. In that case, the BH and LR procedures adopted in

Step 5 of our proposed rules could be replaced by alternative techniques, like
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Table 2: Dependence measure α̃(γ), for γ = 0.05. A value of α̃(γ) close to 1 indicates that

the effect of dependence among the squared robust distances d2
i(RMCD) is negligible.

n = 90 n = 125 n = 200 n = 400

v = 5 0.96 0.97 0.97 1.00

v = 10 0.97 0.98 1.01 0.99

v = 15 0.96 0.99 1.01 1.01

those of Benjamini and Yekutieli (2001) and Lehmann and Romano (2005),

that are able to control the FDR and the FDX under arbitrary dependency.

3. Enemy brothers: power and swamping

We now show the results of a simulation experiment run under the

location-shift contamination model N(µ + λe, Σ), where λ is a positive

scalar and e is a column-vector of ones. In our study, a proportion ω of

observations come from the location-shift contamination model, while the

remaining n(1 − ω) observations come from the null N(µ, Σ) model. We

call ω the contamination rate. We also define power to be the proportion

of contaminated observations correctly labelled as outliers. Without loss of

generality, we assume that µ = 0 and Σ = I.

In order to show the behaviour of the methods in absence of outliers, Table

3 provides the results for λ = 0. Each entry in this table is the estimated size

of the test of no outliers, given in (13), for a nominal α = 0.05. Both FDR-

RMCD and FDX-RMCD display good null performance. They can thus be

compared to the available FSRMCD and IRMCD procedures from the point

of view of power.
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Table 3: Estimated sizes of the test of no outliers for a nominal α = 0.05. Simulation

settings as in Figures 1 and 2.

FDR-RMCD FDX-RMCD FSRMCD IRMCD

n = 200 and v = 10 0.044 0.044 0.048 0.048

n = 2000 and v = 50 0.045 0.045 0.045 0.045

We first examine the power performance of FDR-RMCD and FDX-

RMCD in the case n = 200 and v = 10, a setting similar to the structure of

the glass data of Section 4.1. In situations where the expected proportion of

contaminants is not very high, it is often suggested to go for a compromise

between robustness and efficiency. Therefore, in our experiment we choose

h as in (10) if ω ≤ 0.10, and h equal to (9) otherwise. We base our power

estimation on 500 simulations.

Figure 1 and Table 4 display the results obtained for different shifts λ and

contamination rates ω. In this framework, where n is not high, the gain in

power provided by FDR control with respect to FWER control is moderate

for ω = 0.02, but grows for larger contamination rates. The number of false

detections for FDR-RMCD generally increases with ω and λ, but it is still

comparable to that of FSRMCD. On the other hand, the degree of swamping

provided by IRMCD approaches 5% when λ grows. For small values of

ω, FDX-RMCD is practically indistinguishable from FSRMCD. When ω is

larger, FDX-RMCD provides a gain in power with respect to FSRMCD, still

anyway quite below FDR-RMCD.

Figure 2 compares power when there is a large data structure. In

particular, here n = 2000, v = 50 and power is estimated on 200 simulations
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Figure 1: Power of FDR-RMCD, FDX-RMCD, FSRMCD and IRMCD under a

multivariate location-shift contamination model, for n = 200 and v = 10. Nominal

α = 0.05. Upper panels: ω = 0.02 (left) and ω = 0.05 (right). Lower panels: ω = 0.10

(left) and ω = 0.15 (right). Power is estimated on 500 simulations for each ω and λ.

for each value of λ and ω. Again, the good compromise behaviour of FDR-

RMCD stands out clearly among the alternative procedures. As expected,

the gain in power provided by FDR and FDX control with respect to

FSRMCD is higher for larger n.

The counts reported in Table 4 for the case n = 2000 make clear the

rationale of FDR control, which allows a larger number of false detections

when the number of outliers increases. Note that the number of false

discoveries that must be tolerated by using IRMCD in this setting can be
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Table 4: Estimated number of non-contaminated observations wrongly declared to be

outliers. Simulation settings as in Figures 1 and 2. The first row of each procedure refers

to the case ω = 0.02 for n = 200 and to the case ω = 0.01 for n = 2000. The other rows

refer to ω = 0.05 and ω = 0.10 for both sample sizes.

n = 200, v = 10 n = 2000, v = 50

λ = 1.2 λ = 1.6 λ = 2.0 λ = 0.8 λ = 1.0 λ = 1.2

FDR-RMCD 0.07 0.18 0.21 0.12 0.64 0.97

0.09 0.32 0.47 0.11 3.17 4.37

0.07 0.45 0.87 0.05 4.62 8.38

FDX-RMCD 0.05 0.07 0.04 0.06 0.07 0.08

0.04 0.03 0.07 0.03 0.17 0.44

0.04 0.05 0.12 0.05 0.28 0.87

FSRMCD 0.05 0.07 0.04 0.06 0.05 0.04

0.04 0.03 0.04 0.03 0.06 0.03

0.04 0.04 0.05 0.05 0.06 0.07

IRMCD 3.59 8.33 9.42 67.3 94.1 94.5

3.68 8.62 9.00 47.6 87.9 89.0

2.11 6.99 8.19 6.37 79.2 82.9

in the order of one hundred. In applications like the example of Section

4.2, the consideration of such a high degree of swamping may supersede the

appreciation of the resulting gain in power. The same conclusion holds for

other outlier detection methods that do not take multiplicity into account

with large data sets; see, e.g., Filzmoser et al. (2008).

Finally, Table 5 gives the error rates (4), (6) and (7) for the proposed

rules FDR-RMCD and FDX-RMCD. Note that the reported FDR and FDX

are Monte Carlo estimates, not available in applications, while p̂FDR is the
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Figure 2: Power of FDR-RMCD, FDX-RMCD, FSRMCD and IRMCD under a

multivariate location-shift contamination model, for n = 2000 and v = 50. Nominal

α = 0.05. Upper panels: ω = 0.01 (left) and ω = 0.05 (right). Lower panels: ω = 0.10

(left) and ω = 0.15 (right). Power is estimated on 200 simulations for each ω and λ.

average estimate of the pFDR, which is then available on real data. We have

two remarks. The first regards FDX-RMCD, which often controls the FDX

at a level well below the nominal 0.05. This drawback reflects the behaviour

of the LR procedure implemented in Step 5 and could be overcome with less

conservative corrections, like those of Farcomeni (2009) and Guo and Romano

(2007). Our second remark concerns p̂FDR: when n and ω are small, this

estimate is often quite large, indicating that when some outliers are identified,

a large proportion of them is likely false. The FDR is still controlled since in
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many cases there actually are no rejections. On the other hand, when n or ω

are larger, the estimated pFDR drops. It finally equates the FDR when, due

to the large number of observations and/or to the high contamination, we

almost always reject the complete null (8). In applications, the pFDR can

for instance be used as a second level of control: if some outliers are detected

but p̂FDR is large, one could better use FSRMCD. Note that the estimated

pFDR is larger for FDX-RMCD than for FDR-RMCD when n = 200.

Table 5: Estimated error rates for FDR-RMCD and FDX-RMCD. Simulation settings as

in Figures 1 and 2. The reported contamination rates are the same as in Table 4. First

entry in each cell: FDR; second entry: pFDR; third entry: FDX

n = 200, v = 10 n = 2000, v = 50

λ = 1.6 λ = 2.0 λ = 1.0 λ = 1.2

FDR-RMCD 0.05; 0.51; 0.14 0.04; 0.28; 0.19 0.04; 0.11; 0.16 0.05; 0.07; 0.11

0.04; 0.25; 0.19 0.04; 0.11; 0.12 0.04; 0.08; 0.03 0.04; 0.04; 0.00

0.03; 0.21; 0.12 0.04; 0.07; 0.08 0.04; 0.13; 0.00 0.04; 0.05; 0.00

FDX-RMCD 0.03; 0.62; 0.07 0.01; 0.33; 0.04 0.01; 0.15; 0.03 0.01; 0.06; 0.00

0.01; 0.36; 0.03 0.01; 0.12; 0.01 0.01; 0.03; 0.00 0.01; 0.01; 0.00

0.01; 0.31; 0.02 0.01; 0.06; 0.01 0.01; 0.05; 0.00 0.01; 0.01; 0.00

4. Data Analysis

We outline two real data examples, on which we demonstrate the

usefulness of multiplicity corrections. Both examples might also be seen

as classification situations, for which alternative solutions are available.

The outlier detection framework, with respect to many classifiers, has the
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disadvantage that we must use assumptions on the sample. Nevertheless, we

believe that our approach is worthwhile in these examples for several reasons.

First, with statistical classifiers it may be hard to probabilistically control

rates of false positives and false negatives. Usually one builds classifiers

so that the estimated false positive and/or false negative rate is below a

threshold, but this does not guarantee that the expected rate will be below

that threshold. On the contrary, if each object is tested and a Type I error

rate controlled, the rate of false positives will be probabilistically controlled

on the real data. For instance, the power of classification methods reported

for the data of our second example is usually higher than that given by

FDR-RMCD (Hastie et al., 2009, p. 301), but at the price of a proportion

of false positives of about 4%, and out of control before the experiment.

Furthermore, although µ̃(RMCD) and Σ̃(RMCD) can resist to the presence of

nearly n/2 outliers, in many applications the group of contaminants will be

much smaller than that of clean observations. Classifiers often perform poorly

in presence of imbalance, for instance ending up by assigning all observations

to the larger group (Owen, 2007). We also note that in certain cases outlier

detection goes beyond the classification task. In the first example we propose,

contamination by glass ceramic is the only registered and the most important

one, but there may be other unknown potential sources of contamination

under which classification methods could break down.

4.1. Quality control: recycling

In production factories batches are often scanned for defective or alien

items. Outliers must be identified individually so that they can be

substituted. Hence, a high degree of swamping results in unnecessary
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discarding of items, or even of entire batches, with considerable loss of

money. FDR and FDX controlled outlier detection rules then arise as natural

candidates in order to guarantee the required compromise between high

power and acceptable swamping.

We illustrate this problem on a data set with n = 112 observations

discussed from a different perspective in Farcomeni et al. (2008). Our

example concerns recycling of glass. It is common that glass collected for

recycling is still polluted from ceramic glass fragments, which are practically

undistinguishable for many automatic sorting devices. The presence of

ceramic glass can significantly affect the quality of the recycled glass, since

the contaminant has a higher melting point. We thus apply multivariate

outlier detection methods with the goal of separating ceramic glass (and other

contaminants) from the bulk of “good” observations referring to true glass.

The input data consist of the log of v = 11 spectral measures recorded for

each fragment, after adjusting for multicollinearity. Of the 112 observations

in our sample, n1 = 109 are glass fragments and n2 = 3 are contaminated

ceramic glass fragments. The contamination rate is close to the expected

proportion of outliers in a recycling plant, after manual sorting.

Table 6 summarizes our results when α = 0.05 and h is given by

(10). The FSRMCD and FDX-RMCD procedures fail to detect 2/3 of

the contaminants. On the other hand, all the ceramic glass fragments are

identified by IRMCD and FDR-RMCD. FDR-RMCD anyway provides a

more careful balance between power and swamping, since the number of

falsely rejected glass fragments is much lower than that caused by IRMCD

(4 instead of 12). Note also that FDR-RMCD has the lowest estimated
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pFDR. Figure 3 shows a boxplot of the squared robust distances d2
i(RMCD),

with those of the three ceramic glass fragments marked by a cross. A line

indicates the cut-off value set by each method (FDX-RMCD and FSRMCD

yield the same cut-off). It is clear that a minimum of 3 false detections is

needed in order to identify all the outliers. FDR control leads to almost the

minimal swamping, while IRMCD succeeds in detecting all the contaminated

objects but at the price of setting the distance threshold too low.

The empirical evidence of this example is that FDR-RMCD may improve

over FSRMCD even when n is relatively small. In fact, FDR control scales

with respect to the number of rejections, not to the number of tests. On the

other hand, FSRMCD would be able to detect all the three ceramic glass

fragments only if α ≈ 0.1, an error rate which seems hard to justify before

seeing the data. Larger, and thus even less justifiable, values of α will be

required by FSRMCD with larger sample sizes.

Table 6: Results of the FDR-RMCD, FDX-RMCD, FSRMCD and IRMCD procedures for

the glass data. Nominal α = 0.05.

Detected Contaminated Fragments False Detections p̂FDR

FDR-RMCD 3/3 4/109 0.177

FDX-RMCD 1/3 3/109 0.246

IRMCD 3/3 12/109 0.613

FSRMCD 1/3 3/109 0.246

4.2. Detection: Spam

We illustrate a large sample application on an example of spam detection.

We pre-processed a data set publicly available on the UCI Machine Learning

20



0
20

40
60

ro
bu

st
 r

ew
ei

gh
te

d 
sq

ua
re

d
di

st
an

ce
s

FSRMCD
FDR−RMCD
IRMCD

Figure 3: Boxplot of the squared distances d2
i(RMCD) for the glass example, with those

of the three contaminated units marked by a cross. The horizontal lines are the cut-off

values set by FSRMCD, IRMCD, FDX-RMCD and FDR-RMCD for α = 0.05.

Repository. We have a total of n = 2486 emails, thirty of which are spam,

and v = 20 variables. The variables measure characteristics of the email

which could indicate its being a clean email or a spam, and include counts

of occurrences of particular strings. In order to symmetrize the data, we

add one unit to each count and we log-transform. The processed data set

can be downloaded from http://afarcome.interfree.it/spam20.dat; the

first thirty rows correspond to spam emails.

Similarly to the glass data of Section 4.1, a small to moderate fraction of

contaminated data can be expected in almost all “batches” of email. Since

swamping is a strong concern in spam detection, we now set α = 0.01. We

then apply our methods, and report the results in Table 7. FSRMCD leads to

no swamping, but the number of detected spam messages is very low. This
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Table 7: Results of the FDR-RMCD, FDX-RMCD, FSRMCD and IRMCD procedures for

the spam data. Nominal α = 0.01.

Detected Spam Messages False Detections p̂FDR

FDR-RMCD 13/30 27/2456 0.032

FDX-RMCD 5/30 0/2456 0.183

IRMCD 20/30 202/2456 0.207

FSRMCD 5/30 0/2456 0.183

feature of FSRMCD is expected to become more and more visible as the

number of available emails increases. FDX-RMCD yields the same results as

FSRMCD. As before, FDR-RMCD and IRMCD seem to work relatively well

in detecting contaminated objects, with IRMCD performing slightly better

than FDR-RMCD. On the other hand, the number of messages wrongly

marked to be spam by IRMCD is not acceptable, while FDR-RMCD succeeds

in keeping a good balance between power and swamping. Once again, the

estimated pFDR is lowest for FDR-RMCD.

Since in this application the acceptable level of swamping may depend

on the personal preferences of the user, we can repeat the analysis by

decreasing α. We note that using α = 0.001 leads also the FDR-

RMCD (but not the IRMCD) to zero swamping. Correspondingly, the

proportion of detected spam messages obviously decreases, but FDR-RMCD

still dominates FSRMCD in terms of power. With α = 0.001, FDX-RMCD

leads to the same results as FDR-RMCD.

We conclude that in this application, and in general when the number of

units is in the order of the thousands and swamping is a major concern, FDR
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control is to be recommended for multiple outlier detection. A very small

level α may make also FDX-RMCD suitable.

5. Conclusions

In this paper we have explored alternative ways to reconcile the two

opposite goals of multivariate outlier detection: achieving high power under

contamination and ensuring low swamping with well behaved data. We

have shown that the choice among the alternative methodologies mainly

depends on the user attitude towards swamping. The FSRMCD and IRMCD

procedures proposed by Cerioli (2010a) have opposite performances. With

FSRMCD the level of swamping is kept under control for any number

and configuration of contaminated observations, but at the expense of a

potentially considerable loss of power. On the contrary, the powerful IRMCD

method becomes the best choice if having 1% or 5% of false outliers is an

acceptable price to pay under a contamination model.

The main proposals of this paper are the FDX-RMCD and FDR-RMCD

detection rules, based on control of recently developed error rates for

multiplicity correction. We have investigated their power and swamping

properties in different settings. Our conclusion is that they stand out as a

sensible compromise between FSRMCD and IRMCD. They can thus provide

an appealing strategy in many situations of practical interest, especially for

what concerns FDR-RMCD.
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