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I. Frontier Models and Efficiency Measures
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The Frontier Model -1-

∙ Economic Theory Koopmans (1951), Debreu (1951): “Activity Analysis”

– x ∈ ℝ
p
+ vector of inputs

– y ∈ ℝ
q
+ vector of outputs

– Production set Ψ of physically attainable points (x, y):

Ψ = {(x, y) ∈ ℝ
p+q
+ ∣ x can produce y}.

∙ The input (output) correspondence sets

– Ψ can be described by its sections:

∀ y ∈ Ψ, X(y) = {x ∈ ℝ
p
+ ∣ (x, y) ∈ Ψ}

∀ x ∈ Ψ, Y (x) = {y ∈ ℝ
q
+ ∣ (x, y) ∈ Ψ}.

– We have

∀(x, y) ∈ Ψ , x ∈ X(y) ⇔ y ∈ Y (x).
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∙ Top panel: Production set Ψ for p = q = 1.

∙ Bottom Panels: Correspondence sets X(y) and Y (x) for p = 2 and q = 2



Nonparametric Frontier Estimation: recent developments and new challenges 6'
&

$
%

The Frontier Model -2-

∙ Usual Assumptions (a.o.): (Shephard, 1970)

– Free Disposability of inputs and outputs

∀(x, y) ∈ Ψ, then if x′ ≥ x, y′ ≤ y, (x′, y′) ∈ Ψ

– Convexity: if (x1, y1), (x2, y2) ∈ Ψ, then for all � ∈ [0, 1] we have:

(x, y) = �(x1, y1) + (1− �)(x2, y2) ∈ Ψ

– No Free Lunches: (x, y) /∈ Ψ if x = 0 and y ≥ 0, y ∕= 0.

∙ Farrell-Debreu Efficiency scores

radial measures of distance to the boundary of Ψ

– Input oriented: �(x, y) = inf{� ∣ (�x, y) ∈ Ψ} ≤ 1

– Output oriented: �(x, y) = sup{� ∣ (x, �y) ∈ Ψ} ≥ 1
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The Frontier Model -3-

∙ Extensions

– Hyperbolic Distances: adjusts simultaneously input and output levels

(Färe et al., 1985, Färe and Grosskopf, 2004).


(x, y∣Ψ) = sup{
 > 0∣(
−1x, 
y) ∈ Ψ}.

– Directional Distances: Projection of (x, y) onto the technology frontier in a

direction d = (−dx, dy). (Chambers et al., 1998, Färe and Grosskopf, 2000).

�(x, y∣dx, dy,Ψ) = sup{�∣(x − �dx, y + �dy) ∈ Ψ}.

∗ Additive: allow negative values of x and/or y.

∗ Special cases:

⋅ If d = (−x, 0) with x > 0: �(x, y∣dx, dy,Ψ) = 1 − �(x, y∣Ψ)−1

⋅ If d = (0, y) with y > 0: �(x, y∣dx, dy,Ψ) = �(x, y∣Ψ)−1 − 1
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The Frontier Model -4-

∙ Under free disposability, characterization of the technology

– �(x, y∣dx, dy,Ψ) ≥ 0 if and only if (x, y) ∈ Ψ

– �(x, y∣dx, dy,Ψ) = 0 if (x, y) is on the frontier.
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∙ Presentation today and below: Radial cases, but can be extended (Wilson,

2011, Simar and Vanhems, 2010, Simar, Vanhems and Wilson, 2011)
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II. The Statistical Paradigm
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The Statistical Paradigm

∙ In practice, Ψ is unknown

⇒ �(x, y) and/or �(x, y) are also unknown.

∙ Estimation based on a sample X = {(xi, yi), i = 1, . . . , n}
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The Statistical Paradigm -2-

∙ Different Approaches

– Deterministic Frontiers: Prob {(xi, yi) ∈ Ψ} = 1, pour tout i = 1, . . . , n.

∗ No noise on the data, no random shocks . . .

∗ Distance to frontier is pure inefficiency.

∗ Drawback: sensitivity to outliers (superefficient units or errors)

– Stochastic Frontiers

∗ Random noise: some observations may /∈ Ψ.

∗ Distance to frontier has 2 components (noise and inefficiency)

∗ Drawback: identification problems

∙ Different Models: for frontier function and for the law of (X, Y ), F (x, y)

– Parametric Models: very restrictive, standard methods (MLE, OLS,. . . )

e.g. SFA Yi = �′Xi + Vi − Ui, where Vi ∼ N(0, �2
V ), Ui ∼ N+(0, �2

U), indep.

– Nonparametric Models: very flexible but more difficult and more challenging.
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Choosing a Model: A Summary

Models Parametric P Nonparametric NP
Deterministic D Analytical models for frontier No specific model for frontier

and for F (x, y) and for F (x, y)

Stochastic S Analytical models for frontier No specific model for frontier

for F (x, y) including noise and for F (x, y) including noise

(Some structure on noise)

Remarks:

– D ⊆ S and P ⊆ NP

– Horizontal and Vertical comparisons are legitimate and may be useful.

– Semiparametric Models: combine P and NP (see below)
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Choosing a Model: Inference

Inference is: Parametric P Nonparametric NP
Deterministic D Very Easy Easy

COLS, MOLS, MLE (restrictive) FDH: F̂n(x, y) ⇒ F (x, y)

Two-stages: P fit of NP DEA: convexify FDH

Bootstrap for efficiency scores Bootstrap

Stochastic S Easy Complicated

MOLS, MLE (restricted models) Identification problems

Identification problems (deconvolution problem)

(noise vs inefficency) Localizing P and SFDH/SDEA

Sensitivity: Bagging Semi-(non)parametric models

Bootstrap is needed everywhere!
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One Example

Efficiency Analysis of Air Controlers (Mouchart and Simar, 2002).

Data are available on the activity of 37 european air controler units in 2000,

∙ four outputs:

– total flight hours controlled,

– number of air movements controlled,

– number of sectors controlled and

– sum of sector hours worked.

∙ two inputs:

– the number of air controllers in EFT and

– the total number of hours worked by air controlers.

∙ For the example: aggregated in one output and one input
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The Statistical Paradigm -3-

∙ Statistical Inference

– Estimation individual inefficiencies (“rankings”)

– Confidence intervals for these measures

– Specification tests

∗ Aggregation of inputs and/or outputs

∗ Relevance of the chosen variables

– Hypothesis testing on the shape of the efficient frontier (“technology”)

∗ Convexity

∗ Returns to scale (increasing/decreasing/constant)

– Evolution over time

∗ Panel data

∗ Gain or loss of productivity?

∗ Technical progress or gain of efficiency?
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The Literature

∙ Parametric deterministic or stochastic frontier models: hundreds of

papers in Econometric literature (Journal of Econometrics,. . . )

Easier but are the parametric assumptions reasonable ones?

∙ Nonparametric deterministic frontier models: thousands of papers in

hundreds of different journals (Management sciences, OR, Econometrics)

Very popular (flexibility) but some drawbacks (see below).

∙ Nonparametric stochastic frontier models: very recent, very few

applications (theoretical econometric literature)

Flexible but so far, hard to use: “work in progress”. . .

∙ Applications: Banks, Transports (Air, Railways,. . . ), Public Services, Municipalities, Post,

School, Education, Research, University, Insurance, Hospitals, Finance, Mutual funds,

Industry, Electric plants, Food industry, Agronomy, Macroeconomic, Economy of development,

Regional economy,. . . (Journal of Productivity Analysis)
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III. Nonparametric Approaches
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Nonparametric Estimators: FDH -1-

∙ Envelopment Estimators: estimate Ψ by Ψ̂ which “envelops” at best the

cloud of n data points X .

∙ Free Disposal Hull: FDH Deprins, Simar, Tulkens (1984)

Ψ̂FDH(X ) =
{
(x, y) ∈ ℝ

p+q
+ ∣y ≤ yi, x ≥ xi, (xi, yi) ∈ X

}

∙ FDH efficiency scores

�̂(x0, y0) = inf{� ∣ (�x0, y0) ∈ Ψ̂FDH(X )}
�̂(x0, y0) = sup{� ∣ (x0, �y0) ∈ Ψ̂FDH(X )}.

∙ Practical computations: fast and easy (sorting algorithms)

– The set dominating points: D0 = {i ∣ (xi, yi) ∈ X , xi ≤ x0, yi ≥ y0}

�̂(x0, y0) = min
i∈D0

max
j=1,...,p

(
x
j

i

x
j
0

)
; �̂(x0, y0) = max

i∈D0

min
j=1,...,q

(
y
j

i

y
j
0

)



Nonparametric Frontier Estimation: recent developments and new challenges 22'
&

$
%

Nonparametric Estimators: FDH -2-
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FDH estimator Ψ̂FDH of the production set Ψ: the ∙ are the observations.
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Nonparametric Estimators: DEA -1-

∙ Data Envelopment Analysis: DEA If Ψ is convex:

– Take the convex hull of Ψ̂FDH (Farrell, 1957, Charnes, Cooper and Rhodes,

1978)

Ψ̂DEA = {(x, y) ∈ IRp+q∣y ≤
n∑

i=1


iyi; x ≥
n∑

i=1


ixi for (
1, . . . , 
n)

such that

n∑

i=1


i = 1; 
i ≥ 0, i = 1, . . . , n}.

∙ Estimation of efficiency score

�̂(x, y) = inf{� ∣ (�x, y) ∈ Ψ̂DEA(X )}
�̂(x, y) = sup{� ∣ (x, �y) ∈ Ψ̂DEA(X )}

∙ Computation through linear programs.

Available free software: FEAR (Wilson, 2008)
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Nonparametric Estimators: DEA -2-
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Nonparametric Estimators: DEA -3-
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Statistical Inference: State of the Art -1-

Properties: recent survey, Simar and Wilson (2008)

∙ Consistency and rate of convergence:
(
�̂(x, y)− �(x, y)

)
= Op(n

−�), as n → ∞?

– FDH: Korostelev, Simar and Tsybakov (1995a) and Park, Simar and Weiner

(2000). Rate is n−1/(p+q).

Recent Extensions: Daouia, Florens and Simar (2010)

– DEA: Korostelev, Simar and Tsybakov (1995b) and Kneip, Park and Simar

(1998). Rate is n−2/(p+q+1). Park, Jeong and Simar (2010) (CRS case), rate is

n−2/(p+q).

∙ Nice! but not very useful for the practitionners.

∙ Curse of dimensionality: bad rates if p+ q ↑.
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Statistical Inference: State of the Art -2-

Is Inference possible ?

∙ Asymptotic sampling distribution:

n�
(
�̂(x, y)− �(x, y)

)
∼ Q(�), as n → ∞?

– FDH: Park, Simar and Weiner (2000), Badin, Simar (2009), Daouia, Florens

and Simar (2010); Q(�) is a Weibull distribution with unknown

parameters to be estimated: not easy to handle and need large sample sizes if

p+ q increases.

– DEA: Gijbels, Mammen, Park and Simar (1999), Kneip, Simar and Wilson

(2008), Park, Jeong, Simar (2010); Q(�) is a Regular distribution

depending on unknown parameters but no closed forms available (untractable

for practical purposes) when p or q > 1.

∙ No hope ? Yes: the bootstrap.
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The Bootstrap -1-

Basic Idea

∙ The “Real World” : The Data Generating Process P
(xi, yi) in X are realizations of iid random variables (X, Y ) with probability

density function f(x, y) with support Ψ, and Prob
(
(X, Y ) ∈ Ψ

)
= 1.

– Ψ̂(X ) is an estimator of Ψ (FDH or DEA)

– �̂(x, y) = inf{� ∣ (�x, y) ∈ Ψ̂(X )} is an estimator of �(x, y)

∙ The “Bootstrap World” : Consider a DGP P̂ , a consistent estimator of P .

We can use Ψ̂(X ) (FDH or DEA) and some appropriate f̂(x, y) with support

Ψ̂(X ), and Prob
(
(X, Y ) ∈ Ψ̂(X )

)
= 1.

∙ Bootstrap Analogy:

Define a new data set X ∗ = {(x∗
i , y

∗
i ), i = 1, . . . , n} drawn from P̂ .

– Ψ̂(X ∗) is an estimator of Ψ̂(X ): here, Ψ̂(X ∗) is the FDH or DEA set

computed with X ∗ as reference data set.

– �̂∗(x, y) = inf{� ∣ (�x, y) ∈ Ψ̂(X ∗)} is an estimator of �̂(x, y)
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the ∙ are the original observations (xi, yi) generated by the unknown 퓟 , and the *

are the pseudo-observations (x∗
i , y

∗
i ) generated by the known 퓟̂ .
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The Bootstrap -2-

∙ The Key Relation : If the Bootstrap is consistent, for large n,

(�̂∗(x, y)− �̂(x, y)) ∣ P̂ ≈ (�̂(x, y)− �(x, y)) ∣ P .

– The right part is unknown and/or difficult to handle

– The left part can be approximated by Monte-Carlo simulation methods

∙ Inference is now available

– Bias correction and Standard errors of �̂(x, y) are available

– Confidence intervals for �(x, y) can be builded

∙ How to generate X ∗ ? Naive bootstrap looks easy: n random drawns of

(x∗
i , y

∗
i ) from X .

∙ But naive bootstrap is inconsistent Simar and Wilson (1998, 1999a, 1999b)

– The efficient facet, which determines in the original sample X the value of �̂,

appears too often, and with a fixed probability, in X ∗ and this fixed

probability does not vanish even when n → ∞.
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The Bootstrap -3-

Two Solutions: see Simar and Wilson (1998, 2000, 2011a), Jeong and Simar (2006),

Kneip, Simar and Wilson (2008)

∙ Subsampling: draw from P̂ pseudo-samples of size m = n� where � < 1.

– How to chose m in practice: Simar and Wilson (2011a).

∙ Smoothing: Use smoothed density estimate f̂(x, y) and smooth the boundary

of Ψ̂ when defining P̂: not easy to implement due to the double smoothing.

– Simplification: homogeneous bootstrap, Simar and Wilson (1998), similar to homoskedastic

assumption in regression. But restrictive. . .

– Consistent efficient algorithm in the heterogeneous case: Kneip, Simar and Wilson (2011).

Testing issues: Returns to scale, Simar and Wilson (2002), Comparison of groups of firms,

Simar and Zelenyuk (2006, 2007), Testing significancy of variables and/or aggregation of variables,

Simar and Wilson (2001), and work in progress (convexity,. . . ).

Extensions available: Hyperbolic distances, Wilson (2011), Directional distances,

Simar and Vanhems (2010), Simar, Vanhems and Wilson (2011).
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An Example: Program Follow Through (PFT)

∙ Charnes, Cooper, Rhodes (1981): analysis of an experimental education program
administered in US schools: data for 49 schools that implemented PFT, and 21
schools that did not, for a total of 70 observations. 5 inputs and 3 outputs

– x1: Education level of the mother (percentage of high school graduates among the mothers),

– x2: Highest occupation of a family member (according a pre-arranged rating scale),

– x3: Parental visit to school index (number of visits to the school)

– x4: Parent counseling index (time spent with child on school related topics)

– x5: Number of teachers of the school.

There are three outputs (results to standard tests):

– y1: Total Reading Score (MAT: Metropolitan Achievement Test),

– y2: Total Mathematics Score (MAT) and

– y3: Coopersmith Self-Esteem Inventory (measure of self-esteem).

∙ We look for output efficiency of the Schools �(x, y) using DEA estimators.



Nonparametric Frontier Estimation: recent developments and new challenges 33'
&

$
%

Units �̂(x, y) Units �̂(x, y)

1 1.0323 50 1.0436

2 1.1093 51 1.0871

3 1.0684 52 1.0000

4 1.1074 53 1.1465

5 1.0000 54 1.0000
...

...
...

...

∙ Questions:

– What is the real value of �(x, y) (bias correction, confidence intervals)?

– Comparaison of the 2 groups of school:

∗ Mean of Group A (49 PFT schools): �̂A = 1.0589

∗ Mean of Group B (21 Non-PFT schools): �̂B = 1.0384 (more efficient?)

– Is it significant?
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∙ The Bootstrap

Units Eff. Scores Eff. Bias-Corrected Bias Std Lower Bound Upper Bound

1 1.0323 1.0671 -0.0348 0.0246 1.0343 1.1268

2 1.1093 1.1387 -0.0294 0.0162 1.1111 1.1702

3 1.0684 1.0979 -0.0295 0.0186 1.0703 1.1396

4 1.1074 1.1264 -0.0190 0.0098 1.1094 1.1463

5 1.0000 1.0530 -0.0530 0.0444 1.0020 1.1651

50 1.0436 1.0725 -0.0289 0.0221 1.0450 1.1239

51 1.0871 1.1102 -0.0231 0.0125 1.0895 1.1373

52 1.0000 1.0558 -0.0558 0.0435 1.0021 1.1542

53 1.1465 1.1718 -0.0253 0.0121 1.1485 1.1954

54 1.0000 1.0520 -0.0520 0.0418 1.0019 1.1484

∙ After bias correction the mean are:

– Group A (PFT): 1.0940

– Group B (Non-PFT): 1.0740

∙ Formal Test: H0 : E[�(X,Y )∣A] = E[�(X,Y )∣B] vs H0 : E[�(X,Y )∣A] > E[�(X,Y )∣B]

– p-value of H0 = 0.5590: ⇒ We do not reject H0.
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An Other Example: Role of Innovation on Exports -1-

Schubert and Simar (2011) analyze the relations between exports and innovation in

the sector of “Mechanical Engineering” in Germany (CIS survey, 2007)

∙ The economic literature is unclear and divided on the role of innovation

∙ Empirical studies, so far, used parametric models with restrictive assumptions

and analyze mean behavior of firms (regression)

∙ We want to analyze the role of innovation on efficient production plans, not on

averages

– Data: 215 firms

– 3 inputs: X1 Expenses for personnel, X2 Expenses for equipment and

materials, X3 Expenses for innovation

– 2 outputs: Y1 Domestic turnover et Y2 Exports
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An Other Example: Role of Innovation on Exports -2-

∙ NB: here individual efficiency scores are not of interest

∙ Results: tests using bootstrap on different models

– The inputs X1 and X2 can be aggregated, without changing the structure of

the efficient frontier, but not X3.

– The outputs Y1 and Y2 can be aggregated

∙ Empirical Conclusions:

– The expenditures in innovation (even measured in monetary terms) are really

different than other routine expenses: they influence the shape of the frontier,

it is really an input, and not a by-product (as claimed by some economic

theory).

– For efficient firms, there is no clear empirical evidence of a link between the

expenses in innovation and the exports (as claimed by some economic theory).
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IV. Challenges
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Challenges: Drawbacks of DEA/FDH and Solutions

∙ Sensitivity to extreme/outliers: robust methods and/or detection of outliers

– Order-m frontiers: Cazals, Florens and Simar (2002), Simar (2003), Daouia, Florens and

Simar (2009).

– Order-� quantile frontiers: Aragon, Daouia and Thomas (2005), Daouia and Simar

(2005, 2007), Daouia, Florens and Simar (2009, 2010).

∙ Lack of Economic interpretation: Semiparametric Model, parametric

approximations of nonparametric frontiers, Simar (1992), Florens and Simar (2005), Daouia,

Florens and Simar (2008)

∙ Heterogeneity: How to explain inefficiency by environmental/external factors ?

– Two-stage methods, Simar and Wilson (2007, 2011b).

– Conditional measures of efficiency, Cazals, Florens and Simar (2002), Daraio and

Simar (2005, 2006, 2007a, 2007,b), Jeong, Park and Simar (2010), Badin, Daraio and Simar

(2010, 2011).

∙ No noise is allowed: deterministic frontiers Prob
(
(X,Y ) ∈ Ψ

)
= 1: Nonparametric

Stochastic Frontiers?: Simar (2007), Kumbhakar, Park, Simar and Tsionas (2008), Simar

and Zelenyuk, (2011), Kneip, Simar and Van Keilegom (2010), flexible semiparametric models.
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IV.1 Sensitivity to Outliers
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Robust Frontier -1

Probabilitic Formulation of DGP

– The DGP: H(x, y) = Prob(X ≤ x, Y ≥ y), Ψ is the support of H(x, y)

– Farrell-Debreu Efficiency score (case of input orientation)

H(x, y) = Prob(X ≤ x ∣Y ≥ y) Prob(Y ≥ y) = FX∣Y (x∣y)SY (y)

�(x0, y0) = inf{�∣(�x0, y0) ∈ Ψ} = inf{�∣FX∣Y (�x0∣y0) > 0}

– Nonparametric Estimator: Plug-in the empirical version of H(x, y)

Ĥn(x, y) =
1

n

n∑

i=1

1I(Xi ≤ x, Yi ≥ y), then F̂X∣Y,n(x∣y) =
Ĥn(x, y)

Ĥn(∞, y)

– The FDH estimators: Cazals, Florens and Simar (2002)

– Ψ̂FDH is the support of Ĥn(x, y)

– Estimation (input) efficiency score: �̂(x0, y0) = inf{� ∣ F̂X∣Y,n(�x0∣y0) > 0}
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Robust Frontier -2-

Partial order frontiers. Economic interpretation (case of univariate output)

Another benchmark frontier less extreme than the “full frontier”.

∙ Order-m: Cazals, Florens, Simar (2002)

– a unit (x, y) is benchmarked against the average maximal output reached by

m peers randomly drawn from the population of units using less input than x.

– As m → ∞, order-m frontier converges to the full-frontier.

∙ Order-� quantile: Aragon, Daouia, Thomas (2005), Daouia and Simar (2007)

– a unit (x, y) is benchmarked against the output level not exceeded by

100(1− �)% of firms in the population of units using less input than x.

– As � → 1, order-� frontier converges to the full-frontier.



Nonparametric Frontier Estimation: recent developments and new challenges 42'
&

$
%

Robust Frontier -2-

Partial order frontiers: Mathematical definition for univariate output

∙ Full Frontier Benchmark: '(x) = inf{y∣FY ∣X(y∣x) ≥ 1} and

∙ Less Extreme Benchmarks:

– Order-m frontier:

'm(x) = E
[
max(Y 1, . . . , Y m)∣X ≤ x

]

=

∫ ∞

0

(1− [FY ∣X(y∣x)]m) dy

– Order-� quantile frontier:

'�(x) = F−1
Y ∣X(�∣x)

= inf{y ∈ ℝ+∣FY ∣X(y∣x) ≥ �}

Properties

as m → ∞, 'm(x) → '(x) and as � → 1, '�(x) → '(x)
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Robust Frontier -3-
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Illustration of full and partial frontiers: one output with m = 6 and � = 0.80
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Robust Frontier -4-

Nonparametric estimators of partial order frontier

∙ Plug-in principle

'̂m,n(x) =

∫ ∞

0

(1− [F̂n,Y ∣X(y∣x)]m) dy

'̂�,n(x) = inf{y ∈ ℝ+∣F̂n,Y ∣X(y∣x) ≥ �}

∙ Properties

–
√
n-consistency and asymptotic normality:

√
n('̂m,n(x)− 'm(x))

ℒ−→ N (0, �2
m(x)) and

√
n('̂�,n(x)− '�(x))

ℒ−→ N (0, �2
�(x))

– Convergence to FDH estimator:

as m → ∞, '̂m,n(x) → '̂FDH,n(x) and as � → 1, '̂�,n(x) → '̂FDH,n(x)

∙ Choice of m and �: tune the percentage of points left out estimated

partial frontier, see Simar (2003), Daraio, Simar (2005, 2007a).
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In solid black line, the true frontier y = x0.5. In green solid, the FDH frontier estimate, in blue

dashed the estimated order-m frontier and in dash-dot red the estimate of the order-� frontier.

In black dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit,

m = 20 and � = 0.95.
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Robust Frontier -5-

Robust Nonparametric Estimator of Full-Frontier '(x), Daouia, Florens,

Simar (2009, 2010)

– If m = m(n) (and � = �(n)) converges to ∞ (to 1) when n → ∞, but at a slow

rate, we obtain an estimator (after bias correction) that converges to the full

frontier with a Normal limiting distribution

– Easy to build confidence intervals for '(x) using Normal Tables.

– For finite n, '̂m(n),n(x) and '̂�(n),n(x) provide estimators of '(x) that will not

envelop all the data points and so, are more robust to extreme and outliers.
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Robust Frontier -5-
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Post Offices in France (from Daouia, Florens, Simar, 2009).

Left panel: estimation with the 4 extreme points.

Right panel: estimation without these 4 points
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IV.2 Lack of Economic Interpretation



Nonparametric Frontier Estimation: recent developments and new challenges 49'
&

$
%

Parametric Approximation of Deterministic Frontiers -1-

– Parametric models: easy economic interpretation of the model (returns to

scale, elasticities, elasticities of substitution, . . . )

– Standard parametric approches: some drawbacks

– strong restrictive assumptions on the stochastic part of the models

– sensitive to extreme/outliers

– most are “regression-based” models and capture the shape of the cloud of

points near its center (not at the efficient boundary)

– Two stage semiparametric approaches: Simar (1992), Florens, Simar

(2005), Daouia, Florens, Simar (2008)

– First estimate the efficient frontier using nonparametric or robust

nonparametric methods;

– Then fit, by standard OLS, the approriate parametric model on the

obtained nonparametric frontier
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Parametric Approximation of Deterministic Frontiers -2-

– More sensible estimator of the parametric frontier model and allows for

some noise by tunning the robustness parameter.

– Asymptotic theory of the resulting estimators (for fix m and fix �):

If FDH is used as 1st step: �̂n
p−→ �0

If order-m is used is used as 1st step:
√
n(�̂mn − �m0 )

ℒ−→ Nk(0, Vm)

If order-� is used is used as 1st step:
√
n(�̂�n − ��0 )

ℒ−→ Nk(0, V�)

where �0, (�m0 , ��0 ), are the pseudo-true values of the parameters of the best

approximation of the corresponding frontier '(x), ('m(x), '�(x)).

– If m(n) → ∞ and �(n) → 1 as n → ∞ at appropriate rates:

�̂n
a.s.−→ �0 ; �̂m(n)

n
a.s.−→ �0 ; �̂�(n)n

a.s.−→ �0

– Multivariate case: multi-input/muti-output, see Daraio and Simar (2007a)
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In solid black line, the true frontier y = x0.5 homoscedastic inefficiency. In cyan

solid, the FDH frontier, in blue dashed the order-m frontier and in dash-dot red the

order-� frontier. Here, m = 20 and � = .9622. In black dotted, the shifted OLS

estimate.
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Same with 3 outliers included.
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Same with heteroscedastic inefficiency. In cyan solid, the FDH frontier estimate,

in blue dashed the order-m frontier and in dash-dot red the order-� frontier. Here,

m = 20 and � = .9622. In black dotted, the shifted OLS estimate.
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IV.3 Heterogeneity
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Introducing Environmental Factors -1-

∙ Motivation

– The analysis of productive efficiency should have two components:

1. Estimation of a production frontier (best-practice) which serve as a

benchmark against which efficiency of a producer can be measured;

2. Incorporation into the analysis of exogenous variables (Z) which are

neither inputs, nor outputs, and so are not under the control of the

producer, but which may influence the process.

– How to explain inefficiencies of firms by these factors?

– How to introduce heterogeneity in the production process?



Nonparametric Frontier Estimation: recent developments and new challenges 57'
&

$
%

Introducing Environmental Factors -2-

∙ One-stage approaches Banker and Morey (1986)

– Z is like an input(favorable) or like an output (defavorable) ⇒ Adapt FDH/DEA

– Free disposability ? Convexity ? RTS assumption ?

– Which direction for Z?

– What if the effect of Z changes?

(say, favorable if Z ≤ z0 and then defavorable or neutral for Z > z0)

∙ Two-stage approaches Simar and Wilson (2007, 2011)

– DEA efficiency scores are regressed on Z (in an appropriate way)

– Implicit Separability Condition:

– Z does not influence Ψ

– Z only affects the probability of being more or less efficient

– The second stage regression is nonstandard (correlation among efficiency

scores, bias,. . . ): inference by bootstrap.
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Traditional 2-stage approaches

∙ First stage get efficiency estimates �̂(Xi, Yi) (or �̂(Xi, Yi), 
̂(Xi, Yi),. . . ) with

respect to Ψ̂ (by DEA or FDH, . . . )

∙ Second stage regression of �̂(Xi, Yi) on Z.

– Parametric models (truncated regression, logistic, etc,. . . )

– Nonparametric models (truncated, etc,. . . )

∙ Problems: Ψz = {(x, y)∣Z = z, x can produce y} Simar and Wilson

(2007, 2011b):

– If Ψz ∕= Ψ, what is the Economic meaning of �(x, y) (and so, of �̂(Xi, Yi) ),

for a unit facing environmental conditions z?

– Separability issue: condition for giving economic meaning to Ψ̂ and �̂(x, y).

“Separability” condition: Ψz = Ψ, for all z ∈ 퓩.

– Even if separability holds, Inference in second stage is nonstandard

(bootstrap).
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“Separability” Condition

g(X) = [1− (X − 1)2]1/2

Y ∗ = g(X)e−(Z−2)2U Y ∗∗ = g(X)e−(Z−2)2e−U
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Conditional Efficiency -1-

∙ Conditional Measures Cazals, Florens, Simar (2002), Daraio Simar (2005,

2007a, 2007b), Jeong, Park, Simar (2010)

– The DGP (A Model for the Production process) is now characterized by

– F (x, y∣z) = Prob(X ≤ x, Y ≤ y∣Z = z) or

– H(x, y∣z) = Prob(X ≤ x, Y ≥ y∣Z = z)

– The attainable set is Ψz: the support of F (x, y∣z)

– Natural and very easy: A firm combines inputs X ∈ ℝ
p
+ and outputs Y ∈ ℝ

q
+

facing the environmental conditions Z ∈ ℝ
r

– No separability conditions

– No prior information of the role of Z (favorable or not to the process)

– Note that the separability condition of 2-stages methods relies on:

Ψ ≡ Ψz for all z.
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Conditional Efficiency -2-

∙ Conditional efficiency score

– Same idea as the unconditional measure:

�(x, y∣z) = sup{� ∣ HXY ∣Z(x, �y∣z) > 0} = sup{� ∣ SY ∣X,Z(�y∣x, z) > 0},

where

SY ∣X,Z(y∣x, z) = HXY ∣Z(x, y∣z)/HXY ∣Z(x, 0∣z) = Prob(Y ≥ y ∣ X ≤ x, Z = z).

∙ Nonparametric estimator: kernel smoothing on Z (here continuous)

ĤXY,n∣Z(x, y∣Z = z) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)K((Zi − z)/ℎ)∑n

i=1K((Zi − z)/ℎ)

ŜY ∣X,Z(y∣x, z) =
∑n

i=1 1I(Yi ≥ y,Xi ≤ x)Kℎ(Zi, z)∑n
i=1 1I(Xi ≤ x)Kℎ(Zi, z)
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Conditional Efficiency -3-

∙ Conditional FDH efficiency estimator: Kernels with compact support,

�̂FDH(x, y∣z) = sup{�∣ŜY ∣X,Z(�y∣x, z) > 0} = max
{i∣Xi≤x,∣∣Zi−z∣∣≤ℎ}

{
min

j=1,...,q

Y j
i

yj

}
.

∙ Conditional FDH attainable set:

Ψ̂Z
FDH = {(x, y) ∈ ℝ

p+q
+ ∣ x ≥ xi, y ≤ yi for i s.t. ∣∣Zi − z∣∣ ≤ ℎ}

∙ DEA versions: Convexify the FDH attainable set, see Daraio, Simar (2007b)

Ψ̂Z
DEA = {(x, y) ∈ ℝ

p+q
+ ∣ x ≥

∑

{i∣∣∣Zi−z∣∣≤ℎ}


ixi, y ≤
∑

{i∣∣∣Zi−z∣∣≤ℎ}


iyi

for 
i s.t.
∑

{i∣∣∣Zi−z∣∣≤ℎ}


i = 1},

�̂DEA(x, y∣z) = sup{� ∣ (x, �y) ∈ Ψ̂Z
DEA}.
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Conditional Efficiency -4-

∙ Properties

– Optimal bandwidth selection by data-driven methods, Badin, Daraio, Simar

(2010)

– Asymptotic properties: similar to FDH/DEA with n replaced by nℎr, Jeong,

Park, Simar (2010)

– Allow to detect the direction of the “influence” of Z on efficiency, see Dario,

Simar (2005, 2007a)

– Inference (confidence intervals) by bootstrap

– Robust versions (using order-m and order-�) are also available

– Z can be continuous, categorical or discrete
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Conditional Efficiency -5-

∙ Usefulness

– Define a “pure measure of technical efficiency” , Badin, Daraio, Simar (2011)

– Eliminate most of the influence of Z on �̂(x, y∣z) by using a flexible

location-scale nonparametric model: �̂(x, y∣z) = �(z) + �(z)", where �(z) and

�(z) are unspecified functions

– �̂i allows to rank firms facing different operating conditions.

∙ N.B.: An other approach: Florens, Simar, Van Keilegom (2011).

– First eliminate influence of Z on inputs X and outputs Y by using two flexible

location-scale nonparametric models

– The residuals are “pure inputs and outputs” X̃i and Ỹi

– Search for the frontier in these new units, to define “pure measure of technical

efficiency”

– Full frontier and order-m frontiers
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Conditional Efficiency, Example -1-

∙ A Toy example:

– No output (Yi ≡ 1) and one input (input orientation)

– Z has no effect on X when Z ≤ 5 and then a defavorable effect on X when

Z > 5.

– The input are generated according

Xi = 51.51I(Zi <= 5) + Z1.5
i 1I(Zi > 5) + Ui,

where Zi ∼ U(1, 10), Ui ∼ Expo(� = 3) and n = 100.
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Conditional Efficiency, Examples -2a-

∙ 2 inputs/ 2 outputs : output orientation

– The efficient frontier is described by: y(2) = 1.0845(x(1))0.3(x(2))0.4 − y(1).

– X
(j)
i ∼ U(1, 2) and Ỹ

(j)
i ∼ U(0.2, 5) for j = 1, 2.

– The output efficient random points on the frontier are

Y
(1)
i,eff =

1.0845(X
(1)
i )0.3(X

(2)
i )0.4

Si + 1

Y
(2)
i,eff = 1.0845(X

(1)
i )0.3(X

(2)
i )0.4 − Y

(1)
i,eff .

where Si = Ỹ
(2)
i /Ỹ

(1)
i represent the generated random rays in the output space.

– The efficiencies are simulated according to exp(−Ui)

– The observed output are defined by Yi = Yi,eff ∗ exp(−Ui) where

Ui ∼ Exp(�U = 1/2).

– n = 100.
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Conditional Efficiency, Examples -2b-

∙ Environmental factors Z bivariate

– We generate two independent uniform variables Zj ∼ U(1, 4) to build the

bivariate variable Z = (Z1, Z2).

– The influence of Z on the production process is described by:

Y
(1)
i = (1 + 2 ∗ ∣Z1 − 2.5∣3) ∗ Y (1)

i,eff ∗ exp(−Ui)

Y
(2)
i = (1 + 2 ∗ ∣Z1 − 2.5∣3) ∗ Y (2)

i,eff ∗ exp(−Ui).

– Z1 pushes the efficient frontier above when far from 2.5, in both directions,

with a cubic effect,

– Z2 has no effect on the frontier or on the distribution of inefficiencies: Z2 is

irrelevant.

– Note that there is no interaction between Z1 and Z2 (independent) and no

interaction between X and Z.

– Remember: only n = 100 observations, with p = q = r = 2 !
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Simulated example with multivariate Z. Marginal views of the surface regression of

�̂n(x, y∣z)/�̂n(x, y) on z at the observed points (Xi, Yi, Zi), viewed as a function of Z1

(top panel) and as a function of Z2 (bottom panel).
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IV.4 Introducing Noise
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Nonparametric Stochastic Frontiers -1-

∙ Basic Idea: localize (using kernels) an anchorage parametric model, Kumbhakar,

Park, Simar, Tsionas (2007)

Yi = r(Xi) + vi − ui

– u∣X = x ∼ ∣N (0, �2
u(x))∣ and v∣X = x ∼ N (0, �2

v(x)) and u and v being

independent conditionally on X.

– r(x), �2
u(x) and �2

v(x) are unknown functional parameters

– Estimation by Local Maximum Likelihhood method: r(x), �2
u(x) and �2

v(x)

are approximated by local polynomials (linear or quadratic).

– Asymptotic properties are available

– Bandwidths selection by LS cross-validation
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Nonparametric Stochastic Frontiers -2-

∙ Multivariate extension: Simar (2007), Simar, Zelenyuk (2011)

– Use (partial-)polar coordinates: (x, y) ⇔ (!, �, x), where ! ∈ ℝ+ is the modulus

and � ∈ [0, �/2]q−1 is the amplitude (angle) of the vector y.

– The joint density fX,Y (x, y) induces a density on (!, �, x):

f!,�,X(!, �, x) = f!(! ∣ �, x) f�,X(�, x)

– For a given (x, y) the frontier point y∂(x, y) = �(x, y) y has a modulus:

!(y∂(x, y)) = sup{! ∈ ℝ
+ ∣ f!(! ∣ �, x) > 0}

∙ Back to a univariate frontier problem!

– Given (�, x) find !(y∂(x, y)).
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Nonparametric Stochastic Frontiers -3-
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of P = (x, y) is �(x, y) = ∣OQ∣/∣OP ∣ = !(y∂(x, y))/!(x, y) ≥ 1.
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Nonparametric Stochastic Frontiers -4-

∙ The Model:

– The observations are made on noisy data in the output radial-direction

– The data {(Xi, Yi), i = 1, . . . , n} have polar coordinates (!i, �i, Xi)

!i = !(y∂(Xi, Yi)) e
−ui evi ,

where ui > 0 is inefficiency and vi is noise (E(vi∣Xi, Yi) = 0).

– !(y∂(Xi, Yi)) is only a function of (�i, Xi).

∙ In the log-scale, the model could be written as

log!i = r(�i, Xi)− ui + vi,

with ui > 0 and E(vi∣�i, Xi) = 0.
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Nonparametric Stochastic Frontiers -5-

– Stochastic Versions of DEA/FDH : Two-stage procedure

– [1] “Whitening the noise”: Compute the consistent estimator of the frontier

levels r̂(�i, Xi) for each data points

∗ This gives points (Xi, Y
∗
i ) where Y ∗

i = exp(r̂(�i, Xi))Yi/!i

– [2] Run a DEA (or FDH) program with reference set (Xi, Y
∗
i ).

– Summary:

– Very encouraging results

– Computationally demanding (cross-validation for bandwidth selection)

– Below, some bivariate examples (see multivariate examples in Simar and

Zelenyuk, 2011)
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Conclusions

∙ Nonparametric models NP are Econometric Models

– Flexible and can be “robustified”, Inference is available (bootstrap)

– Noise can be introduced

– Environmental factors (heterogeneity) can be introduced

∙ P and NP are complimentary models

– NP models can be used to check (test) P models (not the contrary).

– Parametric approximations of NP models can be useful for economic analysis.

– Semiparametric models should be developed.

∙ Other challenges

– Panel Data: introduce dynamic behavior of units

– Theory for functions of DEA/FDH scores: Kneip, Simar and Wilson (2011)

∗ Useful for justifying testing procedures

∗ RTS, Convexity, Simar and Wilson (2011a), Separabilty, Daraio, Simar and

Wilson (2010),. . .
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