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Abstract

This paper makes two main contributions to inference for conditional quantiles. First, we
construct a generic confidence interval for a conditional quantile from any given estimator of
the conditional quantile via the direct approach. Our generic confidence interval makes use
of two estimates of the conditional quantile function evaluated at two appropriately chosen
quantile levels. In contrast to the standard Wald type confidence interval, ours circumvents the
need to estimate the conditional density function of the dependent variable given the covariate.
We show that our new confidence interval is asymptotically valid for any quantile function
(parametric, nonparametric, or semiparametric), any conditional quantile estimator (standard
kernel, local polynomial or sieve estimates), and any data structure (random samples, time series,
or censored data), provided that certain weak convergence of the conditional quantile process
holds for the preliminary quantile estimator. In the same spirit, we also construct a generic
confidence band for the conditional quantile function across a range of covariate values. Second,
we use a specific estimator, the Yang-Stute (also known as the symmetrized k-NN) estimator
for a nonparametric quantile function, and two popular semiparametric quantile functions to
demonstrate that oftentimes by a judicious choice of the quantile estimator combined with the
specific model structure, one may further take advantage of the flexibility and simplicity of
the direct approach. For instance, by using the Yang-Stute estimator, we construct confidence
intervals and bands for a nonparametric and two semiparametric quantile functions that are free
from additional bandwidth choices involved in estimating not only the conditional but also the
marginal density functions and that are very easy to implement. The advantages of our new
confidence intervals are borne out in a simulation study.
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1 Introduction

In their seminal paper, Koenker and Bassett (1978) propose to use linear quantile regression to

examine effects of an observable covariate on the distribution of a dependent variable other than

the mean. Since then, linear quantile regression has become a dominant approach in empirical

work in economics, see e.g., Buchinsky (1994) and Koenker (2005). Following Koenker and Bassett

(1978), this approach has been extended to censored data in Powell (1986), Buchinsky and Hahn

(1998), Honore, Khan and Powell (2002), and to unit root quantile regression models in Koenker

and Xiao (2004), further broadening its scope of applications.

Linearity adopted in Koenker and Bassett (1978) has been relaxed to accommodate possibly

nonlinear effects of the covariates on the conditional quantile of the dependent variable in nonpara-

metric and semiparametric quantile regression models. The ‘check function’approach of Koenker

and Bassett (1978) has been extended to estimating these models as well, see e.g., Truong (1989),

Chaudhuri (1991), and He, Ng, and Portnoy (1998) for nonparametric estimation of conditional

quantiles; Chaudhuri, Doksum, and Samarov (1997) for nonparametric average derivative quantile

estimation; Fan, Hu and Truong (1994), Yu and Jones (1998) and Guerre and Sabbah (2012) for

local polynomial estimation of regression quantiles; Lee (2003) and Song, Ritov, and Hardle (2012)

for partial linear quantile regression models; Wu, Yu, and Yu (2010) and Kong and Xia (2012) for

single index quantile regression models; and Chen and Khan (2001) for partially linear censored

regression models.1

For nonparametric quantile regression models, an alternative estimation approach to the ‘check

function’approach is taken in Stute (1986), Bhattacharya and Gangopadhyay (1990), Fan and Liu

(2011), and Li and Racine (2008), among others. In this approach, the conditional distribution

function of the dependent variable Y given the covariate X is estimated first and the generalized

inverse of this estimator at a given quantile level p ∈ (0, 1) is taken as an estimator of the p-th

conditional quantile. Stute (1986) and Bhattacharya and Gangopadhyay (1990) focus on univariate

covariate and estimate the conditional distribution function by k-NN method, while Fan and Liu

(2011) and Li and Racine (2008) allow for multivariate covariate and adopt respectively k-NN and

kernel estimators of the conditional distribution function.

Under regularity conditions, existing work establish asymptotic normality of the conditional

quantile estimators which is the basis for the Wald-type inference, i.e., using the t statistic to test

hypotheses or form confidence intervals (CI) for the true conditional quantiles. Regardless of the

approach used to estimate the conditional quantile in parametric, semiparametric, or nonparametric

quantile regression models, one common feature of the asymptotic distributions of the conditional

1Conditional quantile function also plays an important role in the non-separable structural econometrics literature,
see e.g., Chesher (2003), Holderlein and Mammen (2007) and in the estimation of quantile treatment effects, see e.g.,
Firpo (2007) and Fan and Park (2011).
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quantile estimators is that their asymptotic variances depend on the conditional (quantile) density

function of Y given X = x and some even depend on the density function of X, see e.g., Horowitz

(1998), Khan (2001), Koenker and Xiao (2002), Li and Racine (2008), Hardle and Song (2010), and

Song, Ritov, and Hardle (2012), among others. As a result, inference procedures for the conditional

quantiles based on the asymptotic distributions of these estimators require consistent estimators of

the conditional (quantile) density function of Y given X = x and/or the density of X both involving

bandwidth choice. Numerical evidence presented in De Angelis, Hall, and Young (1993), Buchinsky

(1995), Horowitz (1998), and Kocherginsky, He, and Mu (2005) shows that although asymptotically

valid, these inference procedures are sensitive in finite samples to the choice of smoothing parameter

used to estimate the conditional (quantile) density function.

Various alternative approaches have been proposed in the current literature to improve on

the finite sample performance of Wald-type inferences. Most of these are developed for linear or

parametric conditional quantile regression models. First, Goh and Knight (2009) propose a differ-

ent scale statistic to standardize the estimator of the model parameter in linear quantile regression

models resulting in a nonstandard inference procedure; Second, Zhou and Portnoy (1996) construct

confidence intervals/bands directly from pairs of estimates of conditional quantiles in the location-

scale forms of linear quantile regression models extending the direct or order statistics approach

for sample quantiles in Thompson (1936), see also Serfling (1980), Csorgo (1983), and van der

Vaart (1998); Third, Gutenbrunner and Jureckova (1992) and Gutenbrunner, Jureckova, Koenker,

and Portnoy (1993) employ rank scores to test a class of linear hypotheses; Fourth, Whang (2006)

and Otsu (2008) apply the empirical likelihood approach to parametric quantile regression models;

Lastly, MCMC related approaches have been proposed to improve standard resampling or simu-

lation paradigms: He and Hu (2002) resample estimators from the marginal estimating equation

along the generated Markov chain; and Chernozhukov, Hansen, and Janssen (2009) develop finite

sample inference procedures based on conditional pivotal statistics in parametric quantile regression

models. A nice survey of various inference procedures targeted at linear quantile regression models

could be found in Kocherginsky, He, and Mu (2005).

Compared with parametric quantile regression models, inference in nonparametric and semi-

parametric quantile regression models is still in its infancy. The only alternative approach to the

Wald-type and bootstrap inferences that is currently available is the empirical likelihood procedure

in Xu (2012) for nonparametric quantile regression models. In semiparametric quantile regression

models including partial linear and single index models, only Wald-type and bootstrap inferences

are available. Although the empirical likelihood approach in Xu (2012) avoids estimation of the con-

ditional (quantile) density function and performs better than the Wald-type inference procedures,

it is known to be computationally costly. Among existing approaches to inference in paramet-

ric quantile regression models, the direct approach is the simplest to implement and least costly
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computationally– it only requires computing pairs of the quantile estimate. In addition, it does not

rely on any estimate of the conditional (quantile) density function and exhibits superior finite sam-

ple performance compared with the Wald-type inference, see Zhou and Portnoy (1996). However,

as discussed in Portnoy (2012), it appears that the direct approach in Zhou and Portnoy (1996)

has theoretical justification only under location-scale forms of linear quantile regression models.

This paper aims at bridging this gap. Specifically, it makes two main contributions to inference

on conditional quantiles. First, we construct a generic confidence interval (CI) for a conditional

quantile from any given estimator of the conditional quantile via the direct approach. Our generic

confidence interval makes use of two estimates of the conditional quantile function evaluated at two

appropriately chosen quantile levels. If the original quantile estimator is monotone in the quantile

level p ∈ (0, 1), then the two estimates are computed from this estimator; else the two estimates

are computed from the monotone rearranged version of the original quantile estimator as proposed

in Chernozhukov, Fernandez-Val, and Galichon (2010). In contrast to the standard Wald type

confidence interval, ours circumvents the need to estimate the conditional density function of the

dependent variable given the covariate. We show that our new confidence interval is asymptotically

valid for any quantile function (parametric, nonparametric, or semiparametric), any conditional

quantile estimator (standard kernel, local polynomial or sieve estimates), and any data structure

(random samples, time series, or censored data), provided that certain weak convergence of the

conditional quantile process holds for the preliminary quantile estimator. In the same spirit, we

also construct a generic confidence band (CB) for the conditional quantile function across a range of

covariate values focusing on the nonparametric setting and a class of quantile estimators obtained

from inverting proper estimators of the conditional distribution function of Y given X. Since

members of this class of quantile estimators are monotone by construction, monotone rearrangement

is avoided. Second, we use a specific estimator, the Yang-Stute (also known as the symmetrized

k-NN) estimator for a nonparametric quantile function, and two popular semiparametric quantile

functions to demonstrate that oftentimes by a judicious choice of the quantile estimator combined

with the specific model structure, one may further take advantage of the flexibility and simplicity

of the direct approach. For instance, by using the Yang-Stute estimator, we construct confidence

intervals and bands for a nonparametric and two semiparametric quantile functions that are free

from additional bandwidth choices involved in estimating not only the conditional but also the

marginal density functions and that are very easy to compute. The reason that we choose the Yang-

Stute estimator is its simplicity and elegance; It inherits the so-called asymptotic distributional-

free property (Stute, 1984b) and avoids estimating covariate’s marginal density function (unlike

standard kernel estimators), so we are able to eliminate all unnecessary tuning parameters. Besides,

as we directly invert conditional distribution functions, the resulting conditional quantile estimators

are indeed monotone, so there is no need for monotone rearrangement. Of course, practitioners
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are free to choose their favorite preliminary quantile estimators and under the mild high level

assumptions below, our generic CIs/CBs would apply.

Like the empirical likelihood confidence interval for a nonparametric quantile function in Xu

(2012), our confidence intervals/bands for nonparametric quantiles based on the Yang-Stute esti-

mator internalize the conditional quantile density estimation of Y given X and the covariate density

estimation and they are not necessarily symmetric. Compared with Xu (2012), our procedure is

much easier to implement and does not require optimization. For conditional quantiles in partial

linear and single index quantile regressions, a direct application of the generic CI and CB would

require monotone rearrangement, but by making use of the model structures, we construct CIs and

CBs that are easy to implement avoiding monotone rearrangement. A small scale simulation study

demonstrates the advantages and feasibility of our confidence intervals/bands over existing ones

in practically relevant model set-ups. Finally, we point out that there is an interesting connection

between our generic CI and the well-known CI for unconditional quantiles based on order statistics

originally proposed in Thompson (1936), see also Serfling (1980) and van der Vaart (1998). In fact

by using pairs of the standard k-NN asymmetric quantile estimate, our generic CI employes pairs

of order statistics of the induced order statistics of Y , so it shares the elegance and simplicity of

the confidence interval for unconditional quantiles based on order statistics.

The rest of this paper is organized as follows. Section 2.1 presents our generic confidence

interval and shows its asymptotic validity under a high level assumption on the preliminary quantile

estimator. The high level assumption is verified in four examples including the asymmetric k-NN

estimator, local polynomial quantile regression, a nonparametric quantile regression with censoring,

and the class of conditional quantile estimators in Donald, Hsu, and Barrett (2012) which includes

parametric quantile estimators as well. A generic CB is proposed in Section 2.2. Section 3.1

considers the nonparametric quantile regression with a univariate covariate. It constructs a new

confidence interval and a new confidence band using the Yang-Stute estimator. Section 3.2 extends

the confidence intervals/bands developed in Section 3.1 to two popular semiparametric models,

partial linear and single index quantile regression models. Section 4 provides a simulation study

comparing the finite sample performance of our new confidence intervals with Wald-type confidence

intervals and two bootstrap versions for nonparametric and partial linear quantile regressions. We

conclude in the last section. All the technical proofs are collected in the Appendices.

2 Generic Results on the Direct Approach to Quantile Inference

Consider the random vector (X ′, Y )′ with marginal distribution functions FX (x), FY (y) respec-

tively, where x ∈ X ⊂ Rd and y ∈ Y ⊂ R. Let FY |X (·|x) denote the conditional distribution

function of Y given X = x with density function fY |X (·|x). For 0 < p < 1, we are interested in

conducting inference on the p-th conditional quantile of Y given X = x: ξ (p|x) ≡ F−1
Y |X (p|x) either
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at a specific location x = x0 ∈ X or for all x in a subset of the support of X.

Let ξ̂ (p|x) denote a consistent and asymptotically normally distributed estimator of ξ (p|x).

To introduce the direct approach to quantile inference, consider inference for ξ (p|x0) for a fixed

x0 ∈ X . Suppose ξ̂ (p|x) is monotone in the quantile level p ∈ (0, 1). Then the CI for ξ (p|x0) based

on the direct approach takes the form of a closed interval with the end points given by ξ̂ (·|x0)

evaluated at two appropriately chosen quantile levels, one smaller and one larger than p, see (3)

below with ξ̂
∗

(p|x0) being replaced by ξ̂ (p|x0). In contrast to Wald-type CIs, CIs based on the

direct approach are not dependent on any estimate of the conditional density function of Y given

X = x0.

To ensure the validity of the resulting CI, it is essential that the quantile estimator being

used is monotone in the quantile level p ∈ (0, 1). It is well known that some commonly used

quantile estimators including the linear quantile estimator of Koenker and Bassett (1978) and

local polynomial quantile estimators are not monotone in the quantile level. This is known as

the quantile crossing problem (He, 1997; Chernozhukov, Fernandez-Val, and Galichon, 2010). To

rectify this issue, various methods of monotonization have been proposed in the literature including

Chernozhukov, Fernandez-Val, and Galichon (2010) who propose a monotone rearranged quantile

estimator from a given preliminary quantile estimator and Dette and Volgushev (2008) who propose

smooth monotone quantile estimators from consistent estimators of the conditional distribution

function FY |X (·|x). Of course quantile estimators constructed from inverting monotone estimators

of the conditional distribution function FY |X (·|x) are also monotone.

In Section 2.1, we construct a CI for ξ (p|x0) from a preliminary consistent estimator ξ̂ (p|x0)

using the direct approach and refer to it as the generic CI. For non-monotone ξ̂ (p|x0), our generic

CI makes use of the rearranged version of ξ̂ (p|x0) in Chernozhukov, Fernandez-Val, and Galichon

(2010).2 In Section 2.2, we construct a generic CB from the direct approach which is valid for all

x in a compact subset of X .

2.1 A Generic Confidence Interval

For any consistent estimator ξ̂ (p|x) of ξ (p|x), the monotone version of ξ̂ (p|x) in Chernozhukov,

Fernandez-Val, and Galichon (2010) is based on the fact that

FY |X(y|x) = ξ−1 (y|x) =

∫ 1

0
I {ξ (u|x) ≤ y} du, (1)

so we can replace ξ(u|x) with ξ̂(u|x) in the expression on the right hand side of (1) to get a monotone

estimator of FY |X(y|x). Since the resulting estimator of FY |X(y|x) is monotone, its generalized

2We could use the smooth monotone estimators proposed in Dette and Volgushev (2008) as well. But since
they involve the choice of an additional smoothing parameter, we find the method in Chernozhukov, Fernandez-Val,
and Galichon (2010) more suitable for our purpose. Marmer and Shneyerov (2012) offer an alternative method for
constructing a monotone quantile estimator from a preliminary quantile estimator, but the asymptotic properties of
their monotone estimator are unknown.
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inverse is a consistent and monotone estimator of ξ (p|x). This is the monotone rearranged version

of ξ̂ (p|x0) proposed by Chernozhukov, Fernandez-Val, and Galichon (2010):

ξ̂
∗

(p|x) = inf

[
y :

∫ 1

0
1{ξ̂ (u|x) ≤ y}du ≥ p

]
. (2)

We note that if the original estimator ξ̂ (p|x) is monotone in p ∈ (0, 1), then ξ̂
∗

(p|x) = ξ̂ (p|x) for

all p ∈ (0, 1). So we will use ξ̂
∗

(p|x) in this section to introduce our generic CI for ξ (p|x0).

Below we first provide assumptions on the quantile function ξ (p|x0) and a high level assumption

on the original estimator ξ̂ (p|x0) under which our generic CI is asymptotically valid and then verify

the high level assumption for four examples in Section 2.1.1.

Assumption (GI)

(i) ξ (p|x0) is a continuously differentiable function in p ∈ (0, 1) and for fixed p ∈ (0, 1), ξ (p|x)

is continuously differentiable at x = x0;

(ii) Let qp (x) ≡ ∂
∂pξ (p|x) = 1/fY |X (ξ (p|x) |x) denote the conditional quantile density function.

Then qp (x0) > 0 for p ∈ [p1, p2] ⊂ (0, 1);

(iii) The quantile estimator ξ̂ (·|x0) takes its values in the space of bounded measurable functions

defined on [p1, p2] ⊂ (0, 1), where p ∈ [p1, p2], and in l∞ ([p1, p2]),

cn

(
ξ̂ (·|x0)− ξ (·|x0)

)
=⇒ q· (x0)B (·|x0) ,

as a stochastic process indexed by p ∈ [p1, p2], where {B (p|x0) , p ∈ [p1, p2]} is a Gaussian process
with variance σ2 (p|x0) ≡ V ar [B (p|x0)] which does not depend on qp (x0) and cn is a sequence of

positive constants such that cn →∞ as n→∞.
Assumption (GI) (i) and (ii) are taken directly from Chernozhukov, Fernandez-Val, and Gali-

chon (2010). Assumption (GI) (iii) is a special case of Assumption 2 in Chernozhukov, Fernandez-

Val, and Galichon (2010). It imposes a specific structure on the asymptotic variance of the quantile

estimator ξ̂ (p|x0) which ensures the asymptotic validity of the following generic confidence interval

obtained from the direct approach:

CI-G1−α =

[
ξ̂
∗
(
p−

zα/2σ̂ (p|x0)

cn
|x0

)
, ξ̂
∗
(
p+

zα/2σ̂ (p|x0)

cn
|x0

)]
, (3)

where α ∈ (0, 1), σ̂ (p|x0) is a consistent estimator of σ (p|x0), and zα/2 is the upper quantile of

standard normal random variable N , i.e. Pr
{
N > zα/2

}
= 1− α/2. For many quantile estimators

ξ̂ (p|x) regardless of the model and data structure, Assumption (GI) (iii) is either established in

existing work or can be shown using results in existing work, see Section 2.1.1 and Section 3 for

examples of parametric, nonparametric and semiparametric quantile estimators. Moreover, for

many quantile estimators, σ2 (p|x0) takes the form of p (1− p)$2
x0 for some positive constant $x0

depending on x0, see the first three examples in Section 2.1.1 and Section 3. Example 2.4 presents
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an example of σ2 (p|x0) that does not take this form.3 In addition to the examples in Section

2.1.1 and Section 3, another (parametric) example of ξ̂ (p|x) is the quantile estimator of Koenker

and Bassett (1978). Under standard regularity conditions, the quantile estimator of Koenker and

Bassett (1978) satisfies Assumption (GI) (iii) for the special class of location scale forms of linear

quantile regression models, see Zhou and Portnoy (1996), Gutenbrunner and Jureckova (1992),

Koenker and Xiao (2005), and Portnoy (2012), so our generic confidence interval CI-G1−α defined

in (3) is asymptotically valid. In fact, for location scale forms of the linear quantile regression

models, our generic confidence interval CI-G1−α is just the confidence interval in Zhou and Portnoy

(1996) using the original estimator of Koenker and Bassett (1978), due to the absence of quantile

crossing problem as demonstrated by He (1997).

THEOREM 2.1 Suppose Assumption (GI) holds. Then CI-G1−α is asymptotically valid with

coverage probability equal to (1− α).

Proof. Resorting to Corollary 3 in Chernozhukov, Fernandez-Val, and Galichon (2010) which

asserts that the rearranged estimator ξ̂
∗

(p|x0) has the same first order asymptotic properties as

ξ̂ (p|x0). In particular, Assumption (GI) (iii) implies that

cn

(
ξ̂
∗

(p|x0)− ξ (p|x0)
)

=⇒ qp (x0)B (p|x0) .

Making use of stochastic equicontinuity of the process
{
cn

(
ξ̂
∗

(p|x0)− ξ (p|x0)
)
, p ∈ (0, 1)

}
and

cn →∞, we have

cn

[
ξ̂
∗
(
p±

zα/2σ̂ (p|x0)

cn
|x0

)
− ξ̂∗ (p|x0)

]
= cn

[
ξ

(
p±

zα/2σ̂ (p|x0)

cn
|x0

)
− ξ (p|x0)

]
+ op (1) .

Now use the simple fact that under Assumption (GI) (i) and consistency of σ̂ (p|x0):

cn

[
ξ

(
p±

zα/2σ̂ (p|x0)

cn
|x0

)
− ξ (p|x0)

]
= ±qp (x0) zα/2σ (p|x0) + op (1) .

Hence the generic confidence interval is asymptotically valid:

lim
n→∞

Pr {ξ (p|x0) ∈ CI-G1−α}

= lim
n→∞

Pr

{
ξ̂
∗
(
p−

zα/2σ̂ (p|x0)

cn
|x0

)
≤ ξ (p|x0) ≤ ξ̂∗

(
p+

zα/2σ̂ (p|x0)

cn
|x0

)}
= lim

n→∞
Pr

{
ξ̂
∗

(p|x0)−
zα/2σ (p|x0)

cn
qp (x0) ≤ ξ (p|x0) ≤ ξ̂∗ (p|x0) +

zα/2σ (p|x0)

cn
qp (x0)

}
= 1− α.

Q.E.D
3We thank Yu-Chin Hsu for suggesting this example.
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Remark 2.1. Under Assumption (GI), the standard Wald type confidence interval is con-

structed by centering around ξ̂ (p|x0) with the standard error multiplied by the normal critical

value asξ̂ (p|x0)−
zα/2σ̂ (p|x0)

f̂Y |X

(
ξ̂ (p|x0) |x0

)
cn
, ξ̂ (p|x0) +

zα/2σ̂ (p|x0)

f̂Y |X

(
ξ̂ (p|x0) |x0

)
cn

 , (4)

where f̂Y |X (y|x0) is a consistent estimator of fY |X (y|x0) such as a kernel conditional density

estimator. It is well known that the finite sample performance of the Wald CI in (4) is very sensitive

to the choice of the smoothing parameter involved in the estimate f̂Y |X (y|x0). Distinct from the

Wald type interval, our new confidence interval in (3) avoids the estimation of the conditional

density function fY |X (y|x0) and the two end points of the CI are not necessarily symmetric around

ξ̂ (p|x0).

2.1.1 Examples of the Generic Confidence Interval

Let
{

(X ′i, Yi)
′}n
i=1

denote the sample information on (X ′, Y )′. It could be a random sample or a

time series. To demonstrate the broad applicability of the confidence interval, CI-G1−α, defined in

(3), we present four examples in this subsection. They include a novel confidence interval for non-

parametric conditional quantiles based on order statistics/induced order statistics in Example 2.1;

a new confidence interval for nonparametric quantile regression based on local polynomial estimator

in Example 2.2; a new confidence interval for nonparametric censored quantile regression in Exam-

ple 2.3, and finally new confidence intervals for the class of conditional quantile models in Donald,

Hsu, and Barrett (2012). For the first three examples, σ2 (p|x0) takes the form: p (1− p)$2
x0 for

some positive constant $x0 depending on x0, while for the last example it doesn’t have this specific

form.

Example 2.1. (A Novel Order Statistic Approach):4 The generic confidence interval

in (3) when applied to the standard asymmetric k-NN estimator of the conditional quantile leads

to a novel confidence interval for conditional quantiles based on pairs of order statistics of an

appropriately chosen set of induced order statistics of {Yi}ni=1. It extends confidence intervals for

unconditional quantiles based on pairs of order statistics of {Yi}ni=1, see Thompson (1936) or van

der Vaart (1998) for random samples and Wu (2005) for time series observations.

To introduce it, let Ri = ||Xi−x0||, for i = 1, · · ·, n, where || · || is the standard Euclidean norm
in Rd, and (Yn,i)

n
i=1 denote the collection of induced order statistics by rank (Ri)

n
i=1, i.e., Yj = Yn,i

iff Rj = R(i) and R(i) is the i-th order statistic of (Ri)
n
i=1. For k ≤ n, the standard asymmetric

4After finishing the first version of this paper, we came across Kaplan (2013), who also proposed similar inference
procedures to this example by further taking linear combinations of those order statistics. Higher order properties
have been given in Kaplan (2013) using Dirichlet process theory.
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k-NN estimator of the distribution function of Y given X = x0 is defined as

F̂n,k (y|x0) = k−1
k∑
i=1

I (Yn,i ≤ y)

and the asymmetric k-NN estimator of ξ (p|x0) is given by

ξ̂ (p|x0) = inf

{
y : F̂n,k (y|x0) ≥ [kp]

k

}
= the [kp] -th order statistic of Yn,1, Yn,2, · · · , Yn,k, (5)

where k ≡ kn is a sequence of constants such that kn → ∞ and kn = o
(
n

4
4+d

)
. Assuming (GI)

(i) and (ii), the asymptotic validity of CI-G1−α based on the asymmetric k-NN estimator relies

on Assumption (GI) (iii). For a random sample {Xi, Yi}ni=1, Dabrowska (1987) provides primitive

conditions under which the standard k-NN estimator of the conditional distribution function con-

verges weakly to a Gaussian process which can be used to show that Assumption (GI) (iii) holds

for ξ̂ (p|x0) in (5) with cn =
√
kn and $2

x0 = πd/2/Γ (d/2 + 1). We refer the reader to Section 3.3

and the proof of Proposition 3.4 in Dabrowska (1987) for further details including the primitive

conditions. Since by definition ξ̂ (p|x0) in (5) is monotone in p, the confidence interval (3) reduces

to:

CI-O1−α =
[
ξ̂
(
p− zα/2σkn|x0

)
, ξ̂
(
p+ zα/2σkn|x0

)]
=

[
Yn,([k(p−zα/2σkn)]), Yn,([k(p+zα/2σkn)])

]
, (6)

where σkn =
√
p(1− p)$2

x0/kn and Yn,(i) denotes the i-th order statistic of {Yn,i}
k
i=1. Notice that

σkn involves no covariates’density and the constant factor $2
x0 is the volume of the unit ball in

Rd, which appears in the asymptotic variance of the standard asymmetric k-NN estimator. The

new confidence interval CI-O1−α defined in (6) for conditional quantiles shares the elegance and

simplicity of the confidence interval for unconditional quantiles based on order statistics.

Example 2.2. (Local Polynomial Quantile Regression): A local polynomial estimator

defined as the minimizer of a weighted check function is the natural nonparametric analog of the

linear quantile estimator originated by Koenker and Bassett (1978). Recall that the check function

is of the form: ρp (t) = pt+ + (1− p) t−, where subscripts +,− stand for the positive and negative
parts respectively. The local polynomial estimator of order s using kernel function K (·) is defined
by ξ̂ (p|x0) = e

′
1θ̂ (p|x0), with e1 = (1, 0, ..., 0) and

θ̂ (p|x0) = arg min
θ

n∑
i=1

ρp

(
Yi − θTPs

(
x0 −Xi

hn

))
K

(
x0 −Xi

hn

)
,

where Ps (z)T =
(
zv

v! , |v| ≤ s
)
for v = (v1, · · ·, vd) with |v| = v1 + · · · + vd, v! =

d∏
i=1

vi! and the

vectors of v ∈ N d being ordered lexicographically, zv =
d∏
i=1

zvii (see Chaudhuri, 1991; Fan, Hu
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and Truong, 1994; Guerre and Sabbah, 2012). With i.i.d. observations, under primitive conditions

Guerre and Sabbah (2012) establish a Bahadur representation for ξ̂ (p|x0) valid uniformly over

p ∈ (0, 1), where the linear representation is proportional to qp (x0). So Assumption (GI) (iii)

is satisfied under their conditions, where $x0 = ‖K‖2 /
√
fX (x0) and cn =

√
nhdn with hn the

bandwidth. In the time series setting, Assumption (GI) (iii) is satisfied under the conditions in

either Polonik and Yao (2002) or Su and White (2012) under proper mixing conditions. It is known

that the local polynomial estimator ξ̂ (p|x0) is not guaranteed to be monotone in p, so our generic

CI employes the rearranged version of ξ̂ (p|x0).

Example 2.3. (Nonparametric Quantile Regression With Censoring): Consider a

nonparametric censored quantile regression model where the dependent variable Yi is subject to

conditional random censoring by Ci. So instead of observing {Xi, Yi}ni=1, we observe a random

sample (min (Yi, Ci) , δi, Xi)
n
i=1, where δi = 1{Yi ≤ Ci}, Yi and Ci are independent of each other

conditional on Xi. Dabrowska (1987) extends various nonparametric quantile regression estimators

for random samples including the kernel estimator, the symmetrized k-NN estimator, and the

standard k-NN estimator to the above censored case. Under primitive conditions, she establishes

weak convergence of the associated quantile processes which ensures Assumption (GI) (iii) with

standard nonparametric convergence rate and the factor $x0 now also involving the conditional

cumulative hazard function and conditional sub-survival function (see Corollary 2.2 in Dabrowska,

1987). Thus our generic confidence interval defined in (3) is asymptotically valid. Also one could

use local polynomial type estimators given the work of Kong, Linton and Xia (2013).

Example 2.4. (Inverting Estimators of the Conditional Distribution Function):

Donald, Hsu, and Barrett (2012) consider various models for the conditional distribution function

including fully parametric models of the form: FY |X (y|x) ≡ F (y|x, θ0) for a known function F and

an unknown parameter θ0 and semiparametric models of the form: FY |X (y|x) ≡ F (log y − x′θ0)

for an unknown (F, θ0). For each model, they provide primitive conditions under which Assumption

(GI) (iii) is satisfied for random samples, but σ2 (p|x0) is not of the form: p (1− p)$2
x0 . We refer

interested readers to Section 3 in their paper for details.

2.2 A Generic Confidence Band

Often it is of interest to conduct inference simultaneously on ξ (p|x) for all x in a subset of the

support of X. In this section, we construct a generic CB for a nonparametric quantile function5

by the direct approach again avoiding the conditional density estimation, when x varies in some

compact set J contained in the interior of the support of X. Unlike the generic CI in (3) which

relies on the normal limiting distribution, the generic CB developed in this section will rely on the

5For the location-scale forms of linear quantile models, Zhou and Portnoy (1996) construct Scheffe type confidence
band using the direct approach (see their Proposition 3.1) based on chi-square asymptotics.
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extreme type limiting distribution of a stationary Gaussian process (Bickel and Rosenblatt, 1973;

Leadbetter, Lindgren and Rootzen, 1983) obtained from characterizing the maximal deviation of

the original nonparametric estimator from the true conditional quantile. Although the first order

asymptotic properties of the monotone quantile estimator in Chernozhukov, Fernandez-Val and

Galichon (2010) are the same as the original quantile estimator, this is not suffi cient for the purpose

of constructing a generic CB, see the discussion on Assumption GB (iii) below for a more detailed

explanation. Because of this, we will adopt a special class of monotone quantile estimators obtained

from inverting monotone estimators of the conditional distribution function of Y given X. Since

these estimators are monotone by construction, the generic CI in (3) is applicable to them. For

both practical and technical reasons, we focus on the case when X is univariate. For multivariate

covariate, semiparametric models including the partially linear and single index quantile regression

models are introduced in the literature to alleviate the curse of dimensionality associated with

fully nonparametric models. In Section 3, we illustrate how CBs using the direct approach can be

constructed for semiparametric quantile models.

Let
{

(X ′i, Yi)
′}n
i=1

denote the sample information on (X ′, Y )′, random sample or time series

data. Consider any first-step estimator F̂ (y|x) of the conditional distribution function FY |X (·|x)

taking the following linear form:

F̂ (y|x) =
n∑
i=1

Win (x) I [Yi ≤ y] , (7)

where {Win (x)}ni=1 is a sequence of non-negative weights summing up to one. Let F̂
−1 (p|x) denote

the generalized inverse of F̂ (·|x).

The linear form given in (7) nests almost all commonly used kernel type local smoothers6 such

as Nadaraya-Watson estimator, Yang-Stute estimator (Yang, 1981; Stute, 1984b), Local Parti-

tioned estimator (the local constant version in Chaudhuri, 1991), and Adjusted Nadaraya-Watson

estimator (Hall, Wolff and Yao, 1999):7

WNW
in (x) =

Khn (x−Xi)∑n
j=1Khn (x−Xj)

, (8)

W Y S
in (x) =

Khn (Fn (x)− Fn (Xi))∑n
j=1Khn (Fn (x)− Fn (Xj))

, (9)

WP
in (x) =

I [Xi ∈ Pn (x)]∑n
j=1 [Xj ∈ Pn (x)]

, and (10)

6Theorem 2.2 and the high level assumptions are written focusing on local smoothers. Upon change of notations,
sieve type estimators could be incorporated as well, see Figueroaf-Lopez (2011).

7As shown by Hall, Wolff and Yao (1999), this Adjusted Nadaraya-Watson estimator is asymptoticall the same
as local linear estimator upto the first order, hence it inherits the smaller bias property of local linear estimator,
especially at the boundary. Meanwhile it is suprior to local linear estimator as the weights are all positive and
summing up to 1, thus the estimated CDF is a proper distribution function.
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WANW
in (x) =

pi (x)Khn (x−Xi)∑n
j=1 pj (x)Khn (x−Xj)

, (11)

where h ≡ hn → 0 is a bandwidth and Kh (·) = K (·/h) /h with standard kernel density function

K. Moreover in the Yang-Stute estimator, Fn (x) is the empirical distribution function of {Xi}ni=1;

in the Adjusted Nadaraya-Watson weights, we maximize
∏n
j=1 pj (x) subject to the following con-

straints: pj (x) ≥ 0,
∑n

j=1 pj (x) = 1 and
∑n

j=1Khn (Xj − x) (Xj − x) pj (x) = 0; and in the local

partitioned version, Pn = {P1n, P2n, ...} stands for a partition of X with maxj Leb (Pjn) of order

hn, and Pn (x) ∈ Pn, is the set containing point x.
The high level assumptions below are written for the local smoothers with tuning parameter hn

defined above. Implicitly below we select an under-smoothed hn to kill the bias term.

Assumption (GB)

(i). A continuous and positive conditional density function fY |X (y|x) exists uniformly over the

interval
[
F−1
Y |X (p1|x)− ε, F−1

Y |X (p2|x) + ε
]
for some ε > 0, where [p1, p2] contains p and belongs to

(0, 1) and for x ∈ J .
(ii). The first step estimator for the conditional distribution function in (7) has the following

convergence rate:

sup
x∈J

sup
y∈Y

Cn

∣∣∣F̂ (y|x)− FY |X (y|x)
∣∣∣ = Op (1) .

Moreover the uniform local oscillation could be bounded as follows:

sup
x∈J

sup
|y1−y2|≤O(C−1n )

Cn

∣∣∣F̂ (y1|x)− F̂ (y2|x)− FY |X (y1|x) + FY |X (y2|x)
∣∣∣ = op (1) ,

and for all x ∈ J the local weights satisfy: maxiWin (x) = o
(
C−1
n

)
almost surely.

(iii). Given p ∈ (0, 1), we could find An, Dn and a deterministic function Ψ (x) such that

lim Pr

{
sup
x∈J

An

[
Ψ (x)

√
nhn

∣∣∣F̂ (ξ (p|x) |x)− FY |X (ξ (p|x) |x)
∣∣∣]−Dn ≤ z

}
= exp (−2 exp (−z)) ,

with (nhn)−1/2 (Dn −A−1
n

)
= O

(
C−1
n

)
and Ψ (x) being uniformly bounded away from zero and

infinity.

For those local smoothers the uniform convergence rate is Cn =
√
nhn (log n)−1 under standard

regularity conditions and the magnitude of local weights are all of order O
(

(nhn)−1
)
. The local

oscillation could be readily handled given the results in Stute (1984a) or Einmahl and Mason

(2005). Apropos of the convergence to the Gumbel distribution in (GB) (iii), we shall rely on the

bivariate Gaussian approximation and deduce that the limiting distribution is the maximum of a

stationary Gaussian process, say h−1/2
∫
K
(
u−v
h

)
dB (v) for a Gaussian process B (·) and kernel

function K (·) as demonstrated in Hardle (1989), Hardle and Song (2010) for random sample, Liu

and Wu (2010) for time series data. Given the limiting distribution in (GB)(iii) and condition in
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(GB)(ii) for Bahadur representation of the conditional quantile estimator (by directly inverting the

conditional CDF estimator), one could obtain the limiting distribution for the maximal deviation

of this conditional quantile estimator, also see Lemma 3.4 and its following remark. The diffi culty

with the estimator ξ̂
∗

(p|x) in Chernozhukov, Fernandez-Val and Galichon (2010) by rearranging

an arbitrary ξ̂ (p|x) (may not be monotone in p) is due to the lack of uniform asymptotic property

of ξ̂
∗

(p|x). To the best of our knowledge, the characterization of the maximal deviation of ξ̂
∗

(p|x)

remains to be an open question.

Our generic CB takes the following form:

CB-G1−α =
[
F̂−1 (τ − σn (x;α) |x) , F̂−1 (τ + σn (x;α) |x)

]
(12)

where

σn (x;α) =
1

√
nhnΨ̂ (x)

(
Dn +

log 2− log |log (1− α)|
An

)
and Ψ̂ (x) denote a uniformly consistent estimator of Ψ (x).

THEOREM 2.2 Suppose Assumption (GB) holds. Then the confidence band in (12) has the

desired asymptotic size:

lim
n→∞

Pr {ξ (p|x) ∈ CB-G1−α, ∀x ∈ J } = 1− α.

Proof. In order to prove the validity of the generic confidence band, we first need the following

type of Bahadur representation for any εn = O
(
C−1
n

)
around p, uniformly over x ∈ J :

F̂−1 (p+ εn|x)− ξ (p|x) =
1

fY |X (ξ (p|x) |x)

[
p+ εn − F̂ (ξ (p|x) |x)

]
+ op

(
C−1
n

)
. (13)

To see why the above result holds, set ηn = F̂−1 (p+ εn|x) − ξ (p|x). The following string of

equalities hold in view of the order of its local oscillation in Assumption (GB) (ii):

F̂ (ξ (p|x) + ηn|x)− F̂ (ξ (p|x) |x) (14)

= FY |X (ξ (p|x) + ηn|x)− FY |X (ξ (p|x) |x) + op
(
C−1
n

)
= fY |X (ξ (p|x) |x) ηn + op

(
C−1
n

)
.

Also due to the linear structure of F̂ (y|x), and the negligibility of the individual weights in As-

sumption (GB) (ii), we have

F̂ (ξ (p|x) + ηn|x) = F̂
(
F̂−1 (p+ εn|x) |x

)
+ op

(
C−1
n

)
= p+ εn + op

(
C−1
n

)
.

Thereafter replace F̂ (ξ (p|x) + ηn|x) with p+ εn + op
(
C−1
n

)
at the LHS in (14), we have shown the

first claim. Similar representations as in (13) and their proofs could be found in Serfling (1980) for

marginal quantile and Zhou and Portnoy (1996) for a linear quantile regression.
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Now with (13) in hand, the next string of derivations need no further explanation once we set

εn = σn (x;α), and for notational simplicity we suppress the smaller order term op
(
C−1
n

)
along the

lines:

Pr
{
F̂−1 (p+ σn (x;α) |x)− ξ (p|x) ≥ 0,∀x ∈ J

}
= Pr

{
1

fY |X (ξ (p|x) |x)

[
p+ εn − F̂ (ξ (p|x) |x)

]
≥ 0,∀x ∈ J

}
= Pr

{[
F̂ (ξ (p|x) |x)− p− Dn√

nhnΨ̂ (x)

]
≤ log 2− log |log (1− α)|√

nhΨ̂ (x)An
,∀x ∈ J

}
= Pr

{[
Ψ (x)

√
nhn

(
F̂ (ξ (p|x) |x)− FY |X (ξ (p|x) |x)

)
−Dn

]
≤ log 2− log |log (1− α)| ,∀x ∈ J

}
.

Similarly by omitting the smaller order terms, we get

Pr
{
F̂−1 (p− σn (x;α) |x)− ξ (p|x) ≤ 0, ∀x ∈ J

}
= Pr

{[
Ψ (x)

√
nhn

(
F̂ (ξ (p|x) |x)− FY |X (ξ (p|x) |x)

)
+Dn

]
≥ log |log (1− α)| − log 2,∀x ∈ J

}
.

Thus applying the extreme value type asymptotics in Assumption (GB) (iii), we get

lim
n→∞

Pr {ξ (p|x) ∈ CB-G1−α, ∀x ∈ J } = 1− α.

Q.E.D

3 Inference Based On Yang-Stute Estimator

Let
{

(Xi, Yi)
′}n
i=1

denote a random sample on (X,Y )′ for a univariate X. In this section, we give

a detailed illustration of the direct approach using the conditional quantile estimator defined as

the generalized inverse of particular estimator of FY |X (·|x) proposed by Yang (1981) and Stute

(1984b, 1986). In the sequel we will proceed with the interchangeable notation F−1
Y |X (p|x) = ξ (p|x)

to highlight this generalized inverse nature. We consider three quantile models: nonparametric,

partially linear, and single index models. For each model, we construct a generic CI and a generic

CB for the corresponding conditional quantile function and provide primitive conditions under

which we show their asymptotic validity. We use partially linear and single index models here

to demonstrate how CIs/CBs may be constructed for semiparametric quantile models when the

covariate is multivariate.

It is worth repeating here that no monotone rearrangement is needed in this section, because the

quantile estimator we adopt is monotone by construction. Compared with the other local smoothers

in the previous section, including the (Adjusted) Nadaraya-Watson estimator, and Local Partitioned

estimator, we show that the advantage of Yang-Stute estimator is that it allows us to construct CIs
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and CBs for all three quantile models that do not require estimation of the covariate’s marginal

density function (in fact the method does not even require the existence of covariate’s density

function), thus achieving the so-called asymptotic distribution-freeness in Stute (1984b).

3.1 Univariate Nonparametric Quantile Function

We now introduce our estimator of F−1
Y |X (p|x) at a fixed value x0 ∈ X . Let F̂n (y|x0) denote the

estimator of FY |X (y|x0) introduced in Yang (1981) and further studied in Stute (1984b, 1986). It

is of the form in (7) with weights defined in (9), so

F̂n (y|x0) =

∑n
i=1 1{Yi ≤ y}K

(
Fn(x0)−Fn(Xi)

hn

)
∑n

i=1K
(
Fn(x0)−Fn(Xi)

hn

) , (15)

where K(·) is a kernel function and hn → 0 is a bandwidth. Notice that the local neighborhood

around the point of interest is calibrated according to ranks instead of Euclidean distance, so

F̂n (y|x0) is also known as the symmetrized k-NN estimator8. A more intuitive view of Yang-Stute

estimator is the following kernel estimator replacing Fn(·) with FX(·):

F̃n (y|x0) =

∑n
i=1 1{Yi ≤ y}K

(
FX(x0)−FX(Xi)

hn

)
∑n

i=1K
(
FX(x0)−FX(Xi)

hn

) .

In Appendix A, we show that the difference between F̃n (·|·) and F̂n (·|·) is negligible for the infer-
ential purposes considered in our paper, thus F̂n (·|·) could be viewed as a feasible version of F̃n (·|·)
where the probability integral transformation FX(·) on the covariate makes its marginal density
equal to 1 along its whole support.

The estimator of ξ (p|x0) based on F̂n (y|x0) is defined as the generalized inverse of F̂n (·|x0):

ξ̂ (p|x0) = F̂−1
n (p|x0) . (16)

In the rest of this section, we provide primitive conditions under which Assumptions (GI) and (GB)

hold for F̂n (y|x0) or F̂−1
n (p|x0) so the generic CI in (3) and the generic CB in (12) are applicable

to F̂−1
n (p|x0).

3.1.1 A New Confidence Interval

Our new level (1− α)-confidence interval for F−1
Y |X (p|x0) takes the following form:

CIN1−α =
[
F̂−1
n

(
p− zα/2σnp (K) |x0

)
, F̂−1

n

(
p+ zα/2σnp (K) |x0

)]
, (17)

8To illustrate its symmetry, suppose there are three observations, X1 = 1.5, X2 = 2, and X3 = 5, and we are
interested in estimating the conditional functional at x0 = 3 using effectively two observations. Then the standard
k-NN estimator would choose (X1, X2) according to Euclidean distance, whereas the symmetrized k-NN estimator
would pick (X2, X3) based on rank.
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where

σnp (K) =

√
R (K) p (1− p)

nhn
(18)

in which R (K) =
∫
K2 (u) du.

Recall that qp (x) = 1/fY |X

(
F−1
Y |X (p|x) |x

)
is the conditional quantile density function of Y

given X. It is obvious from (17) that our new confidence interval (CI), CIN1−α, has several advan-

tages over existing CIs. First, compared with Wald-type confidence intervals, our new confidence

interval, CIN1−α, does not require either a consistent estimator of the density function of X or

the conditional quantile density function of Y given X = x0, qp (x0). Second, compared with the

CI based on the empirical likelihood approach in Xu (2012), our CI is much easier to implement;

there is no optimization involved and it only requires evaluating our conditional quantile estimator

ξ̂ (p|x0) at two specific quantile levels, p− zα/2σnp (K) and p+ zα/2σnp (K).

Below we provide a list of suffi cient conditions for the asymptotic validity of CIN1−α.

Assumption (S). Let H (y|u) = FY |X
(
y|F−1

X (u)
)
.

(i) Assume that

sup
|t−s|≤τ

∣∣H (F−1
Y (t) |u

)
−H

(
F−1
Y (s) |u

)∣∣ = o
((

ln τ−1
)−1
)
as τ → 0

uniformly in a neighborhood of u0 = FX(x0);

(ii) Uniformly in y, H (y|·) belongs to the second order Holder class at u0 ∈ (0, 1), i.e., for any

y, H (y|u) is differentiable w.r.t u at u0 and there exists a neighborhood of u0 such that for any

u1, u2 in this neighborhood, we have that∣∣H ′ (y|u1)−H ′ (y|u2)
∣∣ ≤ L|u1 − u2|

holds uniformly in y, where H ′ (y|u) = ∂H (y|u) /∂u and L <∞.
Assumption (H). The bandwidth satisfies hn = O

(
n−δ

)
for some δ ∈ (1/5, 1/3), i.e., it

satisfies: nh5
n → 0 and nh3

n →∞ as n→∞.
Assumption (K). The kernel function K(·) is a twice continuously differentiable density func-

tion with zero mean, compact support and bounded second order derivative.

Assumption (X). The conditional density function fY |X (·|x0) exists and is continuous and

positive on the interval
[
F−1
Y |X (p1|x0)− ε, F−1

Y |X (p2|x0) + ε
]
for some ε > 0, where [p1, p2] contains

p and belongs to (0, 1), also X has continuous distribution function FX (x) .

Assumption (S) is chosen in accordance with Assumptions (A), (B) in Stute (1986). For (S)(i)9

is used by Stute (1986) to show the tightness of the conditional empirical process. It is pretty

9To clarify some notation, we added the corresponding quantile transformation since Stute (1986) directly works
with (X,Y ) with uniform marginal distributions.
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weak; if the term in absolute values could be bounded by any polynomial order in τ , it would

imply (S)(i). In Fan and Liu (2011), we show that existence of copula density function of Y and X

would imply this result. (S)(ii) is written slightly differently from Assumption (B) in Stute (1986)

as it does not require second order differentiability of H (y|u), but achieves the same purpose in

controlling the bias term. The so-called uniform Holder class is adapted from Tsybakov (2008), see

also Guerre and Sabbah (2012). Assumption (X) spells out this asymptotic distribution freeness

advocated by Stute (1984b), as by the elementary fact FX (Xi) ∼ U [0, 1]. The requirement on the

bandwidth is standard, with one added condition nh3
n → ∞, which is necessary in dealing with

the asymptotic variance term as demonstrated in Stute (1984b). Assumption (K) ensures that our

quantile estimator F̂−1
n (p|x0) is monotone in p ∈ (0, 1) so CIN1−α is non-empty. Kernel functions

satisfying Assumption (K) include Bisquare and Triweight kernels.

THEOREM 3.1 Suppose Assumptions (X), (S), (K), and (H) hold and x0 is an interior point

not on the flat part of FX . For 0 < α < 1, we get: Pr
(
F−1
Y |X (p|x0) ∈ CIN1−α

)
→ 1−α as n→∞.

Given our generic result in Section 2, the proof of this theorem follows immediately after Lemma

3.2 below and as F̂n (y|x0) is a proper distribution function by Assumption (K), the rearranging

step could be skipped. The Lemma below demonstrates the critical role played by the symmetrized

k-NN estimator F̂n (y|x0) in our new confidence interval which not only avoids the estimation of

the conditional quantile density function of Y given X = x0 but also the estimation of the density

function of X.

Lemma 3.2 Suppose the conditions of Theorem 2.1 hold. Then

(i)
√
nhn

[
F̂n(·|x0)− FY |X(·|x0)

]
=⇒ B0(·), where B0(·) is the Brownian Bridge with the fol-

lowing covariance structure:

Cov(B0(y1), B0(y2)) = R (K)
[
FY |X(y1 ∧ y2|x0)− FY |X(y1|x0)FY |X(y2|x0)

]
;

(ii) Moreover, the conditional density function of Y given X is strictly positive on the interval:[
F−1
Y |X (p1|x0)− ε, F−1

Y |X (p2|x0) + ε
]
for some ε > 0. Then{√

nhn

[
F̂−1
n (p|x0)− F−1

Y |X (p|x0)
]

: p ∈ [p1, p2]
}

=⇒ qp (x0)B0(F−1
Y |X (p|x0)).

Lemma 3.2 (i) is restated from Stute (1986). It makes clear that in contrast to the commonly

used Nadaraya-Watson estimator or the local polynomial estimator of the conditional distribution

function, the asymptotic variance of F̂n (y|x0) does not depend on the density of the covariate X.

In fact, Lemma 3.2 does not even require that X has a density. It is this “density-free”feature of

F̂n (y|x0) that enables us to dispense with the density of X in our new confidence interval.

17



Lemma 3.2 (ii) follows from Lemma 2.3 (i), Lemma 21.3 in van der Vaart (1998), and the

functional Delta method. It implies that for a fixed p ∈ [p1, p2],√
nhn

[
F̂−1
n (p|x0)− F−1

Y |X (p|x0)
]

=⇒ N
(
0, σ2

)
with σ2 = R (K) p (1− p) q2

p (x0). So even though the use of F̂n (y|x0) frees us from estimating

the density of X, the asymptotic variance of F̂−1
n (p|x0) still depends on the conditional quantile

density qp (x0). As a result, Wald-type inference procedures based on the asymptotic normality of

F̂−1
n (p|x0) would still require a consistent estimator of qp (x0) or fY |X

(
F−1
Y |X (p|x0) |x0

)
which our

new confidence interval avoids as well.

3.1.2 A New Confidence Band

In many applications, uniformly valid confidence bands over a range of covariate values may be

desirable, see Hardle and Song (2010), Song, Ritov, and Hardle (2012) for interesting empirical

applications in labor economics. Below we extend our confidence interval CIN1−α to confidence

bands over a range of covariate values.

Let

CBN1−α =
[
F̂−1
n (p− cnδ (α,K)σnp (K) |x) , F̂−1

n (p+ cnδ (α,K)σnp (K) |x)
]
, (19)

where σnp (K) is defined in (18) and

cnδ (α,K) =
c (α)

(2δ log n)1/2
+ dn (20)

in which c (α) = log 2− log | log(1− α)| and

dn = (2δ log n)1/2 + (2δ log n)−1/2 log


∫ (

K
′
(u)
)2
du

4πR(K)

 . (21)

Note that like our confidence interval CIN1−α, our confidence band, CBN1−α, is easy to compute

and shares the remarkable density-free feature.

Below we provide additional conditions under which we show the uniform asymptotic validity

of our confidence band. Let J ⊂ X denote an inner compact subset of X .
Assumption (S̃). Assumption (S) holds uniformly for x ∈ J .
Assumption (X̃). The conditional density function fY |X(y|x) has bounded derivative with

respect to y uniformly for x ∈ J . Notice Assumption (X) plus the compactness of J would give

uniform continuity of FX (·). We list this rather redundant assumption for easy reference.
Assumption (B). (i) h−3

n log n
∫
|y|>an fY (y)dy = O (1), where fY (y) is the marginal density of

Y and (an)∞n=1 is a sequence of constants tending to infinity as n→∞; (ii) infx∈J fY |X(F−1
Y |X (p|x) |x) >

18



0; (iii) supy supx∈J fY |X(y|x) <∞; (iv) Y has Lipschitz continuous distribution function FY (·) and
(X,Y ) has uniformly bounded copula density function c (x, y).

Assumption (B) (i)(ii) are added in accordance with the strong approximation result in Hardle

and Song (2010). Since we base our analysis on the covariateX after (empirical) probability integral

transform, some of the assumptions in Hardle and Song (2010) will be satisfied automatically here

such as their (A5) and (A6). Also notice that our Assumption (H) on the bandwidth implies

Assumption (A2) in Hardle and Song (2010) and our Assumption (K) implies their assumption

(A1). Assumption (B) (iii), (iv) will be needed to establish the uniform Bahadur representation.

Specifically Assumption (B)(iii) aims to control the bias term in the local oscillation uniformly, and

with the help of (B)(iv) we could utilize certain nice maximal inequality in Stute (1984a) to bound

the local oscillation of copula process within a shrinking rectangle. Details could be found in our

Lemmas A7 and A8.

THEOREM 3.3 Suppose Assumptions (B), (S̃), (X̃), (K), and (H) hold. Then the confidence

band CBN1−α is asymptotically valid with coverage probability 1− α uniformly over x ∈ J .

Compared with our confidence interval, our confidence band replaces zα/2 with cnδ (α,K). The

Lemma below explains why.

Lemma 3.4 Under Assumptions (B), (S̃), (X̃), (K), and (H), it holds that

Pr

(
(2δ log n)1/2

[
σ−1
np (K) sup

x∈J

{
fY |X

(
F−1
Y |X (p|x) |x

)
|F̂−1
n (p|x)− F−1

Y |X (p|x) |
}
− dn

]
≤ z
)

→ exp (−2 exp (−z)) as n→∞.

Remark 3.1. The above lemma follows from Theorem 2.2 in Hardle and Song (2010) when the

covariate is uniformly distributed between [0, 1]. The detailed proof consists of a characterization

of maximal deviation of the conditional CDF estimator, as in our Assumption (GB)(iii) and a

uniform Bahadur representation of the conditional quantile estimator in terms of the conditional

CDF estimators evaluated at F−1
Y |X (p|x).

3.2 Semiparametric Quantile Models

In most applications, the covariate is multivariate. Semiparametric quantile models are intro-

duced in the literature to alleviate the curse of dimensionality associated with fully nonparametric

models and at the same time are more robust than fully parametric models. Commonly used semi-

parametric quantile regression models include partial linear and single index quantile regression

models. Although most work in the literature concern root-n estimation of the finite dimensional

parameters, Song, Ritov and Hardle (2012) have constructed uniform confidence bands for partial
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linear quantile regressions. Their confidence bands, however, require the estimation of both the

conditional quantile density and the density function of the covariate.

In the next two subsections, we extend our confidence interval/band for univariate nonpara-

metric quantile in Section 3.1 to both partial linear and single index quantiles.

3.2.1 Partial Linear Quantile Model

Consider the following partial linear quantile model with a univariate covariate X and multivariate

covariate Z having support Z ⊂ Rd:

ξ (p|Zi, Xi) = Z
′
iβ0 (p) + gp(Xi)

where {Yi, Xi, Zi}ni=1 is a random sample. We note that the p-th conditional (on Xi = x) quantile

function of
(
Yi − Z

′
iβ0 (p)

)
is gp (x).

Root-n consistent estimators of β0 (p) are available in Lee (2003) and Song, Ritov, and Hardle

(2012). Semiparametric effi cient estimation of the above model has been studied by Lee (2003). Due

to the root-n consistency of the finite dimensional parameter and additive structure, the nonpara-

metric component will play the dominating role in the inference for the whole conditional quantile

function. Denote the random variable Ỹ = Y − Z ′β0 (p), and the Wald type inference requires

estimation of the conditional density f
Ỹ |X (gp (x) |x), see Song, Ritov and Hardle (2012). Utilizing

the observation that F−1

Ỹ |X
(p|x) = gp (x), we would use estimates of F−1

Ỹ |X
(p± ·|x) to construct a

CI for gp (x) from the direct approach avoiding the estimation of f
Ỹ |X (gp (x) |x). Specifically let

β̂ (p) denote a root-n consistent estimator of β0 (p). For x0 ∈ X and z0 ∈ Z, let

F̂n,PL (y|x0; p) =

∑n
i=1 1{Yi − Z

′
i β̂ (p) ≤ y}K

(
Fn(x0)−Fn(Xi)

hn

)
∑n

i=1K
(
Fn(x0)−Fn(Xi)

hn

) . (22)

Our CI for gp(x0) is of the form:[
F̂−1
n,PL

(
p− zα/2σnp (K) |x0; p

)
, F̂−1

n,PL

(
p+ zα/2σnp (K) |x0; p

)]
and that for the conditional quantile ξ (p|z0, x0) = [z′0β0 + gp(x0)] is defined as:

CIPL1−α =

[
z
′
0β̂ (p) + F̂−1

n,PL

(
p− zα/2σnp (K) |x0; p

)
,

z
′
0β̂ (p) + F̂−1

n,PL

(
p+ zα/2σnp (K) |x0; p

) ] , (23)

where σnp (K) is defined in (18).

We now introduce two assumptions.

Assumption (Z1). Assumptions (S) and (X) hold for
(
Ỹ , X

)
, where Ỹ = Y − Z ′β0 (p).

Assumption (PL). Zi has a finite absolute conditional (on Xi) moment and

E
[∣∣∣1{Yi − Z ′iβ1 ≤ y} − 1{Yi − Z

′
iβ2 ≤ y}

∣∣∣ |Xi

]
≤M |β1 − β2|

holds uniformly in y, where M is a positive constant.
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THEOREM 3.5 Suppose β̂ (p)− β0 (p) = Op
(
n−1/2

)
and Assumptions (Z1), (PL), (K) and (H)

hold. Then the confidence interval, CIPL1−α, achieves the nominal level (1− α) asymptotically.

Similarly, the new confidence band is defined as

CBPL1−α =

[
z
′
β̂ (p) + F̂−1

n,PL (p− cnδ (α,K)σnp (K) |x; p) ,

z
′
β̂ (p) + F̂−1

n,PL (p+ cnδ (α,K)σnp (K) |x; p)

]
, (24)

where σnp (K) is defined in (18) and cnδ (α,K) is defined in (20).

Once we strengthen our assumptions to handle various uniformity issues, we get the asymptotic

validity of the new confidence band for the partial linear quantile model.

Assumption (Z̃1). Let Ỹ = Y − Z ′β0 (p). For Z taking values restricted to a given compact

set K ⊂ Z, Assumptions (S̃), (X̃), and (B) hold for
(
Ỹ , X

)
.

THEOREM 3.6 Suppose β̂ (p)− β0 (p) = Op
(
n−1/2

)
and Assumptions (Z̃1), (PL), (K) and (H)

hold. Then the confidence band, CBPL1−α, is asymptotically valid with coverage probability (1− α)

uniformly over x ∈ J and z ∈ K.

Remark 3.2. Let ξ̂PL (p|z0, x0) = z
′
0β̂ (p) + F̂−1

n,PL (p|x0; p). Under mild conditions, one can

show that ξ̂PL (p|z0, x0) is a consistent estimator of ξ (p|z0, x0), so the generic CI in (3) would

apply. However since ξ̂PL (p|z0, x0) may not be monotone in p ∈ (0, 1), monotone rearrangement is

needed in order to apply the generic CI to ξ̂PL (p|z0, x0). In contrast, by making use of the partially

linear structure of the quantile function and applying the direct approach to gp(x0), we are able to

construct a computationally simpler CI for ξ (p|z0, x0) which does not rely on any estimate of the

conditional quantile density function.

3.2.2 Single Index Quantile Model

Consider the single index model with multivariate covariate Z: ξ (p|Zi) = gp

(
Z
′
iβ0 (p)

)
, where

{Yi, Zi}ni=1 is a random sample. Let X̃ = Z ′β0 (p) and observe F−1
Y |X̃ (p|x̃) = gp

(
z
′
β0 (p)

)
.

In order to implement the Wald inference one has to estimate the conditional density function

fY |X̃ (gp (x̃) |x̃). In contrast, our CI and CB avoid the need to estimate the aforementioned condi-

tional density function.

Let β̂ (p) denote a consistent estimator of β0 (p) such as that in Wu, Yu, and Yu (2010) or Kong

and Xia (2012), based on structural adaptive estimation methods. For z0 ∈ Z, let

F̂n,SI (y|z0; p) =

∑n
i=1 1{Yi ≤ y}K

(
F̂n(z

′
0β̂(p))−F̂n(Z

′
i β̂(p))

hn

)
∑n

i=1K

(
F̂n(z

′
0β̂(p))−F̂n(Z

′
i β̂(p))

hn

) , (25)
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where F̂n is the empirical distribution function of
{
Z
′
i β̂ (p)

}n
i=1
. Our CI for ξ (p|z0) ≡ gp (z′0β0 (p))

is defined as:

CISI1−α =
[
F̂−1
n,SI

(
p− zα/2σnp (K) |z0; p

)
, F̂−1

n,SI

(
p+ zα/2σnp (K) |z0; p

)]
, (26)

where σnp (K) is defined in (18).

We make the following assumptions.

Assumption (Z2). Assumptions (S) and (X) hold for
(
Y, X̃

)
with X̃ = Z ′β0 (p). Moreover,

E||Z||γ <∞ for some γ ≥ 4.

Assumption (HS). In addition to Assumption (H), the bandwidth also satisfies:

h−1/2
n n−1/4+1/2γ

√
lnn = o(1) and h−5/2

n n−1+1/γ lnn = o(1).

THEOREM 3.7 Suppose β̂ (p)−β0 (p) = Op
(
n−1/2

)
and Assumptions (Z2), (K), and (HS) hold.

Then the confidence interval, CISI1−α, achieves the nominal level (1− α) asymptotically.

Remark 3.3. The root-n asymptotic normality of the estimator β̂ (p) in Wu, Yu, and Yu

(2010), Kong and Xia (2012) actually requires much stronger assumptions than what we assume

here. For the restriction on bandwidth, Assumption (H) is maintained, letting hn = n−δ. A suitable

δ could be chosen from (1/5, 1/3) ensuring γ ≥ 4, which is a rather mild restriction.

Again once we strengthen our assumptions in accordance with various uniformity issues, we

get the asymptotic validity of the new confidence band defined in (27) below for the single index

quantile model.

Assumption (Z̃2). Let X̃ = Z ′β0 (p). In addition to the moment restriction in (Z2), Assump-

tions (S̃), (X̃), and (B) hold for
(
Y, X̃

)
uniformly in a compact set K ⊂ Z.

THEOREM 3.8 Suppose β̂ (p)−β0 (p) = Op
(
n−1/2

)
and Assumptions (Z̃2), (K), and (HS) hold.

Then the confidence band below is asymptotically valid with coverage probability (1− α) uniformly

over z ∈ K:

CBSI1−α =
[
F̂−1
n,SI (p− cnδ (α,K)σnp (K) |z; p) , F̂−1

n,SI (p+ cnδ (α,K)σnp (K) |z; p)
]
, (27)

where σnp (K) is defined in (18) and cnδ (α,K) is defined in (20).

Remark 3.2 for the partially linear model applies here, since ξ̂SI (p|z0) ≡ F̂−1
n,SI (p|z0; p) may not

be monotone in p ∈ (0, 1).

4 Simulation

In this section, we investigate the finite sample performance of our new confidence intervals for non-

parametric and partially linear quantile regressions and compare them with Wald-type confidence
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intervals and two bootstrap confidence intervals. In order to see the separate effects of estimating

fX (x) and qp (x), we use both the Nadaraya-Watson estimator and Yang-Stute symmetric k-NN

estimator of the conditional distribution function of Y given X. In sum, we compare four asymp-

totic confidence intervals in our simulation. For the nonparametric quantile regression, they take

the following forms:

W-NW1−α =

 F̂−1
n,NW (p|x)−

zα
2
σnp(K)q̂p,NW (x)√

f̂X(x)
,

F̂−1
n,NW (p|x) +

zα
2
σnp(K)q̂p,NW (x)√

f̂X(x)

 , (28)

W-S1−α =
[
F̂−1
n (p|x)− zα/2σnp (K) q̂p (x) , F̂−1

n (p|x) + zα/2σnp (K) q̂p (x)
]
, (29)

CI-NW1−α =

F̂−1
n,NW

p− zα/2σnp (K)√
f̂X (x)

|x

 , F̂−1
n,NW

p+
zα/2σnp (K)√

f̂X (x)
|x

 , (30)

CIN1−α =
[
F̂−1
n

(
p− zα/2σnp (K) |x

)
, F̂−1

n

(
p+ zα/2σnp (K) |x

)]
,

where q̂p (x) = 1/f̂Y |X

(
ξ̂p (x) |x

)
, q̂p,NW (x) = 1/f̂Y |X

(
ξ̂p,NW (x) |x

)
, and F̂−1

n,NW (p|x) is the

generalized inverse of F̂n,NW (y|x) defined as

F̂n,NW (y|x) =

∑n
i=1 1{Yi ≤ y}K

(
x−Xi
hn,NW

)
∑n

i=1K
(
x−Xi
hn,NW

) , (31)

f̂X (x) =
1

nhX

n∑
i=1

K

(
x−Xi

hX

)
, and f̂Y |X (y|x) =

∑n
i=1K

(
y−Yi
hC,Y

)
K
(
x−Xi
hC,X

)
hC,Y

∑n
i=1K

(
x−Xi
hC,X

) , (32)

in which hX , hC,X , hC,Y , and hn,NW are all bandwidths that need to be chosen.

While the first two confidence intervals, W-NW1−α and W-S1−α, are both Wald-type confidence

intervals relying on a consistent estimator of the conditional quantile density function, W-S1−α does

not require a consistent estimator of the covariate density function fX (x). The two new confidence

intervals,10 CIN1−αand CI-NW1−α, make use of the conditional quantile estimators directly. They

differ in the quantile estimators being used the consequence of which is that CIN1−α does not depend

on any density estimation, but CI-NW1−α depends on a consistent estimator of the covariate density

fX (x).

Throughout the simulation, we used the Bisquare Kernel function, K (u) = 15
16

(
1− u2

)2
I{|u| ≤

1}. The choice of bandwidths is delicate and will be discussed below. Among these four confidence
intervals, our new confidence interval, CIN1−α, is the least demanding in terms of bandwidth choice,

as it only requires choosing one bandwidth which is needed to estimate the conditional quantile

10Section 3 establishes the asymptotic validity of CIN1−α. The asymptotic validity of CI-NW1−α can be established
using Theorem 2.1.
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function. In sharp contrast, the Wald-type confidence interval, W-NW1−α, is the most demanding,

as there are four bandwidths involved.11

As the Wald-type inference is known to be poor in linear models (see Kocherginsky, He, and

Mu, 2005), we also compared our confidence intervals with the following two bootstrap competitors:

Boot-Norm1−α =
(
F̂−1
n,NW (p|x)− zα/2σBoot, F̂−1

n,NW (p|x) + zα/2σBoot

]
,

Boot-Perc1−α =
(
F̂−1
n,NW (p|x)− zBoot,1−α/2, F̂−1

n,NW (p|x) + zBoot,α/2

]
, (33)

where σBoot is the bootstrap standard deviation for F̂−1
n,NW (p|x) and zBoot,α/2 is the bootstrap

percentile.

In the tables below, we denote these confidence intervals, W-NW1−α, W-S1−α, CI-NW1−α,

CIN1−α, Boot-Norm1−α and Boot-Perc1−α as ‘Asy NW’, ‘Asy CI’, ‘New NW’, ‘New CI’, ’BootNm’,

and ’BootPerc’respectively.

4.1 Nonparametric Quantile Regression

The first two designs are taken from Yu and Jones (1998). Model 1 gives curvy quantile with

homoskedasticity while Model 2 exhibits almost linear quantile with heteroskedasticity:

Model 1 : Yi = 2.5 + sin (2Xi) + 2 exp
(
−16X2

i

)
+ 0.5εi and

Model 2 : Yi = sin (0.75Xi) + 1 + 0.3
√

(sin (0.75Xi) + 1)εi,

where Xi and εi are independent bivariate normal with standard normal marginal distributions.

We computed the coverage rates of six confidence intervals based 5, 000 simulations with sample

size n varying from 200, 500 to 1000 and nominal size equal to 95%. The bootstrap replication12

is set to be 500. The confidence interval, W-NW1−α, involves four bandwidths: (i) the bandwidth

hn,NW in the quantile estimator is chosen to be n−1/20hY J , where hY J is the rule of thumb band-

width in Yu and Jones (1998) based on a preliminary Ruppert-Sheather-Wand bandwidth. The

presence of the factor n−1/20 reflects the slightly undersmoothing requirement in our Assumption

(H); (ii) the bandwidth hX in f̂X (x) is chosen to be the Sheather-Jones bandwidth with Silver-

man’s rule of thumb as the pilot estimate; (iii) the two bandwidths (hC,Y , hC,X) in the conditional

quantile density estimator are chosen by the ’normal-reference’rule in Racine’s np package. The

bandwidths involved in the remaining three confidence intervals, W-S1−α, CI-NW1−α, and CIN1−α,

are chosen in the same way. However it is worth mentioning that hn and hn,NW are different as the

11The results in Tables 1-7 reveal the best performance of the Wald-type confidence intervals when these bandwidths
are different and chosen carefully and the worst performance when these bandwiths are chosen to be the same.
12To ease the computational burden, we fixed the bandwidth for the bootstrap sample.
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first one is based on the sample (Yi, Fn (Xi)) after we transform Xi using its empirical distribution

function.13 The results are presented in Tables 1-3 for different sample sizes.

Insert Tables 1-3 here

Several observations follow immediately from Tables 1-3. First, the performance of the two new

CIs based on pairs of quantile estimates is very stable across models, quantile levels, and sample

sizes, especially our new CI using the symmetric k-NN estimator– its performance is comparable

to the computationally more extensive Bootstrap percentile method and in many cases better with

finite sample coverage rate very close to the nominal level even for sample size 200; Second, the

performance of the two Wald-type CIs is not as stable. For small sample sizes, their coverage rates

at most covariate points for both models are not close to the nominal level. Even at sample size

1000, the coverage rates of the two Wald-type CIs could be far away from the nominal level, e.g.,

0.991, 0.9896 for Model 1 when x = 0 and p = 0.5 and 0.9302, 0.9254 for Model 2 when x = 1.5 and

p = 0.25; For the two bootstrap confidence intervals, the one based on normal approximation is

biased towards undercovering even in relatively large samples, while the one based on the percentile

approach is much more accurate, but showing some variability in small samples.

To see the sensitivity of Wald-type confidence intervals to the choice of bandwidths, we also

computed their coverage rates using one bandwidth only, the bandwidth in the conditional quantile

estimate. Table 4 presents the results for sample size 1000. For comparison purposes, we also

presented the coverage rates for the two new confidence intervals, CIN1−α and CI-NW1−α.14 The

coverage rates for CIN1−α are the same as in Table 3. Interestingly we observe that the coverage

rate of CI-NW1−α does not change much, but the performance of the two Wald-type intervals is

very poor for Model 1.

Insert Table 4 here

Overall these results reveal the superior performance of our direct approach and it is also

worthwhile to avoid estimating covariate’s density function using CIN1−α. In comparision the

sensitivity of Wald-type confidence intervals to the choice of bandwidths in the estimation of the

conditional quantile density function is quite severe.

13We need to truncate the support of X in order to avoid the crash of computation of Ruppert-Sheather-Wand
bandwidth for the Nadaraya-Watson type estimators. In particular, for Model 1, we restrict the computation of the
R-S-W bandwidth only for those points whose covariate values are in [−1.65, 1.65] and for Model 2, the restricted
range is [−2, 2] . When it comes to the small sample with 200 observations, we always truncate at [−0.75, 0.75] for
both models. In contrast, the empirical probability integral transformation prevents this crash due to the equal
spacing of sample points.
14The two bootstrap confidence intervals also require only one bandwidth from estimating the conditional quantile,

hence the results would not change from Table 3 and we will not replicate that part.
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4.2 Partial Linear Quantile Regression

The design is adapted from Song, Ritov, and Hardle (2012) and the finite dimensional parameter

β was estimated by the method proposed in Song, Ritov, and Hardle (2012):

Model 3: Yi = 2Zi +Xi
2 + εi,

where Xi, Zi, and εi are independent of each other, Xi ∼ U (0, 1), Zi ∼ U (0, 2), and εi is standard

normal.

Our new confidence interval, CIPL1−α, is presented in (23). Modifications will be required

to the other three types of confidence intervals for partial linear models. Specifically, we need to

replace Yi with Yi − Ziβ̂ in computing F̂n,NW (p|x) , F̂n (p|x) , and f̂Y |X
(
ξ̂ (p|x) |x

)
and also add

z′β̂ to both end points of the intervals in (28), (29), and (30). The bandwidths are chosen in the

same way as in the nonparametric model. Tables 5 and 6 report results for n = 500, 1000.

Insert Tables 5 and 6 here

Like in the nonparametric case, the two new confidence intervals based on pairs of estimated

quantiles perform remarkably well across covariate values, quantile levels, and sample sizes. Their

performance is comparable and sometimes better than the Boot-Norm1−α which performs better

than Boot-Perc1−α for the partial linear model. In contrast the two Wald-type intervals do not

perform well even when the sample size is 1000.

We also computed the coverage rates of the first three confidence intervals using one bandwidth

only, the bandwidth in the conditional quantile estimate. Table 7 presents the results for sample

size 1000. Again the performance of the Wald-type intervals deteriorates dramatically.

Insert Table 7 here

5 Concluding Remarks

In this paper, we have constructed a generic confidence interval for the p-th conditional quantile

from any preliminary conditional quantile estimator using the direct approach. We have shown

that our generic CI is asymptotically valid for any quantile function (parametric, nonparametric,

or semiparametric), any method of estimation, and any data structure, provided that the conditional

quantile function satisfies some mild smoothness assumptions and the original quantile estimator is

such that its associated quantile process converges weakly to a Gaussian process with a covariance

kernel proportional to the conditional (quantile) density function. In the same spirit, we have also

constructed generic confidence bands across a range of covariate values from conditional quantile

estimators defined as the generalized inverse of conditional distribution estimators.
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To further demonstrate the flexibility and simplicity of the direct approach, we have constructed

complete “density-free”confidence intervals and bands for conditional quantiles based on the Yang-

Stute estimator for nonparametric conditional quantile function with univariate covariate and two

semiparametric conditional quantile functions with multivariate covariate. In contrast to Wald-type

confidence intervals or bands based on the asymptotic distributions of estimators of the conditional

quantiles, our confidence intervals and bands circumvent the need to estimate the density of the

covariate and the conditional quantile density of the response variable, thus freeing practitioners

from choosing bandwidths involved in estimating the covariate density and the conditional quantile

density. A small Monte Carlo study reveals the superior finite sample performance of our new CIs

compared with the Wald-type CIs that are sensitive to the choice of bandwidth needed to estimate

the conditional quantile density function and two bootstrap CIs.

As far as we know, this paper is the first paper presenting a systematic study of the direct

approach to inference in nonparametric and semiparametric quantile models. Given the simplic-

ity and superior performance of this approach compared with existing approaches, it would be

worthwhile investigating its applicability in other contexts. One example is inference on the finite

dimensional parameter in semiparametric models. This paper has focused exclusively on inference

for the conditional quantiles. In semiparametric models, the finite dimensional parameter might be

of interest, but this is beyond the scope of the current paper.

6 Appendix A. Technical Proofs For Section 3.1

Throughout the proofs, M denotes an unspecified positive constant and its value does not depend

on n and typically does not depend on x ∈ J and y either (This will be clear in specific context that
M is used); ∆ denotes an intermediate value in the Taylor series expansion. The values of both M

and ∆ may vary from line to line. Also the limits are taken as n→∞ unless stated otherwise. We

rely on the device to control the local oscillation of empirical process on various occasions, let

Bn (x,Xi) = Fn(x)− Fn(Xi)− FX(x) + FX(Xi).

The following bounds hold almost surely in fact, but it is suffi cient for our purpose in the present

form.

Lemma A.1 (Stute, 1982) Under Assumptions (H), (K), and (X),

(i) for any given x0 ∈ X , we have:
√
nh−1

n sup|FX(x0)−FX(Xi)|≤Mhn |Bn (x0, Xi) | = Op (1);

(ii) uniformly over x ∈ X , we have:
√
n (hn log n)−1 sup|FX(x)−FX(Xi)|≤Mhn |Bn (x,Xi) | = Op (1).

We will also make frequent use of (local) U-process theory, thus some notations and terminologies

will be collected here from Nolan and Pollard (1987), Gine and Mason (2007) for easy reference.
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We say a class of function F is of VC type with respect to an envelope F if the covering number

N (F , L2 (Q) , ε), the smallest number of L2 (Q) open balls of radius ε required to cover F , satisfies

N (F , L2 (Q) , ε) ≤
(
M ‖F‖L2(Q)

ε

)v
, for 0 < ε ≤ 2 ‖F‖L2(Q) ,

for some universal positive constant M,v for every probability measure Q on the underlying space.

For a kernel function f of k variables, we denote

Unk (f) =
(n− k)!

n!

∑
i∈Ikn

f (Xi1 , · · ·, Xik) ,

where Imn = {(i1, · · ·, im) : 1 ≤ ij ≤ n, ij 6= ik if j 6= k}. Now suppose f is symmetric in its entries,
we have the well-known Hajek-Hoeffding decomposition stated as:

Unm (f)− Ef =
m∑
k=1

Unk (Πkf) ,

where

Πkf = (δx1 − P )× · · · × (δxk − P )× Pm−kf.

Moreover let σ2 (which we call maximal variance) is any number satisfying∥∥Pmf2
∥∥
F ≤ σ

2 ≤M2.

The following lemma comes handy when we consider various local U-processes in the proofs, when

m = 1 similar bound appears in Proposition 1 in Einmahl and Mason (2005) for local empirical

process.

Lemma A.2 (Gine and Mason, 2007, Theorem 8) Let F be a collection of measurable symmetric
functions f : Sm → R, bounded up by M in absolute values, and let P be any probability measure

on (S,S) . Assume F is of VC type with envelope function F ≡M and with characteristics A and

v. Then for every m ∈ N , and A ≥ em, v ≥ 1, there exist constants C1,C2, s.t. for any k = 1, ...,m,

nkE ‖Unk (Πkf)‖2F ≤ C12kσ2

(
log

A

σ

)k
, (A.1)

assuming nσ2 ≥ C2 log
(
A
σ

)
.

Recall

F̃n (·|x) =
1

nhnf̂U (x)

n∑
i=1

1{Yi ≤ ·}K
(
FX(x)− FX(Xi)

hn

)
,
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where we also define f̂U (x) and f̃U (x) as

f̂U (x) =
1

nhn

∑n

i=1
K

(
Fn(x)− Fn(Xi)

hn

)
and f̃U (x) =

1

nhn

∑n

i=1
K

(
FX(x)− FX(Xi)

hn

)
.

Instead of treating F̂n (·|·) as the nearest neighbor estimator based on ranks, it could also be viewed
as a feasible kernel estimator after taking probability integral transformation on the covariate. In

fact to show the validity of our new confidence band, we proceed by approximating F̂n (·|·) by
F̃n (·|·) uniformly and then resort to the results in Hardle (1989), Hardle and Song (2010) to get
the desired limiting distribution. Before that, let us first characterize the bias term.

Lemma A.3 Given Assumptions (S̃) (ii) and (K), for any interior point x ∈ X and any y ∈ Y,
when hn → 0, we have∣∣∣∣ 1

hn

∫
FY |X (y|Xi)K

(
FX(x)− FX(Xi)

hn

)
dFX(Xi)− FY |X (y|x)

∣∣∣∣ ≤Mh2
n,

where M is independent of y and x in J ⊂ X .

Proof. Let u = FX (x). Then∣∣∣∣ 1

hn

∫
FY |X (y|Xi)K

(
FX(x)− FX(Xi)

hn

)
dFX(Xi)− FY |X (y|x)

∣∣∣∣
=

∣∣∣∣∫ FY |X
(
y|F−1

X (u− Uhn)
)
K (U) dU − FY |X

(
y|F−1

X (u)
)∣∣∣∣

=

∣∣∣∣∫ [H (y|u− Uhn)−H (y|u)]K (U) dU

∣∣∣∣ .
The first equality is obtained by a change of variables and the second one is just rewritten in terms

of H (y|u). Notice that U ∈ [0, 1]. Now take the Taylor expansion and by Assumption (S̃) (ii) we

have

H (y|u− Uhn)−H (y|u) = UhnH
′
(y|u) + ρ (u, U)

with |ρ (u, U) | ≤ Lh2n
2 , for an L independent of u or y. The result follows immediately from As-

sumption (K). Q.E.D

The following sequence of lemmas is patterned after Serfling (1980) to get the uniform Bahadur

representation in Lemma A.8, thereafter the validity of confidence band could be argued as when

we present the generic results.

Lemma A.4 Under Assumptions (H), (K), and (X̃), we have:

sup
y∈Y

sup
x∈J

√
nhn
log n

∣∣∣F̂n (y|x)− F̃n (y|x)
∣∣∣ = op (1) . (A.2)
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Proof. Decompose F̂n (y|x)− F̃n (y|x) as in a standard way,

F̂n (y|x)− FY |X (y|x) + FY |X (y|x)− F̃n (y|x)

=
1

nhnf̂U (x)

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

]
K

(
Fn(x)− Fn(Xi)

hn

)
− 1

nhnf̃U (x)

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

]
K

(
FX(x)− FX(Xi)

hn

)
=

1

nhnf̂U (x)

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

] [
K

(
Fn(x)− Fn(Xi)

hn

)
−K

(
FX(x)− FX(Xi)

hn

)]
+

1

nhn

∑n

i=1

[
1{Yi ≤ y} − FY |X (y|x)

]
K

(
FX(x)− FX(Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)
.

In order to handle the denominator and the term in parenthesis in the above decomposition, we

need to bound the difference f̂U (x)− f̃U (x):

f̂U (x)− f̃U (x) =
1

nhn

∑[
K

(
Fn(x)− Fn(Xi)

hn

)
−K

(
FX(x)− FX(Xi)

hn

)]
=

1

nh2
n

∑
K
′
(
FX(x)− FX(Xi)

hn

)
[Fn(x)− FX(x)− Fn(Xi) + FX(Xi)]

+
1

nh3
n

∑
K
′′

(∆) [Bn (x,Xi)]
2 .

It would be clear in a moment that the above difference could be shown as Op
(√

logn
nhn

)
uniformly.

For the present purpose, it suffi ces that the difference is uniformly op (1) . Hence we could just focus

on the first term’s numerator.

Similarly, the numerator for the first term admits the following decomposition,

1

nhn

∑[
1{Yi ≤ y} − FY |X (y|x)

] [
K

(
Fn(x)− Fn(Xi)

hn

)
−K

(
FX(x)− FX(Xi)

hn

)]
=

1

nh2
n

∑[
1{Yi ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)− FX(Xi)

hn

)
[Fn(x)− FX(x)− Fn(Xi) + FX(Xi)]

+
1

nh3
n

∑[
1{Yi ≤ y} − FY |X (y|x)

]
K
′′

(∆) [Bn (x,Xi)]
2

=̇ In + IIn

For IIn, as argued in Lemma 1 in Stute (1984b), for any x, we only need to consider those sample

points for which |Fn(x) − Fn(Xi)| ≤ hn and by the Kvorezky-Kiefer-Wolfowitz bound, we have

supx |F (x) − Fn(x)| ≤ Cn−1/2. Therefore we only need to consider the oscillation restricted by

supx |FX(x)− FX(X)| ≤ Chn, so

IIn ≤ Op
(
hn log n

n

)
|K ′′ (∆) |
nh3

n

∑∣∣1{Yi ≤ y} − FY |X (y|x)
∣∣ = Op

(
log n

nh2
n

)
.

To handle In, we first show that it could be written as a scaled U-statistic plus some smaller order

term, and then we characterize the approximation order of the U-statistic by its Hajek projection.

Finally we end the derivation by showing that the Hajek projection is op
(√

logn
nhn

)
.
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Let F in−1(x) be the leave-one-out empirical distribution function and define Bi
n−1 (x,Xi) simi-

larly. Proceeding as Lemma 2 in Stute (1984b), we have

Fn (x) = F in−1(x)− n−1F in−1(x) + n−11{Xi ≤ x}.

Therefore, Bn (x,Xi) = Bi
n−1 (x,Xi) + Op

(
n−1

)
, where the residual term’s order is uniform w.r.t.

x by standard Glivenko-Cantelli result.

Indeed the diagonal term is of smaller order, and now it suffi ces to consider the following U-

process indexed by x: IIn = h−2
n Un2 f1 + s.o., where

Un2 f1

=
2

n (n− 1)

∑
i 6=j

1

2


[
1{Yi ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)−FX(Xi)

hn

)[ 1{Xj ≤ x} − FX (x)
−1{Xj ≤ Xi}+ FX (Xi)

]
+
[
1{Yj ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)−FX(Xj)

hn

)[ 1{Xi ≤ x} − FX (x)
−1{Xi ≤ Xj}+ FX (Xj)

]
 .

Consider the following function class:

F1 =

{ [
1{Yi ≤ y} − FY |X (y|x)

]
K
′
(
FX(x)−FX(Xi)

hn

)
×

[1{Xj ≤ x} − FX (x)− 1{Xj ≤ Xi}+ FX (Xi)] : y ∈ R, x ∈ J , hn > 0

}
,

which could be written as produce of three sub-classes:

F1,1 = {
[
1{Yi ≤ y} − FY |X (y|x)

]
: y ∈ R, x ∈ J },

F1,2 = {K ′
(
FX(x)− FX(Xi)

hn

)
: x ∈ J , hn > 0},

F1,3 = {[1{Xj ≤ x} − FX (x)− 1{Xj ≤ Xi}+ FX (Xi)] : x ∈ J }.

F1,1 is of VC type because FY |X (y|x) is bounded and monotone along y−axis and Lipschitz con-
tinuous along x−axis over the compact set J . Because K ′ (·) has bounded variation due to the
bounded second order derivative, F1,1 is also of VC type by Nolan and Pollard (1987). So is F1,3,

noting FX (x) is uniformly continuous by Assumption (X̃). we have

logN (F , L2 (Q) , ε) ≤M log

(
1

ε

)
, for any measure Q,

for any probability measure Q by Theorem 2.10.20 in Van der Vaart and Wellner (1996). Therefore,

as the expectation of the U-statistic is zero and by the moment bound in Lemma A.2, we can

approximate Un2 f1 by its Hajek-Hoeffding Projection with an error of order n−1, i.e.,

1

h2
n

Un2 f1 =
1

h2
n

Un1 Π1f1 +Op

(
1

nh2
n

)
.
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Next, we compute the projection explicitly. Let Uj = FX (Xj), Ui = FX (Xi), and u = FX(x).

Then

1

h2
n

Un1 Π1f1 =
1

nh2
n

n∑
j=1

∫ [
FY |X (y|Xi)− FY |X (y|x)

]
K
′
(
FX(x)− FX(Xi)

hn

)
×

[1{FX (Xj) ≤ FX (x)} − FX (x)− 1{FX (Xj) ≤ FX (Xi)}+ FX (Xi)] dFX (Xi)

=
1

nhn

n∑
j=1

∫
[H (y|Ui)−H (y|u)] [1{Uj ≤ u} − u− 1{Uj ≤ Ui}+ Ui] dK

(
u− Ui
hn

)

=
1

n

n∑
j=1

∫
[H (y|u− vhn)−H (y|u)] [1{Uj ≤ u} − u− 1{Uj ≤ u− vhn}+ u− vhn] dK (v)

≤ Mhn

∫
sup

|u−v|≤hn

∣∣∣∣∣∣ 1n
n∑
j=1

1{Uj ≤ u} − u− 1{Uj ≤ u− vhn}+ u− vhn

∣∣∣∣∣∣ d|K (v) |

= Op

(
hn

√
log n

nhn

)
= op

(√
log n

nhn

)
,

where u = FX(x). Notice that |H (y|U)−H (y|u) | ≤Mhn for U satisfying |U −u| ≤ hn
2 . The term

after the sup in the above inequality is nothing but the local oscillation of the uniform empirical

process, whose order is given in Lemma A.1. Also K (v) is of bounded variation, hence the integral

term is of order Op
(√

logn
nhn

)
.

In sum, by our Assumption (H), we have

sup
y∈Y

sup
x∈J
|F̂n (y|x)− F̃n (y|x) |

=

[
Op

(
hn

√
log n

nhn

)
+Op

(
log n

nh2
n

)]
+Op

(√
log n

nhn

)
op (1) = op

(√
log n

nhn

)
.

Q.E.D

Lemma A.5 Under Assumptions (H), (K), (X̃), (S̃)(ii), and (B)(iii), it holds that for any εn =

O
(√

logn
nhn

)
, supx∈J

∣∣∣F̂−1
n (p+ εn|x)− F−1

Y |X (p|x)
∣∣∣ = Op

(√
(nhn)−1 log n

)
.

Proof. First of all we have

sup
y∈Y

sup
x∈J

∣∣∣F̃n (y|x)− FY |X (y|x)
∣∣∣ = Op

(√
log n

nhn

)
.

This follows directly from Theorem 3 in Einmahl and Mason (2005). Actually it is even easier,

because the transformation makes the covariate uniformly distributed, and there is no denominator

of any kernel function. Note that we always use an undersmoothing bandwidth to kill the bias

(uniformly over x) as shown in Lemma A.2.
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It follows from Lemmas A.3 and A.4 that

sup
y∈Y

sup
x∈J

∣∣∣F̂n (y|x)− FY |X (y|x)
∣∣∣ = Op

(√
log n

nhn

)
. (A.3)

Hence,

Pr

[
F̂−1
n (p+ εn|x)− F−1

Y |X (p|x) > M

√
nhn
log n

]

= Pr

[
p+ εn > F̂n

(
F−1
Y |X (p|x) +M

√
nhn
log n

|x
)]

= Pr

 p− FY |X
(
F−1
Y |X (p|x) +M

√
nhn
logn |x

)
> εn + F̂n

(
F−1
Y |X (p|x) +M

√
nhn
logn |x

)
− FY |X

(
F−1
Y |X (p|x) +M

√
nhn
logn |x

) 
= Pr

[
−fY |X (∆|x)M >√

logn
nhn

(
εn + F̂n

(
F−1 (p|x) +M

√
nhn
logn |x

)
− FY |X

(
F−1
Y |X (p|x) +M

√
nhn
logn |x

)) ] .
Therefore we obtain

lim
M→∞

lim sup
n

Pr

[
F̂−1
n (p+ εn|x)− F−1 (p|x) ≥M

√
nhn
log n

]
= 0

by the requirement on cn and (A.3). Analogous argument shows that

lim
M→∞

lim sup
n

Pr

[
F̂−1
n (p+ εn|x)− F−1 (p|x) < −M

√
nhn
log n

]
= 0

and the conclusion follows. Q.E.D

Lemma A.6 Under Assumptions (H), (K), (X̃), and (S̃)(ii), uniformly in y and x ∈ J and for

any ηn = Op

(√
logn
nhn

)
, it holds that∣∣∣F̂n (y + ηn|x)− F̂n (y|x)− F̃n (y + an|x) + F̃n (y|x)

∣∣∣ = op

(
log n

nhn

)
.

Proof. The proof follows that of Lemma A.3 closely, except that we have 1{Yi ≤ y} replaced by
1{y < Yi ≤ y+ηn} (say ηn ≥ 0 w.l.o.g.) and index this new functional class by f2 ∈ F2 incorporating

additional parameter ηn, Everything works through straightforwardly up to the Hajek-Hoeffding

projection. Now the projection becomes

1

h2
n

Un1 Π1f2 =
1

nhn

n∑
j=1

∫
[H (y + ηn|U)−H (y|U)]×

[1{Uj ≤ u} − u− 1{Uj ≤ Ui}+ Ui] dK

(
u− Ui
hn

)
+ s.o.

≤ ηnM sup

∫ ∣∣∣∣∣∣ 1n
n∑
j=1

1{Uj ≤ u} − u− 1{Uj ≤ u− vhn}+ u− vhn

∣∣∣∣∣∣ d|K (v) |

= op

(
log n

nhn

)
,
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where the integral term in the above inequality is handled similarly as the proof of Lemma A.3.

For IIn, this ηnM term could also be factored out:

IIn = Op

(
hn log n

n

)
K
′′

(∆)

nh3
n

∑[
1{y < Yi ≤ y + ηn} − FY |X (y + ηn|x) + FY |X (y|x)

]
= Op

(
hn log n

n

)
K
′′

(∆)

h3
n

[
Pr{y < Yi ≤ y + ηn} − ηnfY |X (y|x)

]
+ s.o,

= Op

(
ηn log n

nh2
n

)
.

Q.E.D

Lemma A.7 Under Assumptions (H), (K), (X̃), (S̃)(ii), and (B)(iii)(iv),

sup
x∈J

sup
y∈R,|y|≤εn

∣∣∣[F̃n (y + y|x)− F̃n (y|x)
]
−
[
FY |X (y + y|x)− FY |X (y|x)

]∣∣∣
= Op

((
log n

nhn

)3/4
)
,

where εn is any positive sequence of order O
(√

logn
nhn

)
.

Proof. The standard decomposition shows that the problem could be simplified a bit:[
F̃n (y + y|x)− F̃n (y|x)

]
−
[
FY |X (y + y|x)− FY |X (y|x)

]
=

1

nhnf̃U (x)

∑n

i=1

[
1{Yi ≤ y + y} − 1{Yi ≤ y}

−
[
FY |X (y + y|x)− FY |X (y|x)

] ]K (FX(x)− FX(Xi)

hn

)

=
1

f̃U (x)

(
1
nhn

∑n
i=1 [1{Yi ≤ y + y} − 1{Yi ≤ y}]K

(
FX(x)−FX(Xi)

hn

)
−
[
FY |X (y + y|x)− FY |X (y|x)

] )

+

[
FY |X (y + y|x)− FY |X (y|x)

]
f̃U (x)

×
[
1− f̃U (x)

]
,

noting f̃U (x) converges to 1 uniformly with a rate of
√

log n/ (nhn) .It is clear from the above

decomposition that we only need to work with the first term’s numerator. Another simplification

is that we could modulo the bias term along the derivation. By the existence of second order

derivative FY |X (·|·) along y−axis:

E

[
1

hn
[1{Yi ≤ y + y} − 1{Yi ≤ y}]K

(
FX(x)− FX(Xi)

hn

)]
−
[
FY |X (y + y|x)− FY |X (y|x)

]
=

1

hn

∫ [
FY |X (y + y|Xi)− FY |X (y|Xi)

]
K

(
FX(x)− FX(Xi)

hn

)
dFX(Xi)−

[
FY |X (y + y|x)− FY |X (y|x)

]
=

1

hn

∫
fY |X (y|Xi) yK

(
FX(x)− FX(Xi)

hn

)
dFX(Xi)− fY |X (y|x) y +O

(
log n

nhn

)
= Op

(√
log n

nhn
× h2

n

)
= op

((
log n

nhn

)3/4
)
,
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Hence it suffi ces to characterize the stochastic order of the following term uniformly:

ω (x, y;hn, εn) =
1

nhn

∑n

i=1
[1{Yi ≤ y + y} − 1{Yi ≤ y}]K

(
FX(x)− FX(Xi)

hn

)
−E

(
1

nhn

∑n

i=1
[1{Yi ≤ y + y} − 1{Yi ≤ y}]K

(
FX(x)− FX(Xi)

hn

))
.

Notice that by Lipschitz continuity of FY (·), the shrinkage along y axis could be translated to FY (·)
upon multiplying some finite Lipschitz constant L in front, we assume y is nonnegative w.l.o.g.

|ω (x, y;hn, εn) |

≤ M

hn

∫ FY (y)+Ly

FY (y)

∫ ∣∣∣∣K (FX(x)− FX(X)

hn

)∣∣∣∣ d |Cn (FX (X) , FY (Y ))− C (FX (X) , FY (Y ))|

≤ M

hn

∫ FY (y)+Ly

FY (y)

∫ FX(x)+Mhn

FX(x)−Mhn

d |Cn (u, v)− C (u, v)| ,

where Cn and C denote the empirical and population copula function between (Y,X) respectively.

The double integral term corresponds to the multivariate local oscillation of empirical process within

a shrinking rectangle studied by Stute (1984b). By Theorem 1.5 or Theorem 3.1 in Stute (1984a)

and existence and boundedness of the copula density we have

sup
y,x

∫ FY (y)+Ly

FY (y)

∫ FX(x)+Mhn

FX(x)−Mhn

d |Cn (u, v)− C (u, v)|

= Op

√hnεn
√

log (hnεn)−1

√
n

 = Op

(√
hn
√

log n√
n

×
(

log n

nhn

)1/4
)
.

Hence overall, we get:

sup |ω (x, y;hn, εn) | ≤ Op

(
1

hn
×
√
hn
√

log n√
n

×
(

log n

nhn

)1/4
)

= Op

((
log n

nhn

)3/4
)
.

Q.E.D

Lemma A.8 Under Assumptions (H), (K), (X̃), (S̃)(ii), and (B)(ii)(iii)(iv), we have

F̂−1
n (p+ εn|x)− F−1

Y |X (p|x) =
1

fY |X

(
F−1
Y |X (p|x) |x

) [p+ εn − F̂n
(
F−1
Y |X (p|x) |x

)]
+Rn (x)

for any εn = O
(√

logn
nhn

)
, where Rn (x) satisfies: supx∈J |Rn (x) | = Op

((
(nhn)−1 log n

)3/4
)
.
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Proof. Setting ηn = F̂−1
n (p+ εn|x)− F−1

Y |X (p|x), we have the following successive approxima-

tions similar as proving Theorem 2.2

F̂n

(
F−1
Y |X (p|x) + ηn|x

)
− F̂n

(
F−1
Y |X (p|x) |x

)
= F̃n

(
F−1
Y |X (p|x) + ηn|x

)
− F̃n

(
F−1
Y |X (p|x) |x

)
+ op

(
log n

nhn

)
=

[
FY |X

(
F−1
Y |X (p|x) + ηn|x

)
− FY |X

(
F−1
Y |X (p|x) |x

)]
+ ∆n(x) + op

(
log n

nhn

)
= fY |X

(
ξp (x) |x

)
ηn + ∆n(x) + ∆

′
n(x) + op

(
log n

nhn

)
(A.4)

where the first equality follows from Lemma A.6, the second from Lemma A.7, and

∆n(x) = F̃n

(
F−1
Y |X (p|x) + ηn|x

)
− F̃n

(
F−1
Y |X (p|x) |x

)
−
[
FY |X

(
F−1
Y |X (p|x) + ηn|x

)
− FY |X

(
F−1
Y |X (p|x) |x

)]
,

∆
′
n(x) =

[
FY |X

(
F−1
Y |X (p|x) + ηn|x

)
− FY |X

(
F−1
Y |X (p|x) |x

)]
− fY |X

(
F−1
Y |X (p|x) |x

)
ηn.

Thus we have supx∈J |∆n(x)| = Op

((
logn
nh

)3/4
)
and supx∈J |∆

′
n(x)| = Op

(
logn
nh

)
given uniform

(w.r.t x ∈ J ) second order differentiability of FY |X (y|x) when y = F−1
Y |X (p|x)(without the second

order differentiability supx∈J |∆
′
n(x)| = op

(√
logn
nh

)
, which does not affect the asymptotic validity

of our inference procedure whatsoever. This assumption is merely imposed in accordance with

usual Bahadur Representation, see Theorem 2.5.1 in Serfling, 1980). Overall Op

((
logn
nh

)3/4
)
is

the dominating term. The result follows from noting that the LHS expression in (A.4) becomes[
p+ εn − F̂n

(
F−1
Y |X (p|x) |x

)]
. Q.E.D

Proof of Theorem 3.3. The following string of equalities shall be self-explaining:

Pr
[
F−1
Y |X (p|x) ≤ F̂−1

n (p+ cnδ (α,K)σnp (K) |x) for all x ∈ J
]

= Pr
[
F−1
Y |X (p|x)− F̂−1

n (p|x) ≤ F̂−1
n (p+ cnδ (α,K)σnp (K) |x)− F̂−1

n (p|x) for all x ∈ J
]

= Pr

F−1
Y |X (p|x)− F̂−1

n (p|x) ≤ 1

fY |X

(
F−1
Y |X (p|x) |x

)cnδ (α,K)σnp (K) +Op

((
log n

nh

)3/4
)
for all x ∈ J


= Pr

F−1
Y |X (p|x)− F̃−1

n (p|x) ≤ 1

fY |X

(
F−1
Y |X (p|x) |x

)cnδ (α,K)σnp (K) + op

(√
log n

nh

)
for all x ∈ J


= Pr

[
(2δ log n)1/2

[
sup
x∈J

fY |X

(
F−1
Y |X (p|x) |x

)
σ−1
np (K)

(
F−1
Y |X (p|x)− F̃−1

n (p|x)
)
− dn

]
≤ c (α)

]
.

Similarly,

Pr
[
F−1
Y |X (p|x) ≥ F̂−1

n (p− cnδ (α,K)σnp (K) |x) for all x ∈ J
]

= Pr

[
(2δ log n)1/2

[
sup
x∈J

fY |X

(
F−1
Y |X (p|x) |x

)
σ−1
np (K) (

(
F̃−1
n (p|x)− F−1

Y |X (p|x)
)
− dn

]
≤ c (α)

]
.
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Hence the result follows from Lemma 2.4. Q.E.D

Proof of Lemma 3.4. The proof follows from Lemma A.4 and Lemma A.8 with εn = 0.

Therefore uniformly over x ∈ J , we have

F̂−1
n (p|x)− F−1

Y |X (p|x)

=
1

fY |X

(
F−1
Y |X (p|x) |x

) [p− 1

nhn

∑
1{Yi ≤ F−1

Y |X (p|x)}K
(
FX(x)− FX(Xi)

hn

)]
+ op

((
log n

nhn

)1/2
)
.

Hence we could apply the strong approximation result in Hardle and Song (2010). For completeness

we give sketch on the successive approximation steps in Appendix C. Q.E.D

Appendix B. Technical Proofs For Section 3.2

Because the constructions of both confidence intervals and bands only involve the finite dimensional

parameter fixed at level p, we would drop the argument in terms of p for notational brevity. We

first present a lemma used in the proof of Theorem 3.5.

Lemma B.1 Under Assumptions (H), (K), and (PL), the following class of functions indexed by

s = (β, y) is P -Donsker, where β ∈ B ⊂ Rd and y ∈ Y ⊂ R:

Fn.s =

{
fn,s = 1{Yi − Z

′
iβ ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
: β ∈ B and y ∈ Y

}
.

Proof. We denote fn,s = fs
1√
hn
K
(
FX(x0)−FX(Xi)

hn

)
, with fs = 1{Yi − Z

′
iβ ≤ y} and fs ∈ Fs ={

1{Yi − Z
′
iβ ≤ y} : β ∈ B and y ∈ Y

}
. Fs is uniformly bounded and of VC type because fs could

be written as the composition of a monotone function 1{Yi ≤ ·} and a linear function Z
′
iβ + y,

applying Lemma 2.6.18 (viii) in Van der Vaart and Wellner (1996). Hence we have the following

entropy bound for any probability measure Q:

N (Fs, L2 (Q) , ε) ≤M
(

1

ε

)v
where M is a universal finite constant.

Now we are ready to use Theorem 2.11.22 in Van der Vaart and Wellner (1996) to prove that

Fn.s is P -Donsker. We begin by verifying three conditions in (2.11.21).
(i) The envelope function is Fn = 1√

hn
K
(
FX(x0)−FX(Xi)

hn

)
satisfying PF 2

n =
∫
K2 (u) du <∞;

(ii) PF 2
n1{Fn > η

√
n} ≤

∫
K(u)>η

√
nhn

K2 (u) du→ 0,∀η > 0, as n→∞;
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(iii) Let ρ (s, t) be the usual Euclidean norm in Rd+1, further denote s = (β, y) and t =
(
β, y

)
and the conditional measure as dQ·|X . Then

P (fn,s − fn,t)2 =

∫∫
(fs − ft)2 dQ·|X

1

hn
K2

(
FX(x0)− FX(X)

hn

)
dFX

≤ M

∫∫ [
|y − y|+ |Z1|

∣∣β1 − β1

∣∣+ · · ·+ |Zd|
∣∣βd − βd∣∣] dQ·|X

1

hn
K2

(
FX(x0)− FX(X)

hn

)
dFX

≤ M ·R (K) ρ (s, t)

where we have used the fact that |fs−ft|2 ≤ O
(
|y − y|+ |Z1|

∣∣β1 − β1

∣∣+ · · ·+ |Zd|
∣∣βd − βd∣∣) and

M is a finite constant The last equality follows from assumption (PL) as Z has finite conditional

(on X) absolute moment. Therefore supρ(s,t)<δn P (fn,s − fn,t)2 → 0 as δn → 0.

When it comes to the L2 (Q) entropy, for any probability measure Q, we have

logNP (Fn,s, L2 (Q) , ε||K||2) ≤ logN
(
Fs, L2

(
Q·|X

)
,
√
ε
)
≤M log

(
1

ε

)
by the simple fact that

∫
(fn,s − fn,t)2 dQ =

∫∫
(fs − ft)2 dQ·|X

1
hn
K2
(
FX(x0)−FX(X)

hn

)
dFX .

In sum, the conditions in Theorem 2.11.22 in Van der Vaart and Wellner (1996) is satisfied for

Fn.s. Q.E.D
Proof of Theorem 3.5. Let

Fn,PL (y|x0) =

∑n
i=1 1{Yi − Z

′
iβ0 ≤ y}K

(
Fn(x0)−Fn(Xi)

hn

)
∑n

i=1K
(
Fn(x0)−Fn(Xi)

hn

) .

We will complete the proof in two steps:

Step 1. We show that
√
nhn

[
F̂n,PL(·|x0)− F(Y−Z′β0)|X(·|x0)

]
converges weakly to the same

Gaussian process as
√
nhn

[
Fn,PL(·|x0)− F(Y−Z′β0)|X(·|x0)

]
;

Step 2. We show that (F̂−1
n,PL

(
p− zα/2σnp (K) |x0

)
+ z

′
0β̂, F̂

−1
n,PL

(
p+ zα/2σnp (K) |x0

)
+ z

′
0β̂] is

an asymptotically valid confidence interval for
[
z
′
0β0 + g(x0)

]
with confidence level 1− α.

Proof of Step 1. As the denominator will converge to 1 in probability as in Stute (1986), it

is suffi cient to show that

1√
nhn

∑n

i=1

[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K

(
Fn(x0)− Fn(Xi)

hn

)
= op (1) . (B.1)

Again taking the second order Taylor expansion, the left hand side of (B.1) becomes:

1√
nhn

∑n

i=1
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]K

(
FX(x0)− FX(Xi)

hn

)
+

1√
nhnhn

∑n

i=1
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]K

′
(
FX(x0)− FX(Xi)

hn

)
Bn (x0, Xi)

+
1√

nhnh2
n

∑n

i=1
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]K

′′
(∆)B2

n (x0, Xi)

= An1 +An2 +An3. (B.2)
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Again An3 is the easiest term to handle by applying the bound of local oscillation on empirical

process in Lemma A.1:

|An3| ≤
(
n

hn
sup

|FX(x0)−FX(Xi)|≤Mhn

B2
n (x0, Xi)

)
2|K ′′ (∆) |
√
nh

3/2
n

= op (1) .

It converges to zero in probability following our assumption on the bandwidth and boundedness of

the second order derivatives of the kernel function.

Similar as the proof of Lemma A.3, we write the rescaled An2 as a U-statistics plus the diagonal

term which is of smaller order:

1√
nhn

An2 =
1

h2
n

Un2

[
f̂3 − f3

]
+Op

(
1

nh2
n

)
with symmetric kernel function

f3(·, ·)

=
1

2


[
1{Yi − Z

′
iβ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K
′
(
FX(x0)−FX(Xi)

hn

)[ 1{Xj ≤ x0} − FX (x0)
−1{Xj ≤ Xi}+ FX (Xi)

]
+
[
1{Yj − Z

′
jβ ≤ y} − 1{Yj − Z

′
jβ0 ≤ y}

]
K
′
(
FX(x0)−FX(Xj)

hn

)[ 1{Xi ≤ x0} − FX (x0)
−1{Xi ≤ Xj}+ FX (Xj)

]
 .

and we define f̂3 by plugging β̂ into β. To see the functional class F3 containing f3 is of VC type

it suffi ces to consider the following three subclasses:

F3,1 = {1{Yi − Z
′
iβ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y} : (β, y) ∈ Rd+1},

F3,2 = {K ′
(
FX(x0)− FX(Xi)

hn

)
, hn > 0},

F3,3 = {[1{Xi ≤ Xj} − FX (Xj)]},

which are indeed uniformly bounded and of VC type recalling what have been shown in Lemma

A.4 and Lemma B.1
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Now by the moment bound in Lemma A.2 we have sup 1
h2n
|Un2 f3−2Un1 Π1f3| = Op

(
1
nh2n

)
= op (1)

under Assumption (H). Proceed as in Lemma A.4 we work with the projection term:

1

h2
n

2Un1

[
Π1f̂3 −Π1f3

]
=

1

nh2
n

n∑
j=1

∫
E
[
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
K
′
(
FX(x0)− FX(Xi)

hn

)
×

[1{FX (Xj) ≤ FX (x0)} − FX (x0)− 1{FX (Xj) ≤ FX (Xi)}+ FX (Xi)] dFX (Xi)

=
1

nhn

n∑
j=1

∫
E
[
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
×

[1{Uj ≤ u0} − u0 − 1{Uj ≤ Ui}+ Ui] dK

(
u0 − Ui
hn

)
=

1

nhn

n∑
j=1

∫
E
[
[1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
×

[1{Uj ≤ u0} − u0 − 1{Uj ≤ u0 − vhn}+ u0 − vhn] dK (v)

= Op

(
1√
n

)
op

(
1√
nhn

)
.

When it comes to An1, we make use of Lemma B.1 which states that the class of functions Fn,s
below is Donsker:

Fn,s =

{
fn,s = 1{Yi − Z

′
iβ ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
: β ∈ B and y ∈ Y

}
.

Let

f̂n = 1{Yi − Z
′
i β̂ ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
and

f0 = 1{Yi − Z
′
iβ0 ≤ y}

1√
hn
K

(
FX(x0)− FX(Xi)

hn

)
.

Because β̂−β0 = op (1) and E
[
(f̂n − f0)2

]
→ 0, by Lemma 19.24 in van der Vaart (1998), we have

Gn(f̂n − f0)→p 0, where Gn denotes the empirical process operator.

An1 = Gn(f̂n − f0) +

√
nE

[(
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

) 1√
hn
K

(
FX(x0)− FX(Xi)

hn

)]
= E

{
E
[√

n[1{Yi − Z
′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

] 1√
hn
K

(
FX(x0)− FX(Xi)

hn

)}
+ oP (1)

= Op (1)E

[
1√
hn
K

(
FX(x0)− FX(Xi)

hn

)]
+ oP (1) = oP (1) ,

where the third equality follows from E
[√

n[1{Yi − Z
′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}]|Xi

]
= Op (1)

as β̂ − β0 = Op

(
1√
n

)
by Assumption (PL) and the last equality follows from the fact that

E
[

1√
hn
K
(
FX(x0)−FX(Xi)

hn

)]
= O(

√
hn).
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Proof of Step 2. It follows from the same proof as that of Theorem 2.1 that

Pr
(
g (x0) ∈ (F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, F̂−1

n,PL

(
p+ zα/2σnp (K) |x0

)
]
)
→ 1− α.

So

Pr
(
z
′
0β0 + g (x0) ∈ (z

′
0β̂ + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, z
′
0β̂ + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

))
= Pr

(
z
′
0β0 + g (x0) ∈ (z

′
0β̂ + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

)
, z
′
0β̂ + F̂−1

n,PL

(
p− zα/2σnp (K) |x0

))
+ o (1)

→ 1− α,

where in the first equality above, we have replaced β0 with its root-n consistent estimator. This is

valid since the length of the interval is of order (nhn)−1/2, wider than n−1/2. Q.E.D

The following lemma is used in the proof of Theorem 3.3.

Lemma B.2 (Stute and Zhu, 2005) Referring to the notation in Section 3.2, given Assumptions

(Z2), (HS) and a root-n consistent estimator β̂ in the single index model, uniformly for any z,

sup
n1/2||β̂−β0||≤M,n1/2−1/γ |Z′i β̂−z

′β0|≤M
|Fn(z

′
β̂)−Fn(Z

′
i β̂)−F (z

′
β0)+F (Z

′
iβ0)| = Op

(
n−3/4+1/2γ

√
lnn

)
.

Proof. We refer the readers to Lemma 4.2 and its proof in Stute and Zhu (2005). Q.E.D

Proof of Theorem 3.7. We will prove the result focusing on the estimator without the

denominator, as it would follow along the proof that the denominator converges to 1 in probability.

First we claim that

1√
nhn

[∑n

i=1
1{Yi ≤ y}

(
K

(
Fn(z

′
0β̂)− Fn(Z

′
i β̂)

hn

)
−K

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

))]
= op (1) .

(B.3)

Given (B.3), after normalizing, our conditional empirical process converges to the same Brownian

Bridge as 1√
nhn

∑n
i=1

[
1{Yi ≤ y}K

(
F (z
′
0β0)−F (Z

′
iβ0)

hn

)
− FY |X̃(·|x̃0)

]
does, where x̃0 = z

′
0β0. Going

over the proofs of Theorems 2.1 and 3.1, we have (F̂−1
n,SI

(
p− zα/2σnp (K) |z0

)
, F̂−1

n,SI

(
p+ zα/2σnp (K) |z0

)
]

as the confidence interval for g(x̃0) with asymptotic nominal size 1− α.
Now we show the claim in (B.3). Taking a second order Taylor expansion, we obtain:

1√
nhn

[∑n

i=1
K

(
Fn(z

′
0β̂)− Fn(Z

′
i β̂)

hn

)
−K

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)]

=
1√
nhn

∑n

i=1

1

hn
K
′

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)[
Fn(z

′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)

]
+

1√
nhn

∑n

i=1

1

h2
n

K
′′

(∆)
[
Fn(z

′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)

]2
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According to Lemma 4.1 in Stute and Zhu (2005) and under the moment conditions in (Z2), it

suffi ces to control the oscillation of the induced empirical process on
{
Z
′
i β̂
}n
i=1

for observations

locally around z
′
0β0 within a distance of order n

1/γ−1/2. Now use Lemma B.2 at point z0, under

our assumptions we have,

sup
n1/2||β̂−β0||≤M,n1/2−1/γ |Z′i β̂−z

′β0|≤M
|Fn(z

′
0β̂)−Fn(Z

′
i β̂)−F (z

′
0β0)+F (Z

′
iβ0)| = Op

(
n−3/4+1/2γ

√
lnn

)
.

Hence,

1√
nhn

∑n

i=1

∣∣∣∣∣ 1

hn
K
′

(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)∣∣∣∣∣ · |Fn(z
′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)|

=
n−1/4+1/2γ

√
lnn√

hn

[
1

nhn

∑n

i=1

∣∣∣∣∣K ′
(
F (z

′
0β0)− F (Z

′
iβ0)

hn

)∣∣∣∣∣
]

= Op

(
h−1/2
n n−1/4+1/2γ

√
lnn

)
= op (1) ,

where the second equality use the fact that 1
nhn

∑n
i=1

∣∣∣∣K ′ (F (z
′
0β0)−F (Z

′
iβ0)

hn

)∣∣∣∣ = Op (1) by standard

kernel convergence result.

The last equality follows from the assumption of the bandwidth.

1√
nhn

∑n

i=1

1

h2
n

K
′′

(∆)
[
Fn(z

′
0β̂)− Fn(Z

′
i β̂)− F (z

′
0β0) + F (Z

′
iβ0)

]2

= Op

(
1

√
nh

5/2
n

n−3/2+1/γ lnn

)
= Op

(
h−5/2
n n−1+1/γ lnn

)
= op (1) .

Hence the claim is indeed satisfied.

In the above proof, take y = ∞, we also get the desired convergence (to 1 in probability) for
the denominator. Q.E.D

We now sketch the changes needed here. It suffi ces to show that F̂n,PL (y|x) and F̂n,SI (y|z) can
be uniformly approximated well by the corresponding F̃n,PL (y|x) and F̃n,SI (y|z). Then the results
would follow after going over Lemmas A.3-A.8. Notice that the sup-norm convergence rate is in

fact slower by a factor of
√

log n, which corresponds to the compensating factor along these uniform

approximations.

Proof of Theorems 3.8. Similar to f̂U (x) and f̃U (x) defined earlier, we introduce the

following notations:

f̂U ,SI (z) =
1

nhn

∑n

i=1
K

(
Fn(z

′
β̂)− Fn(Z

′
i β̂)

hn

)
and

f̃U ,SI (z) =
1

nhn

∑n

i=1
K

(
F (z

′
β0)− F (Z

′
iβ0)

hn

)
.
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For Theorem 3.8, we have:

F̂n,SI (y|z)− F̃n,SI (y|z)

=

1
nhn

∑n
i=1

[
1{Yi ≤ y} − FY |X̃ (y|x̃)

] [
K

(
Fn(z

′
β̂)−Fn(Z

′
i β̂)

hn

)
−K

(
F (z
′
β0)−F (Z

′
iβ0)

hn

)]
f̂U ,SI (z)

+

1

nhn

∑n

i=1

[
1{Yi ≤ y} − FY |X̃ (y|x̃)

]
K

(
F (z

′
β0)− F (Z

′
iβ0)

hn

)(
1

f̂U ,SI (z)
− 1

f̃U ,SI (z)

)

with x̃ = z
′
β0, The proof about switching from Fn(Z

′
i β̂) to F (z

′
β0) follows directly, since when

we characterize the two smaller terms, the bound in Lemma B.2 holds uniformly in x̃. Also the

denominator converges to 1 with a rate Op
(√

logn
nhn

)
. The rest would be the same.

Proof of Theorem 3.6. First we take the following decomposition:

F̂n,PL (y|x)− F̃n,PL (y|x)

=

1
nhn

∑n
i=1

[
1{Yi − Z

′
i β̂ ≤ y} − FỸ |X (ỹ|x)

] [
K
(
Fn(x)−Fn(Xi)

hn

)
−K

(
FX(x)−FX(Xi)

hn

)]
f̂U (x)

+

1

nhn

∑n

i=1

[
1{Yi − Z

′
i β̂ ≤ y} − FỸ |X (ỹ|x)

]
K

(
FX(x)− FX(Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)

=

1
nhn

∑n
i=1

[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

] [
K
(
Fn(x)−Fn(Xi)

hn

)
−K

(
FX(x)−FX(Xi)

hn

)]
f̂U (x)

+

1
nhn

∑n
i=1

[
1{Yi − Z

′
iβ0 ≤ y} − FỸ |X (ỹ|x)

] [
K
(
Fn(x)−Fn(Xi)

hn

)
−K

(
FX(x)−FX(Xi)

hn

)]
f̂U (x)

+
1

nhn

∑n

i=1

[
1{Yi − Z

′
i β̂ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K

(
FX(x)− FX(Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)

+
1

nhn

∑n

i=1

[
1{Yi − Z

′
iβ0 ≤ y} − FỸ |X (ỹ|x)

]
K

(
FX(x)− FX(Xi)

hn

)(
1

f̂U (x)
− 1

f̃U (x)

)
= Pn1 + Pn2 + Pn3 + Pn4

where ỹ = y − z′β0. The terms Pn2 and Pn4 could be dealt with just as in the univariate nonpara-

metric case.

When it comes to Pn3, change occurs at the first order Taylor expansion term where the ap-

proximation of the U-statistic by the Hajek-Hoeffding projection holds uniformly in x, i.e., we need

to incorporate the class F3,2 = {K ′
(
FX(x)−FX(Xi)

hn

)
, x ∈ J , hn > 0} indexed by x as well now. As

K
′′
exists and is bounded, hence K

′
has bounded variation, overall we still get the functional class

of VC type and the U-statistic is approximated by Lemma A2 once we incorporate the additional

factor
√

log n. Now for the dominating term in Pn1 and Pn3, everything boils down to show the
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negligibility of

Pn0 =
1

hn
Pnfn,t

=
1

nhn

∑n

i=1

[
1{Yi − Z

′
iβ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K

(
FX(x)− FX(Xi)

hn

)
.

when β − β0 = O (1/
√
n). Unlike Lemma B.1 we no longer have Donsker property would not hold

for the class Fn,t when x changes too

Fn,t =

{
fn,t =

[
1{Yi − Z

′
iβ ≤ y} − 1{Yi − Z

′
iβ0 ≤ y}

]
K
(
FX(x)−FX(Xi)

hn

)
:

y ∈ R, x ∈ J , hn > 0, β − β0 = O (1/
√
n)

}

Instead we resort to the Talagrand’s inequality presented in Einmahl and Mason (2005). Let {εi}ni=1

be a sequence of independent Rademacher r.v., independent of the sample {Yi, Zi, Xi}ni=1. Since

supEf2
n,t = O

(
1

hn
√
n

)
, hence Proposition in Einmahl and Mason (2005) or our Lemma A.2 gives

1

nhn
E

∥∥∥∥∥
n∑
i=1

εifn,t (Yi, Zi, Xi)

∥∥∥∥∥
Fn,t

= O

(√
log n

nhn
× 1

n1/4

)
.

What is more, 1
hn
‖(Pn − P) fn,t‖Fn,t is of the same order of

1
nhn

E ‖
∑n

i=1 εifn,t (Yi, Zi, Xi)‖Fn,t by

the concentration inequality in Einmahl and Mason (2005). Finally for any fn,t,
√

nhn
lognPfn,t =

O
(√

hn
logn

)
= o (1) as in the proof of Theorem 3.5. Overall we have Pn0 = op

(√
logn
nhn

)
uniformly.

Q.E.D

7 Appendix C. Strong Approximation Results

The strong approximation used in this paper follows from Hardle and Song (2010) upon changing

X to FX (X) and removing the X’s density fX (·). For completeness we sketch the successive
approximation steps according to our notation, and refer the readers to Hardle and Song (2010)

for a detailed proof.

Recall our conditional quantile estimator admits the following linear representation uniformly

over x ∈ J , after replacing Fn (·) with FX (·) inside the kernel function and applying Bahadur
representation:

F̂−1
n (p|x)− F−1 (p|x)

=
1

fY |X
(
ξp (x) |x

)
 1

nhn

∑n
i=1

[
p− 1{Yi ≤ ξp (x)}

]
K
(
FX(x)−FX(Xi)

hn

)
−

E
[
p− 1{Yi ≤ ξp (x)}

]
1
hn
K
(
FX(x)−FX(Xi)

hn

) + op

(√
log n

nhn

)
.

Define the dominating linear term times
√

nhn
p(1−p) as Yn (u), with u = FX(x). Also let T (v, y) =[

FU |y (v|y) , FY (y)
]
be the Rosenblatt transformation and ψ (s) = p− 1{s ≤ 0}. Now we have the
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following successive approximating processes:

Y0,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (u)

))
dZn (v, y) ,

Y1,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (u)

))
dBn [T (v, y)] ,

Y2,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (u)

))
dWn [T (v, y)] ,

Y3,n (u) =
1√

hng (u)

∫∫
Γn

K

(
u− v
hn

)
ψ
(
y − ξp

(
F−1
X (v)

))
dWn [T (v, y)] ,

Y4,n (u) =

√
p(1− p)√
hng (u)

∫
K

(
u− v
hn

)
dW (v) ,

Y5,n (u) =
1√
hn

∫
K

(
u− v
hn

)
dW (v) ,

where Γn = {|y| ≤ an} and g (u) = E
[
ψ
(
y − ξp

(
F−1
X (u)

))
× 1{|y| ≤ an}|U = u

]
. Zn (·, ·) denotes

bivariate empirical processes, {Bn} being a sequence of Brownian bridges, {Wn} being a sequence
of Wiener processes and W (·) being the Wiener process.

The proof goes by approximating the linear term by Y0,n (u) up to Y3,n (u), confirming Y3,n (u)

and Y4,n (u) having the same distribution, and finally approximating Y4,n (u) by Y5,n (u). The lim-

iting distribution and normalizing and centering sequences are from Bickel and Rosenblatt (1973),

and Hardle (1989).
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Table 1: Coverage Rate in Nonparametric Models (n = 200)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.9674 0.9514 0.9358 0.9834 0.9894 0.9846 0.9692 0.9316 0.9556
Asy CI 0.9832 0.9546 0.9350 0.9884 0.9918 0.9552 0.9738 0.9380 0.9398
New NW 0.9232 0.9630 0.9386 0.9434 0.9498 0.9678 0.9598 0.9632 0.9074
New CI 0.9372 0.9656 0.9678 0.9508 0.9558 0.9566 0.9682 0.9654 0.9436
Boot Nm 0.8824 0.8670 0.8586 0.8938 0.8844 0.884 0.8602 0.856 0.879
Boot Perc 0.9584 0.9466 0.9320 0.9096 0.9600 0.8968 0.9584 0.931 0.8586

Model-2 Linear Hetero
Asy NW 0.9556 0.9424 0.9068 0.9650 0.9532 0.9254 0.9550 0.9294 0.8920
Asy CI 0.9610 0.9452 0.8918 0.9756 0.9582 0.9084 0.9532 0.9382 0.8850
New NW 0.9518 0.9550 0.9606 0.9546 0.9566 0.9554 0.9594 0.9584 0.9568
New CI 0.9534 0.9582 0.9358 0.9566 0.9582 0.9454 0.9646 0.9598 0.9524
Boot Nm 0.8952 0.9066 0.8958 0.8964 0.9026 0.8988 0.8884 0.8860 0.8808
Boot Perc 0.9552 0.9576 0.9532 0.9534 0.9552 0.9486 0.9390 0.9456 0.9246
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Table 2: Coverage Rate in Nonparametric Models (n = 500)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.9664 0.9440 0.9430 0.9870 0.9780 0.9890 0.9830 0.9432 0.9536
Asy CI 0.9814 0.9516 0.9474 0.9892 0.9808 0.9646 0.9836 0.9466 0.9402
New NW 0.9382 0.9580 0.9634 0.9492 0.9546 0.9422 0.9584 0.9570 0.9598
New CI 0.9548 0.9570 0.9594 0.9580 0.9584 0.9582 0.9608 0.9626 0.9526
Boot Nm 0.8944 0.8944 0.8810 0.9030 0.8986 0.8908 0.8940 0.8986 0.8998
Boot Perc 0.9626 0.9532 0.9418 0.9608 0.9660 0.9544 0.9322 0.9534 0.9618

Model-2 Linear Hetero
Asy NW 0.9514 0.9476 0.9278 0.9642 0.9540 0.9486 0.9606 0.9460 0.9170
Asy CI 0.9544 0.9462 0.9148 0.9672 0.9612 0.9362 0.9574 0.9452 0.9090
New NW 0.9396 0.9420 0.9542 0.9546 0.9484 0.9610 0.9520 0.9584 0.9652
New CI 0.9528 0.9558 0.9428 0.9568 0.9586 0.9532 0.9538 0.9610 0.9522
Boot Nm 0.907 0.9136 0.903 0.9086 0.9158 0.8986 0.9088 0.9086 0, 8998
Boot Perc 0.953 0.9556 0.943 0.9568 0.9612 0.9446 0.9506 0.9562 0.9336

Table 3: Coverage Rate in Nonparametric Models (n = 1000)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.9602 0.9494 0.9508 0.9896 0.9704 0.9832 0.9864 0.9536 0.9574
Asy CI 0.9714 0.9518 0.9572 0.9910 0.9748 0.9700 0.9838 0.9536 0.9554
New NW 0.9512 0.9598 0.9634 0.9512 0.9570 0.9474 0.9578 0.9560 0.9598
New CI 0.9540 0.9618 0.9612 0.9538 0.9582 0.9620 0.9632 0.9600 0.9554
Boot Nm 0.9092 0.8894 0.8916 0.9068 0.9140 0.9052 0.9000 0.9066 0.9094
Boot Perc 0.9614 0.9554 0.9480 0.9566 0.9614 0.9596 0.9444 0.9572 0.9628

Model-2 Linear Hetero
Asy NW 0.9602 0.9518 0.9302 0.9522 0.9642 0.9540 0.9622 0.9526 0.9398
Asy CI 0.9642 0.9552 0.9254 0.9572 0.9672 0.9612 0.9602 0.9554 0.9280
New NW 0.9526 0.9504 0.9602 0.9602 0.9586 0.9630 0.9586 0.9572 0.9606
New CI 0.9548 0.9516 0.9460 0.9604 0.9602 0.9518 0.9600 0.9616 0.9488
Boot Nm 0.9186 0.9170 0.9025 0.9146 0.9178 0.9098 0.9138 0.9166 0.9004
Boot Perc 0.9633 0.9546 0.9418 0.9576 0.9560 0.9488 0.9516 0.9538 0.9434
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Table 4: Coverage Rate in Nonparametric Models (n = 1000, One Bandwidth)
Q-Level p = 0.25 p = 0.5 p = 0.75

x 0 0.75 1.5 0 0.75 1.5 0 0.75 1.5

Model-1 Curvy Homo
Asy NW 0.7858 0.7488 0.5634 0.8000 0.7748 0.5906 0.7852 0.7464 0.5560
Asy CI 0.7728 0.7470 0.6980 0.7894 0.7778 0.7260 0.7772 0.7484 0.7084
New NW 0.9522 0.9626 0.9672 0.9518 0.9598 0.9572 0.9582 0.9594 0.9672
New CI 0.9540 0.9618 0.9612 0.9538 0.9582 0.9620 0.9632 0.9600 0.9554

Model-2 Linear Hetero
Asy NW 0.9522 0.9416 0.9162 0.9518 0.9442 0.9264 0.9518 0.9408 0.9116
Asy CI 0.9508 0.9414 0.9204 0.9570 0.9480 0.9234 0.9472 0.9448 0.9140
New NW 0.9516 0.9502 0.9610 0.9612 0.9586 0.9644 0.9588 0.9578 0.9602
New CI 0.9548 0.9516 0.9460 0.9604 0.9602 0.9518 0.9600 0.9616 0.9488

Table 5: Coverage Rate in Partial Linear Model (n = 500)
Q-Level p = 0.25 p = 0.5 p = 0.75(
x
z

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

)
Asy NW 0.9180 0.9334 0.9172 0.9278 0.9384 0.9272 0.9164 0.9288 0.9196
Asy CI 0.9192 0.9320 0.9224 0.9262 0.9422 0.9276 0.9152 0.9286 0.9174
New NW 0.9486 0.9612 0.9482 0.9506 0.9582 0.9512 0.9502 0.9568 0.9462
New CI 0.9482 0.9600 0.9460 0.9502 0.9558 0.9506 0.9510 0.9560 0.9494
Boot Nm 0.9370 0.9448 0.9484 0.9366 0.9490 0.9478 0.9290 0.9486 0.9412
Boot Perc 0.9822 0.9800 0.9708 0.9816 0.9796 0.9714 0.9804 0.9798 0.9712

Table 6: Coverage Rate in Partial Linear Model (n = 1000)
Q-Level p = 0.25 p = 0.5 p=0.75(
x
z

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

)
Asy NW 0.9278 0.9382 0.9282 0.9324 0.9410 0.9382 0.9274 0.9374 0.9290
Asy CI 0.9262 0.9414 0.9284 0.9328 0.9434 0.9368 0.9282 0.9344 0.9302
New NW 0.9536 0.9530 0.9564 0.9502 0.9604 0.9514 0.9484 0.9598 0.9482
New CI 0.9496 0.9532 0.9534 0.9506 0.9566 0.9492 0.9512 0.9570 0.9462
Boot Nm 0.9394 0.9536 0.947 0.9418 0.954 0.9470 0.9410 0.9506 0.9464
Boot Perc 0.9800 0.9782 0.972 0.9762 0.978 0.9722 0.9766 0.9778 0.9716

Table 7: Coverage Rate in Partial Linear Model (n = 1000, One Bandwidth)
Q-Level p = 0.25 p = 0.5 p = 0.75(
x
z

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

) (
0.25
0.5

) (
0.5
1

) (
0.75
1.5

)
Asy NW 0.7972 0.8040 0.7946 0.8142 0.8266 0.8168 0.7982 0.8068 0.7962
Asy CI 0.8060 0.8014 0.7940 0.8164 0.8276 0.8168 0.8002 0.8096 0.7980
New NW 0.9526 0.9534 0.9562 0.9512 0.9598 0.9524 0.9498 0.9594 0.9470
New CI 0.9496 0.9532 0.9534 0.9506 0.9566 0.9492 0.9512 0.9570 0.9462
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