Article

Cytometry inference through adaptive atomic deconvolution

Manon Costa, Sébastien Gadat, Pauline Gonnord et Laurent Risser

Résumé

In this paper, we consider a statistical estimation problem known as atomic deconvolution. Introduced in reliability, this model has a direct application when considering biological data produced by flow cytometers. From a statistical point of view, we aim at inferring the percentage of cells expressing the selected molecule and the probability distribution function associated with its fluorescence emission. We propose here an adaptive estimation procedure based on a previous deconvolution procedure introduced by Es, Gugushvili, and Spreij [(2008), ‘Deconvolution for an atomic distribution’, Electronic Journal of Statistics, 2, 265–297] and Gugushvili, Es, and Spreij [(2011), ‘Deconvolution for an atomic distribution: rates of convergence’, Journal of Nonparametric Statistics, 23, 1003–1029]. For both estimating the mixing parameter and the mixing density automatically, we use the Lepskii method based on the optimal choice of a bandwidth using a bias-variance decomposition. We then derive some convergence rates that are shown to be minimax optimal (up to some log terms) in Sobolev classes. Finally, we apply our algorithm on the simulated and real biological data.

Mots-clés

Mixture models; atomic deconvolution; adaptive kernel estimators; inverse problems;

Remplace

Manon Costa, Sébastien Gadat, Pauline Gonnord et Laurent Risser, « Cytometry inference through adaptive atomic deconvolution », TSE Working Paper, n° 18-905, mars 2018.

Référence

Manon Costa, Sébastien Gadat, Pauline Gonnord et Laurent Risser, « Cytometry inference through adaptive atomic deconvolution », Journal of Nonparametric Statistics, vol. 31, n° 2, avril 2019, p. 506–547.

Voir aussi

Publié dans

Journal of Nonparametric Statistics, vol. 31, n° 2, avril 2019, p. 506–547