Résumé
This paper considers moment-based tests applied to estimated quantities. We propose a general class of transforms of moments to handle the parameter uncertainty problem. The construction requires only a linear correction that can be implemented in-sample and remains valid for some extended families of non-smooth moments. We reemphasize the attractiveness of working with robust moments, which lead to testing procedures that do not depend on the estimator. Furthermore, no correction is needed when considering the implied test statistic in the out-of-sample case. We apply our methodology to various examples with an emphasis on the backtesting of value-at-risk forecasts.
Mots-clés
moment-based tests; parameter uncertainty; out-of-sample; discrete distributions; value-at-risk; backtesting;
Codes JEL
- C12: Hypothesis Testing: General
Référence
Christian Bontemps, « Moment-based tests under parameter uncertainty », The Review of Economics and Statistics, vol. 101, n° 1, mars 2019, p. 146–159.
Voir aussi
Publié dans
The Review of Economics and Statistics, vol. 101, n° 1, mars 2019, p. 146–159