Résumé
We consider a linear model where the coecients - intercept and slopes - are random and independent from regressors which support is a proper subset. When the slopes do not have heavy tails, the joint density of the random coecients is identied. Lower bounds on the supremum risk for the estimation of the density are derived for this model and a related white noise model. We present an estimator, its rates of convergence, and a data-driven rule which delivers adaptive estimators.
Remplacé par
Christophe Gaillac et Eric Gautier, « Adaptive estimation in the linear random coefficients model when regressors have limited variation », Bernoulli, vol. 28, n° 1, février 2022, p. 504–524.
Référence
Christophe Gaillac et Eric Gautier, « Adaptive estimation in the linear random coefficients model when regressors have limited variation », TSE Working Paper, n° 19-1026, juillet 2019.
Voir aussi
Publié dans
TSE Working Paper, n° 19-1026, juillet 2019