Résumé
We present a constructive proof of (nonparametric) identication of the parameters of a bivariate Markov chain when only one of the two random variables is observable. This setup generalizes the hidden Markov model in various useful directions, allowing for state dependence in the observables and allowing the transition kernel of the hidden Markov chain to depend on past observables. We give conditions under which the transition kernel and the distribution of the initial condition are both identied (up to a permutation of the latent states) from the joint distribution of four (or more) time-series observations.
Mots-clés
Dynamic discrete choice; finite mixture; Markov process; regime switching; state dependence;
Codes JEL
- C14: Semiparametric and Nonparametric Methods: General
- C23: Panel Data Models • Spatio-temporal Models
Référence
Ayden Higgins et Koen Jochmans, « Learning Markov Processes with Latent Variables From Longitudinal Data », TSE Working Paper, n° 22-1366, septembre 2022, révision mai 2024.
Voir aussi
Publié dans
TSE Working Paper, n° 22-1366, septembre 2022, révision mai 2024