Document de travail

A Neyman-Orthogonalization Approach to The Incidental Parameter Problem

Stéphane Bonhomme, Koen Jochmans et Martin Weidner

Résumé

A popular approach to perform inference on a target parameter in the presence of nuisance parameters is to construct estimating equations that are orthogonal to the nuisance parameters, in the sense that their expected first derivative is zero. Such first-order orthogonalization may, however, not suffice when the nuisance parameters are very imprecisely estimated. Leading examples where this is the case are models for panel and network data that feature fixed effects. In this paper, we show how, in the conditional-likelihood setting, estimating equations can be constructed that are orthogonal to any chosen order. Combining these equations with sample splitting yields higher-order bias-corrected estimators of target parameters. In an empirical application we apply our method to a fixed-effect model of team production and obtain estimates of complementarity in production and impacts of counterfactual re-allocations.

Mots-clés

Neyman-orthogonality; incidental parameter; higher-order bias correction; networks;

Codes JEL

  • C13: Estimation: General
  • C23: Panel Data Models • Spatio-temporal Models
  • C55: Modeling with Large Data Sets

Référence

Stéphane Bonhomme, Koen Jochmans et Martin Weidner, « A Neyman-Orthogonalization Approach to The Incidental Parameter Problem », TSE Working Paper, n° 25-1614, janvier 2025.

Voir aussi

Publié dans

TSE Working Paper, n° 25-1614, janvier 2025