Résumé
Econometric land use models study determinants of land-use-shares of different classes: ``agriculture'', ``forest'', ``urban'' and ``other'' for example. Land-use-shares have a compositional nature as well as an important spatial dimension. We compare two compositional regression models with a spatial autoregressive nature in the framework of land use. We study the impact of the choice of coordinate space. We discuss parameters interpretation taking into account the non linear structure as well as the spatial dimension. We compute and interpret the semi-elasticities of the shares with respect to the explanatory variables and the spatial impact summary measures.
Mots-clés
compositional regression model; marginal effects; simplicial derivative; elasticity; semi-elasticity.;
Codes JEL
- C10: General
- C39: Other
- C46: Specific Distributions • Specific Statistics
- C65: Miscellaneous Mathematical Tools
- M31: Marketing
- Q15: Land Ownership and Tenure • Land Reform • Land Use • Irrigation • Agriculture and Environment
Remplacé par
Christine Thomas-Agnan, Thibault Laurent, Anne Ruiz-Gazen, Thi-Huong-An Nguyen, Raja Chakir et Anna Lungarska, « Spatial Simultaneous Autoregressive Models for Compositional Data: Application to Land Use », dans Advances in Compositional Data Analysis, sous la direction de Peter Filzmoser, Karel Hron, Josep Antoni Martín-Fernández et Javier Palarea-Albaladejo, 2021.
Référence
Christine Thomas-Agnan, Thibault Laurent, Anne Ruiz-Gazen, T.H.A Nguyen, Raja Chakir et Anna Lungarska, « Spatial simultaneous autoregressive models for compositional data: Application to land use », TSE Working Paper, n° 20-1098, mai 2020, révision juin 2021.
Voir aussi
Publié dans
TSE Working Paper, n° 20-1098, mai 2020, révision juin 2021