Article

On some recent advances in high dimensional Bayesian Statistics

Nicolas Chopin, Sébastien Gadat, Benjamin Guedj, Arnaud Guyader et Elodie Vernet

Résumé

This paper proposes to review some recent developments in Bayesian statistics for high dimensional data. After giving some brief motivations in a short introduction, we describe new advances in the understanding of Bayes posterior computation as well as theoretical contributions in non parametric and high dimensional Bayesian approaches. From an applied point of view, we describe the so-called sqmc particle method to compute posterior Bayesian law, and provide a nonparametric analysis of the widespread abc method. On the theoretical side, we describe some recent advances in Bayesian consistency for a nonparametric hidden Markov model as well as new pac-Bayesian results for different models of high dimensional regression.

Remplace

Nicolas Chopin, Sébastien Gadat, Benjamin Guedj, Arnaud Guyader et Elodie Vernet, « On some recent advances in high dimensional Bayesian Statistics », TSE Working Paper, n° 15-557, février 2015.

Référence

Nicolas Chopin, Sébastien Gadat, Benjamin Guedj, Arnaud Guyader et Elodie Vernet, « On some recent advances in high dimensional Bayesian Statistics », Esaim Proceedings and Surveys, vol. 51, octobre 2015, p. 293–319.

Voir aussi

Publié dans

Esaim Proceedings and Surveys, vol. 51, octobre 2015, p. 293–319